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Controlling Reversible Expansion of Li2O2 Formation and 

Decomposition by Modifying Electrolyte in Li-O2 Batteries 

 

 

The development of the Li-O2 battery is critically hindered by cathode passivation, large polarization, and 

severe parasitic reactions. Here, Dong and co-workers employ a Ru(II) polypyridyl complex (RuPC) as a 

multifunctional soluble electrocatalyst for Li-O2 batteries to address these issues. Benefiting from the 

interaction between the Ru(II) center and O2
-/LiO2 species, the RuPC can not only reversibly expand Li2O2 

formation and decomposition with a low overpotential but also limit the side reactions. As a result, the RuPC-

catalyzed Li-O2 batteries exhibit excellent performance. 
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Summary 

The aprotic lithium-oxygen (Li-O2) battery has attracted worldwide attention because of its 

ultrahigh theoretical energy density. However, its practical application is critically hindered by 

cathode passivation, large polarization, and severe parasitic reactions. Here, we demonstrate an 

originally designed Ru(II) polypyridyl complex (RuPC) though which the reversible expansion 

of Li2O2 formation and decomposition can be achieved in Li-O2 batteries. Experimental and 

theoretical results revealed that the RuPC can not only expand the formation of Li2O2 in 

electrolyte but also suppress the reactivity of LiO2 intermediate during discharge, thus 

alleviating the cathode passivation and parasitic reactions significantly. In addition, an initial 

delithiation pathway can be achieved when charging in turn; thus, the Li2O2 products can be 
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decomposed reversibly with a low overpotential. Consequently, the RuPC-catalyzed Li-O2 

batteries exhibited a high discharge capacity, a low charge overpotential, and an ultralong cycle 

life. This work provides an alternative way of designing the soluble organic catalysts for metal-

O2 batteries. 

Keywords 

lithium-oxygen battery; cathode passivation; large polarization; severe parasitic reactions; 

Ru(II) polypyridyl complex; multifunctional soluble catalyst; initial delithiation pathway; high 

discharge capacity; low charge overpotential; ultralong cycle life 

Introduction 

Because of the increasing demands for portable devices and light vehicles, new energy storage 

systems with high energy densities have been widely investigated.1-4 Among them, the 

rechargeable aprotic lithium-oxygen (Li-O2) battery has attracted tremendous attention because 

its theoretical energy density is about ten times that of the state-of-the-art Li-ion battery.5-8 

However, the development of current Li-O2 battery is critically hindered by limited capacity 

(far less than theory), low energy efficiency and poor cycle life,9-13 which can be attributed to 

the electrical passivation of the cathode surface by the insulated Li2O2,
14,15 poor Li2O2/catalyst 

contact interface16,17 and undesired side reactions.18,19 

In the past few years, after a lot of systematic studies, many researchers have reached a 

consensus that growth of Li2O2 thin films on the cathode surface would severely passivate the 

O2 cathode and thus lead to low discharge capacity and premature battery death, whereas 

inducing Li2O2 to grow in the electrolyte could avoid cathode passivation and achieve high 



4 
 

discharge capacity and improved cycle life.20-28 Hence, many groups have recently tried various 

ways to promote the solution mechanism to realize the effective growth of Li2O2 in the 

electrolyte.14,23-28 Viswanathan and coworkers disclosed that trace amounts of high-acceptor-

number additive, such as water or methanol, could promote the solution-phase growth of Li2O2 

in electrolyte.14 Bruce and coworkers reported that the addition of 2,5-di-tert-butyl-1,4-

benzoquinone (DBBQ) to low-donor-number solvents could also induce Li2O2 to grow in 

electrolyte.23 Peng’s group selected a biomolecule (coenzyme Q10) as a soluble catalyst for Li-

O2 batteries to trigger solution-phase formation of Li2O2 in ether-based electrolyte,24 whereas 

Nakanishi and coworkers used potassium ions to prompt a solution route of Li2O2 formation.25 

Although these works have greatly improved the electrical passivation of the cathode surface 

during the discharge process and greatly increased the discharge capacity, large overpotential 

and severe irreversibility still exist in the charge process of these batteries. 

Some recent studies have also disclosed that growth of Li2O2 in the electrolyte would cause 

a poor Li2O2/cathode contact interface, which could impede the full play of the catalytic activity 

on charge, leading to large overpotential and even the incomplete decomposition of Li2O2 in 

charge process.2,23-25,29,30 Moreover, the formation of Li2O2 in the electrolyte would also 

aggravate the side reactions because its intermediates, LiO2 and O2
-, readily attack the 

electrolyte solvents, resulting in poor reversibility.19,31-36 On the basis of the above analysis, one 

of the most challenging issues in current Li-O2 batteries is how to reversibly expand Li2O2 

formation and decomposition with a low overpotential. 

