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Abstract— Using mobile Light Detection and Ranging point1

clouds to accomplish road scene labeling tasks shows promise2

for a variety of applications. Most existing methods for semantic3

labeling of point clouds require a huge number of fully supervised4

point cloud scenes, where each point needs to be manually5

annotated with a specific category. Manually annotating each6

point in point cloud scenes is labor intensive and hinders7

practical usage of those methods. To alleviate such a huge burden8

of manual annotation, in this paper, we introduce an active9

learning method that avoids annotating the whole point cloud10

scenes by iteratively annotating a small portion of unlabeled11

supervoxels and creating a minimal manually annotated training12

set. In order to avoid the biased sampling existing in traditional13

active learning methods, a neighbor-consistency prior is exploited14

to select the potentially misclassified samples into the training set15

to improve the accuracy of the statistical model. Furthermore,16

lots of methods only consider short-range contextual information17

to conduct semantic labeling tasks, but ignore the long-range18

contexts among local variables. In this paper, we use a higher19

order Markov random field model to take into account more20

contexts for refining the labeling results, despite of lacking21

fully supervised scenes. Evaluations on three data sets show22

that our proposed framework achieves a high accuracy in23

labeling point clouds although only a small portion of labels is24

provided. Moreover, comparative experiments demonstrate that25

our proposed framework is superior to traditional sampling26

methods and exhibits comparable performance to those fully27

supervised models.28

Index Terms— Active learning, conditional random field29

(CRF), higher order Markov random field (MRF), mobile30
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Light Detection and Ranging (LiDAR) point clouds, semantic 31

labeling. 32

I. INTRODUCTION 33

IN RECENT years, urban traffic congestions and traffic 34

accidents have increasingly constrained a modern lifestyle 35

and sustainable urban development [1]. To effectively collect 36

road information and gather traffic information for solving 37

those urban transport issues, a large number of sensors, such as 38

infrared sensors, laser sensors, and cameras, are used [2]–[4]. 39

A lot of intelligent applications, including driver assistance 40

and safety warning systems, and autonomous driving, benefit 41

from understanding contextual information about a road and 42

its periphery (e.g., the locations of light poles, trees, and 43

vehicles). Semantic labeling of road scenes, automatically 44

assigning a category label to each basic element (e.g., pixel 45

or point) in road scenes, provides a promising and essential 46

approach to obtain the knowledge about road environments. 47

Over the past few decades, studies on labeling road scenes 48

focused mainly on optical images and videos [5], [6]. The 49

use of optical images and videos to conduct semantic labeling 50

of road scenes is limited, due to illumination conditions, 51

occlusions, distortions, incompleteness, viewpoints, and lack 52

of geospatial information. 53

With fast-developing Light Detection and Ranging (LiDAR) 54

technologies, large volumes of highly dense and accurate 55

point clouds, which are easily and rapidly acquired by mobile 56

LiDAR systems, provide a new solution to represent road- 57

related information. The collected point clouds exhibit advan- 58

tages over optical images and videos captured by traditional 59

optical imaging-based systems. By integrating laser scanners 60

with position and orientation systems, mobile LiDAR systems 61

rapidly capture undistorted 3-D point clouds with real-world 62

coordinates of road scenes. Such 3-D point clouds assist 63

in accurate object localization in road scenes. In addition, 64

compared with optical imaging-based systems, mobile LiDAR 65

systems are immune to the impact of illumination conditions. 66

Moreover, with the complementary onboard high-resolution 67

digital cameras, the colorized point clouds provide not only 68

geometric but also texture information essential to image- 69

based semantic labeling. Therefore, in this paper, we focus 70

on semantic labeling of road scenes by using mobile LiDAR 71

point clouds. 72

To train a statistical model for semantic labeling of 73

point clouds, most existing methods [7]–[11] require a huge 74
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Fig. 1. Example of training data in traditional methods and our proposed
method on semantic labeling of point clouds. (a) Unlabeled point cloud scene.
(b) Fully supervised training data required by traditional labeling methods.
(c) Training data generated by the active learning method. Here, gray repre-
sents unlabeled points, and other colors represent manually labeled points.

number of fully supervised complete scenes, in which each75

3-D point is manually annotated with a specific category76

[see Fig. 1(b)]. However, such manual annotations for point77

clouds are difficult to obtain in terms of cost and time. In addi-78

tion, it seems impossible to accomplish accurate annotations79

for each point from a complete scene in some scenarios,80

e.g., classifying points of overlapping trees and light pole81

manually [see Fig. 1(a)]. In fact, only a small portion of82

labeled points from complete scenes determines the parameters83

of a statistical model. In the machine learning literature, active84

learning is dedicated to create a minimal training data set from85

a huge pool of unlabeled data by iteratively selecting valuable86

samples to query their category labels [12]–[14]. Thus, in this87

paper, to reduce the cost of manually annotating training data,88

instead of manually annotating whole point cloud scenes,89

we present semantic labeling of point clouds by actively and90

automatically selecting a small portion of unlabeled points for91

manual annotation [see Fig. 1(c)]. Based on those manually92

annotated points, a statistical model for semantic labeling of93

point clouds is learned.94

Recently, probabilistic graphical models, e.g., Markov95

random field (MRF) [15] and conditional random96

field (CRF) [16], were commonly explored to account97

for contextual information in semantic labeling of point98

clouds [8]. Active learning requires frequently retraining a99

statistical model. Therefore, in our framework, at the model100

learning stage, due to computational concerns during learning101

and inference, we choose pairwise CRFs, where unary and102

pairwise potentials carry category probabilities and contextual103

information between neighboring variables, respectively.104

A lot of work demonstrates that a higher order graphical105

model, which models long-range interactions between vari-106

ables, provides more knowledge about the context of a scene107

and improves the semantic labeling results [10], [11], [18].108

Only modeling local interactions among variables by pairwise109

CRFs is insufficient to encode long-range contextual infor-110

mation among variables and reduces the labeling accuracy.111

Therefore, in this paper, we propose to use a higher order MRF112

to refine the labeling results obtained by the pairwise CRFs.113

However, our active learning method only provides training114

samples as a set of separated and annotated points rather than115

fully supervised scenes. Because of lacking fully supervised116

scenes at training stages, it is challenging to adapt traditional117

higher order MRFs into label refinement directly. Therefore,118

in labeling framework, a higher order term not depending on119

fully supervised training scenes is needed. Inspired by the120

observation of describing a region with as few categories as121

necessary, we propose a higher order term named regional122

label cost term to reduce unnecessary categories by imposing 123

costs on the used categories in labeling a region. The proposed 124

regional label cost term can perform well despite lack of fully 125

supervised training scenes and is suitable to be applied in 126

refining the labeling results inferred by pairwise CRFs learned 127

in active learning procedure. 128

In this paper, we propose a new framework using active 129

learning and higher order MRF for semantic labeling of mobile 130

LiDAR point clouds. Active learning to iteratively select a AQ:2131

portion of unlabeled samples to be manually annotated and 132

create a minimal training set. Once the creation of training set 133

is finished, a pairwise CRF is learned to classify the unlabeled 134

samples in the road scene of point clouds. To improve the 135

labeling results obtained by a pairwise CRF, we present a 136

higher order MRF, which applies regional label cost terms to 137

explore long-range interactions among variables. Our proposed 138

framework is validated on three data sets of mobile LiDAR 139

point clouds, and the evaluations exhibit the capability of our 140

proposed framework on semantic labeling of point clouds. 141

The main innovative contributions of this paper to semantic 142

labeling of mobile LiDAR point clouds can be summarized as 143

follows. 144

1) To avoid annotating the whole training scenes manu- 145

ally and reduce the requirements of manually anno- 146

tated training samples for labeling point cloud scenes, 147

we introduce active learning to select as few points as 148

possible for manual annotation and to form a minimal 149

training set. To conduct unbiased sampling during active 150

learning procedure, we propose to exploit the neighbor- 151

consistency prior to select the potentially inaccurately 152

labeled samples to be annotated manually. 153

2) To consider more contextual information into semantic 154

labeling, we propose a higher order MRF method to 155

refine the labeling results obtained by pairwise CRF. 156

The proposed higher order MRF method, which does 157

not require fully supervised training scenes, improves 158

the labeling results by reducing unnecessary categories 159

used in describing a region. 160

The remainder of this paper is organized as follows. 161

Section II introduces some related work. Section III presents 162

the components of our proposed framework. Section IV reports 163

extensive experimental results and evaluates the performance 164

of the proposed framework. Finally, Section V gives the 165

concluding remarks and hints at plausible future research. 166

II. RELATED WORK 167

Most works on semantic labeling of point cloud road scenes 168

focused mainly on exploiting probabilistic graphical models. 169

The pairwise CRF was used to extensively ensure category 170

label consistency between neighboring points [8], [19]–[21]. 171

In [8], a maximum-margin framework is proposed to dis- 172

criminatively train a pairwise associative Markov networks to 173

annotate the objects of interest. In [20], to reduce redundancy 174

of labeling every individual point, adaptive support regions 175

(supervoxels) are treated as basic units to model a multiscale 176

pairwise CRF. In [21], a patch-based framework was proposed 177

to label road scenes by exploiting object intrinsic properties 178

to transfer category labels from labeled scenes to unlabeled 179



IEE
E P

ro
of

LUO et al.: SEMANTIC LABELING OF MOBILE LIDAR POINT CLOUDS 3

Fig. 2. Overview of our proposed framework for semantic labeling of point clouds. (Different colors represent different categories.)

ones and applying a pairwise CRF model to consider contexts180

for refining the transferred labels. In [22], random forest (RF)181

classifiers were learned on the training data automatically182

generated by exploiting the prior knowledge among classes,183

and the labeling results were further refined by pairwise184

CRF. In [23], the weak priors in the street environment185

were used to conduct automatic generation of training data.186

Based on those training data, a pairwise CRF-based semantic187

labeling method was proposed to segment images and scanned188

point cloud simultaneously. The success achieved by pair-189

wise CRFs notwithstanding, long-range interaction between190

variables, essential to exploit more contextual information in191

complex scenarios, is ignored. The Potts model (a higher192

order graphical model) [24] was used to keep category labels193

homogeneous in a predefined clique [11]. To allow a por-194

tion of inhomogeneous labels in a clique, a robust Potts195

model [25] was introduced and integrated into the Max-Margin196

Markov Network (M3N) [10]. In [18], a set of new higher197

order pattern-based potentials were designed to encode the198

geometric relationships between different categories within199

the cliques, rather than simply encourage the nodes in a200

clique to have consistent labels. Considering a large amount201

of annotated data required in the past studies, our proposed202

framework introduces active learning to reduce the large203

amount of demand on annotated data for the labeling tasks.204

Due to the complexity of the probabilistic graphical models,205

in the semantic labeling area, there were only a few stud-206

ies [26], [27] on the combination of probabilistic graphical207

models and active learning strategies. In [26], an expect208

change strategy was used to find the informative samples,209

which induce largest expected changes in overall CRF state210

after revealing their true labels. In margin-based sampling,211

a loopy belief propagation algorithm [28] was used to exploit212

both spectral and spatial information to actively select infor- 213

mative samples, where conditional margin of each sample 214

was estimated in a discriminative random field model [27]. 215

Li et al. [27] believe that integration of probabilistic graphical 216

models and active learning assists in providing both local 217

and contextual information for selecting informative samples. 218

In our proposed framework, we not only consider the neigh- 219

boring contexts information to select the most informative 220

samples by using a pairwise CRF model, but also try to 221

keep the diversity of the selected samples to some extent by 222

adding the potentially misclassified samples into the manually 223

annotated training set. 224

III. PROPOSED FRAMEWORK 225

Section III is organized as follows. An overview of our 226

proposed framework for semantic labeling of mobile LiDAR 227

point clouds is presented in Section III-A. Then, the super- 228

voxel segmentation is described in Section III-B. The active 229

learning is given in Section III-C. Finally, category label 230

refinement with incorporated regional label costs is explained 231

in Section III-D. 232

A. Overview of the Proposed Framework 233

Our proposed framework is divided into two stages: 234

model training stage and label inferring stage. As shown 235

in Fig. 2, at the model training stage, unlabeled training point 236

cloud scenes are first oversegmented into spatially consistent 237

supervoxels through the voxel-cloud connectivity segmen- 238

tation (VCCS) algorithm [29]. After supervoxel extraction, 239

all the unlabeled supervoxels form an unlabeled supervoxels 240

pool. Then, in the pool, active learning is applied to select 241

valuable unlabeled supervoxels to query their category labels. 242
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In addition, those supervoxels, with queried labels, are formed243

