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Abstract

This paper documents the fact that in options markets, the (percentage) implied volatility

bid-ask spread increases at an increasing rate as the option’s maturity date approaches. To

explain this stylized fact, this paper provides a market microstructure model for the bid-ask

spread in options markets. We first construct a static equilibrium model to illustrate the afo-

rementioned phenomenon where risk averse and competitive option market makers quote bid

and ask prices to minimize their inventory risk in an incomplete market with both directional

and volatility risk. We extend this model to multi-periods and show that the same phenomenon

occurs there as well. Two new implications are generated: a volatility level effect and a volatility

variance effect. These implications are empirically tested, and the empirical results confirm the

model’s validity. Finally, we document the importance of de-trending the maturity effect by

showing that the de-trended percentage volatility spread explains future jump intensities better

than the original percentage volatility spread.
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1 Introduction

This paper documents an intriguing pattern observed in option markets, called the maturity effect.

First noticed in the foreign currency (FX) options market, e.g, Chong, Ding and Tan (2003), the

maturity effect is when the (percentage) bid-ask implied volatility spreads increase at an increasing

rate as an option’s maturity approaches. Using daily closing best quotes on S&P Index options over

2001-2010, we confirm the existence of the maturity effect in stock index options.

Our paper makes two contributions to the literature. Although Chong, Ding and Tan (2003)

observe the maturity effect for FX options, they compute Black-Scholes-Merton implied volatilities.

Since it is well known that the Black-Scholes-Merton model is rejected when pricing FX options, it

is an open question whether the observed maturity effect is due to model misspecification. Our first

contribution is to show, using model-free implied volatilities, that this is not the case.

Our second contribution is to construct a multi-period equilibrium model to explain the maturity

effect. Our model has risk averse and competitive option market makers (hereafter, referred to as

MMs) quoting bid and ask prices to minimize their inventory risk in an incomplete market with both

directional and volatility risk. It is shown that, although inventory risk decreases as the option’s

maturity date approaches, an increased risk premium (in term of implied volatility) is needed to

compensate the MMs for bearing the unhedgeable risk. This increased risk premium for both bid

and ask prices results in the widening of an option’s (percentage) bid-ask implied volatility spread

as the maturity date approaches.

Two new implications of the model are generated, which are currently untested. The first is that

an increase in the level of the underlying’s volatility decreases the equilibrium percentage bid-ask

implied volatility spread. The second is that, holding the level of the volatility constant, an increase

in the volatility’s variance increases the equilibrium percentage bid-ask implied volatility spread.

Using the same data set employed to document the maturity effect, these additional implications

are tested herein. The empirical evidence generally confirms these implications and, thus, the model’s

validity.

Our paper adds to the market microstructure of option markets literature, which includes among

others, Muravyev, Pearson and Broussard (2012), Hsieh, Lee and Yuan (2008), Holowczak, Simaan,

and Wu (2007), Chakravarty, Huseying, and Mayhew (2004), Easley, O’Hara and Srinivas (1998),

and Pan and Poteshman (2006). In contrast to these papers, which focus on the information content

of option trading, our paper focuses on the unhedgeable risks that MMs face in incomplete markets.

Additionally, different from Garleanu, Pedersen, and Poteshman (2009) who model the demand side

impact on prices, we focus on the supply side of option liquidity providers. Our paper also differs

from Chen, Joslin and Ni (2016) who use CRRA utility functions in a complete market to model the
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optimal consumption choice of investors and dealers. Although they incorporate supply side shocks

into the dealers’ utility function, risk premium in their model are based on aggregate demands. In

contrast, we study an incomplete market where market makers trade-off the expected hedging and

inventory holding risks to determine the equilibrium risk premium. Ours is solely a supply side

model.

This paper is organized as follows. In section 2 the maturity effect is documented. Section 3

presents the equilibrium model. Next, in section 4, we extend the model to two-periods and then

multiple-periods. Section 5 presents the data description and empirical evidence. Finally section 6

concludes.

2 The Maturity Effect

This section presents the maturity effect, which is when the (percentage) bid-ask implied volatility

spreads increase at an increasing rate as an option’s maturity approaches. This pattern was first

observed in Chong, Ding and Tan (2003) using Black-Scholes-Merton implied volatilities. Given the

Black-Scholes-Merton model is rejected using historical data, it is an open question whether this

pattern is a result of model misspecification. Using model free implied volatilities, we show that this

is not the case. The existence of the maturity effect motivates the model formulated in the next

section to explain the economics underlying this phenomena.

To avoid model misspecification in the computation of implied volatilities, we compute model free

implied volatilities (IMV) first proposed by Carr and Madan (1998). Carr and Madan’s approach

uses only out-of-the-money (OTM) call and put options. A slight modification of their approach is

used by the CBOE to compute the VIX index. This paper employs a method similar to the CBOE’s,

which we call the Carr Madan implied volatility (CM IMV). When constructing the VIX index, the

CBOE averages the first and second nearest term contracts.1 However, here we only investigate the

nearest month contract because we are studying the change in volatility spreads over a short time

period. We also compute the Black-Scholes-Merton implied volatility (BSM-IMV) for ATM call and

put options. We investigate options written on the S&P 500 index from January 2, 2001 to April

18, 2010. Our sample consists of 112 nearest term contracts. For each contract, the trading days

range from 12 to 24 days.2

In Figure 1, we graph the CM IMV, BSM-IMV, and the daily realized volatility (RV) from

01/02/2005 to 12/31/2009. An IMV is an estimate of the expected volatility over the option’s
1Because the calculation of the CBOE VIX index is a weight-averaged implied volatility of the two nearest term

contracts, the VIX index is an expected volatility for the next 30 days.
2In our sample, the contract which expires on January 20, 2001 does not include the records before 2001 so that

this contract only has 12 trading days.
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remaining life. We use 20-days realized volatility for comparison.3 We calculate the BSM-IMV for

call and put options separately and average the IMV of the four options with strikes closest to the

spot price to get the daily BSM-IMV for at-the-money (ATM) calls and BSM-IMV ATM puts. As

seen, all the volatility measures are highly correlated reaching a maximum, above 80%, during the

2008 financial crisis. The related descriptive statistics are listed in Table 1 and discussed in a later

section.

Figures 2 and 3 document the maturity effect. In each figure, there are 3 charts representing

spreads of different volatility measures. The top chart shows the CM IMV spread, the middle and

the bottom charts plot the spreads of BSM-IMV of ATM call options and of BSM-IMV ATM put

options, respectively. Figure 2 graphs the absolute volatility spreads, while Figure 3 graphs the

percentage volatility spreads, which divides the absolute volatility spread by the realized volatility

of the corresponding contract period. The vertical dashed lines represent expiration dates, and

the dots denote the volatility spreads of 40 consecutive nearest-term contracts from 01/02/2007 to

04/15/2010. Finally, the RV is represented by a bold line for a comparison.

As shown in Figure 2, the implied volatility bid-ask spreads for all IMV measures increase at an

increasing rate as the option’s maturity approaches. The CM-IMV spread is relatively higher than

the BSM-IMV spread, and all the absolute volatility spreads start at approximately 1 ∼ 2% and

increase to more than 4% at a few days before expiration.4 As seen, the maturity effect occurs for

every contract and for the different volatility measures. The range of the absolute volatility spread

is more volatile and increases as the realized volatility increases. Figure 3 contains the percentage

implied volatility bid-ask spreads and shows that, in contrast to absolute volatility spreads, the range

of the percentage volatility spread is similar over different contracts but larger. The percentage

volatility spread starts from about 5 ∼ 7% at a month remaining before maturity and increases to

over 20%. Similar to the volatility spreads, the percentage spreads increase at an increasing rate.

The maturity effect occurs for every contract.

