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Abstract—Convolutional neural networks (CNNs) have achieved remarkable success in various computer vision tasks, which are
extremely powerful to deal with massive training data by using tens of millions of parameters. However, CNNs often cost significant
memory and computation consumption, which prohibits their usage in resource-limited environments such as mobile or embedded
devices. To address the above issues, the existing approaches typically focus on either accelerating the convolutional layers or
compressing the fully-connected layers separatedly, without pursuing a joint optimum. In this paper, we overcome such a limitation
by introducing a holistic CNN compression framework, termed LRDKT, which works throughout both convolutional and fully-connected
layers. First, a low-rank decomposition (LRD) scheme is proposed to remove redundancies across both convolutional kernels and fully-
connected matrices, which has a novel closed-form solver to significantly improve the efficiency of the existing iterative optimization
solvers. Second, a novel knowledge transfer (KT) based training scheme is introduced. To recover the accumulated accuracy loss
and overcome the vanishing gradient, KT explicitly aligns outputs and intermediate responses from a teacher (original) network to its
student (compressed) network. We have comprehensively analyzed and evaluated the compression and speedup ratios of the proposed
model on MNIST and ILSVRC 2012 benchmarks. In both benchmarks, the proposed scheme has demonstrated superior performance
gains over the state-of-the-art methods. We also demonstrate the proposed compression scheme for the task of transfer learning,
including domain adaptation and object detection, which show exciting performance gains over the state-of-the-arts. Our source code
and compressed models are available at https://github.com/ShaohuiLin/LRDKT.

Index Terms—Convolutional neural networks, Low-rank decomposition, Knowledge transfer, CNN compression, CNN acceleration.
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1 INTRODUCTION

I N recent years, convolutional neural networks (CNNs) have
shown impressive performance in various computer vision

tasks, for instance image classification [1]–[6], object detection
[7]–[9], semantic segmentation [10], etc. Coming with the increase
of computation power and data scale, nowadays it is feasible to
train very deep CNNs with tens of millions of parameters. For
instance, a 19-layer VGGNet [2] with 1.5M nodes has 138M
parameters, costs 553MB storage, and requires about 15B FLOPs1

to classify one image with a size of 224× 224.
In many emerging scenarios such as mobile and embedded ap-

plications, compressing CNNs has become essential and attracted
ever-increasing focus from both academic and industrial research.
In principle, the convolutional layers are the most time-consuming
part, while the fully-connected layers involve most storage cost.
Due to such an intrinsic difference, the speedup of convoutional
layers and the memory reduction of fully-connected layers are
typically treated as two seperated tasks. To speedup convolutional
layers, removing redundancy among filters serves as a popular
solution, for instance structured pruning [11]–[14], tensor decom-
position [15]–[18] and binary network [19]–[21]. To compress

• S. Lin, R. Ji (Corresponding author) and C. Chen are with the Fujian Key
Laboratory of Sensing and Computing for Smart City, and the School of
Information Science and Engineering, Xiamen University, 361005, China,
E-mail: (rrji@xmu.edu.cn).

• D. Tao is with the UBTECH Sydney Artificial Intelligence Centre and the
School of Information Technologies, the Faculty of Engineering and Infor-
mation Technologies, the University of Sydney, 6 Cleveland St, Darlington,
NSW 2008, Australia.

• J. Luo is with the Department of Computer Science, University of
Rochester, Rochester, NY 14623 USA.

1. FLOPs: The number of Floating-point operations.

parameters of fully-connected layers, various schemes have been
proposed recently, including but not limited to, vector quantization
[22], hashing trick [23], circulant projection/transformation [24],
matrix decomposition [25] and network pruning [26]–[28].

However, a unified framework that simultaneously compresses
both convolutional and fully-connected layers is still missing.
On the one hand, compressing parameters [22], [23], [26], [27]
is not guaranteed to accelerate network, since it might perform
irregular memory access that adversely impacts the computation
speed. For instance, the work in [22] adopted product quantization
to partition the weights into sub-matrices and reconstruct the
parameter matrices separately in online inference. The work in
[23] adopted two hash functions to group network connections
into hash buckets uniformly through weight sharing. The works in
[26], [27] discarded low-weight connections below a threshold
to reduce the total amount of network parameters. All above
works [22], [23], [26], [27] may produce non-structured sparse
connections and therefore require additional index calculation
overhead, leading to irregular memory access. On the other hand,
the acceleration of convolutional computation (e.g., by using low-
rank decomposition) typically involves highly complex iterative
algorithms and data-dependent criterions [15], [16], [18]. It is
therefore difficult to directly and efficiently deploy to fully-
connected layers, which will take much longer computation time
and lead to a bad local minimum.

Moreover, the existing compression and acceleration methods
still operate on a layer-wise manner, which cannot explicitly
model the overall accuracy loss throughout the entire network.
From this perspective, the above schemes can be regraded as
an “implicit” and “local” compression/acceleration. In terms of
“implicit” compression, the existing schemes [15], [16], [22],
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Fig. 1. The framework of the proposed LRDKT. A low-rank decomposition (LRD) based compression scheme is first constructed to form a guided
block in the student network. Next, the “local” and “global” knowledge is transferred by KT in a unified way, which deals with the performance
degradation caused by LRD compression. The based and guided blocks are defined in Sec. 3.3.

[23], [29] only consider to approximate the parameters W of
convolutional or fully-connected layers with Ŵ by minimizing
their Euclidean distance ‖W − Ŵ‖2F . This setting is indeed
problematic, which does not directly recover the output of CNNs,
i.e., the responses of the last fully-connected layer before sending
to the softmax-like classifier. In terms of “local” compression, the
existing schemes do not jointly compress parameters across differ-
ent layers, i.e., holistically compressing parameters throughout the
entire network. In other words, inter-layer parameter correlations
are simply ignored in [15], [19], [22], [28], [29]. However, due to
the nonlinear transformation functions (e.g., rectifier linear unit
(ReLU) and BN [30]), the small reconstruction error between
W and Ŵ in each layer would be propagated and magnified
throughout the entire network, leading to large accumulated error.

To address the above problems, in this paper we propose a
unified framework towards holistic and explicit CNN compression.
We target at jointly compressing both the convolutional and
fully-connected layers, aiming to simultaneously speedup online
inference and reduce memory consumption. In principle, our
framework is first deployed based on an inter-layer compression
formulation with a strictly closed-form guarantee, followed by a
re-learning process to align the responses between the original
network and compressed network. In particular, we first propose
a novel compression scheme based on low-rank decomposition
(LRD), which simutaneously accelerates the convolutional layers
and compresses the fully-connected layers with an exact closed-
form solution. It differs from the methods proposed by Jaderberg et
al. [15], which obtained low-rank factors using a highly complex
iterative optimization solver with a data-dependent criterion. The
proposed closed-form low-rank decomposition is extremely fast
to implement without any iteration, which also leads to better
generalized ability for the produced low-rank CNN structure.

To further reduce the accuracy loss caused by LRD in high
compression rates, we further present a novel and effective
knowledge transfer (KT) scheme to “explicitly” align outputs and
intermediate responses from the teacher (original) network to its
student (compressed) network. The proposed KT scheme operates
nonlinear transformation functions within and across all layers,
and minimizes both “local” and “global” reconstruction errors

in a unified way, which differs from the sectional schemes in
[31], [32], and is much easier to converge and implement. KT
is inspired from the Knowledge Distillation (KD) [33], which
trains a student network from the global output of a teacher
network with a similar depth. However, with the increasing depth
of the student network (e.g., the deep low-rank CNN structure
investigated in this paper), KD based optimization becomes more
difficult, which will lead to undesirable phenomenon of vanishing
gradient [34]. In contrast, the proposed KT extends from KD to
enable learning thinner and deeper student network, which uses
the local knowledge from the hidden layers of teacher network to
guide the training process of the student network. Additionally,
inspired by ladder network [35] and FitNets [32], we introduce
a simpler local loss function, based on measuring the Euclidean
distance of the presentation between the specific layers’ activation
of the teacher network and the student network, which obtains
the local knowledge from teacher network without any regressors.
Using such specific local knowledge, KT can be trained in an end-
to-end manner, and effectively improve the discriminability of the
student network whilst overcoming the vanishing gradient when
training a deeper student network.

Finally, LRD and KT are effectively integrated into a unified
framework, in which the good initial weights provided by the
closed-from LRD can be employed to improve the generalization
ability of the student network, while training the thinner and
deeper student network with higher discriminability is facilitated
by using KT. We term the proposed scheme LRDKT, the workflow
of which is depicted in Fig. 1.

Quantitatively, the proposed method has demonstrated signif-
icant advantages on LeNet for the task of MNIST classification
[4], as well as on AlexNet, VGG-16 and ResNet-50 for the
task of ImageNet classification [36]. Comparing to several state-
of-the-art methods, the proposed scheme performs better for
CNN compression and acceleration, e.g., 4.5× CPU speedup and
16.98× compression, with a negligible classification accuracy
loss for LeNet, 2.93× CPU speedup, 2.12× GPU speedup and
9.6× compression with an increase of 0.85% Top-1 classification
error for AlexNet, as well as 2.43× CPU speedup, 2.27× GPU
speedup and 4.5× compression with an increase of -0.50% Top-
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1 classification error for VGG-16. By replacing the traditional
fully-connected layers with global average pooling [3] (GAP), the
AlexNet and VGG-16 can be further compressed by a factor of
2.0× GPU speedup and 55.88× compression, with an increase
of 3.01% Top-1 error, and 2.33× GPU speedup and 41.92×
compression, with only an increase of 0.18% Top-1 classification
error, respectively. For ResNet-50, LRDKT achieves 2.02× CPU
speedup and 2.57× compression with an increase of 0.72% Top-
1 error, all of which are state-of-the-art in the existing literature.
Moreover, we evaluate the transfer learning ability of LRDKT in
compressing VGG-16 model when being applied to domain adap-
tation and objection detection. We have achieved 11.82× FLOPs
reduction and 14.21× compression with only 0.9% increase in
Top-1 error on the task of domain adaptation, and 0.2% mAP
drops with a factor of 3.10× GPU speedup (0.2% mAP drops with
a factor of 2.51× speedup on Jetson TX2) on the task of object
detection, both of which are very competitive and demonstrate the
strong generalization of the proposed scheme.