as a training set and used to learn a pairwise CRF model.244

At the label inferring stage, initial labeling of unlabeled245

point cloud scenes is first inferred by applying a trained pair-246

wise CRF. Because long-range interactions in a region cannot247

be well modeled by using only unary and pairwise potentials248

in a pairwise CRF model, some mislabeled supervoxels remain249

in the initial labeling results (see Fig. 2). To refine the250

initial labeling results, we exploit a higher order MRF model251

to describe long-range interactions between supervoxels for252

category label refinement.253

B. Supervoxel Segmentation254

To reduce the huge computational burden brought by the255

large amount of points in our data set, supervoxels, instead256

of the original points, are treated as basic operational units in257

the proposed framework. The VCCS algorithm is an effective258

supervoxel generation algorithm [29], where points within259

each supervoxel have consistent 3-D geometry and appearance.260

Moreover, supervoxels obtained by the VCCS algorithm can261

effectively preserve boundary information according to the262

constraint that each supervoxel cannot flow across the object263

boundaries. Therefore, it is suitable to directly handle the264

supervoxel in point cloud labeling tasks. In the proposed265

framework, given a point cloud scene, we obtain a set of super-266

voxels using the VCCS algorithm. There are two important267

parameters: voxel resolution and seed resolution. The voxel268

resolution is used to define the operable unit of the voxel-cloud269

space, whereas the seed resolution determines the seed points270

for constructing initial supervoxels. In this paper, the voxel271

resolution and seed resolution are set at 0.05 and 0.1 m,272

respectively.273

To describe each supervoxel, we use the following features:274

1) Fast Point Feature Histograms (FPFHs) descriptor [30],275

a rotation-invariant feature, which describes the local276

surface geometry of points in a supervoxel;277

2) spectral features [11] that capture scatter, linearity, and278

planarity of point distributions in a supervoxel;279

3) deviation of the normal vector direction of a supervoxel280

from the z-axis, which assists in distinguishing between281

the horizontal and vertical planar surfaces [11];282

4) height of the centroid point in a supervoxel;283

5) mean RGB color values in a supervoxel.284

C. Active Learning285

To reduce the manual annotation of training samples, given286

a pool of unlabeled supervoxels S, active learning iteratively287

selects a set of unlabeled supervoxels to be manually anno-288

tated. The manually annotated supervoxel set, DL ⊆ S,289

is treated as a training set to train a statistical model w.290

Algorithm 1 gives the main procedure of the active learning291

algorithm. In Algorithm 1, line 3 trains a statistical model292

based on current annotated samples DL . Here, in order to293

consider contextual information between supervoxels, our pro-294

posed framework selects pairwise CRF as a statistical model.295

Line 4 selects the valuable supervoxel xs under current CRF296

model and manually annotates the selected valuable super-297

voxel. In our proposed framework, we propose a new sampling298

Algorithm 1 Active Learning Algorithm
Input: a pool of unlabeled supervoxels, S
Output: the manually annotated supervoxel set, DL , and a

statistical model, w
1: initialize DL by annotating several samples manually
2: repeat
3: w = pairwise_CRF_model_training(DL)
4: xs = AL_Select_Valuable_Sample(w,S)
5: S = S − xs

6: DL = DL + xs

7: until the stopping criterion is met
8: return DL and w

method called modified margin-based sampling (MMbS) to 299

select valuable supervoxels. 300

In the remainder of this section, we first introduce a pairwise 301

CRF model. Second, the proposed sampling method, MMbS, 302

is explained. Finally, the whole procedure of actively selecting 303

valuable samples is described. 304

1) Pairwise CRF Model: Given a set of supervoxels 305

x = (x1, x2, . . . , xN ) obtained from point cloud scenes, where 306

N is the number of supervoxels, the semantic labeling tasks 307

predict a labeling, y = (y1, y2, . . . , yN ), for all the supervox- 308

els x. A category label, yi ∈ L = {1, . . . , L}, is assigned to 309

each supervoxel xi . Here, L is the number of categories. 310

With these definitions in place, we build the posterior 311

density p(y|x) of the categories y, given the features of 312

supervoxels, x by a pairwise CRF model 313

p(y|x) = 1

Z(x, w)
exp(−Es(x, y, w)) (1) 314

where Z(x, w) is the partition function and the energy function 315

Es of our pairwise CRF model is formulated as follows: 316

Es(x, y, w) =
N∑

i=1

φu(yi , xi , w) + α
∑

(xi ,x j )∈N
φp(yi , y j , xi , x j ) 317

(2) 318

where φu and φp represent the unary term and pairwise term, 319

respectively. Here, N denotes the set of spatially adjacent 320

supervoxels. The parameter α controls the weight of the 321

pairwise term. w is the parameters in the unary term φu . 322

The unary term φu(yi , xi , w) measures how well super- 323

voxel xi takes category yi under current model w. We define 324

our unary term as follows: 325

φu(yi , xi , w) = − log(Pu(yi |xi , w)) (3) 326

where Pu(yi |xi , w) is the probability of category label yi taken 327

by supervoxel xi . To obtain Pu , given the features or descrip- 328

tors of supervoxels, one-versus-all RF classifiers [31] are first 329

learned for each category in a training set. Then, once the 330

RF classifiers are learned, their probabilistic output, Pr (yi |xi), 331

of supervoxel xi taking category yi is calibrated via a multi- 332

class logistic classifier [32] as follows: 333

Pu(yi |xi , w) = 1

1 + exp(wa Pr (yi |xi) + wb)
(4) 334
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Fig. 3. Toy examples of active selection of samples. (a) Unlabeled sample pool. (b) Sample selection by MS. (c) Sample selection by MMbS considering
the neighbor-consistency prior. In (c), the dotted line represents that samples A and B are spatially adjacent.

where wa and wb are the parameters of the sigmod function335

that is estimated using a maximum likelihood method for336

optimizing the training set. These parameters are obtained by337

a gradient descent search method.338

The pairwise energy term φp takes the Potts model [24],339

which encourages neighboring supervoxels of similar feature340

with the same category. We define our pairwise term as341

follows:342

φp(yi , y j , xi , x j ) =
{

D(xi , x j ), yi �= y j

0, yi = y j
(5)343

where D(xi , x j ) is a similarity metric which measures the344

similarity of two supervoxels. We scale the value of D(xi , x j )345

to [0, 1] to meet the requirement of submodular. To this end,346

given the unary term and pairwise term, the labeling ŷ can347

be predicted by efficiently minimizing the energy function (2)348

through the α-expansion algorithm [33]349

ŷ = argmin
y∈LN

Es(x, y, w). (6)350

2) Modified Margin-Based Sampling: The margin-based351

sampling (MS) [34], as a basic active learning algorithm,352

actively selects valuable samples to reduce the model uncer-353

tainty by focusing on the margins of current classifiers. The354

margin-based uncertainty, MU(xi ), of a supervoxel xi is355

measured by (7), which computes the difference between best356

versus second best class prediction357

MU(xi ) = Pu
(

ŷ2
i |xi , w

)− Pu
(

ŷ1
i |xi , w

)
(7)358

where ŷ1
i and ŷ2

i are the first and second most probable class359

labels under current statistical model, respectively. The higher360

value of MU(xi) means that supervoxel xi is more valuable361

and uncertain. Therefore, in MS, samples nearby the margins362

of classifiers are considered uncertain to a model.363

As illustrated in Fig. 3, MS can effectively select samples364

nearby the margin of current classifiers, but ignore some365

sample distributions, e.g., the region R1, which are surrounded366

by other categories and away from the margin. However, those367

samples from these ignored distributions may be crucial for the368

learning procedure needed to train discriminative classifiers.369

Commonly, samples in those ignored regions are misclassi- 370

fied by current model. Intuitively, samples from those ignored 371

regions can be incorporated into training set by searching 372

misclassified samples. In addition, from the perspective of 373

classification, selecting the misclassified samples into training 374

set assists in gradually improving the accuracy of classi- 375

fiers. In order to find misclassified samples, the neighbor- 376

consistency prior that pairwise supervoxels have a high 377

probability of taking the same category label is considered 378

into the sampling procedure [see Fig. 3(c)]. Here, pairwise 379

supervoxels are defined as two spatially adjacent supervoxels. 380

Based on the neighbor-consistency prior, if one super- 381

voxel x j in pairwise supervoxels (xi , x j ) with different cat- 382

egories has been known its true category label y j , we can 383

define the misclassified possibility, MP(xi ), of supervoxel xi 384

as follows: 385

MP(xi ) = 1 − Pu(y j |xi , w). (8) 386

Equation (8) implies that higher misclassified probability will 387

be given to supervoxel xi , if the inferred category of super- 388

voxel xi has the lower probability of the category which is the 389

same with the true category of its neighboring supervoxel x j . 390

The MMbS is proposed by introducing the neighbor- 391

consistency prior into MS (see Algorithm 2). The MMbS 392

selects potentially misclassified samples to cover the ignored 393

sample distributions while considering determination of accu- 394

rate margins for classifiers. More concretely, in Algorithm 2, 395

lines 1–4 apply the MS to sample the informative samples 396

by focusing on the margins of classifiers. Based on the true 397

categories of the samples selected by the MS, lines 4–9 398

exploit the neighbor-consistency prior to select the possibly 399

misclassified samples. Threshold ρ allows us to select the 400

samples with high misclassified probability. 401

3) Active Selection Procedure: As illustrated in Fig. 2, 402

at each iteration of active learning, a pairwise CRF model 403

is first learnt and updated over a set of manually annotated 404

supervoxels. Second, the pairwise supervoxels with different 405

inferred labels are collected. Third, only pairwise supervoxels 406

containing minority category are taken as input to the MMbS. 407

Here, the minority category is dynamically determined by the 408

current set of manually annotated supervoxels. This strategy 409
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Algorithm 2 Modified Margin Sampling to Actively Select
Valuable Supervoxels
Input: a set of pairwise supervoxels D = {(xi , x j )} inferred

with different categories
Output: the manually-annotated supervoxel set D∗

L
1: for each supervoxel not inferred as minority category in D,

compute MU by Eq. (7)
2: select the supervoxel x∗ with highest MU and obtain its

true label y∗
3: insert (x∗, y∗) into D∗

L
4: for each pairwise supervoxel, (xi , x∗), compute MP of

supervoxel, xi , by Eq. (8)
5: select the supervoxel, x ′

i , with highest MP
6: if MP(x ′

i ) > ρ then
7: obtain true label, y ′

i , of supervoxel, x ′
i ,

8: insert (x ′
i ,y

′
i ) into D∗

L
9: end if

10: return D∗
L

Fig. 4. Graphic example of a higher order MRF. φu represents unary
potential, φc represents pairwise potential, and φp represents higher order
potential.

assists in keeping diversity in the composition of the training410

set by avoiding the sampling procedure being trapped in one411

category. Finally, through MMbS algorithm, the most valuable412

supervoxels are selected and manually annotated.413

All the above steps are performed in each iteration. Itera-414

tions terminate when a defined maximum iteration is reached.415

Once the iterations are terminated, a pairwise CRF model is416

finally trained based on manually annotated supervoxels for417

semantic labeling of mobile LiDAR point clouds.418

D. Label Refinement by Higher Order MRF419

As shown in Fig. 2, there is a portion of the inaccurate420

categorial labels in initial labeling results obtained by applying421

pairwise CRF. This is because only short-range energy term422

(pairwise energy potential) is insufficient to describe long-423

range interactions among the supervoxels from point cloud424

scenes. We propose to exploit higher order MRF to consider425

more contexts into label refinement. As shown in Fig. 4,426

pairwise potential only models the interaction between two427

variables. However, higher order potential can describe the428

interactions among variables belonging to a clique (region).429

Fig. 5. Example of label refinement with regional label cost. (a) Initial
labeling result obtained by applying a pairwise CRF model. (b) Regions
generated by the clustering algorithm. (c) Final region used in label
refinement. (d) Refined labeling with considering regional label cost.

