# 羟基自由基快速杀灭典型水华藻的研究

丁丽飞<sup>1</sup>,李海燕<sup>1</sup>,白敏冬<sup>1\*</sup>,郑 武<sup>1</sup>,郭 枫<sup>1</sup>,张芝涛<sup>2\*</sup> (1.厦门大学环境与生态学院,海洋生物资源开发利 用协同创新中心,福建 厦门 361102; 2.大连海事大学环境工程研究所物理系,辽宁 大连 116026)

摘要: 以典型水华藻铜绿微囊藻、针杆藻和四尾栅藻为研究对象,利用大气压强电离放电高效生成的羟基自由基(•OH)对 3 种藻进行杀灭. 采用荧光染色、流式细胞仪和光合活性等生物学方法,确定·OH 杀灭的阈值浓度和时间,并观察细胞形态变化.结果表明,当混合藻中铜绿微 囊藻、针杆藻和四尾栅藻的初始藻密度分别为 19.5×10<sup>4</sup>、21.8×10<sup>4</sup>和 4.90×10<sup>4</sup>cells/mL 时, ·OH 杀灭的阈值浓度为 1.07mg/L,致死时间为 4.5s;形态观察结果表明,处理后各种藻的形态是完整的,无内溶质溢出.因此,采用•OH 可实现高效快速杀灭水华藻,有效保障饮用水安全. 关键词: 羟基自由基; 水华藻; 致死阈值; 暴露时间

中图分类号: X52 文献标识码: A 文章编号: 1000-6923(2017)07-2633-06

**Research on the rapid inactivation of typical algae blooms by hydroxyl radical.** DING Li-fei<sup>1</sup>, LI Hai-yan<sup>1</sup>, BAI min-dong<sup>1\*</sup>, ZHENG Wu<sup>1</sup>, GUO Feng<sup>1</sup>, ZHANG Zhi-tao<sup>2\*</sup> (1.College of Environment &Ecology, Xiamen University, Xiamen 361102, China; 2.Environmental Engineering Institute, Dalian Maritime University, Dalian 116026, China). *China Environmental Science*, 2017,37(7): 2633~2638

**Abstract:** Algae blooming in water sources breaks out increasingly and seriously threatened the water supply safety. Bench scale tests were conducted to study the effects of  $\cdot$ OH generated from strong ionization discharge and high pressure water jet cavitation on cell density, cell integrity and photosynthetic capacity of 3kinds of typical freshwater algae. Algae species including *Microcystis aeruginosa, Synedra* sp., and *Scenedesmus quadricuauda* were respectively prepared at concentrations of 19.5×10<sup>4</sup>, 21.8×10<sup>4</sup> and 4.90×10<sup>4</sup> cells/mL, and the cell integrity was assessed by flow cytometry. Results suggested that the  $\cdot$ OH lethal threshold of the algae was 1.07mg/L within the exposure time of 4.5s. The cell morphological observation results showed that all the cells were integral and no cytoplasm composition spilled. Hence, large-scale production of  $\cdot$ OH is a novel method to inactive typical algae species efficiently and to protect drinking water safety simultaneously.

Key words: hydroxyl radical; algae blooms; lethal threshold; exposure time

藻华是世界性的水环境问题,而我国的诸多 湖泊与河流库区的高藻爆发形势日益严峻.这些 湖库水是我国饮用水水源的重要组成部分,高藻 爆发时,藻密度、化学需氧量、氨氮等水质指标 超过地表水III类标准,不仅会增加自来水厂的生 产成本,甚至引起减产或停产.常规饮用水处理工 艺难以解决藻类毒素、嗅味物质等高藻引发的水 质超标问题,严重威胁城市供水和饮用水安全<sup>[1]</sup>.