2 RELATED WORK

The convolutional layers of CNNs cost most computation con-
sumption, while the fully-connected layers cost most memory
consumption, respectively. Related work in CNN acceleration
can be categorized into four groups, i.e., parameter quantization,
structured pruning, compact model designs, and tensor approxi-
mation. For parameter quantization, Gong et al. [22] and Wu et
al. [37] employed vector quantization over parameters to reduce
the redundancy in the parameter space. Recently, directly learning
binary weights to quantize model parameters was proposed in [20],
[21], which achieved comparable accuracy to the original networks
on small-scale datasets like MNIST. To improve the accuracy
of the binary network on large-scale datasets like ImageNet,
Rastegari et al. [19] proposed XNOR-Net to further incorporate
a real coefficient to compensate for the binarization error. For
structured pruning, Wen et al. [11] incorporated group constraints
as a structured sparsity regularization to compress convolution
layers. The magnitude-based pruning method [12] aims to prune
filters with their corresponding feature maps, which is less effi-
cient in determining the importance of filters. More recently, a
Taylor expansion based pruning scheme was proposed in [38] to
iteratively prune one filter and fine-tune the rest network, which
is however costly in training especially to handle large amounts
of redundant filters in deep networks. Luo et al. [13] and He
et al. [39] utilized statistics information computed from the next
layer to guide a greedy layer-wise pruning. However, it is time-
consuming to collect new input/output pairs in the current pruning
layer as training samples, which are expensive to be stored in
training. For compact model designs, the key idea of designing a
compact model is to replace the loose and over-parametric filters
with a compact block to accelerate the convolutional computation.
For example, comparing to simply stacking convolutional layers,
the inception module in GoogLeNet [5] was proposed to stack
on top of each other to increase the network depth with much
lower computational budget. The bottleneck structure in ResNet
[6] was proposed to achieve remarkable performance. And the fire
module in SqueezeNet [40] was proposed to maintain competitive
accuracy with few parameters. Besides, the group convolution is
first used in AlexNet [1] for distributing the model over two GPUs
to handle the memory issue, which has recently been widely used
in model designs. For example, Ioannou et al. [41] proposed a root

module to reduce the computational cost without compromising
accuracy, which contains a specific layer with filter groups and a
spatial convolutional layer with 1 × 1 convolution. Zhang et al.
[42] proposed the ShuffleNet to employ a channel shuffle operator
to help the information flowing across feature channels, which
is brought by group convolutions. As an extreme case of group
convolution, depthwise convolution performs lightweight filtering
by applying a single convolutional filter into one input channel,
which can be further combined with pointwise convolution to form
a depthwise separable convolution. Recently, MobileNet [43] and
Xception [44] have used the depthwise separable convolutions
to achieve impressive performance among lightweight models.
However, the above compact modules or convolutions are de-
signed for specific models, which are less general for accelerating
other deep models. Compared to designing a compact model,
our method is more general to accelerate various deep networks
(e.g., VGG Nets, GoogLeNet and ResNet) by a closed-form low-
rank decomposition on filters/weights. For tensor approximation,
recent methods have been proposed to decompose a convolutional
filter into a sequence of tensor convolutions with fewer parameters
[15]–[17], [45]. Such approaches typically adopt inexact low-rank
factorizations, which can considerably accelerate the computation
by a low-rank based approximation. Notably, these approaches use
simple fine-tuning to recover the accumulated loss of accuracy.
It is, however, problematic due to the vanishing gradient in
back propagation throughout the deep networks. Different from
approximating filters in the pre-trained networks, Ioannou et al.
[46] combined a set of small basis filters into more complex
filters, and learned these basis filters from the scratch with an
effective weight initialization. Although with the same spatial size
of the small low-rank factors (e.g., 1 × 3 and 3 × 1 spatial size)
in both [15] and [46], the way to obtain these low-rank factors
is quite different, i.e., the work in [15] obtains these factors
by minimizing the local reconstruction error via data-dependent
iterative optimization, while the work in [46] obtains them by
training the entire network directly. Our method differs from the
schemes of [15] and [46]. We employ a low-rank decomposition
across convolutional layers with a closed-form solution, instead
of the traditional data-dependent iterations in [15], [17], [18], or
training the deeper and thinner network from scratch [46].

Related work in CNN compression can be further categorized
into four groups, i.e., parameter sharing, parameter pruning, matrix
decomposition, and knowledge distillation. For parameter sharing,
Chen et al. [23] proposed a HashedNet, which uses a low-cost
hash function to group weights between two connected layers into
hash buckets. Cheng et al. [24] proposed to replace the linear
projection in fully-connected layers with a circulant projection,
which reduces the memory cost and enables the usage of Fast
Fourier Transform to accelerate the computation. Yang et al. [47]
introduced a novel Adaptive Fastfood Transform to reparameterize
the matrix-vector multiplication of fully-connected layers. For pa-
rameter pruning, LeCun et al. [48] and Hassibi et al. [49] proposed
a saliency measurement by computing the Hessian matrix of the
loss function with respect to the parameters, and then pruned
the parameters with low saliency values. However, such methods
require computing second-order derivatives, which therefore add
additional computation cost. Srinivas and Babu [28] explored the
redundancy among neurons, upon which a data-free pruning was
proposed to remove redundant nodes. Han et al. [26] proposed
a pruning scheme based on low-weight connections to reduce
the total amount of parameters and operations in the network.
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Fig. 2. Low-rank decomposition for compressing a generalized convolutional operation. The R, H ×W ×C, d× d×C ×N , H′ ×W ′ ×N are the
rank, input size, filter size and output size, respectively. Left: Original convolution. Right: Low-rank constraint convolution with rank R

For matrix decomposition, Denil et al. [29] adopted a low-rank
decomposition to compress the weights in the fully-connected
layers in a layer-by-layer manner. Novikov et al. [50] converted
the dense weight matrices of the fully-connected layers to the
Tensor Train (TT) format, such that the number of parameters is
reduced in scales while the representation power of the original
network is still preserved. For knowledge distillation, Buciluă et
al. [51] proposed to mimic a complicated network with a simple
network, which shows the possibility of inter-network knowledge
transfer. Following this idea, several methods [32], [33], [52]
employ dark knowledge to train a student network based on the
soft output of a complicated teacher network. Specifically, Romero
et al. [32] proposed FitNet, which combines dark knowledge and
the knowledge from the teacher’s hint layer by regressors with
additional parameters, which is trained in a stage-wise fashion.
Although FitNet achieves state-of-the-art results in small-scale
datasets (e.g., CIFAR-10 and CIFAR-100), its performance is
less exciting on large-scale dataset (e.g., ImageNet). Moreover,
such a limited performance gain requires a complex and costly
training. Different from FitNets, the proposed knowledge transfer
can perform deeper CNNs on ImageNet, and significantly reduce
the performance degradation, which “explicitly” aligns the outputs
and intermediate responses from the teacher network to its student
network without any regressors, which overcomes the vanishing
gradient by jointly minimizing both “local” and “global” recon-
struction errors by an end-to-end training.

Recently, it has shown promising performance gains to com-
bine multiple aforementioned schemes to compress or accelerate
convolutional neural networks. Han et al. [27] removed the redun-
dant connections [26], quantified weights [22], and used Huffman
coding to compress CNNs. Wang et al. [53] handled convolutional
filters in the frequency domain using the discrete cosine transform,
and then employed K-means clustering, quantization and Huffman
coding to compress CNNs with a high compression ratio. Our
scheme can be also integrated with the aforementioned methods
(e.g. structured pruning [11], [13] or parameter quantization [22],
[37]) to further improve our compression/speedup ratio, which is
however orthogonal to the core contribution of this paper.

3 THE PROPOSED FRAMEWORK

In this section, we first describe the preliminary. Then, we
present our low-rank decomposition on both kernel tensors of
convolutional layers and matrix-weights of fully-connected layers.
Finally, we employ knowledge transfer to minimize both “local”
and “global” accumulated errors between the original (teacher)
network and the compressed (student) network.

3.1 The Preliminary
CNN [1]–[6] can be viewed as a feed-forward multi-layer architec-
ture that maps the input image to a certain output vector. Units in
CNN are organized as a sequence of 3D tensors with two spatial
dimensions and a third “map” or “channel” dimension2. In the
convolutional layer, the convolution transforms an input tensor I
of size H×W ×C into an output tensorO of size H ′×W ′×N
by the following linear mapping:

Oh′,w′,n =
d∑
i=1

d∑
j=1

C∑
c=1

Ki,j,c,nIhi,wj ,c, (1)

where the set of convolutional filters K is given by a tensor of size
d×d×C×N . Here, d×d corresponds to the spatial dimension,
while C and N are the numbers of input and output channels,
respectively. The height and width of the input are denoted as
hi = h′ + i − 1 and wj = w′ + j − 1. For simplicity, we
assume an unit stride with no zero-padding and skip biases. This
computation process is shown in the left of Fig. 2. To describe the
filter redundancy discussed subsequently, Eq. (1) is rewritten as:

On = Kn ∗ I =
C∑
c=1

Kcn ∗ Ic, n = 1, 2, · · · , N, (2)

where Kn is the n-th 3-D filter (n ∈ [1, 2, · · · , N ]), which
contains a stack of 2-D filters Kcn ∈ Rd×d, c ∈ [1, 2, · · · , C].

In the fully-connected layer, the main operation is the matrix-
by-matrix multiplication, which multiplies an input matrix X ∈
Rd×b with a weight matrix W ∈ Rh×d to produce an output
matrix Z ∈ Rh×b, i.e.,

Z = WX. (3)

Eq. (1)-(3) enable us to introduce the low-rank decomposition
to convolutional layers over tensor kernels for acceleration, as well
as to fully-connected layers over matrix weights for compression.