Therefore, we design the energy function of the higher order 430

MRF as follows: 431

E(y) = Eu(y) + αE p(y) + β Ec(y) (9) 432

where α and β are the weights of pairwise term E p and higher 433

order term Ec, respectively. The unary term Eu and pairwise 434

term Ec are defined as (2). In addition, the related parameters 435

are set to be the same as the pairwise CRF trained in active 436

learning procedure. 437

The higher order term Ec is designed by using the label cost 438

term introduced in [35]. The label cost term tends to reduce 439

redundant label categories by imposing the cost of these labels 440

that exist in a category subset. In our proposed framework, 441

the purpose of introducing a label cost term in our proposed 442

framework is to use fewer category labels to describe a region 443

in point cloud scenes by penalizing redundant categories 444

(see Fig. 5). By eliminating the unnecessarily used categories 445

in a region, many mislabeled points in initial labeling results 446

may be rectified. We define the higher order term Ec as 447

follows: 448

Ec(y) =
∑
r∈R

Er
label(y) (10) 449

where R represents the region set in a point cloud scene. 450

Er
label(y) represents the region r ’s label term which penalizes 451

each unique label that appears in region r 452

Er
label(y) =

∑
l∈y

hr (l) · δr (l) (11) 453

where hr (l) is a nonnegative label cost of label l and is given 454

by (13). δr (l) is a function that indicates whether label l is 455

used in labeling region r 456

δr (l) =
{

1, ∃xi ∈ r : yi = l

0, otherwise
(12) 457

hr (l) =
⎧⎨⎩exp

(
Ml − |Sr (l)|

Ml

)
, |Sr (l)| < Ml

0, otherwise
(13) 458

Sr (l) = {xi |∀xi ∈ r ∧ ỹi = l} (14) 459

where Sr (l) represents the set of supervoxels, which belong 460

to category l in region r . ỹi is the initial category label of 461

supervoxel xi . |S| represents the size of set S. Ml is a constant 462

number for a specific label l. 463
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By using (13), the label term penalizes category l heavily464

when there are a few supervoxels labeled as category l.465

In addition, (13) also implies that in region r , if the number of466

supervoxels of a specific category l is larger than a constant467

number Ml , we will assume that the specific category l is in468

region r . Intuitively, Ml should be related to the size of objects469

in category l. Thus, in the experiments, we set Ml according470

to the number of supervoxels belonging to individual object471

of category l.472

To impose constraints on category labels in a region, it is473

critical to define regions in a scene. In our framework, a clus-474

tering algorithm is carried out to generate regions through475

clustering adjacent supervoxels. In the clustering algorithm,476

the basic operational units are supervoxels with category477

labels, which are obtained by applying the trained pairwise478

CRF. Terminating the growth of a region should meet one479

of two conditions: 1) there is no supervoxel adjacent to the480

region and 2) all the supervoxels adjacent to the region should481

belong to termination regions. Here, a termination region482

is defined as a set of spatially connected supervoxels with483

same category labels, and the size of the set of connected484

supervoxels should be larger than a defined constant ρmax.485

In general, the easily classified categories, such as ground and486

grass, are used to define the termination regions. Once the487

growth of the region is terminated, a region [see Fig. 5(c)]488

used in the label refinement is defined by two parts: a region489

generated by the proposed clustering algorithm [see Fig. 5(b)]490

and its connected termination regions.491

Once region extraction is completed, energy E is minimized492

by Algorithm 3 which iteratively implements the extending493

α-expansion algorithm introduced in [35]. Finally, the refined494

labeling results [see Fig. 5(d)] are obtained.495

Algorithm 3 Label Refinement by Regional Label Costs
1: define the regions according to initial labeling
2: compute hr (l) and Sr (l) for each defined region
3: for each region, re-estimate the labeling by extending

α-expansion algorithm [35]

IV. RESULTS AND DISCUSSION496

To quantitatively evaluate the accuracy and correctness497

of the proposed method on semantic labeling of point498

clouds, three measurements, including precision, recall, and499

F1-measure [18], were selected. Precision describes the per-500

centage of true positives in the ground truth; recall depicts501

the percentage of true positives in the semantic labeling502

results; and F1-measure is an overall measure. The three503

measurements are calculated on points and defined as follows:504

precision = TP

TP + FN
(15)505

recall = TP

TP + FP
(16)506

F1-measure = 2 · precision · recall

precision + recall
(17)507

where TP, FN, and FP represent the numbers of true positives,508

false negatives, and false positives, respectively.509

Fig. 6. Illustration of the REIGL VMX-450 mobile LiDAR system and its
configurations.

A. Experimental Data Set 510

Devoted to illustrating the capabilities of our presented 511

framework on semantic labeling of mobile LiDAR point 512

clouds, we perform both qualitative and quantitative evalu- 513

ations on three different data sets. 514

The point clouds in both data sets I and II are collected by 515

an RIEGL VMX-450 mobile LIDAR system [36] on Xiamen 516

Island, China. This LIDAR system, smoothly integrating two 517

RIEGL VQ-450 laser scanners, a global navigation satellite 518

system antenna, an inertial measurement unit, a distance mea- 519

surement indicator, and four high-resolution digital cameras, 520

was mounted on the roof of a minivan with an average speed 521

of 40–50 km/h (Fig. 6). The point density of acquired points 522

is about 7000 points/m2. The accuracy and precision of the 523

scanned point clouds are within 8 and 5 mm, respectively. 524

After data acquisition, we used RiProcess, a postprocess 525

software released by REIGL corporation, to obtain colorized 526

mobile LiDAR point clouds by registering the images with 527

point clouds. To evaluate the performance of semantic labeling 528

methods, two data sets of road scenes are built by manually 529

classifying all the points. Data set I consists of eight chal- 530

lenging categories: palm tree, cycas, brushwood, vehicle, light 531

pole, grass, and road. Data set II contains seven challenging 532

categories: tree, vehicle, wall, light pole, ground, and pedes- 533

trian. As shown in Table I, there is a category imbalance 534

problem in both data sets, e.g., the points of light poles and 535

vehicle are much fewer than the other categories (data set I); 536

the points of light poles and pedestrian are much fewer than 537

the other categories (data set II). In addition to challenges 538

brought by category imbalances, other challenges, such as 539

intraclass variations, interclass similarities, overlapping, and 540

object incompleteness, commonly exist in our ground truth. 541

The point clouds in data set III are collected around 542

CMU campus in Oakland, Pittsburgh, PA, USA, by using 543

the Navlab11 equipped with side looking SICK LMS laser 544

scanners. Due to lack of cameras in the Navlab11, there is no 545

color information in the collected point clouds. Four categories 546

(ground, building, vehicle, and trees) provided in [11] are 547

used in our experiments. As shown in Table I, the amount 548

of the points in data set III is much smaller than those in data 549

sets I and II. This is because the point density in data set III 550

is much lower than those in data sets I and II. 551

In our experimental setup, each data set is partitioned 552

into two parts: training and testing samples (see Table I). 553
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TABLE I

DESCRIPTION OF GROUND TRUTH (UNIT: K POINTS)

The training samples are used as forming the unlabeled sample554

pool for the active learning procedure. The testing samples are555

used to evaluate the performance of our proposed framework556

in labeling point clouds.557

B. Manually Annotate Training Sets With Active Learning558

In the pairwise CRF model used in active learning, for559

data sets I and II, we define the similarity metric D(xi , x j )560

with (18). For data set III, we define the similarity metric561

D(xi , x j ) with (19) by using the χ2 distance [37] of the FPFH562

descriptor of supervoxels xi and x j563

Dcolor(xi , x j ) = exp

(
−γ

3∑
k=1

|Ci (k) − C j (k)|
255

)
(18)564

Dfpfh(xi , x j ) = exp

(
−γ

16∑
k=1

[Fi (k) − Fj (k)]2

Fi (k) + Fj (k)

)
(19)565

where Fi denotes a 16-D FPFH descriptor for a supervoxel xi ;566

Ci represents an RGB color vector of a supervoxel xi ; γ is567

a scale factor which makes the unary term and pairwise term568

comparable. In the experiments, we set γ at 15 to make unary569

term and pairwise term comparable.570

In active learning, at each iteration, we use these manually571

annotated supervoxels as inputs to train a set of one-versus-all572

RF classifiers. The number of decision trees in the RF is set573

at 100. The depth of each tree is set at 15. Threshold ρ used574

in Algorithm 2 is set to 0.7. In the first iteration, the selected575

samples are initialized by randomly selecting 20 samples576

for each category to query their category labels. During the577

sampling procedure, as suggested in [38], we adopted the578

batch model, which selects multiple supervoxels to be anno-579

tated manually at each iteration, to reduce the overwhelming580

computational complexity brought by the serial model. More581

specifically, all the pairwise supervoxels, which are the inputs582

to Algorithm 2, are clustered into several groups by applying583

k-means clustering [39]. Five clusters are obtained according584

to the feature descriptors of the supervoxels which are not585

inferred as the current minority category. Then within each586

group, the MMbS is applied to select valuable supervoxels.587

1) Qualitative and Quantitative Results: To assess the588

performance of the proposed MMbS in actively creating a589

promising and minimal training set, we perform both qual-590

itative and quantitative evaluations on all the data sets. Initial591

Fig. 7. Qualitative labeling results on a part of data set I. (a) Colorized point
clouds. (b) Ground truth. (c) Semantic labeling results. (d) and (f) Close-up
views of the ground truth in areas #1, #2, and #3. (g) Close-up views of
the initial labeling results obtained by applying pairwise CRF model in areas
#2 and #3. (e) and (h) Close-up views of the refined results obtained by
incorporating regional label costs in areas #1, #2, and #3.

labeling results obtained by applying the pairwise CRF model 592

are shown in Figs. 7(g), 8(c) and (d), and 9(e) and (f). 593

Although there is a small portion of mislabeled points caused 594

by local feature similarities, the majority of the points in 595

the initial results are correctly classified, which prove the 596

effectiveness of MMbS in our proposed framework. Moreover, 597

as shown in Tables II–IV, the average initial labeling results 598

(AL-Pairwise) achieved in precision, recall, and F1-measure 599

on data sets I–III are (0.794, 0.69, 0.772), (0.818, 0.773, 600

0.781), and (0.879, 0.867, 0.873), respectively. The quantita- 601

tive results demonstrate the feasibility of our proposed MMbS 602

to create a small training set for training a labeling model 603

which can perform well on classifying 3-D points. 604

2) Comparison With Traditional Active Learning Methods: 605

To exhibit the superior performance of our proposed sam- 606

pling method over other traditional active learning method, 607

we compared the proposed MMbS with three competing 608
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TABLE II

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET I

TABLE III

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET II

Fig. 8. Qualitative labeling results on two scenes in data set II.
(a) and (b) Ground truth. (c) and (d) Initial labeling results. (d) and (e) Refined
labeling results.

sampling strategies: 1) a baseline random sampling (RS);609

2) MS computed by (7); and 3) entropy-based sam-610

pling (ES) [40] computed by611

Ent(xi) = −
∑
yi∈L

Pu(yi ) log(Pu(yi)). (20)612

Fig. 9. Qualitative labeling results on data set III. (a) Ground truth.
(b) Semantic labeling results. (c) and (d) Close-up views of the ground
truth in areas #1 and #2. (e) and (f) Close-up views of the initial labeling
results obtained by applying a pairwise CRF model in areas #1 and #2.
(g) and (h) Close-up views of the refined results obtained by incorporating
regional label cost areas #1 and #2.

In order to compare the performance of sample selections 613

conveniently, the label refinement step is not included in 614

our comparative experiments. To eliminate the influence of 615
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TABLE IV

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET III

Fig. 10. Average labeling results achieved by the MMbS, ES, MS, and RS on data set I: average precision, average recall, and average F1-measure.