In markets, the dollar spreads paid for a transaction are usually smaller if the transaction prices

are lower. Due to discreteness in quoted prices (the tick size), when transaction prices become very

small, a minimum discrete dollar bid-ask spread implies that the percentage bid-ask spread increases.

Although these effects exist in our option prices, they do not explain the patterns observed in figures

2 and 3 because the volatility measures are independent of the price level. In contrast, however, if the

quoted spreads are always at the minimum discrete dollar bid-ask, i.e., 0.05,5 then the transformed
3We use the definition of RV given by Andersen, Bollerslev, Diebold and Ebens (2001).
4Chong, Ding and Tan (2003) investigate at-the-money currency options. They show that the volatility spread

starts at 2 ∼ 6% for options with a 1 year maturity, increases gradually until the last month, increases rapidly in the
last month, and finally reaches 8 ∼ 16%.

5S&P options are quoted on a point basis, and the minimum tick is 0.05 for option prices less than 3 and 0.1 for
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volatility spreads will increase as a contract approaches its expiration. Figure 4 shows the distribution

of the quoted spreads in ticks. There are less than 5 percent of the quotes occurring at the minimum

tick. Therefore, the observed pattern can not be attributed to most quotes being at the minimum

discrete dollar bid-ask spread.

3 The One-Period Model

This section presents a static model of an options market equilibrium where prices are determined

by competitive MMs optimally hedging their inventory risk contingent on the execution of a trade.

Markets are assumed to be incomplete because the underlying stock exhibits both directional and

volatility risk. MMs, being risk averse, minimize inventory risk by delta hedging, but delta hedging

can not eliminate both directional and volatility risks. Equilibrium spreads, therefore, necessarily

include compensation (risk premium) for the unhedged risk. We show that this compensation, in

conjunction with the time decay embedded in the option’s price, generates the maturity effect in the

implied volatility bid/ask spreads as an option approaches maturity.

It should be noted that the volatility risk in our incomplete market model implies that the Black-

Scholes-Merton (BSM) model is invalid and that vega hedging will not remove an option’s volatility

risk because the BSM pricing formula does not reflect the sensitivity of the option’s value to changes

in volatility (see Chatterjea and Jarrow [27] for an elaboration of this comment).

3.1 The Economy

This section describes the economy. Trading in the economy are a riskless asset, a stock, and a

call option on the stock with strike price K and maturity time T . Let the stock price at time 0

be denoted P0, the stock’s time 0 volatility σ0, and the annualized time to maturity τ , measuring

time length from 0 to T . We let P0 > 0 and σ0 = σ > 0. We assume two volatility states, so the

stock’s volatility realization at time T is denoted στ ∈ {σL, σH},6 and the stock price can increase

or decrease at time T for each volatility level, i.e.

PT = P0e
{µτ+στWτ},

where µ is the expected return per unit time, and Wτ is Wiener process. This assumption states

that the MMs believe ln[E(PTP0
)] is distributed N(µL, σL) with probability 1 − φ and N(µH , σH)

prices larger than 10.
6For simplicity of the derivation, we assume σH = σ ·H and σL = σ · L for a fixed σ > 0 where L < 1 < H, see

sections 3.6 and 3.7.
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with the probability φ. These are the MM’s subjective probabilities.

The collection of competitive and homogeneous MMs quote bid and ask prices for the traded

option. Let the option’s equilibrium ask price at time 0 be denoted C0(a) and the bid price be

denoted C0(b). The call option’s payoff at time T is

CT (στ ) = max[PT (στ )−K, 0]. (1)

3.2 Arbitrage Pricing

We assume that the stock and option market are arbitrage-free. The first fundamental theorem of

asset pricing implies that there exist risk-neutral probabilities such that

1. the stock price equals its expected (discounted) value under the risk-neutral probabilities, i.e.

P0 = e−rτ

(1− Φ)
∞∫
−∞

Pt · f(Pt, σL, τ)dPt + Φ
∞∫
−∞

Pt · f(Pt, σH , τ)dPt


= e−rτ {(1− Φ)EL(Pt) + ΦEH(Pt)} , (2)

where Φ is the risk-neutral probability that the volatility is (σH), f(Pt, σL, τ) is the conditional

risk-neutral probability density function of the stock price given the volatility is (σL), and

f(Pt, σH , τ) is the conditional risk-neutral probability density function given the volatility is

(σH); and

2. the ask and bid call option prices equal their expected (discounted) values under the risk-

neutral probabilities, i.e.

C0(s) = e−rτ {(1− Φs)EL [max (PT −K, 0)] + ΦsEH [max (PT −K, 0)]}

= e−rτ {(1− Φs)EL [CT ] + ΦsEH [CT ]} , (3)

where Φs is the ask or the bid price (s ∈ {a, b}) risk-neutral probability that the volatility is

(σH).

We note that the conditional risk-neutral probabilities {f(σL, τ), f(σH , τ)} are unique because, given

the volatility, the market is complete. Since the unconditional market is incomplete, however, the

risk-neutral probabilities {Φ,Φa,Φb} are non-unique and not determined by arbitrage arguments

alone.7 Indeed, any call price between the quotes satisfying the no-arbitrage conditions corresponds
7This is due to the second fundamental theorem of asset pricing.
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to an acceptable Φ. To determine the unique arbitrage-free ask/bid call option prices, an equilibrium

model is needed. Such a model is given in the next section.

To facilitate a solution, we assume that conditional upon the volatility’s realization {σL, σH}, the

MMs’ subjective probabilities satisfy the following condition, called the independence assumption:

EL(PT
P0

)e−rτ = 1 and EH(PT
P0

)e−rτ = 1. (4)

This condition essentially states that the expected stock price doesn’t depend on the volatility,

and that the expected return from holding the underlying asset equals the risk free rate.8 This

assumption best describes an economy where traders’ risk premium are independent of the level

of an asset’s volatility. In the Appendix, we show that after we impose this assumption (4), both

EL [max (PT −K, 0)] and EH [max (PT −K, 0)] satisfy the Black-Scholes-Merton formula.

3.3 The Market Maker’s Problem

Because a mean-variance objective provides tractable results, many papers employ it to study asset

allocation and hedging in an incomplete market. For example, in futures and forward markets, Lioui

and Poncet (2000) and In and Kim (2006) use this objective to study optimal hedging policy, while

Brooks, Henry, and Persand (2002) use it to investigate an interest rate market with stochastic

volatility. In option markets, it has been used by Bakshi, Cao, and Chen (1997). Viswanathan

and Wang (2002) use it to model the MMs’ quoting behavior for limit order books. Last, Basak

and Chabakauri (2010, 2012) study both dynamic portfolio choice and dynamic hedging using a

minimum-variance objective function. Following this literature, we use a mean-variance objective

function to study a MM’s optimal hedging strategy. We first do this for a one-period model to

illustrate the results in the simplest setting, and then we generalize to a two-period and a multi-

period model.

As such, we assume that the options market is populated by a collection of homogeneous MMs

with mean-variance utility functions, who delta hedge their option positions using the underlying

stock to minimize both directional and volatility risk. They behave in this manner because they

realize they are uninformed traders. Given markets are incomplete, the delta hedge cannot remove

all of the position’s risk.

MMs quote bid and ask option prices to compensate themselves for the inventory risk they bear

contingent on the transaction. To simplify the analysis, since the MMs can hedge the option’s

8The justification for this statement is the following: EL(PT
P0

)e−rτ = eµLτ+
σ2
L
τ

2 −rτ = 1 ⇒ µLτ + σ2
Lτ

2 = rτ and

EH(PT
P0

)e−rτ = eµHτ+
σ2
H
τ

2 −rτ = 1⇒ µHτ + σ2
Hτ

2 = rτ .
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directional risk given the volatility, we assume that their conditional beliefs equal the risk-neutral

beliefs, {f(σL, τ), f(σH , τ)}. Combined with the independence assumption expression (4), this im-

plies that the MMs use these risk-neutral probabilities to price “directional risk.” We let the MM’s

unconditional probability beliefs over the volatility’s realizations (σL, σH) be denoted by (1− φ, φ).