We present a Ru(II) polypyridyl complex (RuPC) as a multifunctional soluble electrocatalyst 

for both discharge and charge processes of the Li-O2 battery, where the Ru center can interact 
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with the LiO2 intermediate and induce it to dissolve into electrolyte, thus expanding the 

formation of Li2O2 in electrolyte and alleviating the cathode passivation significantly during 

discharge, and the interface between catalyst and product has also been improved significantly. 

When charging in turn, the interaction between the Ru center and the LiO2 intermediate can 

also promote the initial delithiation of Li2O2 products, which is a more kinetically favorable 

and highly reversible pathway. Moreover, because of the interaction between the Ru center and 

the LiO2 intermediate, the RuPC catalyst can serve as a highly mobile trap for the LiO2 

intermediate to suppress the superoxide-related parasitic reactions, thus increasing the 

reversibility of the Li-O2 battery. As a result, the RuPC-catalyzed Li-O2 batteries can deliver a 

high discharge capacity (~9281 mAh g-1) that is two to three times what the RuPC-free ones 

(~4100 mAh g-1) can achieve, an ultralong cycle life (371 cycles) that is ~31 times what the 

RuPC-free ones can achieve (12 cycles), and a lower charge overpotential (0.54 V) than that of 

the RuPC-free ones (1.30 V), as well as reduced side products. Finally, we have revealed the 

O2 redox mechanisms of the RuPC-catalyzed Li-O2 batteries by combining the experimental 

and theoretical results. 

Results and discussion 

To reversibly expand Li2O2 formation and decomposition with a low overpotential, several key 

conditions need to be satisfied: (1) the ability to induce LiO2 to dissolve into the electrolyte, (2) 

the power to suppress the high reactivity of LiO2, and (3) good Li2O2/catalyst contact interface. 

It is well known that O2
- has a relatively large radius and low charge density and can be 

considered as a moderately soft base.37 On the basis of the hard-soft acid-base theory, a 

substance with the properties of soft acid can interact with O2
- species and control its reactivity. 
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In addition, the removable solution-phase catalyst can reach everywhere in the electrolyte and 

provide a good Li2O2/catalyst contact interface. Thus, taking the above conditions into account, 

the metal-organic complexes are the primary choice because they have superior catalytic 

activities and high solubility in organic solvents.38-40 Moreover, the metal center that has 

unoccupied orbitals in metal-organic complex can be regarded as Lewis acid, and most of them 

have the properties of soft acids that can interact with LiO2 intermediate, thus inducing LiO2 to 

dissolve into the electrolyte and suppressing the reactivity of LiO2.
40 To verify these concepts, 

we synthesized a RuPC (compound 2) through the reaction of cis-Ru(bpy)2Cl2∙2H2O with a 

thioether-containing oxazoline (compound 1) (see Experimental Procedures and Figures 1A 

and S1),41,42 and then used it as a multifunctional soluble catalyst for Li-O2 batteries. As shown 

in Figures S2-S5, the structure of RuPC was well-established by the 1H nuclear magnetic 

resonance (NMR), 13C-NMR, Fourier transform infrared (FTIR), and high-resolution mass 

spectrometry (HRMS) spectra. 

 

Figure 1. The Synthetic Route of RuPC and Electrochemical Performance of Li-O2 Batteries 

(A) The synthetic route of RuPC, compound 2. See also Figures S1-5. 
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(B) Full charge-discharge curves of Li-O2 batteries with and without RuPC in a voltage window between 2.2 

and 4.45 V at a current density of 200 mA g-1.  

(C) Voltage profiles of Li-O2 batteries with and without RuPC at a current density of 100 mA g-1 with a cutoff 

capacity of 1000 mAh g-1.  

(D) Cycling stability and the terminal discharge voltage of Li-O2 batteries with and without RuPC at a current 

density of 400 mA g-1 with a cutoff capacity of 500 mAh g-1. See also Figure S10. 