Fig. 11. Average labeling results achieved by the MMbS, ES, MS, and RS on data set II: average precision, average recall, and average F1-measure.

Fig. 12. Average labeling results achieved by the MMbS, ES, MS, and RS on data set III: average precision, average recall, and average F1-measure.

random initialization of annotated supervoxels, we repeated616

each sampling strategy 50 times. The mean values of each617

sampling method for average precision, recall, and F1-measure618

are recorded at different amounts of manually annotated619

samples.620

The mean values for average precision, recall, and 621

F1-measure on data sets I–III are shown in Figs. 10–12, 622

respectively. As the number of supervoxel labels queried 623

increases, the MMbS curves of precision, recall, and 624

F1-measure demonstrate the stable performance of our 625
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proposed sampling method. In addition, although the preci-626

sions of MMbS, ES, and MS are close (see Figs. 10 and 11),627

the curves of recall and F1-measure clearly demonstrate the628

superiority of our MMbS over other sampling methods, which629

reflects the effectiveness of exploiting neighbor-consistency630

prior to select potentially misclassified supervoxels into train-631

ing sets.632

C. Semantic Labeling With Higher Order MRF633

At the label inferring stage, all the parameters used in (9)634

and (13) are experientially defined by visual inspection of the635

effect of the labeling results, and their values in our experiment636

settings are listed in Table V. In addition, during the region637

extraction procedure, the categories used in generating termi-638

nation regions on data sets I–III are (road and grass), (ground639

and trees), and (ground), respectively. In addition, the constant640

ρmax is set at 300.641

1) Qualitative and Quantitative Results: To assess the per-642

formance of the proposed higher order MRF on refining the643

initial labeling results obtained by pairwise CRF, we exhibit644

both qualitative and quantitative evaluations on all built data645

sets. As presented in Figs. 7(h), 8(e) and (f), and 9(g) and (h),646

the refined labeling results demonstrate the promising capa-647

bilities of our proposed framework on labeling point clouds.648

Compared to the initial labeling results, a remarkable649

improvement was achieved. This is because the proposed650

higher order MRF can obtain smooth labelings by reducing651

redundant categories in a defined region. As the quanti-652

tative results reported in Tables II–IV, the average pre-653

cision, recall, and F1-measure achieved by our proposed654

framework (AL-Pairwise+LabelCost) further demonstrate the655

proposed higher order MRF which reduces the redundant656

categories can help us to correct some misclassified points.657

In addition, our proposed higher order MRF can effectively658

avoid oversmoothing overlapped objects and preserve over-659

lapped objects. Therefore, the proposed higher order MRF660

performs well in the complex scenarios of overlapped objects.661

As shown in Figs. 7(h) and 8(e), although the tree and662

light poles are overlapped, our proposed higher order MRF663

avoid light poles being misclassified as tree, which shows the664

capabilities to deal with the scenario where objects overlapped.665

However, we find that a very small object may be mislabeled666

as its connected category. As shown in Fig. 7(h), small667

brushwood is oversmoothed and mislabeled as grass by our668

proposed higher order MRF.669

As shown in Fig. 8(f), by considering the long-range con-670

texts, our proposed higher order MRF correctly recognizes the671

moving and stationary vehicles, which shows its capability to672

handle the incompleteness and intraclass variations. However,673

as shown in Fig. 8(e) and (f), there are some tree trunks674

mislabeled as pedestrians; this is because in the initial labeling,675

the accuracy is low, and many points of a tree trunk are mis-676

labeled as a pedestrian. Under these circumstances, the higher677

order MRF cannot rectify the mislabeled points.678

D. Comparative Studies679

To show the superior performance of our proposed frame-680

work in the semantic labeling of mobile LiDAR point681

Fig. 13. Comparative labeling results on different scenes. (a)–(c) Colorized
point clouds. (d)–(f) Ground truth. (g) and (h) Labeling results by applying
3D-PMG+MRF. (i) Labeling results by applying M3N. (j)–(l) Labeling results
by applying our AL-Pairwise+LabelCosts.

TABLE V

PARAMETERS IN THE PROPOSED FRAMEWORK

clouds, the following three approaches were evaluated on data 682

sets I and II for comparison: shape based [41], M3N [10], and 683

3-D-PMG based (3D-PMG+MRF) [21]. The settings of those 684

approaches are the same as [21]. The shape-based approach 685

tries to segment objects out of the point cloud scenes and then 686

uses global features to recognize objects [41]. As shown by 687

the quantitative results in Table II, the poor performance of 688

the shape-based approach demonstrates that overlapping and 689

incomplete objects in these complex scenarios are huge obsta- 690

cles stymieing the success of these methods which depend 691

on segmenting objects out of the whole scene. As shown 692

in Table II, the performance of our AL-Pairwise achieves 693

a lower average F1-measure than that of M3N approach 694

whose average F1-measure is 0.784, because the M3N 695

approach adopts a high-order potential energy term (a robust 696

Potts model [25]) to model relatively long-range interactions 697

among points. In addition, the 3D-PMG+MRF outperforms 698

AL-Pairwise because of the consideration of object intrinsic 699

and contextual properties when conducting label transfer. 700

However, by exploiting the long-range contextual informa- 701

tion, the AL-Pairwise+LabelCost approach, imposing regional 702

label costs constraints on the initial labeling of AL-Pairwise, 703

obtains better results than those of the other methods. Because 704

the AL-Pairwise+LabelCost approach models not only short- 705

range but also long-range contexts, it achieves a smoother 706

labeling than that of 3D-PMG+MRF. As illustrated by the 707

qualitative comparisons in Fig. 13, AL-Pairwise+LabelCosts 708

preserve the vehicle, light poles, and palm trees better than 709

those of 3D-PMG+MRF. 710

To further demonstrate the superiority of our proposed 711

method on data set III, we conduct comparisons with the two 712

following works: [21] and [22]. From Table IV, it is noted that 713

our proposed method achieves the best results on data set III. 714

As illustrated in Table III, the AL-Pairwise outperforms the 715

M3N and 3D-PMG+MRF on the data set II where scenarios 716

are cluttered and more complex than data set I. This is because 717
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TABLE VI

TRAINING TIME ON DIFFERENT APPROACHES (UNITS: HOURS)

TABLE VII

LABELING TIME ON DIFFERENT APPROACHES (UNITS: HOURS)

complex and cluttered scenes cannot be well modeled for718

3D-PMG+MRF, and M3N is not designed for the imbal-719

anced data set. As reflected in Fig. 13(h), 3D-PMG+MRF720

mislabeled wall and vehicles to some extent because of721

the inaccurate color information caused by complex scenes.722

Thus, the AL-Pairwise+LabelCost modeling the higher order723

contexts obtains a more satisfied result [see Fig. 13(k)].724

As reflected in Fig. 13(i), the M3N classified the light pole725

with many false positives and can hardly recognize pedes-726

trians, while our proposed methods can correctly annotate727

pedestrians to some extent [see Fig. 13(l)]. The reason is that728

our sampling method exploits the neighbor-consistent prior to729

reduce the classification errors for the minority categories.730

The proposed framework and comparative studies were731

coded with C++ and executed on a personal computer with732

a single Intel core of 3.30 GHz and a RAM of 16 GB.733

The processing time of the experiments was reported734

in Tables VI and VII. For our proposed framework, the training735

time containing the active learning procedure was approx-736

imate 2.5, 2.1, and 1.9 h, respectively, on three data sets.737

In addition, the labeling time on three data sets was 4,738

2.3 and 2.5 h, respectively. The labeling times of our labeling739

framework are lower than those of shape-based, M3N, and740

3D-PMG+MRF methods. Therefore, our proposed method has741

time–cost advantages.742

From the aforementioned figures and tables, we can con-AQ:3 743

clude that the presented framework can well distinguish the744

object classes from the point cloud of complex urban envi-745

ronments. The long-range contextual information encoded by746

higher order MRF can help us to correct some certain misla-747

beled classes and improves the labeling accuracy. Moreover,748

the proposed active learning method also assists in improving749

the classification accuracy by selecting the valuable samples750

to form a minimal training set.751

E. Sensitivity of Proposed Framework752

Here, we analyze the impact of the weight of regional753

label costs β on the performance of labeling mobile LiDAR754

point clouds. The analysis was performed on data set I.755

As reflected in Fig. 14, the F1-measure changes with the756

Fig. 14. Impact of the weight of regional label costs on semantic labeling
results.

Fig. 15. Qualitative labeling results on two example scenarios with setting
different weights β of regional label costs. (a) and (d) Initial labeling results.
(b) Refined labeling results at β = 20. (c) and (f) Refined labeling results at
β = 60. (e) Refined labeling results at β = 120.

increase in parameter β, and these F1-measures obtained by all 757

these parameters show the improvement of the initial labeling 758

results. Because a larger value of β means more costs imposed 759

on the number of used categories, the F1-measure peak value 760

is reached at a median value β = 60. The large costs may 761

cause oversmooth labeling results, whereas a smaller β means 762

fewer costs imposed on the number of used categories. Small 763

costs may be inadequate to rectify a relatively large quantity 764

of inaccurate labels. To further explain the influence of β, 765

two example labelings given in Fig. 15 are used to illustrate 766

the large and small cost scenarios, respectively. As shown 767

in Fig. 15(b), the configuration of β = 20 in our proposed 768

framework is too small to rectify the inaccurate labels of cycas. 769

As reflected in Fig. 15(e), the configuration of β = 120 in 770

our proposed framework is too big to preserve the accurately 771

labeled objects cycas. The proper value of β = 60 achieves 772

a promising refined labeling results [see Fig. 15(c) and (f)]. 773

Therefore, to make a balance between the aforementioned two 774

scenarios, we set the weight of regional label costs at β = 60. 775

To analysis the impact of number of queried supervoxels 776

on the label refinement, both the initial and refined labeling 777

results were recorded at the following configurations: 100, 300, 778

500, 700, 900, 1100, and 1300. As reflected in Fig. 16, all 779

the curves going up with an increase of queried supervoxels 780

demonstrate the stability of our framework. The curves of 781

AL-Pairwise+LabelCost lie above the curves of AL-Pairwise 782

in both two data sets. This is because our higher order 783
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Fig. 16. Impact of the number of queried supervoxels on the refined labeling
results.

potentials can rectify the mislabeled points to some extent.784

In addition, as the number of supervoxel labels queried785

increases from 900 to 1300, the average F1-measure values of786

AL-Pairwise+LabelCost increase slightly, whereas the aver-787

age F1-measure values of AL-Pairwise increase. This shows788

that if the accuracy of labeling results has reached at a789

high value, the refined results will stay at a high value of790

F1-measure even though the initial results do not have a sig-791

nificant improvement. In our experiments, we set the number792

of queried supervoxels at 1100.793

V. CONCLUSION794

In this paper, we have presented a new framework which795

integrates active learning and higher order MRF for effectively796

conducting semantic labeling of mobile LiDAR point clouds.797

In order to manually annotate the 3-D point cloud data as798

small as possible, we introduce neighbor-consistency prior into799

active learning to select the potentially misclassified samples800

into training sets effectively. To consider more contexts into801

refining the labeling results, a higher order MRF encoding802

label cost terms is used to describe long-range interactions803

among supervoxels in a region. Quantitative evaluations on804

three different point cloud data sets have demonstrated that805

the proposed algorithm achieves average F1-measure of 0.891,806

0.829, and 0.954, respectively. By considering long-range807

contextual information with higher order MRF, improvements808

of average F1-measure over the initial labeling results are809

up to 11.9%, 4.8%, and 8.1%, respectively, on three data810

sets. Comparative studies have also demonstrated that the pro-811

posed framework outperforms other traditional active learning812

methods in creating an optimal training set and other fully813

supervised semantic labeling methods in labeling point clouds.814

In conclusion, the proposed method is feasible and achieves815

satisfied performance in semantic labeling of mobile LiDAR816

point clouds with a small portion of manually annotated817

3-D points.818
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Semantic Labeling of Mobile LiDAR Point Clouds
via Active Learning and Higher Order MRF
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Dawei Zai, Yongtao Yu, and Jonathan Li, Senior Member, IEEE