These beliefs differ from the corresponding risk-neutral probabilities Φ given earlier.

The MM’s provide liquidity to investors. Given a price, they quote option quantities to maximize

their expected utility, i.e. they choose the trade quantity to solve the following optimization problem:

max
q, ∆a

(
qE(Wa)− 1

γ
V ar(qWa)− cq

)
where (5)

Wa(σT ) = C0(a)erτ − CT (σT ) + ∆a [PT (σT )− P0e
rτ ]

is the profit from the delta hedged option portfolio at time T for σT ∈ {σL, σH}, c is a transaction

or opportunity cost for a trade, γ > 0 is a risk aversion coefficient, q is the quantity quoted, and ∆a

is the number of shares held in the underlying asset (the delta).9 Note that C0(a) − ∆aP0 is the

amount invested in the portfolio at time 0.

For simplicity, our discussion focuses on the maximization problem of writing a call option and

choosing the ask price. The problem of buying a call and determining the bid price is analogous,

and the results are reported below. All derivations are given in Appendix B.

Because of expression (4) and the fact that the MM’s conditional beliefs equal the risk-neutral

conditional probabilities, the stock’s expected payoff is zero. This implies that the MM focuses on

minimizing volatility risk. In this regard, one can show that the MM’s expected payoff E(Wa) is

the option’s selling price minus the expected fair value of the option conditional upon knowledge of

the volatility, i.e.

E(Wa) = C0(a)erτ − φEH [CT ]− (1− φ)EL [CT ] where (6)

EH [CT ] ≡
∞∫
−∞

max (Pt −K, 0) · f(Pt, σH , τ)dPt, and

EL [CT ] ≡
∞∫
−∞

max (Pt −K, 0) · f(Pt, σL, τ)dPt.

The key insight here is that the MM’s expected profit does not depend on the shares held in the

underlying stock.
9Constructing the optimization problem for the bid price is analogous to the ask price, and the portfolio’s profit

at the maturity date is
Wb(σT ) = −C0(b)erτ + CT (σT ) + ∆b [PT (σT )− P0e

rτ ] .
The optimization gives the sign for ∆b. The expected profit from buying options is not the same as writing options.

The expected profit for writing is C0(a)erτ − φEH [CT ] − (1 − φ)EL [CT ] and for buying it is φEH [CT ] + (1 −
φ)EL [CT ]− C0(b)erτ .
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The optimal solution for writing call options satisfies the following first order conditions.

E(Wa)− 2q
γ V ar(Wa)− c = 0

∂V ar(Wa)
∂∆a

= 0
(7)

where

V ar(Wa) = φV arH [Wa] + (1− φ)V arL [Wa] (8)

+ φ(1− φ)(EL [CT ]− EH [CT ])2

The solution is
q∗ = γ{C0(a)−φEH [CT ]−(1−φ)EL[CT ]−c}

2V ar(Wa)

if C0(a) > φEH [CT ] + (1− φ)EL [CT ] + c

q∗ = 0

if C0(a) ≤ φEH [CT ] + (1− φ)EL [CT ] + c

(9)

Moreover, the optimal delta ∆∗a is determined independently of q∗ because the expected return

from holding the stock is zero. Therefore, the stock holdings only affect the portfolio’s variance.

The optimal delta positions are therefore

∆∗a = (1−φ)CovL[PT ,CT ]+φCovH [PT ,CT ]
(1−φ)V arL(PT )+φV arH(PT ) and (10)

∆∗b = − (1−φ)CovL[PT ,CT ]+φCovH [PT ,CT ]
(1−φ)V arL(PT )+φV arH(PT ) (11)

where ∆∗a and ∆∗b are the optimal delta hedging positions for writing and buying a call option,

respectively. The derivation is shown in Appendix B-2. Intuitively, and as shown in the appendix,

∆∗a (∆∗b) is approximately 0.5 (−0.5) for at-the-money call options, and that ∆∗a (∆∗b) approaches 1

(−1) when the strike price approaches 0.

3.4 Equilibrium under Perfect Competition

We assume that there are N MMs quoting option prices on a competitive exchange, subject to

exchange rules. We assume that the exchange rules require that a MM’s quotes must be for Q

shares. This quoting quantity is set for investor convenience. This fixed quoting quantity is not

the same as the actual market demands nor the equilibrium trading volume. Market demand and

trading volume are determined by the interaction among the MMs and the investors, which is

formally outside the structure of the model.
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The competitive market assumption is captured by the condition that, in equilibrium, the market

marker’s optimal utility equals her reservation utility level, which is assumed to be zero. Combined,

these two conditions imply that the equilibrium call option’s ask price C0(a) satisfies

E(Wa)− Q

γ
V ar(Wa)− c = 0, i.e. (12)

which is

C0(a)erτ = φEH [CT ] + (1− φ)EL [CT ] + Q

γ
V ar(Wa) + c

= E [CT ] + Q

γ
V ar(Wa) + c (13)

Similarly, the equilibrium bid price C0(b) is

E(Wb)−
Q

γ
V ar(Wb)− c = 0, i.e. (14)

C0(b)erτ = E [CT ]− Q

γ
V ar(Wb)− c (15)

Expression (13) shows that the equilibrium ask price is composed of three parts: (1) the option’s

expected price, E [CT ], (2) the required risk premium for inventory risk, Q
γ V ar(Wa), and (3) the

compensation for transaction costs, c. A similar interpretation holds for the option’s equilibrium

bid price.10 The dollar spread of the quoted prices is Q
γ V ar(Wa)+Q

γ V ar(Wb) + 2c.

3.5 Risk-Neutral Probabilities

This section characterizes the unique risk-neutral ask and bid probabilities determined by the options

market equilibrium. In this regard, the ask price risk-neutral probability, Φa, is determined as the

solution to

C0(a)erτ = φEH [CT ] + (1− φ)EL [CT ] + Q

γ
V ar(Wa) + c (16)

= E∗ [CT] = ΦaEH [CT ] + (1− Φa)EL [CT ] (17)
10This equilibrium solution is common for agents with mean-variance utility functions. In Viswanathan and Wang

(2006), their strategic bid equilibrium for the limit order book in a stock market is pi(x) = v− σ2
v
γ

[
θ+(N−1)x
N(1+θ)−1

]
where

p is the price for stock i, v is the mean asset value, σ2
v is the variance of the asset value, γ is the risk attitude, N is

the number of market makers, x is the submitted order, and θ is a parameter indicating the subjective belief for the
order arrival intensity.
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which is

Φa =

(
φEH [CT ] + (1− φ)EL [CT ] + Q

γ V ar(Wa) + c
)
− EL [CT ]

EH [CT ]− EL [CT ]

= φ+ 1
EH [CT ]− EL [CT ]

[
Q

γ
V ar(Wa) + c

]
(18)

where E∗ [·] corresponds to expectation under the risk-neutral probability measure.

A similar expression holds for the bid price risk-neutral probability as well. Obviously, the risk

neutral probability Φa is higher than the subjective probability because the option seller requires a

risk premium for being unhedged. The more volatile the incomplete hedging outcomes, the larger

Φa is relative to φ. This result is consistent with the variance risk premium in Carr and Wu (2008).

It is also consistent with Coval and Shumway (2001), Bakshi and Kapadia (2003), and Broadie,

Chernov and Johannes (2009) who show that an option’s purchase price includes a risk premium

and that a long option position has negative profits (even after delta hedging).