3.2 Holistic Low-rank Decomposition
For tensor convolution in Eq. (1), we construct a set of low-rank
filter bases with rank-1 in the spatial domain. Correspondingly,
each convolutional layer is factorized as two new convolutional
layers with rectangular filters. The first convolutional layer has
R filters of spatial size d × 1, resulting in a filter bank of
{Vr ∈ Rd×1×C : r ∈ [1, 2, · · · , R]} to produce output
feature maps S ∈ RH

′×W×R. The second convolutional layer
has N filters of spatial size 1 × d, resulting in a filter bank

2. When a CNN is applied to a batch of images, these tensors are 4D with
the fourth dimension corresponding to the batch size. This dimension does not
affect the derivation, and therefore in this paper we only consider the 3D case.
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of {Tn ∈ R1×d×R : n ∈ [1, 2, · · · , N ]} to produce output
feature maps O ∈ RH

′×W ′×N with the same size of the
convolutional output. Therefore, the convolution by the original

filters On =
C∑
c=1
Kcn ∗ Ic in Eq. (2) is approximated by:

On ≈ Tn ∗ S =
R∑
r=1
T rn ∗ (

C∑
c=1
Vcr ∗ Ic)

=
C∑
c=1

( R∑
r=1
T rn ∗ Vcr

)
∗ Ic,

(4)

where an approximation K̂ of K can be obtained by the sum of r
separable filters T rn ∗ Vcr , i.e.,

K̂cn =
R∑
r=1

T rn ∗ Vcr . (5)

In Eq. (5), R is a hyper-parameter controlling the rank. The ap-
proximated convolution computation is shown in the right of Fig.
2. By far, we reduce the computation complexity from the original
O(NCd2H ′W ′) to O

(
R(CW + NW ′)dH ′

)
. Assuming the

image width W � d and the variable R = N = C , the original
convolution is accelerated about d times.

We obtain the approximated low-rank filter basis T and V by
solving the optimization problem below:

min
T ,V
L1(T ,V) =

N∑
n=1

C∑
c=1

∥∥Kcn − R∑
r=1

T rn ∗ Vcr
∥∥2

F
. (6)

We further prove the following theorem to get a closed-form
solution of Eq. (6). The corresponding solution (T ,V) is defined
as a set of low-rank constrained filters:

Theorem 1. Define a function that maps a tensor to a matrix
σ : Rd×d×C×N → RCd×Nd,K 7→ σ(K), in which a tensor
element (i1, i2, i3, i4) maps to a matrix element (j1, j2), such
that

j1 = (i3 − 1)d+ i1, j2 = (i4 − 1)d+ i2.

Define K := σ(K). Let K = UΣV> be the Singular Value
Decomposition (SVD) of K. We construct:

V̂c
r(j) = U(c−1)d+j,r

√
Σr,r,

T̂r
n(j) =

√
Σr,rV

>
r,(n−1)d+j .

(7)

Then (T̂ , V̂) is a solution of Eq. (6).

Proof. We consider the following optimization problem:

min
K̄
L2(K̄) =

∥∥K̄−K
∥∥2

F
,

s.t. rank(K̄) ≤ R.
(8)

Let (T ∗,V∗) be an optimal solution of Eq. (6). Then we can
construct K̄ as follows:

K̄ =
R∑
r=1


V1
r
∗

V2
r
∗

...
VCr
∗

 [ T r1 ∗, T r2 ∗, · · · , T rN ∗ ] .
Due to the separability of the Frobenius norm, we have:

L1(T ∗,V∗) = L2(K̄).

As rank(K̄) ≤ R, K̄ is a feasible solution for Eq. (8). Therefore,
for any solution K∗ of Eq. (8), we have:

L2(K∗) ≤ L2(K̄) = L1(T ∗,V∗). (9)

On the other hand, If K∗ is an optimal solution of Eq. (8), we can
construct a feasible solution (T̂ , V̂) of Eq. (6) using Eq. (7). Then
we have:

L1(T ∗,V∗) ≤ L1(T̂ , V̂) = L2(K∗).

Together with Eq. (9), we have:

L1(T̂ , V̂) = L2(K∗) = L1(T ∗,V∗). (10)

Therefore, we prove that (T̂ , V̂) is a solution of Eq. (6).
Note that the solution of Eq. (6) is not unique. Indeed, if

(T ,V) is a solution of Eq. (6), ( 1
αT , αV) is also a solution for any

α 6= 0. However, these solutions are equivalent in our application.
The solution of Eq. (6) provided by Theorem 1 is extremely

fast, which has a closed-form solution without any iteration, i.e.,
significantly better than iterative algorithms widely adopted in the
literature [15], [17], [18]. In comparison, the works in [15], [17],
[18] typically take much more time to learn the approximated
convolutional kernels by using a data-dependent criterion, which
are very likely to stuck to bad local minimum.

For matrix-by-matrix multiplication in the fully-connected
layer described in Eq. (3), we also consider the low-rank ap-
proximation Ŵ ∈ Rh×d of the original weight W ∈ Rh×d. To
obtain an approximated low-rank subspace, we solve the following
optimization problem:

min
Ŵ
‖W − Ŵ‖2F

s.t. rank(Ŵ) ≤ r.
(11)

Eq. (11) is solved by a low-rank decomposition using SVD [54],
a.k.a. Ŵ = ÛrΣ̂rV̂

>
r , where Ûr ∈ Rh×r and V̂r ∈ Rd×r are

two submatrices that correspond to the top r singular vectors in
U and V. The diagonal elements in Σ̂r ∈ Rr×r correspond to
the r largest singular values in Σ, which is a diagonal matrix by
running SVD over W. We then obtain the decomposition of Ŵ

as P̂Q̂>, where P̂ = ÛrΣ̂
1
2
r and Q̂ = V̂rΣ̂

1
2
r .

However, directly applying this low-rank decomposition to
multiple layers (without retraining) will lead to approximated error
of each layer, which would be further accumulated and propa-
gated. Therefore, an asymmetric data reconstruction is required
to alleviate this problem. In this paper, we construct a novel
local loss function (a.k.a. local asymmetric reconstruction error)
to align the output of approximated layers and original layers. To
minimize the local asymmetric reconstruction error, one feasible
solution is to employ the Stochastic Gradient Descent (SGD) to
obtain the sub-optimal solution. Alternatively, we construct an
overall loss function in the proposed knowledge transfer (Sec. 3.3),
which considers both the local asymmetric reconstruction error
and the global reconstruction error to reduce the overall error in
the final output layer. Then, as an easy and effective solver, SGD
is employed to minimize the overall loss function, as detailed in
Sec. 3.3 subsequently.

Using low-rank decomposition, we replace the large convo-
lutional kernel with two small ones in convolutional layers, and
replace the large matrix-weights with two small ones in fully-
connected layers, respectively. Therefore, compared to the original
convolution in Eq. (1) and matrix multiplication in Eq. (3), we only
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Fig. 3. The pipeline of training a student network using knowledge
distillation or knowledge transfer.

requireR(CW+NW ′)dH ′ multiplication-addition operations in
the convolutional layer, as well as r(h+d) parameters in the fully-
connected layer, respectively. The corresponding speedup ratio Sr
in the convolutional layer and compression ratio Cr in the fully-
connected layer are:

Sr =
d2CNH ′W ′

R(CW +NW ′)dH
=

dCNH ′W ′

R(CW +NW ′)H
,

Cr =
hd

r(h+ d)
.

3.3 Accuracy Recovery by Knowledge Transfer
Since we minimize the reconstruction error of linear filters/weights
instead of the non-linear responses, the classification accuracy
would be dropped after network compression. It is simple and
straightforward to fine-tune the compressed network to recover
the accuracy. However, it has been quantitatively shown that the
recovered accuracy is far less comparable to the original network
given a high compression rate [15], [16], [29].

Alternatively, knowledge distillation [33] is becoming a
promising solution, which aims to transfer knowledge from a
teacher network to a student network to boost the accuracy of
the student network. The idea is to allow the student network
to capture the global knowledge (a.k.a. dark knowledge), which
contains the information provided by the true labels, as well as the
finer structure learned by the teacher network.

As shown in Fig. 3(a), the framework of knowledge distillation
can be summarized as follows:

Information flow from global knowledge. Let s and
t be a student network with a “softmax” output qs =
softmax

(
hf (X ;Ws)

)
, and a teacher network with a “softmax”

output qt = softmax
(
gf (X ;Wt)

)
, where hf and gf are two

global functions that map an input image X to the output of
student and teacher networks, respectively. Ws and Wt stand for
all parameters in the student and teacher networks, respectively.
The student network will be trained such that the probability
distribution qs of its output not only approaches to that (qt) of the
teacher network, but also approaches to the true labels l. When

qt is close to the one-hot code presentation of the true labels l,
less information provided by qt will decrease the accuracy of the
student network in training. To this end, a temperature parameter
τ [33] is utilized to soften the information arising from the output
of the teacher network, i.e., gf (X ;Wt), which provides more in-
formation in training. The same temperature parameter is applied
to the output of the student network to produce the softened target
probability distribution qτs , compared to the softened output qτt of
the teacher network:

qτs = softmax
(hf (X ;Ws)

τ

)
, qτt = softmax

(gf (X ;Wt)

τ

)
. (12)

Therefore, the student network is trained to optimize the global
loss function as follows:

Lglobal = λH(qτs , q
τ
t ) +H(l, qs), (13)

where H refers to the cross-entropy based loss function, and λ
is a hyper-parameter to balance the cross-entropies of H(qτs , q

τ
t )

and H(l, qs). In addition, the first term in Eq. (13) is to learn the
student network from the softened output of the teacher network,
whereas the second term is to guide the student network to learn
from the true labels.

From this perspective, the “local” knowledge is unexploited
in knowledge distillation, which affects the discriminability of the
existing schemes and suffers from the vanishing gradients [55].
To explain, during backpropagation, the derivatives of shallow
layers (bottom layers) in a network are formed using products
of weight matrices and derivatives of non-linearities from the
downstream layers (top layers). The eigenvalues of the filters are
often small, while the derivatives of non-linearities are nearly zero
in deeper network with a set of low-rank filters. Therefore, the
multiplication by these terms annihilates information. And the
resulting gradients in shallow layers contain little information
about the error, which is thereby difficult to update in the shallow
layers. Correspondingly, the discriminability of the learned model
is reduced. Although hints training loss [32] has been proposed
to help the training of deep FitNets, it still cannot overcome the
vanishing gradients in a two-stage training. In fact, the whole
parameters in a deep student network are only updated by KD
training, while the hints training loss is used to initialize the
parameters in the deep student network.