 

Next, to understand the electrochemical behavior of RuPC and to distinguish it from the 

redox mediators reported before,16,17,43,44 we conducted a cyclic voltammetry (CV) experiment 

in a typical Li-O2 battery environment (Figure S6). Under an argon atmosphere (Figure S6A), 

both curves of the Li-O2 batteries with (red) and without (black) RuPC show no reaction 

features in the voltage range between 2.2 V and 4.2 V, whereas the one with RuPC exhibits the 

Ru2+/Ru3+ redox couple in the potential of ~4.64 V. As a comparison, measurements in O2 

atmosphere were also carried out (Figure S6B). Both the batteries with (red) and without (black) 

RuPC exhibit a cathodic peak associated with oxygen reduction reaction (ORR) near 2.62 V; 

however, the cathodic peak current of the battery with RuPC is larger than that of the RuPC-

free one, implying the RuPC can promote the ORR. Notably, a significant difference appears 

in the anodic region. The battery without RuPC shows a sharp anodic peak at ~4.44 V, which 

is attributed to Li2O2 decomposition and indicates the sluggish kinetics of the oxygen evolution 

reaction (OER), whereas the battery with RuPC exhibits a lower anodic peak at ~3.73 V. These 

observations demonstrate that the introduction of RuPC in the Li-O2 battery could reduce the 

OER overpotential significantly. Distinctly, because the Li2O2 oxidation (~3.73 V) is prior to 
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the RuPC oxidation (~4.64 V) in RuPC-containing Li-O2 batteries, the mechanism of the OER 

overpotential improvement in this case is different from that of redox mediators.16,17,43,44 Hence, 

the RuPC does not act as a redox mediator here, and the OER overpotential improvement would 

be due to the catalytic activity of RuPC on Li2O2 decomposition. 

To confirm that the improved electrochemical performances were caused by RuPC, we chose 

the carbon black nanoparticles as cathode material without loading any other catalysts. Figure 

1B illustrates the full discharge curves of the Li-O2 batteries with and without RuPC in a 0.5 M 

LiClO4/DMSO system. The RuPC-catalyzed Li-O2 batteries exhibited a high discharge capacity 

of ~9281 mAh g-1 at a current density of 200 mA g-1, which is two to three times higher than 

that of the RuPC-free Li-O2 batteries (~4100 mAh g-1). To identify whether the capacity was 

derived from an O2 reduction reaction, we discharged the battery with RuPC under Ar 

atmosphere. As shown in Figure S7, a negligible capacity of 2.7 mAh g-1 was observed, which 

means the discharge capacity of the RuPC-containing Li-O2 battery was indeed contributed by 

the O2 reduction. These outcomes demonstrate that the discharge capacity of the Li-O2 battery 

could be significantly enhanced by RuPC, which is consistent with the results of CV experiment. 

As for the charge process, the charging overpotential of the Li-O2 battery also obtained a 

significant improvement in the presence of RuPC (Figures 1B and 1C). Specifically, at a current 

density of 100 mA g-1 with a cutoff capacity of 1000 mAh g-1 (Figure 1C), the battery without 

RuPC exhibited a voltage platform at about 4.26 V in charge process, whereas that of the RuPC-

containing battery was only 3.50 V; moreover, the lower charging voltage could be achieved 

with the increased RuPC concentration (Figure S8). According to the electrochemical 

impedance spectrometry (EIS) results (Figure S9 and Table S1), the overpotential reduction is 
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not due to the solution resistance decline. Therefore, such a significant improvement suggests 

that the kinetics of Li2O2 decomposition was promoted greatly by RuPC, confirming the 

catalytic role of RuPC. Furthermore, the Li-O2 batteries with and without RuPC were tested at 

a current density of 400 mA g-1 with a cutoff capacity of 500 mAh g-1. The charge voltage 

platforms of the battery with RuPC could still be maintained at around 3.75 V even after 300 

cycles (Figure S10A), whereas that of the battery without RuPC soon increased to 4.0 V and 

then remained above 4.2 V (Figure S10B). In addition, the discharge terminal voltage of the 

battery without RuPC decreased to 2.0 V early at the 12th cycle, and the discharge terminal 

voltage of the battery with RuPC remained above 2.0 V steadily even after 371 cycles (Figure 

1D). Further, when under a cutoff capacity of 1000 mA h g-1, the RuPC-containing Li-O2 battery 

could still operate stably over 100 cycles at a current density of 400 mA g-1 (Figure S11). 

Besides, the RuPC-containing Li-O2 batteries exhibited good rate capability with discharge 

capacities of ~11031, ~9281, and ~7723 mAh g-1 at current densities of 100, 200 and 300 mA 

g-1, respectively (Figure S12). Moreover, the voltage attenuation of the discharge or charge 

process was not obvious as the current density increased. These outcomes fully supported that 

the electrochemical performance of the Li-O2 battery could be significantly improved by RuPC. 