3.6 Maturity Dependence

The purpose of this section is to obtain comparative statics relating to equilibrium ask/bid option
prices’ implied volatilities and the option’s maturity τ . As noted before, given the independence
assumption 4, it is shown in Appendix B-1 that the the formula of EH [CT ] and EL [CT ] is the
Black-Scholes-Merton model. Next, define the ask and bid implied volatilities, denoted A · σ and
B · σ for constants A,B > 0, respectively as the solutions to the following equations:

C0(a) = N

(
ln(P0

K
) + rτ + (Aσ)2τ/2

Aσ
√
τ

)
−K · e−rτ ·N(

ln(P0
K

) + rτ − (Aσ)2τ/2
Aσ
√
τ

)

C0(b) = N

(
ln(P0

K
) + rτ + (Bσ)2τ/2

Bσ
√
τ

)
−K · e−rτ ·N(

ln(P0
K

) + rτ − (Bσ)2τ/2
Bσ
√
τ

) (19)

where C0(a) and C0(b) are the equilibrium prices. It can also be shown that the unconditional

variance of the position is11

V ar(Wa) = φV arH [Wa] + (1− φ)V arL [Wa]

+φ(1− φ)(EL [CT ]− EH [CT ])2
(20)

where V arH and V arL denote the variance of the portfolio given the volatility. Substitution yields12

V arH [Wa] = V arH {C0(a)erτ − CT + ∆a [PT − P0e
rτ ]}

= C +A1 ·N(2σH
√
τ + zH) +A2 ·N(σH

√
τ + zH) +A3 ·N(zH)

(21)

11The derivation is provided in Appendix B-1.
12In the proposition, we assume that σH = σ ·H and σL = σ · L to simplify the derivation.
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where 

C = P 2
0 ∆2

ae
2rτ
[
eσ

2H2τ − 1
]

A1 = P 2
0 e

2rτ+σ2H2τ (1− 2∆a)

A2 = −P 2
0 e

2rτN(σH
√
τ + zH)− 2P0Ke

rτN(−zH) + 2∆aP0e
rτ (K + P0e

rτ )

A3 = K2N(−zH)− 2∆aP0Ke
rτ

zH =
ln(K)−EH(PTP0

)
σH
√
τ

= ln(K)−erτ
σH
√
τ

.

3.7 Equilibrium Implications

This section shows that the previous model is consistent with the observed call option bid/ask

implied volatility spread increasing at an increasing rate as the time to maturity approaches. In

addition, new testable implications of our model are generated. These implications follow from

various partial derivatives of the equilibrium bid and ask implied volatilities using expressions (6),

(12) and (21).

Proposition 1 (The Maturity Effect)

For small τ , the bid-ask implied volatility spread of ATM options increases as maturity decreases

(∂A∂τ < 0, ∂B∂τ > 0 and ∂(A−B)
∂τ < 0).

The proposition confirms the maturity effect documented in section 2. Figure 5 illustrates the

intuition behind this result. Point E1 gives the first equilibrium where the MMs’ expected profit,

E(Wa(E1)) valued at A1σ, equals the required risk premium. As the maturity date approaches,

expected profits E(Wa) decrease to a level where the modified risk premium increases. To continue

quoting, MMs need to increase the selling volatility to A2σ so that E(Wa(E2)) increases to reflect

the increased risk premium at the second equilibrium point E2. As a result, as the time to maturity

approaches, implied volatilities increase.

Two considerations explain our result. First, the volatility decays proportionately to the square

root of the time remaining to maturity, which implies a non-linear rate of decay in the option’s price.

Second, MMs have mean-variance utility functions, implying a linear risk premium. Combining these

two effects, expression (22) shows the relation between the time decay of the expected profits and

the time decay of the risk premium charged by the market markers.

∂E(Wa)
∂τ

−Q
γ

∂V ar(Wa)
∂τ

= Decay of Extra Profits + Decay of Risk Premium (22)

First, we compute the time decay of the extra profits:
∂E(Wa)
∂τ = Kσ

2
√
τ

[n(zA)A− φ · n(zH)H − (1− φ) · n(zL)L]

+rP0e
rτ [N(zA + σA

√
τ)− φ ·N(zH + σH

√
τ)− (1− φ) ·N(zL + σL

√
τ)] .

12



To compute ∂V ar(Wa)
∂τ , an intermediate calculation is

∂V arH
∂τ = D +B1N(2σH

√
τ + zH) +B2N(σH

√
τ + zH) +B3N(zH)

+
[
K2N(zH)−KP0e

rτN(σH
√
τ + zH)−∆aK

2 + ∆aKP0e
rτ
]
σH√
τ

n(zH)

where

D = P 2
0 ∆2

a

[
(2r + σ2H2)e2rτ+σ2H2τ − 2re2rτ

]
B1 = P 2

0 (2r + σ2H2)(1− 2∆a)e2rτ+σ2H2τ

B2 = −2rP 2
0 e

2rτN(σH
√
τ + zH)− 2rKP0e

rτN(−zH) + 2r∆aKP0e
rτ + 4r∆aP

2
0 e

2rτ

B3 = −2r∆aKP0e
rτ .

Finally, the last term in the unconditional variance (20) is

∂(EH−EL)2

∂τ

= [EH{CT } − EL{CT }]× ∂(EH{CT }−EL{CT })
∂τ

= [EH{CT } − EL{CT }]×
[
Kσ
2
√
τ

(n(ZH)H − n(ZL)L) + rP0e
rτ (N(zH + σH

√
τ)−N(zL + σL

√
τ))
]
.

For ATM call options, i.e. K + P0e
rτ , we have

n(zH) = n(zL) = n(zA)→ 1√
2π and N(zH) = N(zL) = N(zA)→ 1

2 , when τ → 0

This generates the limiting behavior of ∂E(Wa)
∂τ and ∂V ar(Wa)

∂τ as follows.

∂E(Wa)
∂τ = Kσ√

2πτ (A− φH − (1− φ)L) + o( 1√
τ

) (23)

∂V ar(Wa)
∂τ

= φP 2
0 σ

2H2(∆2
a −∆a + 1

2 −
1

2π ) + (1− φ)P 2
0 σ

2L2(∆2
a −∆a + 1

2 −
1

2π )

+φ(1− φ)K
2σ2(H−L)2

4π + o(1)

(24)

As τ → 0, expression (23) approaches positive infinity, while expression (24) approaches a con-

stant, which implies that ∂A
∂τ < 0.13 Our next result proves that the maturity effect increases and

at an increasing rate as the maturity date approaches.

Proposition 2 (The Increasing Rate of the Maturity Effect)

For small τ , the bid-ask implied volatility spread of ATM options increases at an increasing rate

as the maturity date approaches (∂
2A
∂τ2 > 0, ∂

2B
∂τ2 < 0 and ∂2(A−B)

∂τ2 > 0).
13The derivation is in Appendix B-3.
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We first show the following inequality.

∂2A

∂τ2 = −
∂
[
∂f
∂τ /

∂f
∂A

]
∂τ

=
∂f
∂τ

∂2f
∂A∂τ −

∂2f
∂τ2

∂f
∂A(

∂f
∂A

)2 > 0

where f(A, σ, L,H, τ ;φ) = E(Wa)− Q
γ
V ar(Wa)−c = 0. Consider the numerator. Using the options pricing

formula at (19), we have

∂f

∂A
=Kσ

√
τ · n(zA) > 0

∂2f

∂A∂τ
=Kσ

√
τ · n(zA)

[
1
2τ − zA ×

∂zA
∂τ

]

For ATM call options, we have

∂2E(Wa)
∂τ2 = −Kσ

2
√

2πτ3
[A− φH − (1− φ)L] + o( 1√

τ3
) (25)

∂V ar(Wa)
∂τ = O(1) (26)

∂2f
∂A∂τ = Kσ·n(zA)

2
√
τ

+ o( 1√
τ

). (27)

As τ → 0, (25) becomes negative, expression (26) approaches a positive constant, and so ∂2f
∂τ2

is negative. Also, as τ → 0, expression (27) becomes positive. Therefore, as time approaches the

maturity date, the ask volatility increases at an increasing rate.