3.3.1 Knowledge Transfer
To further improve the discriminality of the compressed model and
overcome the vanishing gradient, we propose a novel knowledge
transfer (KT) method to transfer both global (i.e., dark knowledge
[33] [32]) and local knowledge (i.e., the knowledge from hidden
layers) between the teacher network and the student network. Fig.
3(b) shows the proposed knowledge transfer framework. In this
framework, both local reconstruction error and global accumulated
error between student network and teacher network are integrated
into an overall objective function to explicitly model knowledge,
which differs from the existing work that separates such errors in
different sub-objective functions [31] and FitNets [32]. Our main
inspiration also comes from DSNs [56] on domain adaptation.
We consider the teacher network as a source domain, and the
student network as a target domain. To produce better represent
knowledge, we encourage the integration of global accumulated
error with local reconstruction error to share the shared-space
component of the representation, which is similar to the “collective
knowledge” of student network in DenseNet [57].

To better train the deep low-rank network (i.e., the student
network) and to further understand the proposed KT, we further
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introduce the concept of base block in the teacher network and
the guided block in the student network. The base block is
defined as the output of hidden layers in the teacher network,
which is responsible to guide the learning of the student network.
Analogously, the guided block is defined to learn from the hidden
layers of the teacher network. Specifically, the original convolution
operation, batch normalization or local response normalization,
and max pooling are included in the base block of a single layer.
Meanwhile as shown in Fig. 1, the low-rank approximated convo-
lution, batch or local response normalization, and max pooling are
included in the guided block of the same single layer3.

To operate the above principles in the base and guided blocks,
the following steps are conducted:

Step (1). Construct the supervision of hidden layers to learn
the local knowledge. Instead of using the cross entropy loss func-
tion, the local loss function is established by using the Euclidean
distance between the output of guided and base blocks at the i-th
layer. Such a local loss acts like a companion objective [58] to the
hidden layers, which provides an additional constraint (or a new
regularization) in the learning process. And by using this local
loss, the vanishing gradient can be further suppressed. Inspired by
the symmetrical cost function of denoising autoencoder in ladder
network [35], we extend it to construct an asymmetrical ladder,
in which only the parameters of student network are required
to be learned from a fixed teacher network, and the asymmetric
connections between the teacher network and the student network
with a different depth are directly formed. Therefore, for the
decomposed low-rank network, the local loss function can be
written as follows:

Lilocal = E(Ois,Oit) =
1

mi

∥∥∥Ois −Oit∥∥∥2

F
, (14)

Ois = h(X ;Wi
s), Oit = g(X ;Wi

t), (15)

where Ois,Oit ∈ RH
i×W i×Ci

are the outputs of guided and base
blocks at the i-th layer with the dimension ofmi byHi×W i×Ci,
respectively. h and g are two functions that map an input X at the
i-th layer to the guided and base blocks, respectively.Wi

s andWi
t

stand for the parameters at the i-th layer in the student and teacher
networks, respectively. Note that the parameters of the student
network at the i-th layer contain two low-rank factors WPi

s and
WQi
s by LRD, as shown in Fig. 3(b).
The local loss function in Eq. (14) is more simple and effective

than hint-based loss function in FitNets [32]. On the one hand,
the proposed loss function directly transfers the local knowledge
from teacher network to student network without any regressors,
which can significantly reduce learned parameters. On the other
hand, the proposed loss function is constructed between the
base and guided block, which can learn more effective feature
representation from teacher network, comparing to the hint loss
after a regular convolutional layer in FitNets.

Step (2). Knowledge fusion. Integrating the global knowledge
with the local knowledge described above, we train our student
network by minimizing the overall loss function as follows:

L(Ws) = Lglobal +

L∑
i=1

λiLilocal

= λH(qτs , q
τ
t ) +H(l, qs) +

L∑
i=1

λi
mi

∥∥∥Ois −Oit∥∥∥2
F
,

(16)

3. If there is no batch normalization or local response normalization, the
corresponding operations in both the base and guided blocks should be deleted.

TABLE 1
Comparison on the speedup/compression rates and classification error

on MNIST for LeNet. The batch size is set to be 100 (Values are
averaged over 5 runs in all figures and tables of this paper).

Method Para. LeNet
Conv. FC. Compr. Speed. Err. ↑

SSL [11] - - - 4.13× 0.12%
Pruning [25] - - 12× - -0.11%

Data-free [27] - - 8.33× - 1.07%
LRDFT 3 23 16.98× 4.5× 0.14%
LRDDK 3 23 16.98× 4.5× 0.09%

RKT 3 23 16.98× 4.5× 0.11%
LRDKT 3 23 16.98× 4.5× 0.06%

where H refers to the cross-entropy loss, which is described in
knowledge distillation. L indicates the guided/base layer that we
select, and λi, (i = 1, 2, · · · , L) is a set of penalty parameters for
balancing the global loss and each i-th local loss. The advantage
of integrating both local and global supervision is quite evident:

1. The local loss function acts as a strong “regularization” for
classification accuracy, which improves the convergence of
the student network.

2. The global loss function makes it more convenient to
exploit the significant performance gains, rather than using
the original softmax-loss function.

A stochastic gradient descent is further employed via back-
propagation to obtain the local minimum of the loss function in Eq.
(16) by an end-to-end training. In practice, we set every penalty
parameter of local loss to be equal. As for the sensitivity of hyper-
parameters λi and λ, we will discuss the detailed setups in our
experiments in Sec. 4 subsequently.

Especially, to verify the performance of the proposed LRDKT
scheme that combines both closed-form low-rank decomposition
and knowledge transfer training, we compare the LRDKT with
our alternative schemes, including:

1. The combination of the proposed low-rank decomposition
and fine-tuning (LRDFT).

2. The combination of the proposed low-rank decomposition
and dark knowledge (LRDDK).

3. The combination of random initialized weights and knowl-
edge transfer (RKT).

4 EXPERIMENTS

To evaluate the performance of the proposed LRDKT scheme,
we conduct comprehensive experiments on both MNIST and
ImageNet 2012 datasets [36]. We deploy the proposed LRDKT on
four widely-used CNNs (a.k.a. LeNet on MNIST [4], AlexNet [1],
VGG-16 [2] and ResNet-50 [6] on ImageNet), with comparisons
to a group of state-of-the-art schemes proposed very recently. The
proposed LRDKT is implemented by Caffe [59]. All the pre-
trained CNNs except LeNet are taken from the Caffe model zoo4.

Evaluation Protocols. We quantize the performance by us-
ing the number of parameters (or parameter compression rate),
CPU/GPU speedup rate, and Top-1/5 classification error. To make
a fair comparison, the CPU and GPU speedup rates are measured

4. https://github.com/BVLC/caffe/wiki/Model-Zoo
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TABLE 2
The amounts of parameters and FLOPs, computation time on CPU (ms), GPU (ms) in both convolutional and fully-connected layers, and

classification error rates (Top-1/5 Err.) of AlexNet, VGG-16 and ResNet-50 with batch size 32, 32 and 16, respectively.

Model #param. FLOPs CPU (ms) GPU (ms) Top-1 err. Top-5 err.Conv FC Total Conv FC Total
AlexNet 2.85M 58.62M 61.47M 671.08M 58.53M 729.61M 950 36 42.27% 19.11%
VGG-16 14.71M 123.64M 138.35M 15.36B 0.12B 15.48B 10,846 322 31.66% 11.55%

ResNet-50 23.23M 2M 25.23M 3.86B 2M 3.86B 2,266 122 24.64% 7.76%

in a single-thread Intel Xeon E5-2620 CPU and NVIDIA GTX
TITAN X GPU, respectively.

Rank Analysis. In light of various low-rank decomposition
methods, without losing the generalization, we adopt PCA [60]
to select the suitable rank R and r in the convolutional layers
and fully-connected layers, respectively. We consider the rank
selection in the convolutional layers, the procedure of which is the
same for the rank selection in fully-connected layers. Specifically,
the filter tensor K of size d × d × C × N can be reshaped to a
matrix K ∈ RddC×N , the column of which are the reshaped filters
Kn(∀n ∈ [1, · · · , N ]). In this paper, the PCA energy is defined
as ER =

∑R
j=1 σj , where σj is the j-th largest eigenvalue of

covariance matrix K>K
ddC−1 . In particular, the total PCA energy EN

is calculated by EN =
∑N
j=1 σj . Under the constraint of PCA

energy ratio ER

EN
(e.g., ER

EN
≥ 0.95), lower-rank approximation can

be obtained if the minimal rank R is smaller. In the experiments,
we select 5 groups of rank R in all convolutional layers as the
minimal rank R, such that the PCA energy ratio in each layer is
greater than 0.95, 0.7, 0.5, 0.3 and 0.2, respectively.

5 MNIST
MNIST is an image classification benchmark [4] which contains a
training set of 60,000 and a test set of 10,000 28× 28 gray-scale
handwritten digit images from 10 classes. In this dataset, LeNet
is adopted as the baseline model, which is trained from scratch
without data augmentation and achieves an error rate of 0.89% on
the MNIST dataset.

For LRDFT, LRDDK, RKT and LRDKT, we speedup and
compress the second convolutional layer and the first fully-
connected layer in LeNet, instead of operating over the whole
network. To explain, these two layers consume over 87% of the
evaluation times and occupy about 99% of the model storage.
Correspondingly, the ranks in the second filter and the first
fully-connected are obtained by setting PCA energy ratio greater
than 20%, the values of which are 3 and 23, respectively. The
hyper-parameters of λ and λi are set to be 0.003 and 0.0005,
respectively. We use the Top-1 classification error to evaluate the
accuracy degeneration of different baselines. The results of LeNet
in MNIST are shown in Table 1.

Comparing to all baselines, the proposed LRDKT scheme
achieves the highest speedup and compression rates with minimal
performance degradation. To explain, LRDKT first employs low-
rank decomposition to significantly increase both speedup and
compression rates, whilst providing better initial values for the
student network. Then, the accuracy loss between the teacher
network and the student network is significantly reduced by
knowledge transfer. In fact, LRDKT is more effective for deeper
networks (e.g., AlexNet, VGG-16 and ResNet-50) as presented
in Sec. 5.1, which demonstrates the effectiveness of combining
closed-form low-rank decomposition and knowledge transfer.

0.2 0.3 0.5
0.4

0.42

0.44

0.46

0.48

0.5

PCA energy ratio

T
op

−
1 

er
ro

r 
(%

)

 

 
(0.001,0.0003)
(0.001,0.0005)
(0.001,0.001)
(0.001,0.003)
(0.003,0.0003)
(0.003,0.0005)
(0.003,0.001)
(0.003,0.003)

Fig. 4. Sensitivity of λ and λi on AlexNet. Number pairs in the top right
refer to the group settings of (λ, λi).