Further, the discharged and charged carbon electrodes were extracted and detected by 

scanning electron microscope (SEM). In the absence of RuPC, the particles with toroidal 

morphology and the film-like discharge products were co-existing on the carbon surface after 

full discharge (Figures 2A, 2B, S13A, and S13B). However, when RuPC was present, only 

toroidal particles, clearly and compactly, could be found on the carbon surface after full 

discharge (Figures 2C, 2D, S13C and S13D). Such an observation also suggests intuitively that 
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the expanding formation of Li2O2 in electrolyte was achieved by RuPC during the discharge 

process. As for the charge process, although most of the discharge products have been 

decomposed, some cracked products derived from the toroidal particles could still be observed 

in the RuPC-free batteries (Figures 2E, 2F, and S14), implying the incomplete decomposition 

of the discharge products. Different from that of the RuPC-free batteries, the discharge products 

of the RuPC-containing batteries were completely removed (Figures 2G and 2H) after full 

charge and the surface morphology of the charged carbon electrode was almost the same as that 

of the pristine carbon electrode (Figure S15). In addition, even after cycling for 100 and 200 

cycles (Figure S16), the cathode surfaces of the RuPC-containing Li-O2 batteries were still 

almost the same as the pristine cathode surface (Figure S15). The SEM results demonstrate that 

the RuPC could expand the formation of Li2O2 in electrolyte and enhance the reversibility of 

Li-O2 battery. 

 

Figure 2. Morphologies of the Discharged and Charged Cathode Surface 

SEM images showing the cathode morphologies of the Li-O2 batteries after full discharge without (A and B) 

and with (C and D) RuPC, as well as after full charge without (E and F) and with (G and H) RuPC in a 0.5 
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M LiClO4/DMSO system. The red dashed circles in (E) and (F) highlight the discharge product that cannot 

be decomposed completely after full charge without RuPC. See also Figures S13–S15. 

 

To confirm that the products generated on the surface of the carbon electrode were indeed 

Li2O2, we monitored the carbon cathode by X-ray diffraction (XRD) technology. As shown in 

Figure 3A, the XRD pattern for the carbon cathode after discharge showed that the main 

discharge product was Li2O2, which is consistent with the reported literature.23,26 After charge, 

the peaks of Li2O2 disappeared and the XRD pattern was the same as that of the pristine 

electrode before discharge. These outcomes revealed that the Li2O2 product was fully removed 

after charge, justifying the good reversible formation and decomposition of Li2O2 with RuPC. 

Ex situ X-ray photoelectron spectroscopy (XPS) characterization of the O2 electrodes after 

discharge and charge were conducted as well (Figures 3B-3D). The C 1s XPS spectra of the 

pristine, discharged, and charged electrodes in the presence of RuPC all showed only five peaks 

centered at 284.5, 285.1, 286.1, 289.7, and 291.8 eV, assigned to C-C=C, -CH2-CF2-, C-O, O-

C=O and -CH2-CF2- bonds,45-47 respectively, and no other peaks were observed. In addition, 

the O 1s spectrum disclosed that Li2O2 was the only product of the discharged cathode in the 

presence of RuPC and it was decomposed completely after charge. This further established the 

good reversible formation and decomposition of Li2O2 with RuPC. On the contrary, the 

evidence of the Li2CO3 species in C 1s and O 1s spectra after discharge and charge without 

RuPC reveals that parasitic reactions existed during battery operation (Figure S17),19,46,48 

implying the incomplete decomposition of the discharge products and the inferior reversibility 
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of the battery without RuPC. The above outcomes demonstrated that the RuPC can suppress 

the side reactions effectively and enhance the reversibility of Li-O2 batteries. 

 

Figure 3. Ex Situ Spectral Characterizations of the Carbon Cathodes 

(A) XRD patterns of the carbon cathodes extracted from the RuPC-catalyzed Li-O2 batteries in pristine, 

discharged, and charged states. 

(B–D) C 1s (B), O 1s (C), and Ru 3p (D) XPS spectra of the carbon cathodes extracted from the RuPC-

catalyzed Li-O2 batteries in pristine, discharged, and charged states. See also Figure S17. 

 

To analyze the stability of RuPC during battery operation, we characterized the cathode, 

electrolyte and Li anode of the RuPC-containing Li-O2 batteries. For the O2 cathode, we 

compared the Ru 3d and 3p XPS regions of the discharged and charged electrodes to evaluate 

whether the RuPC decomposes during battery cycling. No peaks were associated with Ru 

species from the discharged and charged electrode (Figures 3B and 3D), suggesting the RuPC 

was stable and did not decompose in the cathode side during cycling. Li metal can react with a 

lot of organic species due to its lowest negative electrochemical potential. However, in Li 
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battery systems, the Li anode can react with the organic electrolyte solvent, Li salt, and 

electrolyte additive to form a so-called solid electrolyte interphase (SEI) layer during initial 

cycles, which can cover the Li anode surface, thus hindering further reactions of Li metal and 

organic species.49-50 Hence, we used the XPS technology to analyze the surface composition of 

the Li anode to see whether the SEI layer would be stable after several cycles, thus preventing 

the further reaction of RuPC and Li metal. As shown in Figure S18, in the case of RuPC-

containing Li-O2 batteries, the SEI layer began to form during the first cycle, which contains 