目前,采用化学氧化法控制藻华已成为全世 界范围内的研究热点.Daly 等<sup>[2]</sup>研究氯法杀灭密 度为 30×10<sup>4</sup>cells/mL 的铜绿微囊藻,当 CT 值(氧 化剂的暴露总量)为7~29(mg·min)/L时,所有藻细 胞失去活性,但产生三氯甲烷、卤乙酸等卤代有 机消毒副产物<sup>[3]</sup>.Zhou 等<sup>[4]</sup>研究了二氧化氯法杀 灭密度为 100×10<sup>4</sup>cells/mL 的铜绿微囊藻,作用时 间为 10min 时,藻细胞去除率达到 91.5%,但产生 的副产物 ClO<sub>2</sub><sup>-</sup>和 ClO<sub>3</sub><sup>-</sup>具有较大的潜在毒性<sup>[5]</sup>. Huo 等<sup>[6]</sup>采用浓度为 0~60mg/L 的 H<sub>2</sub>O<sub>2</sub> 杀灭铜绿 微囊藻,作用时间为 3h 时,致死率达到 99%,然而 H<sub>2</sub>O<sub>2</sub> 浓度大,杀灭高藻的成本过高<sup>[7]</sup>, H<sub>2</sub>O<sub>2</sub> 在使 用和运输过程中存在爆炸隐患.Coral 等<sup>[8]</sup>研究臭 氧法致死细胞密度为 25×10<sup>4</sup> 和 150×10<sup>4</sup>cells/ mL 的铜绿微囊藻,在 CT 值小于 0.2mg·min/L 时,所

收稿日期: 2016-11-01

基金项目: 国家科技支撑计划资助项目(2013BAC06B01, 2013BAC06B02);国家重大科研仪器研制项目(61427804)

<sup>\*</sup> 责任作者, 白敏冬, 教授, mindong-bai@163.com; 张芝涛, 教授, newzhangzhitao@163.com

有细胞失活,若水中 Br 和 Cl 浓度较高,O<sub>3</sub>氧化会 生成 HOBr 等消毒副产物<sup>[9]</sup>,且臭氧法的一次性 设备投资、运行成本高,设备及附属设备庞大.Li 等<sup>[10]</sup>利用水利空化产生羟基自由基技术,处理初 始叶绿素含量为 0.17mg/m<sup>3</sup>的铜绿微囊藻,当羟 基浓度为 2.03µmol/L,3d 内对藻的去除率可达 91.2%.顾雨辰等<sup>[11]</sup>利用高压脉冲气液混合放电 杀灭铜绿微囊藻,结果表明在优化条件下,该方法 在 5d 时间内,对叶绿素含量为 0.15mg/m<sup>3</sup>的铜绿 微囊藻的致死率可达 99%以上.因此采用氯气、 二氧化氯、H<sub>2</sub>O<sub>2</sub>和 O<sub>3</sub>等常规氧化剂去除水中藻 细胞时,存在生成具有潜在毒性的消毒副产物、 反应时间长、投资和运行成本高、安全性差、设 备庞大等多种问题.而采用电离放电法除藻成为 当今热点<sup>[12]</sup>.

本文针对 3 种典型的水华藻,即铜绿微囊 藻、针杆藻和四尾栅藻,在大气压条件下采用强 电离放电高效制备·OH 溶液,开展了·OH 对上述 3 种典型水华藻的杀灭研究.结合 SYTOX Green 荧光染色技术、流式细胞仪法和光合活性参数 Fv/Fm 值,分别确定了·OH 对 3 种典型水华藻的 致死阈值和时间,为高藻水高效安全处理提供 新方法,为高藻爆发时期饮用水处理工艺的改 进提供新思路.

#### 1 材料与方法

## 1.1 材料

实验所用的铜绿微囊藻(*Microcystis* aeruginosa, FACHB-905)、针杆藻(*Synedra* sp., FACHB-843)和四尾栅藻(*Scenedesmus* quadricuauda, FACHB-44)购自中科院武汉水生 所.铜绿微囊藻属蓝藻门色球藻科微囊藻属,细胞球形、圆球形,直径 3~5μm 左右,细胞淡蓝色或绿色,常聚集生长,群体具无色柔和溶解性的胶被,以二分裂形式进行繁殖.针杆藻属硅藻门羽纹纲无壳缝目,细胞长杆形,长 10μm 左右,壳面披针形,中部宽,从中间到两端逐渐狭窄;四尾栅藻属绿藻门栅藻科栅藻属,细胞为长圆形、圆柱形,长 15~20μm,常由4个细胞构成,群体中的各个细胞以其长轴相互平行、其细胞壁彼此紧密排列在一 个平面上,互相平齐,群体两侧细胞的上下两端各 具 1 刺,刺长 10~13µm.3 种藻的培养基依次为 BG11、Erdschreiber 和 SE,培养条件均为(25±1)℃, pH=(7.1±0.1),光照 2000lux,光:暗=12h:12h.实验 过程中取对数期的藻细胞完成杀灭实验.

实验配水是由纯水机(Millipore Milli-Q,美国)制取,用于实验系统配制试剂.