The previous two results show that our model is able to generate the patterns observed in section

2. We now provide some new testable implications of our model.

Proposition 3 (The Volatility Level Effect)

For small τ , the bid-ask implied volatility spread of ATM options decreases as the underlying’s

volatility level σ increases (∂A∂σ < 0, ∂B∂σ > 0 and ∂(A−B)
∂σ < 0).

To prove this result, we need to show the following inequality.

∂A

∂σ
= −

∂f
∂σ
∂f
∂A

< 0

Again, we have shown that ∂f
∂A = Kσ

√
τ · n(zA) > 0; therefore, we only need to determine the

sign of ∂f
∂σ = ∂E(Wa)

∂σ − Q
γ
∂V ar(Wa)

∂σ .

14



For ∂E(Wa)
∂σ , we have

∂E(Wa)
∂σ

= K
[
n(zA)A

√
τ − φ · n(zH)H

√
τ − (1− φ) · n(zL)L

√
τ
]
. (28)

For ∂V ar(Wa)
∂σ , we first calculate ∂V arH

∂σ .

∂V arH
∂σ = 2P 2

0 ∆2
aH

2τσe2rτ+σ2H2τ + 2(1− 2∆a)P 2
0H

2τσe2rτ+σ2H2τN(2σH
√
τ + zH)

+2
[
K2N(zH)−KP0e

rτN(σH
√
τ + zH)−∆aK

2 + ∆aKP0e
rτ
]
H
√
τ · n(zH)

We also need to calculate ∂(EH−EL)2

∂σ .

∂(EH−EL)2

∂σ = [EH{CT } − EL{CT }]× ∂(EH{CT }−EL{CT })
∂σ

= [EH{CT } − EL{CT }]×K [n(zH)H
√
τ − n(zL)L

√
τ ]

For ATM call options, i.e. K + P0e
rτ , we have

n(zH) = n(zL) = n(zA)→ 1√
2π

and N(zH) = N(zL) = N(zA)→ 1
2 , when τ → 0

The limiting behavior (28) and ∂V ar(Wa)
∂σ is as follows:

∂E(Wa)
∂σ = K

√
τ√

2π (A− φH − (1− φ)L) + o(
√
τ)˜O(

√
τ) and ∂V ar(Wa)

∂σ = O(τ)

As τ → 0, (28) dominates ∂V ar(Wa)
∂σ . Therefore, ∂f∂σ > 0 as the maturity date approaches, which

implies that ∂A
∂σ < 0.

To confirm this result in market prices, we average the percentage implied volatility bid-ask

spread using the different measures for each option contract and plot the average percentage spreads

in Figure 6. The bold line denotes the realized volatility during the contract period, while the dashed

line represents the averaged percentage volatility of CM-IMV, BSM-IMV ATM call and put options,

respectively in the top, middle and bottom charts. As seen in the sample period from 01/02/2007

to 04/15/2010, when RV is near its maximum, the BSM-IMV spreads are at their lowest levels. The

realized volatility are lower at the beginning and the end of this sample period, where it can be

observed that the locally lowest percentage spreads are relatively higher. This documents a negative

relationship between the percentage implied volatility bid-ask spread and the level of the realized

volatility. This confirms the model’s implication that MMs do not increase the implied volatility

bid-ask spread proportional to an increase in the level of the volatility.

Next, we study the relation between the percentage implied volatility bid-ask spread and the

stochastic volatility’s variance. We define the variance of the volatility as

V ar(v) = φ(σH)2τ + (1− φ)(σL)2τ − E(v)2 where (29)
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E(v) = φσH
√
τ + (1− φ)σL

√
τ and v ∈ {σL, σH}.

It is easy to show that changing the parameters {σ, L,H}, changes the variance of the volatility:

∂V ar(v)
∂H = 2φ(1− φ)σ2τ(H − L) > 0,

∂V ar(v)
∂L = 2φ(1− φ)σ2τ(L−H) < 0,

∂V ar(v)
∂σ = 2στφ(1− φ)(L−H)2 > 0.

As seen, the variance of the volatility increases as the largest volatility level increases or the

lowest volatility level declines. Additionally, an increase in the volatility level also increases the

variance of the volatility.14 Given these insights, we can prove the following proposition.

Proposition 4 (The Variance of the Volatility Effect)

For small τ , an increase in the variance of the volatility due to increasing H and/or decreasing L

results in a larger implied bid-ask volatility spread (∂(A−B)
∂H > 0, ∂(A−B)

∂L < 0). If (H,L) move in the

same direction and with the same magnitude, the volatility spread and volatility uncertainty remain

unchanged (∂(A−B)
∂H + ∂(A−B)

∂L = 0). An increase in the variance of the volatility due to an increase

in the volatility level σ results in a lower percentage implied volatility bid-ask spread (∂(A−B)
∂σ < 0).

Proposition 4 states that a change in the implied volatility bid-ask spread is positively correlated

with the variance of the stochastic volatility, after controlling for the volatility’s level (due to ∆H and

∆L). However, it also implies that an increase (decrease) in the volatility’s variance does not always

imply an increase (decrease) in the implied volatility bid-ask spread due to a changing volatility

level ∆σ, which is the reason to control for the volatility’s level in any test of proposition 4.

4 The Multiple-Period Model

In this section we extend the one-period model to a multiple-period model. We show the multiple-

period models generate similar patterns in option ask/bid implied volatility spreads as obtained in

the single period model.

4.1 Two-Periods

Here we let X1 and X2 denote the stock’s log price return at time 1 and time 2, respectively where Xt

follows a Bernoulli-type random normal distribution. That is, for each period, Xt˜N(µt, Vt) and with

probability φ, (µt, Vt) = (µH∆τ, σ2
H∆τ) and with probability (1−φ), (µt, Vt) = (µL∆τ, σ2

L∆τ). ∆τ is
14Here we do not discuss volatility uncertainty over φ, because it is similar to the case where H and L shift in

opposite directions.
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the length of each time period. Because our independence assumption implies µH∆τ+ σ2
H∆τ
2 −r∆τ =

0 and µL∆τ + σ2
L∆τ
2 − r∆τ = 0, the amount of stock held in the hedged portfolio does not affect the

portfolio’s return but only its variance. Moreover, hedging doesn’t affect the expected value of the

option. Consequently, the option’s equilibrium price at each time t can be calculated directly from

the conditional risk neutral probabilities, allowing us to focus on volatility risk.

Given the independence assumption (4), mean-variance optimization reduces to the variance

minimization problem

Min
∆0,∆1

V ar0[Wa,2]

where Wa,2 denotes the value of portfolio containing a written call option which expires at period

2. The total variance of a dynamic hedge given Hamilton-Jacobi-Bellman (HJB) equation for our

discrete-time problem is

V ar0[Wa,2] = E0 [V ar0 (C1,2 −∆0P1) + V ar1 (C2,2 −∆1P2)] , (30)

where C1,2 is the ”fair value” at time 1 of a option expiring at time 2 and C2,2 = (P2 − K)+.

This equation shows that under minimum-variance criteria the total variance of hedging error is the

sum of expected hedging error variance of each period. In general, solving a variance minimization

problem involves the issue of time-inconsistency of dynamic hedges; i.e., the t+ 1 hedging strategy

will change the evaluation measure at t. In simpler terms, the future hedging strategy changes the

equilibrium option prices today. Basak and Chabakarui (2012) gives a sufficient condition, which

is the same as our assumption (4), which eliminates this time-inconsistency problem. They also

provide the general solutions for the hedge ratios ∆t at each time t in a dynamic hedging setting,15

which are

∆∗t = Covt(Ct+1,Pt+1)
V art(Pt+1) .