Li2CO3, LiOH, Li2SO4, polythionate complex, thiosulphate, pyridinic N and the Ru-containing 

species, which might be assigned to Li2RuO3.
49,51-54 The S and O contents could be due to the 

reaction of the Li anode and DMSO solvent, and the N and Ru contents may be due to the 

reaction between Li and RuPC. Notably, all the spectra (C 1s, O 1s, N 1s and S 2p) of the 30th 

and 100th cycles were almost completely coincident, indicating the SEI layer was almost 

completely stable after 30 cycles and the reaction between Li and RuPC/DMSO had been 

prevented. That is also the critical factor in why the RuPC-containing Li-O2 batteries can obtain 

very long cycles (~ 371 cycles). For comparison, the Li anodes of the RuPC-free batteries were 

also analyzed. Because of the short life (~ 12 cycles) of the RuPC-free batteries, we only tested 

the Li anodes after one, five, and ten cycles (Figure S19). Compared with the XPS results of 

the RuPC-containing Li-O2 batteries, the SEI components of the Li anode in the RuPC-free Li-

O2 batteries contain Li2CO3, LiOH, Li2SO4. Moreover, after the initial ten cycles, the SEI layer 

has not yet achieved complete stability. The XPS results of the Li anode demonstrated that the 

RuPC is compatible with Li metal after forming a stable SEI layer on the Li anode surface, 

showing the feasibility of the application of RuPC in Li-O2 batteries. Furthermore, the 1H NMR 
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spectra of the RuPC-containing electrolyte after cycling has also confirmed the good stability 

of RuPC during reactions (Figure S20). 

Further, gas evolution during the charge process has been monitored by differential 

electrochemical mass spectroscopy (DEMS), and the results are shown in Figure S21 and Table 

S2. As for the Li-O2 battery without RuPC, there is a big gap between the detected O2 evolution 

rate and the theoretical value (2e-/O2) during the charge process; moreover, the amount of CO2 

evolved is also very large. On the contrary, the detected O2 evolution rate of the RuPC-

contained Li-O2 batteries is quite close to the 2e-/O2 line and the amount of CO2 evolved is 

relatively small. By integrating the O2 evolution curve at different charge capacities and 

comparing with the corresponding theoretical amounts of O2 evolved, we calculated the e-/O2 

value for both the Li-O2 batteries with and without RuPC. For the RuPC-free Li-O2 battery, the 

values of e-/O2 are about ~3.49 at 0.05 mAh, ~3.84 at 0.1 mAh, ~3.38 at 0.15 mAh, ~2.94 at 

0.2 mAh, and ~3.01 at 0.25 mAh, whereas for the RuPC-containing Li-O2 battery, e-/O2 values 

of ~2.24 at 0.05 mAh, ~2.29 at 0.1 mAh, ~2.30 at 0.15 mAh, ~2.28 at 0.2 mAh, and ~2.44 at 

0.25 mAh were obtained. In addition, the amount of CO2 evolved in the RuPC-free battery is 

about 0.623 μmol, whereas that of the RuPC-containing battery is only about 0.267 μmol. These 

DEMS results have provided solid evidence for the reversibility of the O2 redox reactions in the 

RuPC-containing Li-O2 battery. Besides, the comparison of the DEMS results between the 

RuPC-free and -containing Li-O2 batteries also indicated that the introduction of RuPC in the 

Li-O2 battery system could not only reduce the charge overpotential but also suppress the 

related parasitic reactions and thus enhance the reversibility of Li-O2 batteries. 
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Figure 4. Interaction between RuPC and Superoxide Species  

(A) The UV-vis spectrum of the LiClO4/DMSO system with RuPC systems before and after the addition of 

KO2 + DMSO solution. 

(B) The free-energy profile of LiO2 interacted with DMSO molecule(s) and RuPC. Binding free energies are 

given in kcal mol-1. See also Figure S22. 

(C and D) The optimized structure of LiO2 interacted with (C) three DMSO molecules and (D) RuPC and 

three DMSO molecules (the green lobes represent the spin density isosurface at the isovalue of 0.05 eÅ-3, 

and the bonds between LiO2 and DMSO represent solvation effect). See also Figure S22. 