1.2 实验系统

·OH 快速杀灭典型水华藻的实验系统如图 1 所示,待处理高藻水流量为 4L/min,由泵泵入 管路中,O<sub>2</sub>(纯度为 99.9%)的流量为 0.5L/min,通 入到氧等离子体发生器中,在大气压下微辉光 与微流注交替促成的强电离放电作用下,O<sub>2</sub> 被 电离、离解生成 O<sub>2</sub><sup>+</sup>、O(<sup>1</sup>D)、O、O<sub>2</sub><sup>-</sup>、O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>)、 O<sub>3</sub>等氧活性粒子,通过高压射流空化效应高传 质效率地注入到水中,生成以·OH 为主的氧自由 基溶液,其中还包括 H<sub>2</sub>O<sub>2</sub>、HO<sub>2</sub><sup>-</sup>、O<sub>2</sub>·<sup>-</sup>、O<sub>3</sub>·<sup>-</sup>、 HO<sub>3</sub>·等自由基<sup>[10-11]</sup>,统称为总氧化剂 TRO.在管 路中·OH 对藻细胞进行快速高效的杀灭,取样点 的杀灭时间分别为 0.4s、1.3s、2.1s、2.9s、3.7s、 4.5s.







1.3 实验方法

**1.3.1** 总氧化剂 TRO 浓度检测 TRO 是以·OH 为主,包括 H<sub>2</sub>O<sub>2</sub>、HO<sub>2</sub><sup>-</sup>、O<sub>2</sub><sup>--</sup>、O<sub>3</sub>·-、HO<sub>3</sub>·和 O<sub>2</sub><sup>+</sup>H<sub>2</sub>O 等氧自由基的总氧化剂浓度,由在线监测仪(ATi Q45H,美国)检测,同时依据 USEPA 330.5 标准中的 DPD(N,N-二乙基对苯二胺)分光光度法进行 测定<sup>[13]</sup>.

1.3.2 藻细胞活性分析 荧光显微镜计数法,染 色剂为 SYTOX<sup>®</sup> Green(Life Technologies,美国) 核酸染色剂是带 3 个正电荷的不对称花青染色, 与表面带正电荷的活体藻细胞互相排斥,并且由 于其大分子染色结构,它不能穿透活细胞膜.相 反, OH 影响藻细胞膜的通透性,允许 SYTOX Green 核酸染色剂进入失去活性的藻细胞内,与 核酸结合,在488nm 蓝激发光激发下,呈现绿色荧 光;活细胞呈现叶绿素的自体红色荧光<sup>[14-15]</sup>.通 过观察红色荧光和绿色荧光清晰地辨别藻细胞 死活.采用徕卡 DM6000B 全自动荧光显微镜,放 大 400 倍,在自然光下找到藻细胞,分别在绿色激 发光和蓝色激发光下判别死活、计数,以 100 格 为一个计数单位,按 1mL 记录.

流式细胞仪(Accuri C6,BD,美国)检测,加入 适量的染色剂(SYTOX<sup>®</sup> Green)于 1mL 样品中, 避光,置于涡旋振荡后静置 7min,经 60µm 筛绢过 滤,发出的绿色荧光在 FL1(525nm)通道被收集, 发出的红色荧光在 FL3(620nm)通道被收集,数据 通过 FlowJo 7.6 分析处理<sup>[16-17]</sup>.

1.3.3 藻细胞的光合能力分析 光合活性参数 *F<sub>v</sub>/F<sub>m</sub>*表示藻细胞光合反应中心 PSII 的最大光量 子产量,反应了植物的最大潜在光合能力,该值越 大说明光和潜力越大.样品经 15min 的暗适应,使 用叶绿素荧光仪脉冲仪(PHYTO-PAM Walz,德 国)和 Photo win v2.13(ED)操作软件测定,其计算

公式为:

$$F_{\rm v}/F_{\rm m} = (F_{\rm m} - F_{\rm 0})/F_{\rm m}$$
 (1)

## 2 结果与讨论

#### 2.1 采用荧光染色法确定·OH 杀灭阈值

基于·OH 致死混合藻的实验,铜绿微囊藻、 针杆藻和四尾栅藻的初始藻浓度分别为 19.5×10<sup>4</sup>、21.8×10<sup>4</sup>和4.90×10<sup>4</sup>cells/mL,总藻为 46.2×10<sup>4</sup>cells/mL,总氧化剂TRO浓度设置为0、 0.51、0.79、0.96、1.07、1.24和1.31mg/L,反应 时间为4.5s.TRO致死混合藻的关系曲线如图2 所示,随着TRO浓度的增高,活藻密度急剧下降, ·OH 杀灭3种藻的阈值浓度为1.07mg/L.