As given EH(PTP0
) = EL(PTP0

) = er∆τ , algebra yields16

∆∗1 = (1−φ)Cov1,L(C2,2,P2)+φCov1,H(C2,2,P2)

P 2
1 e

2r∆τ
[
φe
σ2
H+(1−φ)eσ

2
L−1

]
∆∗0 = (1−φ)Cov0,L(C1,2,P1)+φCov0,H(C1,2,P1)

P 2
0 e

2r∆τ
[
φe
σ2
H+(1−φ)eσ

2
L−1

]
15The general solution is derived by Basak and Chabakarui (2012). We provide the same derivation in Appendix

C-1.
16Given the covariance decomposition,
∆∗1 = (1−φ)Cov1,L(C2,2,P2)+φCov1,H(C2,2,P2)+Cov1(E1(C2,2|V ),E1(P2|V ))

φV ar1,H (P2)+(1−φ)V ar1,L(P2) .

Since E(P2|V ) is constant, the covariance can be expressed as (1−φ)Cov1,L(C2,2,P2)+φCov1,H(C2,2,P2)
φV ar1,H (P2)+(1−φ)V ar1,L(P2) .
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Here, at every t, the ”equilibrium call” price at t+ 1 is needed to derive the optimal ∆∗t . Given

the independence assumption, the equilibrium options’ prices are the expected fair value for C1,2

and C0,2.

C1,2 = e−r∆τE1[(P2 −K)+]

= e−r∆τ
{
φE1

[
(P2 −K)+ |X1 = x1, V2 = σH

]
+ (1− φ)E1

[
(P2 −K)+ |X1 = x1, V2 = σL

]}
= φBSMx1,H + (1− φ)BSMx1,L,

where x1,σL and σH are the realization of X1 and V2. BSMx1,H and BSMx1L are

BSMx1,H = P1 ·N
(

ln(P1
K )+r+

H

σH
√

∆τ

)
− e−r∆τK ·N

(
ln(P1

K )+r−
H

σH
√

∆τ

)
BSMx1,L = P1 ·N

(
ln(P1

K )+r+
L

σL
√

∆τ

)
− e−rK ·N

(
ln(P1

K )+r−
L

σL
√

∆τ

)
.

where r+
H = r∆τ + σ2

H∆τ
2 , r+

L = r∆τ + σ2
L∆τ
2 , r

−
H = r∆τ − σ2

H∆τ
2 and r−L = r∆τ − σ2

L∆τ
2 .

C1,2 is similar formula to that obtained in the 1 period model. The fair value of C0,2 is

C0,2 = e−r∆τE0 [C1,2] = e−2r∆τE0

[
(P2 −K)+

]
= φ2BSMH,H + 2φ(1− φ)BSMH,L + (1− φ)2BSMH,L

where

BSMH,H = P0 ·N
(

ln(P0
K )+r+

H
∗2

σH
√

2∆τ

)
− e−2r∆τK ·N

(
ln(P0

K )+r−
H
∗2

σH
√

2∆τ

)
BSMH,L = P0 ·N

(
ln(P0

K )+r+
H

+r+
L√

σ2
H

∆τ+σ2
L

∆τ

)
− e−2r∆τK ·N

(
ln(P0

K )+r−
H

+r−
L√

σ2
H

∆τ+σ2
L

∆τ

)
BSML,L = P0 ·N

(
ln(P0

K )+r+
L
∗2

σL
√

2∆τ

)
− e−2r∆τK ·N

(
ln(P0

K )+r−
L
∗2

σL
√

2∆τ

)
.

The derivation is in Appendix C-2.

4.2 N-Periods

This subsection extends the 2-period model to N-periods. We first derive the general equalities for

the fair call values and the conditional covariances at time t, allowing us to calculate the optimal

hedging ratios and get numerical solutions for the total variance of the hedging error. The derivation

is given in Appendix C-3.

Proposition 4 (The fair call options price for bernoulli type volatility)

Ct,T =
∑n
i=0

(
n

i

)
φi(1− φ)n−i

{
Pt ·N (d1)− e−nr∆τK ·N (d2)

}
d1 = ln(PtK )+i·r+

H
+(n−i)·r+

L√
i·σ2

H
∆τ+(n−i)σ2

L
∆τ

d2 = ln(PtK )+i·r−
H

+(n−i)·r−
L√

i·σ2
H

∆τ+(n−i)σ2
L

∆τ
, n = T

∆τ

,
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The covariance equation is17

Covt(Ct+1,T , Pt+1)

= φ
∑(

n∗

i

)
φi(1− φ)n∗−i

{
P 2
t e

2r+
HN (d1,H)− Pte−(n∗−1)r∆τK ·N (d2,H)

}
+(1− φ)

∑(
n∗

i

)
φi(1− φ)n∗−i

{
P 2
t e

2r+
LN (d1,L)− Pte−(n∗−1)r∆τK ·N (d2,L)

}
−
∑n∗+1
i=0

(
n∗ + 1
i

)
φi(1− φ)n∗+1−i ·

{
P 2
t e

2r∆τN (d∗1)− Pte−(n∗−1)r∆τK ·N (d∗2)
}
.

and

d∗1,H = ln(PtK )+i·r+
H

+(n∗−i)·r+
L

+[r+
H

+σ2
H∆τ]√

(i+1)·σ2
H

∆τ+(n∗−i)σ2
L

∆τ

d∗2,H = ln(PtK )+i·r−
H

+(n∗−i)·r−
L

+r+
H√

(i+1)·σ2
H

∆τ+(n∗−i)σ2
L

∆τ

d∗1,L = ln(PtK )+i·r+
H

+(n∗−i)·r+
L

+[r+
L

+σ2
L∆τ]√

i·σ2
H

∆τ+(n∗−i+1)σ2
L

∆τ

d∗2,L = ln(PtK )+i·r−
H

+(n∗−i)·r−
L

+r+
L√

i·σ2
H

∆τ+(n∗−i+1)σ2
L

∆τ

d1 = ln(PtK )+(i+1)·r+
H

+(n∗−i+1)·r+
L√

i·σ2
H

∆τ+(n∗−i+1)σ2
L

∆τ

d2 = ln(PtK )+(i+1)··r−
H

+(n∗−i+1)·r−
L√

i·σ2
H

∆τ+(n∗−i+1)σ2
L

∆τ

n∗ = T−(t+1)
∆τ > 0, T > t+ 1.

Next, we apply our propositions to derive the dynamic hedging plan, and we provide numerical

results for the total variance V art[Wa,T ] at each time t. For the numerical results, we set σ =

0.2, σ ·H = 0.22, σ · L = 0.18, r = 0.04, φ = 0.5, Pt = 1500, c = 0.4 and fix 10 days to maturity.18

Figure 7 shows the variance of the hedging error for different number of options hedged n =

1, 2, 3, . . . , 10. Our result at Chart (a) indicates that for 10-day tenor contracts V ar0[Wa,10] drops

from about 233.57 to 55.49 when the number of hedged options increases from 1 to 5, but the variance

only reduces by about 25 when the number of hedged options increases from 5 to 10. Apparently

the marginal benefit of hedging is decreasing when hedging frequency increases. Second, fixing the

number of hedged options to 10, for different maturities, Chart (b) shows V art[Wa,10] for different

tenors. We see that as days to maturity declines, the variance steadily decreases. The variance is

about 30 for 10-days tenor and drops by approximately 3 when DTM (days to maturity) decreases

by 1.