Abstract— Using mobile Light Detection and Ranging point1

clouds to accomplish road scene labeling tasks shows promise2

for a variety of applications. Most existing methods for semantic3

labeling of point clouds require a huge number of fully supervised4

point cloud scenes, where each point needs to be manually5

annotated with a specific category. Manually annotating each6

point in point cloud scenes is labor intensive and hinders7

practical usage of those methods. To alleviate such a huge burden8

of manual annotation, in this paper, we introduce an active9

learning method that avoids annotating the whole point cloud10

scenes by iteratively annotating a small portion of unlabeled11

supervoxels and creating a minimal manually annotated training12

set. In order to avoid the biased sampling existing in traditional13

active learning methods, a neighbor-consistency prior is exploited14

to select the potentially misclassified samples into the training set15

to improve the accuracy of the statistical model. Furthermore,16

lots of methods only consider short-range contextual information17

to conduct semantic labeling tasks, but ignore the long-range18

contexts among local variables. In this paper, we use a higher19

order Markov random field model to take into account more20

contexts for refining the labeling results, despite of lacking21

fully supervised scenes. Evaluations on three data sets show22

that our proposed framework achieves a high accuracy in23

labeling point clouds although only a small portion of labels is24

provided. Moreover, comparative experiments demonstrate that25

our proposed framework is superior to traditional sampling26

methods and exhibits comparable performance to those fully27

supervised models.28

Index Terms— Active learning, conditional random field29

(CRF), higher order Markov random field (MRF), mobile30
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Light Detection and Ranging (LiDAR) point clouds, semantic 31

labeling. 32

I. INTRODUCTION 33

IN RECENT years, urban traffic congestions and traffic 34

accidents have increasingly constrained a modern lifestyle 35

and sustainable urban development [1]. To effectively collect 36

road information and gather traffic information for solving 37

those urban transport issues, a large number of sensors, such as 38

infrared sensors, laser sensors, and cameras, are used [2]–[4]. 39

A lot of intelligent applications, including driver assistance 40

and safety warning systems, and autonomous driving, benefit 41

from understanding contextual information about a road and 42

its periphery (e.g., the locations of light poles, trees, and 43

vehicles). Semantic labeling of road scenes, automatically 44

assigning a category label to each basic element (e.g., pixel 45

or point) in road scenes, provides a promising and essential 46

approach to obtain the knowledge about road environments. 47

Over the past few decades, studies on labeling road scenes 48

focused mainly on optical images and videos [5], [6]. The 49

use of optical images and videos to conduct semantic labeling 50

of road scenes is limited, due to illumination conditions, 51

occlusions, distortions, incompleteness, viewpoints, and lack 52

of geospatial information. 53

With fast-developing Light Detection and Ranging (LiDAR) 54

technologies, large volumes of highly dense and accurate 55

point clouds, which are easily and rapidly acquired by mobile 56

LiDAR systems, provide a new solution to represent road- 57

related information. The collected point clouds exhibit advan- 58

tages over optical images and videos captured by traditional 59

optical imaging-based systems. By integrating laser scanners 60

with position and orientation systems, mobile LiDAR systems 61

rapidly capture undistorted 3-D point clouds with real-world 62

coordinates of road scenes. Such 3-D point clouds assist 63

in accurate object localization in road scenes. In addition, 64

compared with optical imaging-based systems, mobile LiDAR 65

systems are immune to the impact of illumination conditions. 66

Moreover, with the complementary onboard high-resolution 67

digital cameras, the colorized point clouds provide not only 68

geometric but also texture information essential to image- 69

based semantic labeling. Therefore, in this paper, we focus 70

on semantic labeling of road scenes by using mobile LiDAR 71

point clouds. 72

To train a statistical model for semantic labeling of 73

point clouds, most existing methods [7]–[11] require a huge 74

0196-2892 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Example of training data in traditional methods and our proposed
method on semantic labeling of point clouds. (a) Unlabeled point cloud scene.
(b) Fully supervised training data required by traditional labeling methods.
(c) Training data generated by the active learning method. Here, gray repre-
sents unlabeled points, and other colors represent manually labeled points.

number of fully supervised complete scenes, in which each75

3-D point is manually annotated with a specific category76

[see Fig. 1(b)]. However, such manual annotations for point77

clouds are difficult to obtain in terms of cost and time. In addi-78

tion, it seems impossible to accomplish accurate annotations79

for each point from a complete scene in some scenarios,80

e.g., classifying points of overlapping trees and light pole81

manually [see Fig. 1(a)]. In fact, only a small portion of82

labeled points from complete scenes determines the parameters83

of a statistical model. In the machine learning literature, active84

learning is dedicated to create a minimal training data set from85

a huge pool of unlabeled data by iteratively selecting valuable86

samples to query their category labels [12]–[14]. Thus, in this87

paper, to reduce the cost of manually annotating training data,88

instead of manually annotating whole point cloud scenes,89

we present semantic labeling of point clouds by actively and90

automatically selecting a small portion of unlabeled points for91

manual annotation [see Fig. 1(c)]. Based on those manually92

annotated points, a statistical model for semantic labeling of93

point clouds is learned.94

Recently, probabilistic graphical models, e.g., Markov95

random field (MRF) [15] and conditional random96

field (CRF) [16], were commonly explored to account97

for contextual information in semantic labeling of point98

clouds [8]. Active learning requires frequently retraining a99

statistical model. Therefore, in our framework, at the model100

learning stage, due to computational concerns during learning101

and inference, we choose pairwise CRFs, where unary and102

pairwise potentials carry category probabilities and contextual103

information between neighboring variables, respectively.104

A lot of work demonstrates that a higher order graphical105

model, which models long-range interactions between vari-106

ables, provides more knowledge about the context of a scene107

and improves the semantic labeling results [10], [11], [18].108

Only modeling local interactions among variables by pairwise109

CRFs is insufficient to encode long-range contextual infor-110

mation among variables and reduces the labeling accuracy.111

Therefore, in this paper, we propose to use a higher order MRF112

to refine the labeling results obtained by the pairwise CRFs.113

However, our active learning method only provides training114

samples as a set of separated and annotated points rather than115

fully supervised scenes. Because of lacking fully supervised116

scenes at training stages, it is challenging to adapt traditional117

higher order MRFs into label refinement directly. Therefore,118

in labeling framework, a higher order term not depending on119

fully supervised training scenes is needed. Inspired by the120

observation of describing a region with as few categories as121

necessary, we propose a higher order term named regional122

label cost term to reduce unnecessary categories by imposing 123

costs on the used categories in labeling a region. The proposed 124

regional label cost term can perform well despite lack of fully 125

supervised training scenes and is suitable to be applied in 126

refining the labeling results inferred by pairwise CRFs learned 127

in active learning procedure. 128

In this paper, we propose a new framework using active 129

learning and higher order MRF for semantic labeling of mobile 130

LiDAR point clouds. Active learning to iteratively select a AQ:2131

portion of unlabeled samples to be manually annotated and 132

create a minimal training set. Once the creation of training set 133

is finished, a pairwise CRF is learned to classify the unlabeled 134

samples in the road scene of point clouds. To improve the 135

labeling results obtained by a pairwise CRF, we present a 136

higher order MRF, which applies regional label cost terms to 137

explore long-range interactions among variables. Our proposed 138

framework is validated on three data sets of mobile LiDAR 139

point clouds, and the evaluations exhibit the capability of our 140

proposed framework on semantic labeling of point clouds. 141

The main innovative contributions of this paper to semantic 142

labeling of mobile LiDAR point clouds can be summarized as 143

follows. 144

1) To avoid annotating the whole training scenes manu- 145

ally and reduce the requirements of manually anno- 146

tated training samples for labeling point cloud scenes, 147

we introduce active learning to select as few points as 148

possible for manual annotation and to form a minimal 149

training set. To conduct unbiased sampling during active 150

learning procedure, we propose to exploit the neighbor- 151

consistency prior to select the potentially inaccurately 152

labeled samples to be annotated manually. 153

2) To consider more contextual information into semantic 154

labeling, we propose a higher order MRF method to 155

refine the labeling results obtained by pairwise CRF. 156

The proposed higher order MRF method, which does 157

not require fully supervised training scenes, improves 158

the labeling results by reducing unnecessary categories 159

used in describing a region. 160

The remainder of this paper is organized as follows. 161

Section II introduces some related work. Section III presents 162

the components of our proposed framework. Section IV reports 163

extensive experimental results and evaluates the performance 164

of the proposed framework. Finally, Section V gives the 165

concluding remarks and hints at plausible future research. 166

II. RELATED WORK 167

Most works on semantic labeling of point cloud road scenes 168

focused mainly on exploiting probabilistic graphical models. 169

The pairwise CRF was used to extensively ensure category 170

label consistency between neighboring points [8], [19]–[21]. 171

In [8], a maximum-margin framework is proposed to dis- 172

criminatively train a pairwise associative Markov networks to 173

annotate the objects of interest. In [20], to reduce redundancy 174

of labeling every individual point, adaptive support regions 175

(supervoxels) are treated as basic units to model a multiscale 176

pairwise CRF. In [21], a patch-based framework was proposed 177

to label road scenes by exploiting object intrinsic properties 178

to transfer category labels from labeled scenes to unlabeled 179
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Fig. 2. Overview of our proposed framework for semantic labeling of point clouds. (Different colors represent different categories.)

ones and applying a pairwise CRF model to consider contexts180

for refining the transferred labels. In [22], random forest (RF)181

classifiers were learned on the training data automatically182

generated by exploiting the prior knowledge among classes,183

and the labeling results were further refined by pairwise184

CRF. In [23], the weak priors in the street environment185

were used to conduct automatic generation of training data.186

Based on those training data, a pairwise CRF-based semantic187

labeling method was proposed to segment images and scanned188

point cloud simultaneously. The success achieved by pair-189

wise CRFs notwithstanding, long-range interaction between190

variables, essential to exploit more contextual information in191

complex scenarios, is ignored. The Potts model (a higher192

order graphical model) [24] was used to keep category labels193

homogeneous in a predefined clique [11]. To allow a por-194

tion of inhomogeneous labels in a clique, a robust Potts195

model [25] was introduced and integrated into the Max-Margin196

Markov Network (M3N) [10]. In [18], a set of new higher197

order pattern-based potentials were designed to encode the198

geometric relationships between different categories within199

the cliques, rather than simply encourage the nodes in a200

clique to have consistent labels. Considering a large amount201

of annotated data required in the past studies, our proposed202

framework introduces active learning to reduce the large203

amount of demand on annotated data for the labeling tasks.204

Due to the complexity of the probabilistic graphical models,205

in the semantic labeling area, there were only a few stud-206

ies [26], [27] on the combination of probabilistic graphical207

models and active learning strategies. In [26], an expect208

change strategy was used to find the informative samples,209

which induce largest expected changes in overall CRF state210

after revealing their true labels. In margin-based sampling,211

a loopy belief propagation algorithm [28] was used to exploit212

both spectral and spatial information to actively select infor- 213

mative samples, where conditional margin of each sample 214

was estimated in a discriminative random field model [27]. 215

Li et al. [27] believe that integration of probabilistic graphical 216

models and active learning assists in providing both local 217

and contextual information for selecting informative samples. 218

In our proposed framework, we not only consider the neigh- 219

boring contexts information to select the most informative 220

samples by using a pairwise CRF model, but also try to 221

keep the diversity of the selected samples to some extent by 222

adding the potentially misclassified samples into the manually 223

annotated training set. 224

III. PROPOSED FRAMEWORK 225

Section III is organized as follows. An overview of our 226

proposed framework for semantic labeling of mobile LiDAR 227

point clouds is presented in Section III-A. Then, the super- 228

voxel segmentation is described in Section III-B. The active 229

learning is given in Section III-C. Finally, category label 230

refinement with incorporated regional label costs is explained 231

in Section III-D. 232

A. Overview of the Proposed Framework 233

Our proposed framework is divided into two stages: 234

model training stage and label inferring stage. As shown 235

in Fig. 2, at the model training stage, unlabeled training point 236

cloud scenes are first oversegmented into spatially consistent 237

supervoxels through the voxel-cloud connectivity segmen- 238

tation (VCCS) algorithm [29]. After supervoxel extraction, 239

all the unlabeled supervoxels form an unlabeled supervoxels 240

pool. Then, in the pool, active learning is applied to select 241

valuable unlabeled supervoxels to query their category labels. 242
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In addition, those supervoxels, with queried labels, are formed243