Fig.3 Light and fluorescence microscope of 3kinds of algae before and after ·OH inactivation

采用显微镜分析原藻细胞及阈值(1.07mg/L) 致死藻细胞形态的变化,如图 3 所示.自然光下观 察,原藻细胞(图 A、B、C)通体周圆,细胞壁光滑 完好,胞内结构分布清晰,颜色鲜亮稠密;处理后 (图 A<sub>1</sub>、B<sub>1</sub>、C<sub>1</sub>),藻细胞外形基本没有变化,但颜 色暗淡,胞内分布模糊.在荧光下观察,原藻细胞 (图 a、b、c)发出红色的叶绿素自体荧光;处理后 (图 a、b、c)发出红色的叶绿素自体荧光;处理后 (图 a<sub>1</sub>、b<sub>1</sub>、c<sub>1</sub>)细胞核发出强烈的绿色荧光,证明 细胞死亡,染色剂通过细胞膜进入细胞,与细胞核 中的 DNA 结合,使细胞核染色.根据藻细胞形态 学分析,阈值浓度下细胞形态完整,无观察到内溶 质溢出.

2.2 采用光合能力确定·OH 杀灭阈值

藻类是自养型生物,其光合反应系统由光合反应系统 I (PS I )和光合反应系统 II (PS II )完成 能量转换.本研究基于叶绿素荧光的测定原理,采 用脉冲式调制荧光测定技术(PAM)表征藻细胞 的光合反应系统性能,该技术是表征 PS II 活性的 有效手段<sup>[18-19]</sup>.Renger<sup>[20]</sup>认为,PS II 反应中心受 损时,会产生光抑制作用,藻细胞的固碳作用受损 且生长速率降低.因此,大量研究采用该技术测得 的 $F_v/F_m$ 值作为预测藻类生长潜能的参数<sup>[20-21]</sup>. TRO 对藻的光合参数 $F_v/F_m$ 的影响如图 4 所示, 纵坐标 $F_v/F_m$ 表示藻细胞光合反应中心 PSII 的 最大光量子产量,反应了藻细胞的最大潜在光合能力.当初始总藻浓度为46.2×10<sup>4</sup>cells/mL,F<sub>v</sub>/F<sub>m</sub>值为0.52,随着TRO浓度增高, F<sub>v</sub>/F<sub>m</sub>值逐渐降低; 当TRO浓度为0.51mg/L时,F<sub>v</sub>/F<sub>m</sub>值为0.26;当 TRO浓度为0.96mg/L时,F<sub>v</sub>/F<sub>m</sub>值为0.08;当TRO 浓度为1.07mg/L时,F<sub>v</sub>/F<sub>m</sub>值降为0,此时藻细胞 已经不能进行光合作用,由此表明,强氧化剂·OH 对该混合藻的杀灭阈值为1.07mg/L,且·OH可能 对藻细胞的光合作用系统造成了损伤作用.



of algae

采用流式细胞仪确定·OH 杀灭阈值





2.3



Control 为对照组;A:铜绿微囊藻;B:针杆藻;C:四尾栅藻

·OH 致死 3 种藻的流式细胞仪检测结果如 图 5 所示,横坐标反应了 SYTOX Green 染色剂与 细胞核酸结合后发出的绿色荧光强度,通过

FL1-H 通道收集;纵坐标反应了叶绿素的自发红 色荧光强度,通过FL3-H 通道收集;3 种藻分布在 不同区域,其中A、B、C 依次为铜绿微囊藻、针 杆藻和四尾栅藻,3 部分总和占总藻 99.8%(如图 Control),随着 TRO 浓度增高,A、B、C 部分的藻 细胞数量逐渐减少,并向右边偏移;当 TRO 浓度 为 0.51mg/L 时,A、B、C 部分的藻细胞占 34.8%; 当 TRO 浓度为 0.96mg/L 时,A、B、C 部分的藻 细胞占 16.4%;当 TRO 浓度为阈值浓度 1.07mg/L 时,3 部分的藻细胞数量为 0,且在荧光显微镜下 观察,所有藻细胞发绿色荧光,藻细胞结构完整, 由此表明,强氧化剂·OH 可能对藻细胞中的 DNA 造成损伤,进而致死藻细胞.