To consider the case where traders hedge at a daily frequency, we let the ratio of DTM to the

total number of hedged options equal 1 and we study the total variance of N-day tenors, hedged

daily. As shown in Chart (c) of Figure 7, the hedging error variance increases as the days to maturity
17

In the one-period model, n∗ = 0. Therefore, the covariance for the one-period model uses equation (9) with
Cov

[
Y, (Y − k)+

]
as calculated in appendix B.

18Again, we use σH = σ ·H and σL = σ · L in the simulations and the calibration.
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increase. Finally, Chart (d) shows the call prices for different days to maturity. Compared to a flat

pattern at Chart (c), the ATM call option price (denoted by solid dark line) decreases faster than

the variance of the hedging error. The dashed line shows the ratio of the standard deviation of the

hedging error to the option price. This ratio increases from 0.257 at 10 DTM to 0.751 at 1 DTM. In

short, though both the hedging variance and the option’s price decrease when time approaches the

expiration date, the rates of their decrease are very different. And, it is this disproportional decay

rate that leads to the previously discussed patterns of option bid-ask spreads in implied volatility

measures.

4.3 The Implied Volatility Spread

The equilibrium condition remains the same as in the single period model. Let Ct,T (a) denote the

fair value of the ask call price and V ar∗t (Wa,T ) the variance of hedging error delivered by the optimal

daily hedging strategy. Without loss of generality, we let Q = 1 and c = 0.4 for equilibrium analyses

(13). Hence, for each time t, the MMs quote at a price which satisfies the equations

Ct,T (a)− Ct,T −
1
γ
V art(Wa,T )− c = 0 (31)

Ct,T − Ct,T (b)− 1
γ
V art(Wb,T )− c = 0 and t = 1, 2, 3...T, (32)

where the equilibrium ask price Ct,T + 1
γV art(Wa,T ) and bid price Ct,T − 1

γV art(Wb,T ) are inverted

to obtain the implied volatilities Aσ and Bσ, respectively.

In our numerical analyses, we use the same parameter values listed in the previous section and

we assume that 1
γ = 0.01 and 0.05. Figure 8 summarizes the results. Chart (e) shows the daily

equilibrium IMV Aσ and Bσ for tenors of 10 days to 1 days. The dashed lines represent the IMV

of bid and ask prices, respectively, when 1
γ is 0.01, and the solid lines are the IMV of ask and bid

prices at 1
γ = 0.05. Given σ = 0.2, the ask IMV is increasing, and the bid IMV is decreasing. Chart

(f) shows the difference in the IMV, and we observe an increasing IMV spread with an increasing

magnitude. Charts (g) and (h) use the multipliers A and B to present the same information. These

results support propositions 1 and 2 in the one period model.

We next study the volatility level effect and variance of volatility effect. Setting 1
γ = 0.01, we

observe that the level effect happens a couple few days before expiration. In Figure 9, we show the

price and variance of the final 10 hours in the option’s life. Chart (i) shows the ATM call prices for

volatility 0.2 and 0.3. The dashed line is the call price valued at σ = 0.3, and it is always higher than

the solid line which denotes the call price at σ = 0.2. Chart (j) shows the variance of the hedging

error at two different volatility levels. A shown, the higher volatility level the higher the variance.
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However, in Chart (k), the solid lines, representing the bid and ask IMV multipliers at σ = 0.2,

lie outside dashed lines which denote the multipliers at σ = 0.3. In other words, even though the

hedging variance is higher at a 0.3 volatility, the multiplier of the ask (bid) IMV at a 0.2 volatility

is larger (lower) than that at a 0.3 volatility. Shown in Chart (l), when DTM is very small the

percentage spread is larger as the volatility level decreases. These results confirm the implications

of proposition 3.

5 Data and the Empirical Evidence

We use the Options Metric’s database focusing on SP index options. Our sample contains daily best

closing quotes, and the time period is from January 2, 2001 to April 17, 2010. The contracts are

European style options, and the nearest maturities expire every third Saturday with the settlement

value determined by the opening selling price on the third Friday. The nearest maturity contracts

have a strike interval of 5 points, and the minimum tick size for quotes is $0.05 if the traded price

is below $3 dollars and $0.1 if the traded price is above $3.

Two implied volatility measures, the Black-Scholes-Merton implied volatility (BSM-IMV) and

the Carr and Madan model-free implied volatility (CM-IMV), are used to calculate the volatility

spreads. Table 1 provides descriptive statistics of BSM-IMV, CM-IMV, and bid-ask spreads in term

of those two measures. As shown in Panel (1) of Table 1, CM-IMV has larger means than at-the-

money BSM-IMV. The average CM-IMV for bid and ask prices are 21.29% and 23.81%, respectively,

while the average BSM-IMV is 17.48% (20.81%) and 19.58% (23.27%) for ATM Call (Put) options.

Since out-of-the money (OTM) options commonly trade at relatively larger implied volatilities, the

higher CM-IMV mean may be the result of the CM-IMV calculation containing deep OTM options.

We also find that the ATM put options have larger BSM IMV means than do call options. Moreover,

the standard deviation, skewness and kurtosis are also larger for put options.

Panel (B) presents the statistics for the ”spread” calculated using the 3 volatility measures. The

implied volatility spreads are 1.99%, 2.25% and 2.44% for BSM-IMV Call, BSM-IMV Put, and CM-

IMV. For the BSM-IMVs, the spreads for the put options do not have larger skewness and kurtosis

than the spreads for call options, although the mean and standard deviation of put spreads are still

larger. Because the CM-IMV calculation includes OTM options, the mean of the CM-IMV spread

is relatively larger than the BSM-IMV spreads of ATM options, but the skewness and kurtosis are

lower. Interestingly, if we compare the percentage spreads of BSM-IMV and CM-IMV, it is surprising

to find the kurtosis of percentage volatility spreads is much lower than that of the volatility spreads.

In the bottom three rows of Panel (B), the kurtosis for the percentage spread of implied volatility
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for BSM-IMV call and put options are 8.46 and 9.98, and 11.99 for the kurtosis of CM-IMV spread,

while they are 65.5, 64.33 and 51.47 for volatility spreads. Because the kurtosis of the BSM-IMV

spread and CM-IMV spread are much larger, ordinary econometric estimation will work better for

percentage implied volatility spreads.

5.1 Calibration

In this subsection, we confirm that our theoretical model fits well. We use the call contracts expiring

on November, 22, 2014 to calibrate the model.19 For each of the final 25 trading days, dollar spreads

of call options having a delta between 0.4 to 0.6 are collected. To calibrate the 5 parameters

(r,Aσ,Bσ, φ, γ) we compute

Min
∑
k

[
2
γV art(Wk,T ) + 0.05− Spreadt,k

]2
,

where k is the strike and 0.05 is the transaction cost (also minimum tick).20

Assuming that the MMs delta hedge once per day, the calibration results are contained in Figure

10. In Panel (m), (o) and (p), we provide the real spreads and the estimated theoretical spreads

for options which have strikes nearest to the spot price. In Panel (m), the theoretical spread fits

the market dollar spread well and both lines moves together. As the index keeps increasing during

the final 25 trading days, Panel (n) shows that the traded volatility is decreasing and remains at a

relatively low level (about 15%). Panel (o) transforms the dollar spread into a percentage volatility

spread. We see the market and theoretical multiplier spreads are increasing as the expiration date

approaches. Finally, we compare the theoretical and market ask and bid prices in Panel (p). This

panel shows that our theoretical (bid and ask) prices are relatively larger than market prices. Again,

this may be the result of using OTM call options in our calibration.