as a training set and used to learn a pairwise CRF model.244

At the label inferring stage, initial labeling of unlabeled245

point cloud scenes is first inferred by applying a trained pair-246

wise CRF. Because long-range interactions in a region cannot247

be well modeled by using only unary and pairwise potentials248

in a pairwise CRF model, some mislabeled supervoxels remain249

in the initial labeling results (see Fig. 2). To refine the250

initial labeling results, we exploit a higher order MRF model251

to describe long-range interactions between supervoxels for252

category label refinement.253

B. Supervoxel Segmentation254

To reduce the huge computational burden brought by the255

large amount of points in our data set, supervoxels, instead256

of the original points, are treated as basic operational units in257

the proposed framework. The VCCS algorithm is an effective258

supervoxel generation algorithm [29], where points within259

each supervoxel have consistent 3-D geometry and appearance.260

Moreover, supervoxels obtained by the VCCS algorithm can261

effectively preserve boundary information according to the262

constraint that each supervoxel cannot flow across the object263

boundaries. Therefore, it is suitable to directly handle the264

supervoxel in point cloud labeling tasks. In the proposed265

framework, given a point cloud scene, we obtain a set of super-266

voxels using the VCCS algorithm. There are two important267

parameters: voxel resolution and seed resolution. The voxel268

resolution is used to define the operable unit of the voxel-cloud269

space, whereas the seed resolution determines the seed points270

for constructing initial supervoxels. In this paper, the voxel271

resolution and seed resolution are set at 0.05 and 0.1 m,272

respectively.273

To describe each supervoxel, we use the following features:274

1) Fast Point Feature Histograms (FPFHs) descriptor [30],275

a rotation-invariant feature, which describes the local276

surface geometry of points in a supervoxel;277

2) spectral features [11] that capture scatter, linearity, and278

planarity of point distributions in a supervoxel;279

3) deviation of the normal vector direction of a supervoxel280

from the z-axis, which assists in distinguishing between281

the horizontal and vertical planar surfaces [11];282

4) height of the centroid point in a supervoxel;283

5) mean RGB color values in a supervoxel.284

C. Active Learning285

To reduce the manual annotation of training samples, given286

a pool of unlabeled supervoxels S, active learning iteratively287

selects a set of unlabeled supervoxels to be manually anno-288

tated. The manually annotated supervoxel set, DL ⊆ S,289

is treated as a training set to train a statistical model w.290

Algorithm 1 gives the main procedure of the active learning291

algorithm. In Algorithm 1, line 3 trains a statistical model292

based on current annotated samples DL . Here, in order to293

consider contextual information between supervoxels, our pro-294

posed framework selects pairwise CRF as a statistical model.295

Line 4 selects the valuable supervoxel xs under current CRF296

model and manually annotates the selected valuable super-297

voxel. In our proposed framework, we propose a new sampling298

Algorithm 1 Active Learning Algorithm
Input: a pool of unlabeled supervoxels, S
Output: the manually annotated supervoxel set, DL , and a

statistical model, w
1: initialize DL by annotating several samples manually
2: repeat
3: w = pairwise_CRF_model_training(DL)
4: xs = AL_Select_Valuable_Sample(w,S)
5: S = S − xs

6: DL = DL + xs

7: until the stopping criterion is met
8: return DL and w

method called modified margin-based sampling (MMbS) to 299

select valuable supervoxels. 300

In the remainder of this section, we first introduce a pairwise 301

CRF model. Second, the proposed sampling method, MMbS, 302

is explained. Finally, the whole procedure of actively selecting 303

valuable samples is described. 304

1) Pairwise CRF Model: Given a set of supervoxels 305

x = (x1, x2, . . . , xN ) obtained from point cloud scenes, where 306

N is the number of supervoxels, the semantic labeling tasks 307

predict a labeling, y = (y1, y2, . . . , yN ), for all the supervox- 308

els x. A category label, yi ∈ L = {1, . . . , L}, is assigned to 309

each supervoxel xi . Here, L is the number of categories. 310

With these definitions in place, we build the posterior 311

density p(y|x) of the categories y, given the features of 312

supervoxels, x by a pairwise CRF model 313

p(y|x) = 1

Z(x, w)
exp(−Es(x, y, w)) (1) 314

where Z(x, w) is the partition function and the energy function 315

Es of our pairwise CRF model is formulated as follows: 316

Es(x, y, w) =
N∑

i=1

φu(yi , xi , w) + α
∑

(xi ,x j )∈N
φp(yi , y j , xi , x j ) 317

(2) 318

where φu and φp represent the unary term and pairwise term, 319

respectively. Here, N denotes the set of spatially adjacent 320

supervoxels. The parameter α controls the weight of the 321

pairwise term. w is the parameters in the unary term φu . 322

The unary term φu(yi , xi , w) measures how well super- 323

voxel xi takes category yi under current model w. We define 324

our unary term as follows: 325

φu(yi , xi , w) = − log(Pu(yi |xi , w)) (3) 326

where Pu(yi |xi , w) is the probability of category label yi taken 327

by supervoxel xi . To obtain Pu , given the features or descrip- 328

tors of supervoxels, one-versus-all RF classifiers [31] are first 329

learned for each category in a training set. Then, once the 330

RF classifiers are learned, their probabilistic output, Pr (yi |xi), 331

of supervoxel xi taking category yi is calibrated via a multi- 332

class logistic classifier [32] as follows: 333

Pu(yi |xi , w) = 1

1 + exp(wa Pr (yi |xi) + wb)
(4) 334
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Fig. 3. Toy examples of active selection of samples. (a) Unlabeled sample pool. (b) Sample selection by MS. (c) Sample selection by MMbS considering
the neighbor-consistency prior. In (c), the dotted line represents that samples A and B are spatially adjacent.

where wa and wb are the parameters of the sigmod function335

that is estimated using a maximum likelihood method for336

optimizing the training set. These parameters are obtained by337

a gradient descent search method.338

The pairwise energy term φp takes the Potts model [24],339

which encourages neighboring supervoxels of similar feature340

with the same category. We define our pairwise term as341

follows:342

φp(yi , y j , xi , x j ) =
{

D(xi , x j ), yi �= y j

0, yi = y j
(5)343

where D(xi , x j ) is a similarity metric which measures the344

similarity of two supervoxels. We scale the value of D(xi , x j )345

to [0, 1] to meet the requirement of submodular. To this end,346

given the unary term and pairwise term, the labeling ŷ can347

be predicted by efficiently minimizing the energy function (2)348

through the α-expansion algorithm [33]349

ŷ = argmin
y∈LN

Es(x, y, w). (6)350

2) Modified Margin-Based Sampling: The margin-based351

sampling (MS) [34], as a basic active learning algorithm,352

actively selects valuable samples to reduce the model uncer-353

tainty by focusing on the margins of current classifiers. The354

margin-based uncertainty, MU(xi ), of a supervoxel xi is355

measured by (7), which computes the difference between best356

versus second best class prediction357

MU(xi ) = Pu
(

ŷ2
i |xi , w

)− Pu
(

ŷ1
i |xi , w

)
(7)358

where ŷ1
i and ŷ2

i are the first and second most probable class359

labels under current statistical model, respectively. The higher360

value of MU(xi) means that supervoxel xi is more valuable361

and uncertain. Therefore, in MS, samples nearby the margins362

of classifiers are considered uncertain to a model.363

As illustrated in Fig. 3, MS can effectively select samples364

nearby the margin of current classifiers, but ignore some365

sample distributions, e.g., the region R1, which are surrounded366

by other categories and away from the margin. However, those367

samples from these ignored distributions may be crucial for the368

learning procedure needed to train discriminative classifiers.369

Commonly, samples in those ignored regions are misclassi- 370

fied by current model. Intuitively, samples from those ignored 371

regions can be incorporated into training set by searching 372

misclassified samples. In addition, from the perspective of 373

classification, selecting the misclassified samples into training 374

set assists in gradually improving the accuracy of classi- 375

fiers. In order to find misclassified samples, the neighbor- 376

consistency prior that pairwise supervoxels have a high 377

probability of taking the same category label is considered 378

into the sampling procedure [see Fig. 3(c)]. Here, pairwise 379

supervoxels are defined as two spatially adjacent supervoxels. 380

Based on the neighbor-consistency prior, if one super- 381

voxel x j in pairwise supervoxels (xi , x j ) with different cat- 382

egories has been known its true category label y j , we can 383

define the misclassified possibility, MP(xi ), of supervoxel xi 384

as follows: 385

MP(xi ) = 1 − Pu(y j |xi , w). (8) 386

Equation (8) implies that higher misclassified probability will 387

be given to supervoxel xi , if the inferred category of super- 388

voxel xi has the lower probability of the category which is the 389

same with the true category of its neighboring supervoxel x j . 390

The MMbS is proposed by introducing the neighbor- 391

consistency prior into MS (see Algorithm 2). The MMbS 392

selects potentially misclassified samples to cover the ignored 393

sample distributions while considering determination of accu- 394

rate margins for classifiers. More concretely, in Algorithm 2, 395

lines 1–4 apply the MS to sample the informative samples 396

by focusing on the margins of classifiers. Based on the true 397

categories of the samples selected by the MS, lines 4–9 398

exploit the neighbor-consistency prior to select the possibly 399

misclassified samples. Threshold ρ allows us to select the 400

samples with high misclassified probability. 401

3) Active Selection Procedure: As illustrated in Fig. 2, 402

at each iteration of active learning, a pairwise CRF model 403

is first learnt and updated over a set of manually annotated 404

supervoxels. Second, the pairwise supervoxels with different 405

inferred labels are collected. Third, only pairwise supervoxels 406

containing minority category are taken as input to the MMbS. 407

Here, the minority category is dynamically determined by the 408

current set of manually annotated supervoxels. This strategy 409
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Algorithm 2 Modified Margin Sampling to Actively Select
Valuable Supervoxels
Input: a set of pairwise supervoxels D = {(xi , x j )} inferred

with different categories
Output: the manually-annotated supervoxel set D∗

L
1: for each supervoxel not inferred as minority category in D,

compute MU by Eq. (7)
2: select the supervoxel x∗ with highest MU and obtain its

true label y∗
3: insert (x∗, y∗) into D∗

L
4: for each pairwise supervoxel, (xi , x∗), compute MP of

supervoxel, xi , by Eq. (8)
5: select the supervoxel, x ′

i , with highest MP
6: if MP(x ′

i ) > ρ then
7: obtain true label, y ′

i , of supervoxel, x ′
i ,

8: insert (x ′
i ,y

′
i ) into D∗

L
9: end if

10: return D∗
L

Fig. 4. Graphic example of a higher order MRF. φu represents unary
potential, φc represents pairwise potential, and φp represents higher order
potential.

assists in keeping diversity in the composition of the training410

set by avoiding the sampling procedure being trapped in one411

category. Finally, through MMbS algorithm, the most valuable412

supervoxels are selected and manually annotated.413

All the above steps are performed in each iteration. Itera-414

tions terminate when a defined maximum iteration is reached.415

Once the iterations are terminated, a pairwise CRF model is416

finally trained based on manually annotated supervoxels for417

semantic labeling of mobile LiDAR point clouds.418

D. Label Refinement by Higher Order MRF419

As shown in Fig. 2, there is a portion of the inaccurate420

categorial labels in initial labeling results obtained by applying421

pairwise CRF. This is because only short-range energy term422

(pairwise energy potential) is insufficient to describe long-423

range interactions among the supervoxels from point cloud424

scenes. We propose to exploit higher order MRF to consider425

more contexts into label refinement. As shown in Fig. 4,426

pairwise potential only models the interaction between two427

variables. However, higher order potential can describe the428

interactions among variables belonging to a clique (region).429

Fig. 5. Example of label refinement with regional label cost. (a) Initial
labeling result obtained by applying a pairwise CRF model. (b) Regions
generated by the clustering algorithm. (c) Final region used in label
refinement. (d) Refined labeling with considering regional label cost.