### 2.4 ·OH 杀灭 3 种藻的时间效应

在致死阈值浓度 1.07mg/L 时,将初始藻密度 为 46.2×10<sup>4</sup>cells/mL 的混合藻液注入到实验系统 中(图 1),以氧活性粒子注入到管路中的高压射流 器处为 0s,分别依次于不同作用时间(分别为 0.3、 2.1、2.9、3.7、4.5s)的取样口取样,同时用过量的 饱和硫代硫酸钠终止反应,测定样品的光合活性 参数 F<sub>v</sub>/F<sub>m</sub>,结果如图 6 所示.由图 6 可知,随着作 用时间的增加,藻细胞光合活性呈现明显下降趋 势.F<sub>v</sub>/F<sub>m</sub> 值在 4.5s 内快速由 0.65 降至 0(仪器显 示为不能检出),表明·OH 能快速进入细胞,在 4.5s 内使藻细胞的光合系统损伤而失去光合活性.藻 细胞形态分析结果显示,阈值浓度下细胞结构没 有变化,无内溶质溢出,细胞形态完整.



据 Zhou 等<sup>[4]</sup>研究二氧化氯法杀灭密度为  $100 \times 10^4$  cells/mL 的 铜 绿 微 囊 藻, 在 ClO<sub>2</sub> 为

1.0mg/L,作用时间 10min 时,藻细胞去除率达 91.5%,但藻的细胞膜破裂,产生的副产物 ClO2 和 ClO3<sup>-</sup>具有较大的潜在毒性<sup>[5]</sup>;Coral 等<sup>[8]</sup>研究臭氧 法杀灭细胞密度为 150×10<sup>4</sup> cells/mL 的铜绿微囊 藻,在O3为4.0mg/L,作用时间10min时,所有细胞 失活,内溶质溢出;据 Huase 等<sup>[22]</sup>研究表明高锰酸 钾法杀灭密度为 390×10<sup>4</sup>cells/mL 的铜绿微囊藻, 在 KMnO<sub>4</sub>为 5mg/L,当作用 2h 时,Fv/Fm 由 0.45 降至 0.07,藻细胞去除率达 84.6%,大量内溶质溢 出;Zhou 等<sup>[23]</sup>研究过氧化氢法和硫酸铜法杀灭 密度为400×10<sup>4</sup>cells/mL的铜绿微囊藻,当作用4h 时,在 0.5mmol/L(即 17mg/L)H2O2 作用下,藻细胞 的光合参数由 0.42 降至 0.05;在 2.5µmol/L(即 0.4mg/L)CuSO₄作用下,藻细胞的光合参数由 0.42 降至 0.04,但细胞膜破裂,藻毒素 MC-LR 外 溢.常规氧化剂与藻细胞长时间接触作用是导致 藻细胞失活和破损的主要原因.而·OH 法可实现 快速杀灭,这是由于·OH 具有非常高的反应速率 常数(10<sup>9</sup>mol/L·s),是其它氧化剂的 10<sup>7</sup> 倍以上,反 应速度极快,可在数秒内完成整个生化反应过程.

## 3 结论

3.1 采用·OH 开展致死铜绿微囊藻、针杆藻和 四尾栅藻混合藻的实验研究,当初始藻密度分别 为 19.5×10<sup>4</sup>、21.8×10<sup>4</sup>和 4.90×10<sup>4</sup>cells/mL 时,混 合藻的致死 TRO 阈值为 1.07mg/L,致死时间为 4.5s.

3.2 在低剂量致死阈值条件下, OH 氧化铜绿微 囊藻、针杆藻和四尾栅藻后,藻细胞失去活性,且 藻细胞形态完整,细胞未发生破裂.

**3.3** 本研究规模化制备的·OH 为高藻水的高效 快速安全处理提供了新方法.

#### 参考文献:

- Merel S, Clement M, Thomas O. State of the art on cyanotoxins in water and their behavior towards chlorine [J]. Toxicon, 2010,55: 677–691.
- [2] Daly R I, HO L, Brookes J D. Effect of chlorination on *Microcystis aeruginosa* cell integrity and subsequent microcystin release and degradation [J]. Environmental Science and Technology, 2007,41:4447–4453.