5.1 ImageNet

We evaluate the proposed LRDKT scheme on ILSVRC 2012
classification benchmark [36], which contains a training set of
more than 1.2 million images from 1,000 object classes, as well
as a validation set of 50,000 images. Each image is associated
with one ground truth class. We train the proposed model on
the training set, over which we remove the pre-pixel mean for
image preprocessing, and test it on the validation set using the
single-view testing (central patch only). Additionally, we imple-
ment LRDKT on three CNNs i.e., AlexNet [1], VGG-16 [2]
and ResNet-50 [6]. The computation time and storage overhead
of all these networks are shown in Table 2, together with their
classification error on the ILSVRC 2012 dataset.

To train the proposed LRDKT scheme, we use the SGD solver
with a learning rate starting at 0.001, dropped by a constant factor
of 10 throughout 20 epochs, 5 epochs and 5 epochs on 60 epochs,
15 epochs and 15 epochs for AlexNet, VGG-16 and ResNet-50,
respectively. The weight decay is set to be 0.0005 and the momen-
tum is set to be 0.9. The batch sizes used to train the student net of
AlexNet, VGG-16 and ResNet-50 are 256, 32 and 16, respectively.
All the models in experiments are trained on NVIDIA GTX
1080Ti graphics card with 11GB and 128G RAM. For knowledge
distillation and the proposed KT, we use two GPUs to train the
corresponding model, in which one is for forward-propagation
in the teacher net, and the other is for forward-propagation and
back-propagation in the student net. Moreover, the total maximal
GPU memory consumption of AlexNet, VGG-16 and ResNet-50
are 9,465MB, 14,356MB, 16,602MB, respectively. The hyper-
parameters λ and λi(i = 1, · · · , L) control the balance of the
global loss and each local loss, respectively. By observing the
changes in the loss function, we set λ to be two different values,
i.e., 0.001 and 0.003, and set λi with the same value for all i to be
four different values, i.e., 0.0003, 0.0005, 0.001 and 0.003. For the
temperature τ , we fix it to be 1, which can achieve good results.

In order to select the best λ and λi, we first analyze the results
of these hyper-parameters settings in the convolutional layers with
high computation complexity (e.g., Conv2, Conv3 and Conv4 in
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TABLE 3
Comparison of the LRE and the proposed low-rank decomposition in the convolutional layers with high computation complexity of AlexNet. R/N :

low rank R over full filter numbers N . Top-1/5 err./+FT: the Top-1/5 error without fine-tuning or with fine-tuning.

Method PCA energy ratio Conv2 Conv3 Conv4 Time: Top-1 err./+FT Top-5 err./+FTinitialized factors

LRE [15]

0.95 143/256 273/384 320/384 30 epochs≈99,000(s) 44.37%/43.12% 20.87%/19.87%
0.7 70/256 146/384 203/384 30 epochs≈91,800(s) 44.86%/43.32% 21.78%/20.08%
0.5 26/256 52/384 78/384 30 epochs≈84,600(s) 50.14%/44.06% 25.74%/20.59%
0.3 12/256 24/384 33/384 30 epochs≈81,000(s) 60.87%/49.54% 35.49%/25.48%
0.2 7/256 14/384 18/384 30 epochs≈79,200(s) 81.02%/50.23% 61.44%/25.90%

LRD

0.95 143/256 273/384 320/384 4(s) 43.00%/42.36% 19.67%/18.98%
0.7 70/256 146/384 203/384 3.9(s) 45.22%/42.21% 22.08%/19.19%
0.5 26/256 52/384 78/384 3.58(s) 87.06%/42.92% 72.36%/19.84%
0.3 12/256 24/384 33/384 3.38(s) 99.50%/48.88% 98.18%/24.31%
0.2 7/256 14/384 18/384 3.37(s) 99.78%/49.67% 99.30%/25.62%

TABLE 4
Comparison of fine-tuning epoch numbers using LRE and LRD with the

same classification error on AlexNet.

FT epoch in methods PCA energy ratio Top-1 err.LRE [15] LRD
25 15 0.5 44.69%
24 17 0.3 50.58%
25 20 0.2 50.68%

AlexNet), as presented in Fig. 4. We can see that the parameter
(λ, λi) with a setting of (0.003, 0.0005) works the best. Therefore,
we take a group of (0.003, 0.0005) as the final parameter setting
for the LRDKT scheme.

5.1.1 Ablation Study

The core idea of LRDKT lies in both closed-form low-rank
decomposition (LRD) and knowledge transfer (KT). In this sub-
section we evaluate them on the convolutional layers of AlexNet
and VGG-16 for ablation study, respectively.

On the Importance of Low-rank Decomposition with a Closed-
form Solution: To evaluate the importance of the proposed low-
rank decomposition, we compare it with the cutting-edge low-
rank decomposition methods (e.g., the data-dependent (iteration
based) low-rank decomposition (LRE) [15] and the Tucker-2
decomposition (TD) [45]) in three aspects, i.e., time, classification
error, and generalization ability. Different from LRE and LRD
with two low-rank factors and one rank, TD decomposes the
filter K of size d × d × C × N into three smaller filters of size
1× 1×C ×R1, d× d×R1 ×R2 and 1× 1×R2 ×N , where
R1, R2 are two ranks. We determine rank R1 and R2 by PCA on
mode-3 matricization (of size C×Nd2) and mode-4 matricization
(of size N × d2C) of filter K, respectively.

First, the closed-form low-rank decomposition performs better
than LRE in the convolutional layers in AlexNet, as shown in
Table 3. Comparing to LRE, through fine-tuning with the same
training parameters, LRD requires extremely less time to obtain
initialized low-rank factors (i.e, less than 4s in LRD vs. more than
79,000s in LRE on AlexNet), but with lower Top-1 and Top-5
classification errors for all PCA energy ratios (e.g., at PCA energy
ratio of 0.5, the gap between LRD and LRE is 1.14% Top-1 error
on AlexNet). To explain, LRD provides better data-independent
initialization to the compressed models. In addition, comparing
to LRE, LRD requires a smaller number of fine-tuning epochs to
restore the same classification error, as shown in Table 4.
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Fig. 5. Comparison of fine-tuning with the 50% and 100% number of
training data on AlexNet.

Second, Fig. 5 shows that LRD has much stronger generaliza-
tion ability than LRE, in which the low-rank model is fine-tuned
to significantly restore the classification accuracy only by a part
of training data. For example, when PCA energy ratio is set to be
0.5, LRD achieves extremely lower Top-1 classification error than
LRE using 50% training dataset, i.e., 43.03% vs. 46.31% in Top-
1 error. Moreover, comparing to using the whole training data,
LRD performs significantly better with a negligible (e.g., 0.11%)
increase in Top-1 error vs. an increase of 2.25% Top-1 error in
LRE.

Third, Table 5 shows that LRD is most effective to be
integrated into KT, which results in a significant increase of
classification accuracy over LRE, TD and random initialization.
For instance, LRD achieves the best performance by a factor
of 5.33× with 44.48% Top-1 error and 21.21% Top-5 error at
the PCA energy ratio of 0.5, which improves from LRE by a
factor of 5.33× with 46.03% Top-1 error and 22.62% Top-5
error, and improves from TD by a factor of 5.04× with 45.30%
Top-1 error and 22.05% Top-5 error. It is note that TD achieves
the highest speedup at the same PCA energy ratio, due to the
internal decomposition to three smallest filters. Interestingly, KT
with random weights achieves a comparable classification error
to LRE. For example, comparing to Random, LRE achieves a
lower Top-1 classification error (42.78% vs. 43.03%) at the PCA
energy ratio of 0.5, and LRE achieves a higher Top-1 classification
error (46.03% vs. 45.89%) at the PCA energy ratio of 0.3. To
explain, the local and global knowledge in KT are able to help the
model with random initialization, which is compressed only on the
partial layers to restore the classification accuracy in distributed
representations [61]. However, the random criterion is not robust
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TABLE 5
Results of integrating LRE, TD and LRD into KT in the convolutional layers with high computation complexity of AlexNet. R/N and (R1, R2)/N :

low rank R of LRE and LRD, and (R1, R2) of TD over filter number N , respectively.

Method PCA Conv2 Conv3 Conv4 CPU Top-1 err. Top-5 err.energy ratio speedup

LRE [15]+KT 0.5 26/256 52/384 78/384 3.94× 42.78% 19.73%
0.3 12/256 24/384 33/384 5.33× 46.03% 22.62%

TD [45]+KT 0.5 (8,26)/256 (31,52)/384 (73,78)/384 5.04× 45.30% 22.05%
0.3 (4,12)/256 (13,24)/384 (30,33)/384 6.43× 51.27% 27.22%

Random+KT 0.5 26/256 52/384 78/384 3.94× 43.03% 20.01%
0.3 12/256 24/384 33/384 5.33× 45.89% 22.56%

LRD+KT 0.5 26/256 52/384 78/384 3.94× 41.99% 19.05%
0.3 12/256 24/384 33/384 5.33× 44.48% 21.21%

TABLE 6
Comparison of different training methods on VGG-16 with the

initialization of LRD.
Method PCA energy ratio Top-1 err.

LRD+FT 0.3 34.04%
0.2 36.81%

LRD+DK 0.3 33.47%
0.2 36.76%

LRD+KT 0.3 32.39%
0.2 35.72%

and results in large accuracy loss when compressing the whole
network, as presented in Table 10, Table 11 and Table 12.

Knowledge transfer vs. Fine-tuning and Dark Knowledge:
Knowledge transfer is to transfer both global and local knowledge
from the teacher network to the student network. Table 6 compares
the performances of KT (with both global and local knowledge
from teacher net), FT (without both global and local knowl-
edge) and DK (with only global knowledge). The evaluations are
performed under two smallest PCA energy ratios (i.e., 0.2 and
0.3) on VGG-16. It is clear that integrating local knowledge into
global knowledge consistently boosts the classification accuracy
on VGG-16. Especially, when the PCA energy ratio is set to be
0.3, the compressed model trained by KT outperforms the FT and
DK by a significant margin with 1.65% and 1.08% Top-1 error
(i.e., 32.39% Top-1 error in KT vs. 34.04% Top-1 error in FT and
33.47 Top-1 error in DK), which shows the importance of using
both global and local knowledge.