(E and F) The EPR spectra of the KO2 + DMSO solution and the electrolyte of Li-O2 batteries (E) with and 

(F) without RuPC at pristine, half-discharged, and half-charged states. See also Figure S23. 

 

To understand the reaction mechanisms of the RuPC-catalyzed Li-O2 batteries, we 

conducted the UV-visible (UV-vis) absorption experiment and density functional theory (DFT) 

calculations to investigate the interaction between RuPC and O2
- species. Figure 4A shows that, 

when the RuPC is introduced into the LiClO4 + DMSO electrolyte, a broad peak appears at 
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about 440 nm, which can be attributed to the metal-to-ligand charge-transfer band.55 

Interestingly, the peak has a small red shift (change to 470 nm) after the addition of the KO2 + 

DMSO solution, which can be attributed to the interaction between O2
- species and RuPC.16,48 

We further performed DFT calculation to understand the interaction mechanism between RuPC 

and O2
- species in a typical Li-O2 battery environment (Figures 4B-4D and S22). It has been 

reported that LiO2 could be solvated by coordination with three DMSO molecules through Li 

atom to form a solvated complex LiO2-3DMSO when using DMSO as the electrolyte solvent 

(Figure 4C).37 We calculated that the free energy of this complex was -12.7 kcal mol-1 (Figure 

4B). Notably, the free energy (LiO2-3DMSO + RuPC) was significantly lowered down to -24.4 

kcal mol-1 once RuPC was added to the electrolyte (Figure 4B), suggesting that RuPC could 

interact with the LiO2 intermediate, which is consistent with the results of UV-vis spectra. Most 

importantly, a relatively stable, low-reactive complex RuPC(LiO2-3DMSO) (Figure 4D) was 

generated by dissociation of the Ru-S coordination bond of RuPC followed by O-terminal-

coordination of LiO2-3DMSO to the Ru(II) center. Furthermore, the disproportionation of 

RuPC(LiO2-3DMSO) is predicted to be thermodynamically unfavorable whatever the existing 

form of Li2O2. As shown in Table S3, the reaction of 2RuPC(LiO2-3DMSO) → Li2O2 + O2 + 

6DMSO + 2RuPC is strongly endothermic by 61.2 kcal mol-1 (entry S1). We expect the Li2O2 

is not free in the solvent, which could form oligomers; i.e., (Li2O2)n. However, even for the 

n=16 (entry S6), the reaction is still endothermic by 29.7 kcal mol-1. Alternatively, Li2O2 could 

also be stabilized by RuPC. However, DFT calculations showed that the formation of 

RuPC(Li2O2-2DMSO) would not change the unfavorable situation of the disproportionation 

reaction (entry S7). All these findings lead to the conclusion that forming a RuPC(LiO2-
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3DMSO) complex would not only suppress the side reactions initiated by free LiO2 but also 

inhibit the disproportionation reaction. Notwithstanding, the further reduction reaction for 

RuPC(LiO2-3DMSO) is still feasible. According to our calculation, the reaction of RuPC(LiO2-

3DMSO) + Li+ + e- → Li2O2 + 3DMSO + RuPC is exothermic by 26.6 kcal mol-1. 

In order to confirm the existence of RuPC(LiO2-3DMSO) intermediate during battery 

operations, we conducted ex situ electron paramagnetic resonance (EPR) experiments (Figures 

4E, 4F, and S23). As depicted in Figure 4E, the g factor of the KO2+DMSO solution is around 

2.007, which corresponds to the signal of superoxide,56 and both spectra of the RuPC-containing 

electrolytes after half discharge and half charge have a similar g factor (g = 2.006). However, 

in the absence of RuPC, no signals of superoxide appeared for the electrolytes after half 

discharge or half charge (Figure 4F), which might be due to the instability (short lifetime) of 

LiO2 species in LiClO4/DMSO electrolyte without RuPC. Therefore, the EPR signal of RuPC-

containing electrolytes after half discharge and half charge can be assigned to the relatively 

stable RuPC(LiO2-3DMSO) species, corresponding to the DFT calculations. 

Hence, inspired by the experimental and theoretical results, we propose an O2 redox reaction 

mechanism for the RuPC-catalyzed Li-O2 batteries (Figure 5). During the discharge reaction, 

according to the CV curves (Figure S6A), the RuPC has no reaction features in the discharge 

voltage region; thus, the first step of the discharge is the one-electron reduction of O2 to O2
-, 

which then quickly combines with Li+, RuPC, and DMSO, forming a relatively stable, low-

reactive intermediate RuPC(LiO2-3DMSO) (Equation 1) as a result of the interaction between 

Ru(II) center and O2
-/LiO2 intermediates as well as the solvation effect (Figure 4D). 