Therefore, we design the energy function of the higher order 430

MRF as follows: 431

E(y) = Eu(y) + αE p(y) + β Ec(y) (9) 432

where α and β are the weights of pairwise term E p and higher 433

order term Ec, respectively. The unary term Eu and pairwise 434

term Ec are defined as (2). In addition, the related parameters 435

are set to be the same as the pairwise CRF trained in active 436

learning procedure. 437

The higher order term Ec is designed by using the label cost 438

term introduced in [35]. The label cost term tends to reduce 439

redundant label categories by imposing the cost of these labels 440

that exist in a category subset. In our proposed framework, 441

the purpose of introducing a label cost term in our proposed 442

framework is to use fewer category labels to describe a region 443

in point cloud scenes by penalizing redundant categories 444

(see Fig. 5). By eliminating the unnecessarily used categories 445

in a region, many mislabeled points in initial labeling results 446

may be rectified. We define the higher order term Ec as 447

follows: 448

Ec(y) =
∑
r∈R

Er
label(y) (10) 449

where R represents the region set in a point cloud scene. 450

Er
label(y) represents the region r ’s label term which penalizes 451

each unique label that appears in region r 452

Er
label(y) =

∑
l∈y

hr (l) · δr (l) (11) 453

where hr (l) is a nonnegative label cost of label l and is given 454

by (13). δr (l) is a function that indicates whether label l is 455

used in labeling region r 456

δr (l) =
{

1, ∃xi ∈ r : yi = l

0, otherwise
(12) 457

hr (l) =
⎧⎨⎩exp

(
Ml − |Sr (l)|

Ml

)
, |Sr (l)| < Ml

0, otherwise
(13) 458

Sr (l) = {xi |∀xi ∈ r ∧ ỹi = l} (14) 459

where Sr (l) represents the set of supervoxels, which belong 460

to category l in region r . ỹi is the initial category label of 461

supervoxel xi . |S| represents the size of set S. Ml is a constant 462

number for a specific label l. 463
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By using (13), the label term penalizes category l heavily464

when there are a few supervoxels labeled as category l.465

In addition, (13) also implies that in region r , if the number of466

supervoxels of a specific category l is larger than a constant467

number Ml , we will assume that the specific category l is in468

region r . Intuitively, Ml should be related to the size of objects469

in category l. Thus, in the experiments, we set Ml according470

to the number of supervoxels belonging to individual object471

of category l.472

To impose constraints on category labels in a region, it is473

critical to define regions in a scene. In our framework, a clus-474

tering algorithm is carried out to generate regions through475

clustering adjacent supervoxels. In the clustering algorithm,476

the basic operational units are supervoxels with category477

labels, which are obtained by applying the trained pairwise478

CRF. Terminating the growth of a region should meet one479

of two conditions: 1) there is no supervoxel adjacent to the480

region and 2) all the supervoxels adjacent to the region should481

belong to termination regions. Here, a termination region482

is defined as a set of spatially connected supervoxels with483

same category labels, and the size of the set of connected484

supervoxels should be larger than a defined constant ρmax.485

In general, the easily classified categories, such as ground and486

grass, are used to define the termination regions. Once the487

growth of the region is terminated, a region [see Fig. 5(c)]488

used in the label refinement is defined by two parts: a region489

generated by the proposed clustering algorithm [see Fig. 5(b)]490

and its connected termination regions.491

Once region extraction is completed, energy E is minimized492

by Algorithm 3 which iteratively implements the extending493

α-expansion algorithm introduced in [35]. Finally, the refined494

labeling results [see Fig. 5(d)] are obtained.495

Algorithm 3 Label Refinement by Regional Label Costs
1: define the regions according to initial labeling
2: compute hr (l) and Sr (l) for each defined region
3: for each region, re-estimate the labeling by extending

α-expansion algorithm [35]

IV. RESULTS AND DISCUSSION496

To quantitatively evaluate the accuracy and correctness497

of the proposed method on semantic labeling of point498

clouds, three measurements, including precision, recall, and499

F1-measure [18], were selected. Precision describes the per-500

centage of true positives in the ground truth; recall depicts501

the percentage of true positives in the semantic labeling502

results; and F1-measure is an overall measure. The three503

measurements are calculated on points and defined as follows:504

precision = TP

TP + FN
(15)505

recall = TP

TP + FP
(16)506

F1-measure = 2 · precision · recall

precision + recall
(17)507

where TP, FN, and FP represent the numbers of true positives,508

false negatives, and false positives, respectively.509

Fig. 6. Illustration of the REIGL VMX-450 mobile LiDAR system and its
configurations.

A. Experimental Data Set 510

Devoted to illustrating the capabilities of our presented 511

framework on semantic labeling of mobile LiDAR point 512

clouds, we perform both qualitative and quantitative evalu- 513

ations on three different data sets. 514

The point clouds in both data sets I and II are collected by 515

an RIEGL VMX-450 mobile LIDAR system [36] on Xiamen 516

Island, China. This LIDAR system, smoothly integrating two 517

RIEGL VQ-450 laser scanners, a global navigation satellite 518

system antenna, an inertial measurement unit, a distance mea- 519

surement indicator, and four high-resolution digital cameras, 520

was mounted on the roof of a minivan with an average speed 521

of 40–50 km/h (Fig. 6). The point density of acquired points 522

is about 7000 points/m2. The accuracy and precision of the 523

scanned point clouds are within 8 and 5 mm, respectively. 524

After data acquisition, we used RiProcess, a postprocess 525

software released by REIGL corporation, to obtain colorized 526

mobile LiDAR point clouds by registering the images with 527

point clouds. To evaluate the performance of semantic labeling 528

methods, two data sets of road scenes are built by manually 529

classifying all the points. Data set I consists of eight chal- 530

lenging categories: palm tree, cycas, brushwood, vehicle, light 531

pole, grass, and road. Data set II contains seven challenging 532

categories: tree, vehicle, wall, light pole, ground, and pedes- 533

trian. As shown in Table I, there is a category imbalance 534

problem in both data sets, e.g., the points of light poles and 535

vehicle are much fewer than the other categories (data set I); 536

the points of light poles and pedestrian are much fewer than 537

the other categories (data set II). In addition to challenges 538

brought by category imbalances, other challenges, such as 539

intraclass variations, interclass similarities, overlapping, and 540

object incompleteness, commonly exist in our ground truth. 541

The point clouds in data set III are collected around 542

CMU campus in Oakland, Pittsburgh, PA, USA, by using 543

the Navlab11 equipped with side looking SICK LMS laser 544

scanners. Due to lack of cameras in the Navlab11, there is no 545

color information in the collected point clouds. Four categories 546

(ground, building, vehicle, and trees) provided in [11] are 547

used in our experiments. As shown in Table I, the amount 548

of the points in data set III is much smaller than those in data 549

sets I and II. This is because the point density in data set III 550

is much lower than those in data sets I and II. 551

In our experimental setup, each data set is partitioned 552

into two parts: training and testing samples (see Table I). 553
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TABLE I

DESCRIPTION OF GROUND TRUTH (UNIT: K POINTS)

The training samples are used as forming the unlabeled sample554

pool for the active learning procedure. The testing samples are555

used to evaluate the performance of our proposed framework556

in labeling point clouds.557

B. Manually Annotate Training Sets With Active Learning558

In the pairwise CRF model used in active learning, for559

data sets I and II, we define the similarity metric D(xi , x j )560

with (18). For data set III, we define the similarity metric561

D(xi , x j ) with (19) by using the χ2 distance [37] of the FPFH562

descriptor of supervoxels xi and x j563

Dcolor(xi , x j ) = exp

(
−γ

3∑
k=1

|Ci (k) − C j (k)|
255

)
(18)564

Dfpfh(xi , x j ) = exp

(
−γ

16∑
k=1

[Fi (k) − Fj (k)]2

Fi (k) + Fj (k)

)
(19)565

where Fi denotes a 16-D FPFH descriptor for a supervoxel xi ;566

Ci represents an RGB color vector of a supervoxel xi ; γ is567

a scale factor which makes the unary term and pairwise term568

comparable. In the experiments, we set γ at 15 to make unary569

term and pairwise term comparable.570

In active learning, at each iteration, we use these manually571

annotated supervoxels as inputs to train a set of one-versus-all572

RF classifiers. The number of decision trees in the RF is set573

at 100. The depth of each tree is set at 15. Threshold ρ used574

in Algorithm 2 is set to 0.7. In the first iteration, the selected575

samples are initialized by randomly selecting 20 samples576

for each category to query their category labels. During the577

sampling procedure, as suggested in [38], we adopted the578

batch model, which selects multiple supervoxels to be anno-579

tated manually at each iteration, to reduce the overwhelming580

computational complexity brought by the serial model. More581

specifically, all the pairwise supervoxels, which are the inputs582

to Algorithm 2, are clustered into several groups by applying583

k-means clustering [39]. Five clusters are obtained according584

to the feature descriptors of the supervoxels which are not585

inferred as the current minority category. Then within each586

group, the MMbS is applied to select valuable supervoxels.587

1) Qualitative and Quantitative Results: To assess the588

performance of the proposed MMbS in actively creating a589

promising and minimal training set, we perform both qual-590

itative and quantitative evaluations on all the data sets. Initial591

Fig. 7. Qualitative labeling results on a part of data set I. (a) Colorized point
clouds. (b) Ground truth. (c) Semantic labeling results. (d) and (f) Close-up
views of the ground truth in areas #1, #2, and #3. (g) Close-up views of
the initial labeling results obtained by applying pairwise CRF model in areas
#2 and #3. (e) and (h) Close-up views of the refined results obtained by
incorporating regional label costs in areas #1, #2, and #3.

labeling results obtained by applying the pairwise CRF model 592

are shown in Figs. 7(g), 8(c) and (d), and 9(e) and (f). 593

Although there is a small portion of mislabeled points caused 594

by local feature similarities, the majority of the points in 595

the initial results are correctly classified, which prove the 596

effectiveness of MMbS in our proposed framework. Moreover, 597

as shown in Tables II–IV, the average initial labeling results 598

(AL-Pairwise) achieved in precision, recall, and F1-measure 599

on data sets I–III are (0.794, 0.69, 0.772), (0.818, 0.773, 600

0.781), and (0.879, 0.867, 0.873), respectively. The quantita- 601

tive results demonstrate the feasibility of our proposed MMbS 602

to create a small training set for training a labeling model 603

which can perform well on classifying 3-D points. 604

2) Comparison With Traditional Active Learning Methods: 605

To exhibit the superior performance of our proposed sam- 606

pling method over other traditional active learning method, 607

we compared the proposed MMbS with three competing 608
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TABLE II

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET I

TABLE III

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET II

Fig. 8. Qualitative labeling results on two scenes in data set II.
(a) and (b) Ground truth. (c) and (d) Initial labeling results. (d) and (e) Refined
labeling results.

sampling strategies: 1) a baseline random sampling (RS);609

2) MS computed by (7); and 3) entropy-based sam-610

pling (ES) [40] computed by611

Ent(xi) = −
∑
yi∈L

Pu(yi ) log(Pu(yi)). (20)612

Fig. 9. Qualitative labeling results on data set III. (a) Ground truth.
(b) Semantic labeling results. (c) and (d) Close-up views of the ground
truth in areas #1 and #2. (e) and (f) Close-up views of the initial labeling
results obtained by applying a pairwise CRF model in areas #1 and #2.
(g) and (h) Close-up views of the refined results obtained by incorporating
regional label cost areas #1 and #2.

In order to compare the performance of sample selections 613

conveniently, the label refinement step is not included in 614

our comparative experiments. To eliminate the influence of 615
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TABLE IV

EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES ON DATA SET III

Fig. 10. Average labeling results achieved by the MMbS, ES, MS, and RS on data set I: average precision, average recall, and average F1-measure.