5.1.2 Results in All Convolutional Layers
We further explore the speedup performance of the proposed
LRDKT in all convolutional layers on both AlexNet and VGG-
16 with comparisons to other CNN acceleration methods, which
are shown in Table 7 and Table 8, respectively.

For AlexNet, we construct two local loss functions after the
2nd and final pooling layers instead of each convolutional layer.
As shown in Table 7, XNOR [19] can speedup the convolutional
layers by a factor of 9.42× on GPU, which is the highest speedup
rate compared to all the baselines. To explain, both the filters and
the input to convolutional layers5 are binary, and therefore XNOR
approximates convolutional operation using XNOR-Bitcounting
operations (without multiplication), which increasingly accelerates
the original network. However, the quantization error in these

5. Since XNOR-Net has not binarized the first convolutional layer and the
last fully-connected layer, their actual speedup is much smaller than 32×
layer-wise speedup on a 32-bit machine.

TABLE 7
Speedup all convolutional layers on AlexNet. SSL* is the previous

published results by Wen et al. [11].

Method PCA CPU GPU Top-1 Top-5
energy ratio speedup speedup err. ↑ err. ↑

LRE [15]

0.7 2.24× 1.78× 1.32% 1.21%
0.5 3.06× 2.13× 2.18% 1.79%
0.3 4.32× 2.46× 7.76% 6.67%
0.2 5.46× 3.56× 9.69% 7.29%

CPD [16] - 3.27× 2.36× 3.47% 1.86%
XNOR [19] - - 9.42× 12.45% 11.06%

SSL [11] - 4.18× 2.78× 3.42% 2.96%
SSL* [11] - 5.06× 3.07× 2.42% -

L1 [12] - 2.89× 2.10× 2.87% 1.67%

LRDKT

0.7 2.24× 1.78× -0.24% -0.53%
0.5 3.06× 2.13× 0.57% 0.31%
0.3 4.32× 2.46× 3.36% 2.62%
0.2 5.46× 3.56× 5.72% 4.76%

binary methods is also very high. For L1 [12], we prune 50%
filters in each convolutinoal layers that are selected by a simple `1
norm, and achieve a factor of 2.89× on CPU with an increase of
2.87% Top-1 classification error6. Comparing to directly removing
the whole filters based on `1 norm [12], SSL [11] is able to learn a
compact structure from the original DNNs during training, which
achieves a higher speedup by 4.18× on CPU, but with an increase
of 3.42% Top-1 classification error based on our implementation.
The reported results of SSL* [11] achieves a better performance
based on multiple physical threads in CPU, specific libraries on
GPU (e.g., cuSPARSE) and speed evaluation on average layer-
wise acceleration. In contrast, our implementation of SSL is based
on a total-layer acceleration evaluated on a single thread in CPU,
and without the tools for supporting sparse matrix calculation on
GPU. To explain such a difference, average layer-wise acceleration
is a relatively unfair speed evaluation that ignores the calculation
time for data memory access across layers. For LRE [15], we set
different PCA energy ratios to obtain different speedup rates and
different classification error increases, which is similar to LRDKT.
As the speedup increases, we achieve consistent increases of the
classification error, which is significant (e.g., from an increase of
2.18% Top-1 error to 7.76% Top-1 error), when the PCA energy
ratio drops from 0.5 to 0.3. We observe the similar result in
LRDKT. Since the selected rank in each layer is greatly reduced
from PCA energy ratio 0.5 to 0.3, the loss of accuracy cannot
be restored effectively. Comparing to LRE [15], our method

6. Li et al. [12] used their own framework to achieve compression, which
may result in a different accuracy due to the different fine-tuning framework
and parameter setting in their paper.
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Fig. 6. Comparison on the compression rate and the increase of Top-5 error for compressing all the fully-connected layers in AlexNet and VGG-16.

TABLE 8
Speedup all convolutional layers on VGG-16. LRE* and L1* are the
results based on the implementation of [25] and [39], respectively.

Method PCA CPU GPU Top-1 Top-5
energy ratio speedup speedup err. ↑ err. ↑

LRE [15] 0.3 3.0× 2.90× 15.14% 10.45%
L1 [12] - 1.99× 2.51× 2.51% 0.96%
TE [38] - 2.38× 2.89× - 3.94%

Thinet-C [13] - 1.99× 2.51× -1.46% -1.09%
LRE* [15] - 3.8× 2.90× - 9.7%

L1* [12] - 2× - - 0.8%
- 4× - - 8.6%

LRDKT
0.7 2.46× 2.33× -0.57% -0.79%
0.5 2.63× 2.64× 1.93% 0.85%
0.3 3.00× 2.90× 7.81% 5.89%

achieves much smaller increase of classification error with the
same speedup rate. Comparing to CPD [16], our method achieves
both smaller increase of classification error and higher speedup.
For example, with the smaller increase of Top-1 error (3.36% in
LRDKT vs. 3.47% in CPD), we attain a CPU speedup of 4.32×
and GPU speedup of 2.46× (for CPD the corresponding CPU
speedup is 3.27× and GPU speedup is 2.36×).

For VGG-16, we construct two local loss functions after
the 2nd and final pooling layers instead of each convolutional
layer using LRDKT. As shown in Table 8, TE [38] uses Taylor
expansion based pruning to iteratively remove a filter that has least
influence on the loss function, and then fine-tunes the rest network.
Although the compressed model of TE achieves higher speedup,
the calculating and re-training procedure can be prohibitively
costly. Comparing to TE, ThiNet-C [13] prunes 50% filters in each
convolutional layer and can improve the classification accuracy,
with a slight reduction of CPU and GPU speedup. As for L1
[12], L1 achieves the increases of 0.8% and 8.6% Top-5 error by a
factor of 2× and 4× CPU speedup based on the implementation of
[39]. Alternatively, we re-implement it and simply prune the same
number of filters in each layer to ThiNet-C for a fair comparison,
which achieves a relatively consistent result by a factor of 2×
CPU speedup. However, L1 still achieves a higher increase of
classification error by a lower or same CPU speedup, comparing
to LRDKT or ThiNet-C. To explain, due to the nonlinear trans-
formation in the network, the filters with a small `1 norm are still

likely to be important, which have large impacts on the final loss
function. Comparing to ThiNet-C, we can achieve a comparable
result by a factor of higher GPU speedup (2.33× vs. 1.99×),
but with a slightly higher increase of classification error (e.g., -
0.79% vs. -1.09% in an increase of Top-5 error). We re-implement
LRE at PCA energy ratio of 0.3, which achieves a slightly higher
increase of Top-5 error than LRE* (i.e., implemented by Zhang et
al. [25]). This inconsistency is mainly caused by the different filter
selection on each layer and fine-tuning framework. Comparing to
both LRE and LRE*, we achieve a lower increase of Top-5 error
(i.e., 10.45% in LRE, 9.7% in LRE* vs. 5.89% in LRDKT) with
the same GPU speedup.

5.1.3 Results in All Fully-connected Layers
In Fig. 6, we also evaluate the performance of LRDKT for
compressing all fully-connected layers in both AlexNet and VGG-
16. Instead of using each local loss function after each fully-
connected layer, we only construct one local loss function after
the second fully-connected layer in AlexNet and VGG-16. For
LRD [29], we use the same rank selection criterion with LRDKT.
For BIN [22], which has no parameter to tune, the compression
rate is fixed as 32. For the parameter setting of PQ [22] and Q-
CNN [37] in AlexNet, we vary the segment dimension and the
number of sub-codewords in each subspace among (2,16), (3,16),
(3,32) and (4,32).

From Fig. 6(a), we discover that LRDKT significantly im-
proves the classification accuracy compared to LRD and AS [25],
especially in the case of high compression rate. Note that PQ
and Q-CNN have achieved better performance comparing to that
of LRD, AS and LRDKT. However, it is hard to achieve high
compression rate, due to the limited codebook size. In contrast,
LRDKT achieves the best trade-off between compression rate and
classification accuracy by a factor of 27.46×, with an increase of
1.69% Top-5 classification errors and a factor of 8.60× with a
negligible loss in classification accuracy. The simplest BIN works
well when we fix the compression rate to 32. It is noted that,
the scheme of pruning nodes [26] also works well when the
compression rate is set to be less than 10×.

For PQ in VGG-16, we fix the number of sub-codewords to
32 in each subspace and vary the segment dimension s between
3 and 4. From Fig. 6(b), a consistent trend is also observed in
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TABLE 9
Comparison of FitNets and LRDKT for compressing VGG-16.

FitNet:hint-num/num− num− num means training FitNet by adding
one hint loss or three hint losses at the corresponding num-th or

num− num− num-th layer with initialization of LRD.

Method PCA Top-1 err. Top-5 err.energy ratio

FitNet:hint-4 0.7 45.57% 21.63%
0.5 54.29% 27.64%

FitNet:hint-7 0.7 31.66% 11.08%
0.5 38.88% 15.81%

FitNet:hint-10 0.7 32.03% 11.16%
0.5 39.78% 16.14%

FitNet:hint-13 0.7 32.33% 11.42%
0.5 42.66% 18.43%

FitNet:hint-4+7+10 0.7 31.53% 11.03%
0.5 37.86% 15.28%

LRDKT 0.7 31.16% 10.84%
0.5 35.77% 13.90%

AlexNet. To sum up, LRDKT achieves the best trade-off between
compression rate and Top-5 classification error by a factor of
40.11×, with an increase of 4.13% Top-5 classification error,
as well as a factor of 15.28× with an increase of 0.18% Top-5
classification error.