Subsequently, as shown by the results of XRD (Figure 3A) and XPS (Figure 3C), the Li2O2 
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species is the main discharge product of the RuPC-catalyzed Li-O2 batteries. Hence, the 

RuPC(LiO2-3DMSO) intermediates would undergo a second reduction (Equation 2) to form 

Li2O2 products. Since the formation of RuPC(LiO2-3DMSO) is thermodynamically favorable 

(Figure 4B), the dissolution of LiO2 in electrolyte can be greatly promoted; thus, introduction 

of the RuPC electrocatalyst can expand the formation of Li2O2 in electrolyte, alleviate the 

cathode passivation, and increase the discharge capacity, corresponding to the experimental 

results (Figure 1B). Moreover, compared with the highly reactive O2
-/LiO2 intermediates in 

conventional discharge process, the improved stability and reduced reactivity of the 

RuPC(LiO2-3DMSO) intermediate could suppress the superoxide-related side reactions 

effectively, thus increasing the reversibility (Figures 2E-H) and prolonging the cycle life 

(Figure 1D). When charging in turn, considering the interaction between RuPC and LiO2 

(Figure 4D), as well as the existence of RuPC(LiO2-3DMSO) species during the charge process 

(Figure 4E), the first step of the charge process is the one-electron delithiation of Li2O2 to LiO2
 

intermediate, which is further converted into the RuPC(LiO2-3DMSO) intermediate with the 

assistance of RuPC and DMSO (Equation 3). Later, as shown by the experimental results 

(Figures 2 and 3), the Li2O2 products can be completely removed after charge; thus, a second 

oxidation (Equation 4) of RuPC(LiO2-3DMSO) intermediate would be undergone to release the 

O2 and regenerate the RuPC to accomplish the overall 2e-/O2 OER process. As the delithiation 

pathway of Li2O2 is more kinetically favorable and highly reversible than the traditional two-

electron pathway,57-59 the RuPC-catalyzed Li-O2 batteries could effectively reduce the charge 

overpotential (Figures 1B and 1C). 
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Figure 5. Schematic illustration 

Schematic illustration showing the reaction mechanisms of the RuPC-catalyzed Li-O2 batteries. 

ORRs (discharge): 

O2(sol) + e- + Li+ + 3DMSO + RuPC(sol) → RuPC(LiO2-3DMSO) (Equation 1) 

RuPC(LiO2-3DMSO) + e- + Li+ → Li2O2 + 3DMSO + RuPC (Equation 2) 

OERs (charge): 

Li2O2 + 3DMSO + RuPC(sol) → RuPC(LiO2-3DMSO) + Li+ + e- (Equation 3) 

RuPC(LiO2-3DMSO) → O2 + Li+ + e- + 3DMSO + RuPC (Equation 4) 

In summary, we have designed and used an organic-metal complex as a multifunctional 

soluble catalyst to address the cathode passivation, large polarization, and severe parasitic 

reactions of current Li-O2 batteries. Instead of forming the highly reactive O2
-/LiO2 

intermediates in the  conventional discharge process, a relatively stable, low-reactive 

RuPC(LiO2-3DMSO) intermediate was formed in the presence of RuPC, which not only limits 
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the superoxide-related side reactions but also expands the formation of Li2O2 in electrolyte 

during discharge process, thus alleviating the cathode passivation and parasitic reactions 

significantly. Consequently, the RuPC-catalyzed Li-O2 batteries exhibited an ultralong cycle 

life (371 cycles at a current density of 400 mA g-1 with a cutoff capacity of 500 mAh g-1) and a 

high discharge capacity (~9281 mAh g-1 at a current density of 200 mA g-1). As for charge 

process, the initial delithiation of Li2O2 with a one-electron process rather than the traditional 

two-electron mechanism was achieved in the RuPC-catalyzed Li-O2 batteries, which is more 

kinetically favorable and highly reversible, leading to a low charge overpotential (0.54 V). 

Experimental Procedures 

Chemicals and Materials 

Unless otherwise mentioned, all chemicals were used directly without further purification after 

purchase. For more details, see the Supplemental Experimental Procedures. 

Synthesis of RuPC 

To a solution of (S)-4-isopropyl-2-((methylthio)methyl)-4,5-dihydrooxazole (238.5 mg, 1.4 

mmol) in ethylene glycol (12.5 mL) was added cis-Ru(bpy)2Cl2∙2H2O (651.1 mg, 1.3 

mmol).41,42 The mixture was heated at 180 oC for 20 min under an argon atmosphere and then 

cooled down to room temperature. An aqueous solution of NaClO4 (1.0 M, 100 mL) was added. 