Fig. 11. Average labeling results achieved by the MMbS, ES, MS, and RS on data set II: average precision, average recall, and average F1-measure.

Fig. 12. Average labeling results achieved by the MMbS, ES, MS, and RS on data set III: average precision, average recall, and average F1-measure.

random initialization of annotated supervoxels, we repeated616

each sampling strategy 50 times. The mean values of each617

sampling method for average precision, recall, and F1-measure618

are recorded at different amounts of manually annotated619

samples.620

The mean values for average precision, recall, and 621

F1-measure on data sets I–III are shown in Figs. 10–12, 622

respectively. As the number of supervoxel labels queried 623

increases, the MMbS curves of precision, recall, and 624

F1-measure demonstrate the stable performance of our 625
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proposed sampling method. In addition, although the preci-626

sions of MMbS, ES, and MS are close (see Figs. 10 and 11),627

the curves of recall and F1-measure clearly demonstrate the628

superiority of our MMbS over other sampling methods, which629

reflects the effectiveness of exploiting neighbor-consistency630

prior to select potentially misclassified supervoxels into train-631

ing sets.632

C. Semantic Labeling With Higher Order MRF633

At the label inferring stage, all the parameters used in (9)634

and (13) are experientially defined by visual inspection of the635

effect of the labeling results, and their values in our experiment636

settings are listed in Table V. In addition, during the region637

extraction procedure, the categories used in generating termi-638

nation regions on data sets I–III are (road and grass), (ground639

and trees), and (ground), respectively. In addition, the constant640

ρmax is set at 300.641

1) Qualitative and Quantitative Results: To assess the per-642

formance of the proposed higher order MRF on refining the643

initial labeling results obtained by pairwise CRF, we exhibit644

both qualitative and quantitative evaluations on all built data645

sets. As presented in Figs. 7(h), 8(e) and (f), and 9(g) and (h),646

the refined labeling results demonstrate the promising capa-647

bilities of our proposed framework on labeling point clouds.648

Compared to the initial labeling results, a remarkable649

improvement was achieved. This is because the proposed650

higher order MRF can obtain smooth labelings by reducing651

redundant categories in a defined region. As the quanti-652

tative results reported in Tables II–IV, the average pre-653

cision, recall, and F1-measure achieved by our proposed654

framework (AL-Pairwise+LabelCost) further demonstrate the655

proposed higher order MRF which reduces the redundant656

categories can help us to correct some misclassified points.657

In addition, our proposed higher order MRF can effectively658

avoid oversmoothing overlapped objects and preserve over-659

lapped objects. Therefore, the proposed higher order MRF660

performs well in the complex scenarios of overlapped objects.661

As shown in Figs. 7(h) and 8(e), although the tree and662

light poles are overlapped, our proposed higher order MRF663

avoid light poles being misclassified as tree, which shows the664

capabilities to deal with the scenario where objects overlapped.665

However, we find that a very small object may be mislabeled666

as its connected category. As shown in Fig. 7(h), small667

brushwood is oversmoothed and mislabeled as grass by our668

proposed higher order MRF.669

As shown in Fig. 8(f), by considering the long-range con-670

texts, our proposed higher order MRF correctly recognizes the671

moving and stationary vehicles, which shows its capability to672

handle the incompleteness and intraclass variations. However,673

as shown in Fig. 8(e) and (f), there are some tree trunks674

mislabeled as pedestrians; this is because in the initial labeling,675

the accuracy is low, and many points of a tree trunk are mis-676

labeled as a pedestrian. Under these circumstances, the higher677

order MRF cannot rectify the mislabeled points.678

D. Comparative Studies679

To show the superior performance of our proposed frame-680

work in the semantic labeling of mobile LiDAR point681

Fig. 13. Comparative labeling results on different scenes. (a)–(c) Colorized
point clouds. (d)–(f) Ground truth. (g) and (h) Labeling results by applying
3D-PMG+MRF. (i) Labeling results by applying M3N. (j)–(l) Labeling results
by applying our AL-Pairwise+LabelCosts.

TABLE V

PARAMETERS IN THE PROPOSED FRAMEWORK

clouds, the following three approaches were evaluated on data 682

sets I and II for comparison: shape based [41], M3N [10], and 683

3-D-PMG based (3D-PMG+MRF) [21]. The settings of those 684

approaches are the same as [21]. The shape-based approach 685

tries to segment objects out of the point cloud scenes and then 686

uses global features to recognize objects [41]. As shown by 687

the quantitative results in Table II, the poor performance of 688

the shape-based approach demonstrates that overlapping and 689

incomplete objects in these complex scenarios are huge obsta- 690

cles stymieing the success of these methods which depend 691

on segmenting objects out of the whole scene. As shown 692

in Table II, the performance of our AL-Pairwise achieves 693

a lower average F1-measure than that of M3N approach 694

whose average F1-measure is 0.784, because the M3N 695

approach adopts a high-order potential energy term (a robust 696

Potts model [25]) to model relatively long-range interactions 697

among points. In addition, the 3D-PMG+MRF outperforms 698

AL-Pairwise because of the consideration of object intrinsic 699

and contextual properties when conducting label transfer. 700

However, by exploiting the long-range contextual informa- 701

tion, the AL-Pairwise+LabelCost approach, imposing regional 702

label costs constraints on the initial labeling of AL-Pairwise, 703

obtains better results than those of the other methods. Because 704

the AL-Pairwise+LabelCost approach models not only short- 705

range but also long-range contexts, it achieves a smoother 706

labeling than that of 3D-PMG+MRF. As illustrated by the 707

qualitative comparisons in Fig. 13, AL-Pairwise+LabelCosts 708

preserve the vehicle, light poles, and palm trees better than 709

those of 3D-PMG+MRF. 710

To further demonstrate the superiority of our proposed 711

method on data set III, we conduct comparisons with the two 712

following works: [21] and [22]. From Table IV, it is noted that 713

our proposed method achieves the best results on data set III. 714

As illustrated in Table III, the AL-Pairwise outperforms the 715

M3N and 3D-PMG+MRF on the data set II where scenarios 716

are cluttered and more complex than data set I. This is because 717
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TABLE VI

TRAINING TIME ON DIFFERENT APPROACHES (UNITS: HOURS)

TABLE VII

LABELING TIME ON DIFFERENT APPROACHES (UNITS: HOURS)

complex and cluttered scenes cannot be well modeled for718

3D-PMG+MRF, and M3N is not designed for the imbal-719

anced data set. As reflected in Fig. 13(h), 3D-PMG+MRF720

mislabeled wall and vehicles to some extent because of721

the inaccurate color information caused by complex scenes.722

Thus, the AL-Pairwise+LabelCost modeling the higher order723

contexts obtains a more satisfied result [see Fig. 13(k)].724

As reflected in Fig. 13(i), the M3N classified the light pole725

with many false positives and can hardly recognize pedes-726

trians, while our proposed methods can correctly annotate727

pedestrians to some extent [see Fig. 13(l)]. The reason is that728

our sampling method exploits the neighbor-consistent prior to729

reduce the classification errors for the minority categories.730

The proposed framework and comparative studies were731

coded with C++ and executed on a personal computer with732

a single Intel core of 3.30 GHz and a RAM of 16 GB.733

The processing time of the experiments was reported734

in Tables VI and VII. For our proposed framework, the training735

time containing the active learning procedure was approx-736

imate 2.5, 2.1, and 1.9 h, respectively, on three data sets.737

In addition, the labeling time on three data sets was 4,738

2.3 and 2.5 h, respectively. The labeling times of our labeling739

framework are lower than those of shape-based, M3N, and740

3D-PMG+MRF methods. Therefore, our proposed method has741

time–cost advantages.742

From the aforementioned figures and tables, we can con-AQ:3 743

clude that the presented framework can well distinguish the744

object classes from the point cloud of complex urban envi-745

ronments. The long-range contextual information encoded by746

higher order MRF can help us to correct some certain misla-747

beled classes and improves the labeling accuracy. Moreover,748

the proposed active learning method also assists in improving749

the classification accuracy by selecting the valuable samples750

to form a minimal training set.751

E. Sensitivity of Proposed Framework752

Here, we analyze the impact of the weight of regional753

label costs β on the performance of labeling mobile LiDAR754

point clouds. The analysis was performed on data set I.755

As reflected in Fig. 14, the F1-measure changes with the756

Fig. 14. Impact of the weight of regional label costs on semantic labeling
results.

Fig. 15. Qualitative labeling results on two example scenarios with setting
different weights β of regional label costs. (a) and (d) Initial labeling results.
(b) Refined labeling results at β = 20. (c) and (f) Refined labeling results at
β = 60. (e) Refined labeling results at β = 120.

increase in parameter β, and these F1-measures obtained by all 757

these parameters show the improvement of the initial labeling 758

results. Because a larger value of β means more costs imposed 759

on the number of used categories, the F1-measure peak value 760

is reached at a median value β = 60. The large costs may 761

cause oversmooth labeling results, whereas a smaller β means 762

fewer costs imposed on the number of used categories. Small 763

costs may be inadequate to rectify a relatively large quantity 764

of inaccurate labels. To further explain the influence of β, 765

two example labelings given in Fig. 15 are used to illustrate 766

the large and small cost scenarios, respectively. As shown 767

in Fig. 15(b), the configuration of β = 20 in our proposed 768

framework is too small to rectify the inaccurate labels of cycas. 769

As reflected in Fig. 15(e), the configuration of β = 120 in 770

our proposed framework is too big to preserve the accurately 771

labeled objects cycas. The proper value of β = 60 achieves 772

a promising refined labeling results [see Fig. 15(c) and (f)]. 773

Therefore, to make a balance between the aforementioned two 774

scenarios, we set the weight of regional label costs at β = 60. 775

To analysis the impact of number of queried supervoxels 776

on the label refinement, both the initial and refined labeling 777

results were recorded at the following configurations: 100, 300, 778

500, 700, 900, 1100, and 1300. As reflected in Fig. 16, all 779

the curves going up with an increase of queried supervoxels 780

demonstrate the stability of our framework. The curves of 781

AL-Pairwise+LabelCost lie above the curves of AL-Pairwise 782

in both two data sets. This is because our higher order 783
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Fig. 16. Impact of the number of queried supervoxels on the refined labeling
results.

potentials can rectify the mislabeled points to some extent.784

In addition, as the number of supervoxel labels queried785

increases from 900 to 1300, the average F1-measure values of786

AL-Pairwise+LabelCost increase slightly, whereas the aver-787

age F1-measure values of AL-Pairwise increase. This shows788

that if the accuracy of labeling results has reached at a789

high value, the refined results will stay at a high value of790

F1-measure even though the initial results do not have a sig-791

nificant improvement. In our experiments, we set the number792

of queried supervoxels at 1100.793

V. CONCLUSION794

In this paper, we have presented a new framework which795

integrates active learning and higher order MRF for effectively796

conducting semantic labeling of mobile LiDAR point clouds.797

In order to manually annotate the 3-D point cloud data as798

small as possible, we introduce neighbor-consistency prior into799

active learning to select the potentially misclassified samples800

into training sets effectively. To consider more contexts into801

refining the labeling results, a higher order MRF encoding802

label cost terms is used to describe long-range interactions803

among supervoxels in a region. Quantitative evaluations on804

three different point cloud data sets have demonstrated that805

the proposed algorithm achieves average F1-measure of 0.891,806

0.829, and 0.954, respectively. By considering long-range807

contextual information with higher order MRF, improvements808

of average F1-measure over the initial labeling results are809

up to 11.9%, 4.8%, and 8.1%, respectively, on three data810

sets. Comparative studies have also demonstrated that the pro-811

posed framework outperforms other traditional active learning812

methods in creating an optimal training set and other fully813

supervised semantic labeling methods in labeling point clouds.814

In conclusion, the proposed method is feasible and achieves815

satisfied performance in semantic labeling of mobile LiDAR816

point clouds with a small portion of manually annotated817

3-D points.818
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