5.1.4 Results in the Whole Network
We further evaluate the performance of the proposed LRDKT
scheme in the whole network on AlexNet, VGG-16 and ResNet-
50. The proposed LRDKT scheme is compared with state-of-the-
art CNN compression methods (e.g., FitNets [32], XNOR [19],
L1 [12] and ThiNet [13]), as well as our 3 alternative schemes
(i.e., LRDFT, LRDDK, and RKT). Instead of using each local loss
function after each layer, we construct two local loss functions
after the final pooling layer and the 2nd fully-connected layer for
AlexNet and VGG-16, as well as building two local loss functions
after the 1st pooling layer and a specific residual block output (i.e.,
res4f relu7) for ResNet-50. As we could not find applications of
FitNets on ImageNet in the literature, we re-implement FitNets to
compress AlexNet and VGG-16 on ImageNet. For the first stage
of FitNets, hint-based training is implemented during 30 epochs
and 15 epochs on AlexNet and VGG-16, respectively. For a fair
comparison, we choose the decomposed low-rank networks as our
student networks, which are same to LRDKT. Furthermore, We
choose the middle layer of student network and teacher network
as the hint and guided layer. The learning rate stated at 0.001
initially, which was dropped by a constant factor of 10 after 10
epochs and 5 epochs on AlexNet and VGG-16, respectively. For
the second stage of FitNets, we use the same training setting as
LRDKT, except that τ is set to 5.

Fig. 7 represents the results of FitNets, LRDKT and three
alternative schemes for compressing AlexNet. The results reveal
four key observations: (1) The hint training losses of different
layers in different versions of FitNet have large impacts on the
performance of student network. For the design of using only
one hint training loss, the loss applied to the 5th layer achieves
the lowest Top-1 error by 44.24% and 42.13% at PCA energy
ratio of 0.5 and 0.7, respectively. (2) By deploying over an
LRD based initialization, we test different versions of FitNet by
adding three losses on three intermediate layers, one of which

7. The name of layer is defined by Kaiming He on Caffe:
https://github.com/KaimingHe/deep-residual-networks.
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Fig. 7. Comparison of FitNets, LRDKT and three alternative scheme
for compressing AlexNet. FitNet:hint-num/num− num− num means
training FitNet by adding one hint loss or three hint losses at the
corresponding num-th or num− num− num-th layer with initialization
of LRD. R-FitNet is training FitNet from scratch.

performs at the 5th layer. We can see that the one-loss FitNet
at the 5th layer outperforms the three-loss FitNet. (3) We then
train FitNet from scratch (i.e., R-FitNet) by adding only one hint
training loss. However, it simply cannot converge. To address this
problem, we add three losses on the 2nd, 5th and 7th layers,
which achieve 57.48% and 50.51% Top-1 error at PCA energy
ratio of 0.5 and 0.7, respectively. However, the performance of
R-FitNet is far inferior to LRD+FitNet with the same number
of losses. To explain, initial weights provided by LRD enable
the low-rank network to obtain a better local minima during the
training. Interestingly, comparing to R-FitNet, the proposed RKT
achieves lower Top-1 error, which is due to the effectiveness of KT
for transferring both global and local knowledge from the teacher
network. (4) The proposed LRDKT scheme is the most effective
scheme to compress AlexNet among LRDKT, FitNets and their
alternative schemes. As shown in Fig. 7, comparing to FitNet with
one-loss at the 5th layer, LRDKT achieves better performance
both at PCA energy ratio of 0.5 and 0.7 (e.g., 40.89% Top-1 error
in LRDKT vs. 42.13% Top-1 error in FitNet at PCA energy ratio
of 0.7), respectively.

Table. 9 represents the results of FitNets and LRDKT for com-
pressing VGG-16. We observe that one hint loss applied to the 7th
layer achieves the lowest Top-1 error and Top-5 error among all
designs of one loss. Different from compressing AlexNet, FitNet
with three losses on three intermediate layers (e.g., FitNet:hint-
4+7+10) performs better than the one-loss FitNets. For example,
comparing to FitNet:hint-7, FitNet:hint-4+7+10 achieves a lower
Top-1 error (37.86% vs. 38.88%) at the PCA energy ratio of
0.5. Finally, equipped with a simpler local loss by an end-to-
end training, LRDKT significantly reduces the classification error
of low-rank network, and performs much better than FitNets
along with the complex regressors in the two-stage training. For
example, comparing to the best FitNet (i.e., FitNet:hint-4+7+10)
amongst its variants, LRDKT achieves lower Top-1 error at PCA
energy ratio of 0.5 and 0.7 (i.e., 35.77% and 31.16% vs. 37.86%
and 31.53%), respectively.

Table 10, Table 11 and Table 12 show the performances com-
pared against state-of-the-art methods on AlexNet, VGG-16 and
ResNet-50, respectively. For Alexnet, XNOR [19] still achieves
the highest speedup rate by a factor of 8.00× GPU speedup,
compared to all the baselines, as shown in Table 10. However,
large quantization error with binary weights and activations leads
to the high increase of classification error, e.g., an increase of
13.56% Top-1 classification error. By pruning the 50% filters in
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TABLE 10
Comparison of different methods on compressing the whole AlexNet.

“Rank” refers to PCA energy ratio.

Method Rank #Param. CPU GPU Top-1 Top-5
speedup speedup Err. ↑ Err. ↑

XNOR [19] - - - 8.0× 13.56% 11.69%
L1 [12] - 16.3M 2.51× 2.00× 3.75% 2.69%

LRDFT
0.7 18.7M 2.04× 1.8× -0.31% -0.46%
0.5 6.4M 2.93× 2.12× 1.94% 1.50%
0.3 2.3M 4.22× 2.4× 13.70% 10.21%

LRDDK
0.7 48.0M 2.04× 1.8× -0.34% -0.50%
0.5 6.4M 2.93× 2.12× 1.47% 1.16%
0.3 2.3M 4.22× 2.4× 11.45% 9.17%

RKT
0.7 18.7M 2.04× 1.8× 1.22% 0.75%
0.5 6.4M 2.93× 2.12× 9.54% 7.71%
0.3 2.3M 4.22× 2.4× 17.95% 15.48%

LRDKT
0.7 18.7M 2.04× 1.8× -1.38% -0.89%
0.5 6.4M 2.93× 2.12× 0.85% 0.56%
0.3 2.3M 4.22× 2.4× 8.69% 6.53%

LRDKT-GAP 0.7 1.1M 2.22× 2.0× 3.01% 2.77%

each convolutional layer and 50% nodes in each fully-connected
layer, L1 [12] only achieves 3.77× compression (i.e., 16.3M
number of parameters vs. 61.47M in the original AlexNet), 2.51×
CPU speedup and 2×GPU speedup, but with an increase of 3.75%
Top-1 error. Comparing to L1, LRDFT employs the proposed
closed-form low-rank decomposition to initialize the network,
followed by a simple fine-tuning, which achieves better perfor-
mance with only 1.94% Top-1 error increase with a factor of 9.6×
compression, 2.93× CPU speedup and 2.12×GPU speedup. With
the same closed-form low-rank decomposition, LRDKT achieves
the lowest increase of classification error, comparing to LRDFT
and LRDDK. For example, at PCA energy ratio of 0.5, LRDKT
achieves an increase of 0.85% Top-1 error, while an increase
of 1.94% Top-1 error and an increase of 1.47% Top-1 error in
LRDFT and LRDDK, respectively. Note that RKT obtains a large
increase of classification error, which is totally different from
the result to compress the partial layers in Table. 5. To explain,
random initialization of the whole layers leads to large instability
to train a deep network. Even with local supervised information
using KT, it is not robust to train the network to obtain a bad
local minimum. To further compress the network, the traditional
fully-connected layers are removed, and are replaced with a GAP
(global average pooling [3]) layer. LRDKT-GAP achieves 55.88×
compression (i.e., 1.1M parameters), 2.22× CPU speedup and
2.0× GPU speedup, with an increase of 3.01% Top-1 error.

For VGG-16, L1 [12] and ThiNet [13] use the same GAP layer
to remove the fully-connected layers to obtain a high compression
rate. As shown in Table 11, comparing to L1 with an increase of
5.86% Top-1 error, ThiNet-GAP achieves better performance with
an increase of 1.00% Top-1 error (by pruning the same 50% filters
in each convolutional layer) by a factor of 16.67× (i.e., 8.3M
parameters), and 2.53× CPU speedup and 2.03× GPU speedup.
Although LRDKT and its variants LRDFT and LRDDK achieve
lower Top-1 error than ThiNet-GAP at PCA energy ratio of 0.7,
they require much more storage (i.e., 30.5M parameters). By
employing the same GAP layer, we further compress the network
by a factor of 41.92× compression (i.e., 3.3M parameters) and
2.46× CPU speedup in LRDKT-GAP, but with only 0.18% Top-
1 error increase, which is much better than ThiNet-GAP. Note
that ThiNet-Tiny prunes 75% filters in each convolutional layer,
and accelerates CPU and GPU inference greatly, i.e., 3.17×
CPU speedup and 4.35× GPU speedup. However, ThiNet-Tiny
significantly reduces the discriminability of the pruned network,

TABLE 11
Comparison of different methods on compressing the whole VGG-16.

“Rank” refers to PCA energy ratio.

Method Rank #Param. CPU GPU Top-1 Top-5
speedup speedup Err. ↑ Err. ↑

L1 [12] - 8.3M 2.03× 2.53× 5.86% 4.29%
ThiNet-GAP [13] - 8.3M 2.03× 2.53× 1.00% 0.52%
ThiNet-Tiny [13] - 1.3M 3.17× 4.35× 9.00% 6.47%

LRDFT
0.7 30.5M 2.43× 2.27× -0.14% -0.49%
0.5 9.5M 2.61× 2.55× 5.52% 3.38%
0.3 3.7M 3.00× 2.80× 20.09% 14.24%

LRDDK
0.7 30.5M 2.43× 2.27× -0.34% -0.55%
0.5 9.5M 2.61× 2.55× 5.28% 2.95%
0.3 3.7M 3.00× 2.80× 18.03% 12.18%

RKT
0.7 30.5M 2.43× 2.27× 5.36% 2.04%
0.5 9.5M 2.61× 2.55× 12.02% 8.43%
0.3 3.7M 3.00× 2.80× 21.97% 16.86%

LRDKT
0.7 30.5M 2.43× 2.27× -0.50% -0.71%
0.5 9.5M 2.61× 2.55× 4.11% 2.35%
0.3 3.7M 3.00× 2.80× 16.81% 10.89%

LRDKT-GAP 0.7 3.3M 2.46× 2.33× 0.18% -0.12%

TABLE 12
Comparison of different methods on compressing ResNet-50. “Rank”

refers to PCA energy ratio.