The orange precipitate was collected by centrifugation, redissolved in 10 mL of ethanol, and 

then precipitated by NaClO4 (1.0 M in water, 100 mL). The crude product was purified by flash 

column chromatography on silica gel (200-300 mesh, eluent with CH3CN/H2O/KNO3 (sat.) = 

100:3:1). After removal of the solvents, the solid was dissolved in ethanol (5 mL) and 
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precipitated by NaClO4 (1.0 M in water, 50 mL). The procedure was repeated twice, and after 

a final wash with water (15 mL x 5), the pure product RuPC was obtained as an orange-red 

solid (0.85 g, 1.1 mmol, 87% yield, 5:1 diastereoisomers ratio as determined by 1H NMR). 

Li-O2 battery assembly 

The carbon cathode was prepared by coating a homogeneous slurry containing 90 wt % carbon 

black nanoparticles and 10 wt % polyvinylidene fluoride binders on a carbon cloth supporter 

and then dried in a vacuum oven at 120 oC for 12 hr; the loading of the carbon nanoparticles 

was about 0.5~1.0 mg cm-2. The electrolyte was prepared by mixing DMSO, LiClO4, and the 

as-prepared RuPC in the glovebox. The concentrations of the LiClO4 and RuPC were 0.5 M 

and 0.05 M, respectively. Further, the Li-O2 battery was assembled with the as-prepared carbon 

cathode, glass fiber separator, and metallic Li anode into R2032 coin-type Li-O2 cells using the 

0.05 M RuPC-0.5 M LiClO4/DMSO electrolyte. All parts of the cell were dried at 100 oC 

overnight and then assembled in an Ar filled glove box (H2O < 1 ppm, O2 < 1 ppm). 

Electrochemical Measurements 

The batteries were tested in 1 O2 atmosphere with a NEWARE BTS-5 V/5 mA battery testing 

system (Shenzhen Neware Elctron, China). The area of the carbon cathode was about 0.8 cm2. 

The current densities and battery capacities were calculated based on the basis of the mass of 

carbon black nanoparticles. The EIS tests were carried out with an impedance analyzer (IM6, 

Zahner-elektrik, Germany) in a frequency range from 100 kHz to 10 mHz with an amplitude of 

5 mV. The CV experiments were tested at an electrochemical workstation (CHI760E, CH 

Instruments, Shanghai, China) or with an IVIUM multichannel electrochemical analyzer. 
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Characterizations 

The products of discharged and charged electrodes were detected using XRD, recorded on a 

Rigaku Ultima IV X-ray diffractometer based on Cu Kα radiation (λ=1.5418 Å) with a scan 

angle range of 10-60o. The nanostructures and surface morphologies of the discharged and 

charged electrodes were investigated using field emission SEM (HITACHI S-4800). The 

chemical compositions of the discharged products were characterized using X-Ray 

Photoelectron Spectroscopy (PHI 5000 Versa Probe III, ULVAC-PHI, Japan). UV-vis 

absorption spectrometry was performed using a Thermo Evolution 300 spectrophotometer. 

Flash column chromatography was performed with silica gel (300-400 mesh, pH = 6.7-7.0). 1H 

NMR and 13C NMR spectra were recorded on a Bruker AM (500 MHz) or Bruker AM (600 

MHz) spectrometer at ambient temperature. Infrared spectra were recorded on a Nicolet Avatar 

330 FTIR spectrophotometer. High-resolution mass spectra were recorded on a Bruker En Apex 

Ultra 7.0 T Fourier transform mass spectroscopy instrument using ESI technique. The EPR 

spectra (-183°C) were recorded on a Bruker EMX-10/12 spectrometer at 9.4 GHz with a 

modulation frequency of 100 kHz and a modulation amplitude of 2 G. 

DFT calculations 

In this work, B97XD functional theory was carried out. In the B97XD calculations, the Ru 

atom was treated with the Stuttgart-Dresden relativistic effective core potential. For the other 

atoms, the 6-31G(d,p) basis set was used. In addition, the polarizable continuum model 

(IEFPCM) was chosen to account for the solvent effect with DMSO solvent, which corresponds 

to the experimental electrolyte environment. To reduce the overestimation of the entropy 

contribution of the results, we used a correction of -2.6 (or 2.6) kcal mol-1 for 2:1 (or 1:2) 
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transformations as many earlier theoretical studies did. Natural bond orbital (NBO) analyses 

were performed using the NBO program as implemented in the Gaussian software packages. 

All the DFT calculations were carried out with the Gaussian 09 program. 
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