- [3] Fang J Y, Ma J, Yang X, et al. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of *Microcystis aeruginosa* [J]. Water Research, 2010,44(6):1934– 1940.
- [4] Zhou S Q, Shao Y S, Gao N Y, et al. Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation [J]. Science of the Total Environment, 2014,482:208–213.
- [5] Carlton B D, Habash D L, Basaran A H, et al. Sodium chlorite administration in Long-Evans rats: reproductive and endocrine effects [J]. Environmental Research, 1987,42(1):238–245.
- [6] Huo X, Chang D W, Tseng J H, et al. Exposure of *Microcystis aeruginosa* to hydrogen peroxide under light: kinetic modeling of cell rupture and simultaneous microcystin degradation [J]. Environmental Science and Technology, 2015,49(9):5502–5510.
- [7] Gao L, Pan X, Zhang D, et al. Extracellular polymeric substances buffer against the biocidal effect of H<sub>2</sub>O<sub>2</sub>on the bloom-forming cyanobacterium *Microcystis aeruginosa* [J]. Water Research, 2015,69:51–58.
- [8] Coral L A, Zamyadi A, Barbeau B, et al. Oxidation of *Microcystis aeruginosa* and *Anabaena flos-aquae* by ozone: impacts on cell integrity and chlorination by-product formation [J]. Water Research, 2013,47(9):2983–2994.
- [9] Jung Y, Yoon Y, Hong E, et al. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe [J]. Mar Pollut Bull, 2013,72(1):71-79.
- [10] Li P, Song Y, Yu S L. Removal of Microcystis aeruginosa using using hydrodynamic cavitation: Performance and mechanisms [J]. Water Research, 2014, 62: 241–248.
- [11] 顾雨辰,张光生,郝小龙,等.高压脉冲气液混合放电等离子体对铜 绿微囊藻的灭活研究 [J]. 上海环境科学, 2013,32(6):257-263.
- [12] 洪伟辰,白敏冬,满化林,等.气浮一OH 强氧化组合工艺处理高藻 水的研究 [J]. 中国环境科学, 2015,35(12):3634-3639.
- [13] Bai M D, Zhang, Z T, Bai M D, et al. Synthesis of ammonia using CH<sub>4</sub>/N<sub>2</sub>plasmas based on micro-gap discharge under environmentally friendly condition [J]. Plasma Chem Plasma P, 2008,28(4):405-414.

- [14] Bai M D, Zhang Z T, Zhang N H, et al. Treatment of 250 t/h Ballast Water in Oceanic Ships Using OH Radicals Based on Strong Electric-Field Discharge [J]. Plasma Chem Plasma P, 2012, 32(4):693-702.
- [15] US EPA Method 330.5. Chlorine, Total Residual (Spectrophotometric, DPD) [S].
- [16] Machado M D, Soares E V. Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga *Pseudokirchneriella subcapitata* [J]. Appl Microbiol Biotechnol, 2012,95(4):1035–1042.
- [17] Zhou S Q, Shao Y S, Gao N Y, et al. Effects of different algaecides on the photosynthetic capacity, cell integrity an microcystin–LR release of *Microcystis aeruginosa* [J]. J Hazard Mater, 2013,219–220:267–275.
- [18] 李 芳,白敏冬,洪伟辰,等.羟基自由基快速致死水华针杆藻的 研究 [J]. 环境科学学报, 2016, 32(2):550-556.
- [19] Bai M D, Zheng Q L, Tian Y P, et al. Inactivation of invasive marine species in the process of conveying ballast water using
  •OH based on a strong ionization discharge [J]. Water Research, 2016,96:217–224.
- [20] Renger G, Volker M, Eckert H, et al. On the mechanism of photosystem II deterioration by UV-B irradiation [J]. Photochem Photobiol, 1989,49(1):97–105.
- [21] Matsubara S, Chow W S. Populations of photo inactivated photosystem II reaction centers characterized by chlorophylla fluorescence [J]. Plant Biology, 2004,101:18234–18239.
- [22] Huase Ou, Gao N Y, Wei C W, et al. Immediate and long-term impacts of potassium permangante on photosynthetic capacity, survival and microcystin-LR release risk of *Microcystis* aeruginosa [J]. J Hazard Mater, 2012,219–220:267–275.
- [23] Zhou S Q, Shao Y S, Gao N Y, et al. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin–LR release of *Microcystis aeruginosa* [J]. Science of the Total Environment, 2013,463–464:111–119.

作者简介: 丁丽飞(1990-),女,福建宁德人,硕士研究生,主要从事水 污染防控研究.