Method Rank #Param. CPU GPU Top-1 Top-5
speedup speedup Err. ↑ Err. ↑

ThiNet [13]
- 16.94M 1.58× 1.42× 0.84% 0.47%
- 12.38M 1.86× 1.69× 1.87% 1.12%
- 8.66M 2.21× 2.03× 4.46% 2.84%

LRDFT 0.7 9.8M 2.02× 1.44× 2.36% 1.84%
0.5 6.3M 2.26× 1.61× 8.52% 4.94%

LRDDK 0.7 9.8M 2.02× 1.44× 1.93% 1.31%
0.5 6.3M 2.26× 1.61× 7.33% 4.76%

RKT 0.7 9.8M 2.02× 1.44× 5.33% 3.69%
0.5 6.3M 2.26× 1.61× 14.01% 11.55%

LRDKT 0.7 9.8M 2.02× 1.44× 0.72% 0.38%
0.5 6.3M 2.26× 1.61× 6.29% 3.74%

which is not suitable for lossless compression (i.e., less than 1%
increase of Top-1 error). In addition, comparing to three alternative
schemes (i.e., LRDFT, LRDDK and RKT), LRDKT still achieves
the lowest classification error at the same PCA energy ratio.

For ResNet-50, each residual block contains three convolu-
tional layers and shortcut connections. To perform the sum oper-
ator, the number of output feature maps in the last convolutional
layer needs to be consistent with that of the projection shortcut
layer. To match the dimension of the last convolutional layer
and shortcut layer in each residual block, ThiNet only prunes
the first two layers of each block with 3 different compression
rates (i.e., 70%, 50% and 30% filter preservation of the first two
convolutional layers in each residual block), leaving the last output
and projection shortcuts unchanged, which results in a limited
compression. Unlike ThiNet, we compress the entire layers, which
leads to higher compression rate. For example, we achieve a
4.00× compression (i.e., 6.3M parameters vs. 25.23M parameters
in the original ResNet-50) at PCA energy ratio of 0.5, with an
increase of 6.29% Top-1 error, which might affect the practical
usage in high-precision applications. To achieve acceptable or no
accuracy loss (e.g., less than an increase of 1% Top-1 error), we
reduce the PCA energy ratio to 0.7, and achieve much better
performance comparing to ThiNet. For example, comparing to
ThiNet, with a slight lower increase of Top-1 error (0.72% vs.
0.84%), LRDKT attains higher compression rate of 2.57× (9.8M
parameters) vs. 1.49× (16.94M parameters) and CPU speedup of
2.02× vs. 1.58×.

Improved Gradient Strength in Knowledge Transfer. We pro-
vide more insights into KT to support the reason why KT can
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Fig. 8. The magnitude of mean absolute gradient of the first convolutional layer, and the trends of testing Top-1 error in the decomposed ResNet-50
at PCA energy ratio of 0.5.

TABLE 13
Comparison of different compressed model for fine-grained

classification on CUB-200.

Method PCA energy ratio #param. FLOPs Top-1 err.
VGG-16 - 135.07M 15.48B 27.60%

LRDFT 0.5 9.5M 1.31B 30.77%
0.3 3.7M 0.64B 41.53%

LRDDK 0.5 9.5M 1.31B 30.07%
0.3 3.7M 0.64B 39.11%

LRDKT 0.5 9.5M 1.31B 28.50%
0.3 3.7M 0.64B 36.82%

effectively address the vanishing gradients in the back propa-
gation. Since the number of layers is deepened by low-rank
decomposition, the local reconstruction error from hidden layers
provides sufficient gradient information to compensate the prob-
lem that the global gradient doesn’t flow from the top layer to
the bottom layer. As a result, we expect to use KT to reduce
the vanishing gradient in the back propagation. To quantitatively
validate this effect, we compare the magnitude of gradients to the
first convolutional layer in the decomposed ResNet-50 with fine-
tuning/dark knowledge/knowledge transfer on the ImageNet 2012.

Fig. 8 shows the mean absolute gradients of the first con-
volutional layer and the trends of testing Top-1 error in the
decomposed ResNet-50 at PCA energy ratio of 0.5. The gradients
in KT are from two parts, i.e., global loss and local loss. First,
there are several significant drops in terms of the mean gradient
magnitude by using FT, DK and KT, which are due to the
scheduled reductions in learning rate by a factor of 10. At the
beginning of training, the gradients are almost the same in FT,
DK and KT. With the increase of iteration number, the gradients
in FT and DK are significantly reduced with a large magnitude
of gradients in DK, especially after 800K iterations. To explain,
after 800K iterations, the gradients from the global loss function
gradually diminish. Instead, the local loss provides relatively more
gradients to properly train the network. Second, the improved
gradient strength helps LRDKT to effectively train the student
network and achieves much lower classification error, which is
shown in the right panel of Fig. 8. This quantitative results support
our claim that KT significantly reduces the problem of vanishing
gradient, which enables the decomposed network to be trained
more effectively.

5.2 Applications
LRDKT has demonstrated its effectiveness to compress and accel-
erate CNNs on MNIST and ImageNet ILSVRC 2012 classification
tasks. We further evaluate the generalization ability of the com-
pressed model for transfer learning, including domain adaptation
and object detection. We also apply the compressed model to

TABLE 14
The speedup for Faster R-CNN detection on different devices.

Device PCA energy ratio Speedup mAP ∆ mAP

Titan X GPU
- Baseline 68.7 -

0.7 3.10 68.5 0.2
0.5 3.44 66.9 1.8

Jetson TX2
- Baseline 68.7 -

0.7 2.51 68.5 0.2
0.5 3.05 66.8 1.9

different embedded devices. For better discussion, we take the
VGG-16 model as our baseline model.

5.2.1 Domain adaptation
We evaluate the ability of domain adaptation for the compressed
VGG-16 at two PCA energy ratios (i.e., 0.3 and 0.5). To better
evaluate this ability, we select a public domain-specific dataset
CUB-200 [62] for fine-grained classification. CUB-200 contains
11,788 images of 200 different bird species, which contains
5,994 training images and 5,794 testing images. To make a fair
comparison, we fine-tune the LRDKT-based compressed models
with the same hyper-parameters and epochs. The results of fine-
grained classification are shown in Table 13.

The pre-trained VGG-16 is fine-tuned on the CUB-200 dataset,
which achieves the lowest error (i.e., 27.60% Top-1 error) but with
the huge memory cost and slow inference speed (i.e., 135.07M
parameters and 15.48B FLOPs). We then fine-tune the compressed
networks, which are first compressed in the ImageNet domain by
LRDFT, LRDDK and LRDKT, respectively. As shown in Table
13, the model compressed by LRDKT achieves the best perfor-
mance by an increase of only 0.9% Top-1 error (i.e., 28.50% Top-1
error), with only 9.5M parameters and 1.31B FLOPs, i.e., 14.22×
lower memory cost and theoretical 11.82× faster inference speed
than VGG-16.

5.2.2 Acceleration for Detection
We also evaluate the ability of transfer learning for the compressed
VGG-16 models at two PCA energy ratios (i.e., 0.5 and 0.7), which
is deployed over Faster R-CNN [9] for object detections. We select
the PASCAL VOC 2007 object detection benchmark to evaluate
the performance of our models by mean Average Precision (mAP),
which contains about 5K training/validation images and 5K testing
images. In our experiments, we first compress the VGG-16 by
LRDKT on the ImageNet, and then use the compressed models as
the pre-trained models for Faster R-CNN with its default training
settings.

The actual running time of Faster R-CNN is 189ms/image
on Titan X GPU and 1,034ms/image on Jetson TX2 embedded
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TABLE 15
Inference time on mobile device by testing on each image with a size of
240× 240 by CPU on Intel Xeon E5-2620 vs. iphone 6s A9. LRDKT-a
refers to the compressed model by LRDKT at PCA energy ratio of a.

Model FLOPs PC-time ARM-time Top-1 err.
VGG-16 15.48B 495ms 3,186ms 31.66%

LRDKT-0.7 2.43B 172ms 936ms 31.16%
LRDKT-0.5 1.31B 134ms 735ms 35.77%
LRDKT-0.3 0.64B 110ms 654ms 48.47%

device. Comparing to VGG-16, we get an actual detection time of
55ms with 3.44× acceleration and 3.05ms with 3.5× acceleration
on Titan X and Jetson TX2, respectively. As shown in Table 14,
comparing to VGG-16, we achieve 0.2% mAP drops with a factor
of 3.10× speedup on Titan X, and 0.2% mAP drops with a factor
of 2.51× speedup on Jetson TX2, which is still very practical for
real-world application.

5.2.3 Speedup Evaluation on ARM Based Mobile Device
We further evaluate the actual speedup of the compressed VGG-
16 using LRDKT on iphone 6s with TensorFlow Lite. As shown
in Table 15, comparing to PC device on Intel Xeon 2620, the
original VGG-16 on iphone 6s A9 achieves much slower running
time for inference (3,186ms vs. 495ms). However, using the same
compressed model by LRDKT, iphone 6s A9 achieves much more
speed improvement than PC device on Intel Xeon 2620. For
example, LRDKT-0.7 model evaluated on iphone 6s A9 achieves
3.40× (936ms) speedup, which is higher on PC Intel Xeon 2620
(i.e., 2.88× speedup with 172ms inference time), while with 0.5%
decrease in the Top-1 error. Therefore, CNN compression (e.g.,
LRDKT) can obtain higher speedup rate to make it possible for
real-time applications of the deep models, when directly being
applied to the ARM based mobile device.

6 CONCLUSION

In this paper, we present a unified framework towards holistic
and explicit compression of CNNs, which jointly compresses both
the convolutional and fully-connected layers to simultaneously
reduce time and memory. First, a low-rank decomposition (LRD)
based inter-layer compression is proposed to remove redundancies
across both convolution kernels and fully-connected matrices,
with a novel closed-form solution to significantly surpass the
efficiency of the existing iterative methods, Second, to deal with
the performance degradation by compression, a novel knowledge
transfer (KT) method is proposed to explicitly align output and
intermediate responses from the teacher network to its student
network, which involves operating nonlinear activations within
and across all layers. The proposed KT minimizes both “local”
and “global” reconstruction errors in a unified way that makes the
approximated network much easier to converge and implement.
We have demonstrated that the proposed LRDKT scheme can
lead to state-of-the-art compression and speedup rates, whilst
maintaining very comparable classification accuracy on LeNet
for MNIST classification, as well as on AlexNet, VGG-16 and
ResNet-50 for ImageNet ILSVRC 2012 classification.
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