5.2 The Econometric Model

To test Propositions 1 - 4, we apply panel regression to capture the covariance relationship between

consecutive contracts. Our first estimation model is

SpPctc,t = α+θ· 1
TMt,c

+β1 ·RVc+β2 ·V RPc,t+β3 ·Jump intensityc,t+vc+εc,t, t = 1, 2, 3, 4.. (33)

where the dependent variable, SpPctt,c, is the percentage volatility bid-ask spread multiplied
19Our empirical work covers the time period January 2, 2001 to April 17, 2010, where we used OTM calls and puts

for the CM IMV calculations and 4 ATM strikes to derive the BSM IMV.
20For each day, we use the initial values (r, σ · L, σ ·H,φ, γ) = (0.04, V IXt−1 + 0.1, V IXt−1 − 0.1, 0.05, 0.02) in the

calibration.
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by 100. The subscript c indicates the contract of a given expiration date, and t denotes the date.

We use the realized volatility RV during the contract period as the denominator when calculating

SpPct . By doing so, the realized volatility RV reflects the volatility level effect, and any change

of SpPct ’s risk premium is due to a change in the numerator, the volatility spread. TM refers to

the annualized time to maturity, and the variance risk premium V RP is used as a proxy for the

volatility’s variance. V RP is defined as

V RPc,t = IMVc,t −RVc,t, (34)

see Carr and Wu (2009). The RVc,t in equation (34) is different from the RVc in equation (33). RVc
is per contract over the sample period, while RVc,t is the past annualized 30-day realized volatility,

computed every day. IMVc,t is implied volatility.

In analogy to a stock’s bid-ask spread which reflects the stock’s risk to a MM, the volatility

spread measures the options’ risk to a MM. It is well understood that jumps in the underlying

stock hinders a trader’s ability to hedge and results in an incomplete market. Jarrow, Lando and

Yu (2005) show that if a stock’s jump risk is diversifiable, then a unique option price still results.

Therefore, it is of interest to study the relationship between the percentage spread and the index’s

jump risk. In this regard, we add the independent variable

Jump intensityt =
M∑
i=1

I(rt,i > k),

where I is a indication function, which equals 1 if the 5-minute return ri is greater than a threshold

value k and 0 otherwise. M is the number of 5-minute intervals within a day. We let k equal the

smallest tenths value which lies above the largest 4% of the total 5-minute returns.

Propositions 1 and 2 correspond to the maturity effect, i.e. the bid-ask percentage volatility

spread should increase at an increasing rate (convex shape) as the option’s maturity approaches.

To confirm the time to maturity effect, the coefficient θ should be positive in equation (33). Pro-

position 3 concerns the volatility level effect, i.e. the percentage volatility spread should decrease

as the volatility level increases. Since the realized volatility RVc is included in equation (33) to

capture this effect, we expect the coefficient β1 to be negative. Finally, Proposition 4 states that

after controlling for the volatility level, a change in the volatility’s variance (uncertainty) should be

positively correlated with changes in the percentage volatility spread; hence in equation (33), β2 or

β3 should be positive.

In addition, because traders in the options market often know particular news arrival times,

e.g. the date of a earnings announcement, trading information may reflect market information. To
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investigate this possibility, we study whether the percentage spread can predict the future jump

intensity by estimating the following regression

Jump intensityc,t+1 = α+ β1 ·DeTrend SpPctc,t + β2 · SpPctc,t + β3 · V RPc,t
+β4 ·RVc,t + β5 · Jump intensityc,t + εc,t ,

(35)

where DeTrend SpPctc,t is de-trended percentage volatility spread.21 We also consider the

original percentage spread SpPctc,t to see if the de-trended volatility spread performs better than

original spread in explaining future jump intensities.

5.3 Empirical Results

Table 2 presents the estimation results of expression (33). Panels (A), (B) and (C) are the results

for the volatility measures CM-IMV, BSM-IMV (ATM) call and BSM-IMV (ATM) put options,

respectively. Because V RP and Jump intensity are both significant, we find that RV becomes

significant when the Jump intensity is added as a control variable. Because the realized volatility

and the jump intensity are highly correlated but have opposite effects, we focus on the regression

models which include the jump intensity.

As seen, the coefficient θ is significantly positive; hence the maturity effect exists. And, if we only

control for the jump intensity, a 1% increase in the level of the realized volatility decreases SpPct by

0.139%, 0.178% and 0.247% for CM-IMV, BS-IMV call and BS-IMV-put; and by 0.068%, 0.121%,

and 0.194% if both the volatility risk premium and the jump intensity are included as regressors.

An increase in the jump intensity enlarges the spread by 0.282%, 0.244% and 0.247% for 3 different

implied volatility measures before including the volatility risk premium. They enlarge the spread by

0.178%, 0.161% and 0.17% after V RP is included in model. Finally a 1% increase in V RP results

in an increase in the percentage volatility spread by 0.244%, 0.197% and 0.184% for the different

volatility measures. The R2 in Panel (A) reaches 0.43, while the largest R2 are 0.54 and 0.67 in

Panels (B) and (C).

Having confirmed our theoretical propositions, we now show the importance of de-trending the

maturity effect. First, we examine the jump’s contemporaneous effect on the percentage spread

and include as regressors the daily realized volatility RVc,t, the realized volatility level RVc, the

volatility risk premium V RPc,t, and the jump intensity Jump intensityc,t. Then, we run the panel

regression separately on DeTrend SpPctc,t and SpPctc,t. As shown in Table 3, all independent
21We first run the regression SpPctc,t = α+ θ · 1

TMt,c
. After deriving the estimated θ̂, we subtract θ̂ · 1

TMt,c
from

SpPctc,t to derive Detrend SpPctc,t.
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variables have daily contemporaneous effect on the spreads, and, if the spread is de-trended, then

the jump intensity becomes more significant in explaining the variation of DeTrend SpPctc,t.

Finally, Table 4 shows that both DeTrend SpPctc,t and SpPctc,t predict the future jump in-

tensity in accordance with expression (35). For all the volatility measures, the de-trended spreads

always perform better. If the regressor contains only either DeTrend SpPctc,t or SpPctc,t, both

explain the next day’s jump intensity. However, if we use the detrended and non-detrended spreads

together, only DeTrend SpPctc,t is significant in explaining the future jump intensity. Finally, we

add V RPc,t, RVc,t, and V RPc,t as control variables, and the results show that DeTrend SpPctc,t is

significant, but SpPctc,t is not.

6 Conclusion

This paper empirically documents the fact that the percentage implied volatility bid-ask spread

increases at an increasing rate as an option’s maturity date approaches. This maturity effect is

confirmed using quotes from options on the CBOE S&P index over the time period 2001/01/02 -

2010/04/17. This effect is validated using model-free implied volatilities as well as Black-Schole-

Merton implied volatilities.

We construct an equilibrium model in an incomplete market with volatility risk to explain this

phenomena. The equilibrium model has risk averse and competitive option MMs quoting bid and

ask prices to minimize their inventory risk. Two additional testable implications of the model are

generated. The first is that an increase in the level of the underlying asset’s volatility decreases the

percentage bid-ask implied volatility spread. The second is that, holding the level of the volatility

constant, an increase in the volatility’s variance increases the percentage bid-ask implied volatility

spread. These implications are also empirically tested herein. The empirical evidence generally

confirms these implications and the model’s validity.
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Appendix A
The Carr Madan Implied Volatility (CM IMV)

The following is the CBOE formula for the VIX index, denoted as CM IMV.

σ2
CM = 2

τ

∑
i

∆Ki
K2
i

erτQ(τ,Ki)− 1
τ

[ F
K0
− 1]2

CM IMV = σCM ∗ 100

τ : Time to expiration

F : Forward index level derived from put-call parity

K0 : First strike price below the forward index level, F

Ki : Strike price of the ith out-of-the-money option; a call if Ki > K0, and a put if

Ki < K0; both put and call if Ki = K0

∆Ki = Ki+1−Ki−1
2

r : Risk-free spot rate of interest

Q(τ,Ki) : The ask price/bid price for the option with strike Ki

In the VIX index calculation, Q(Ki) is the midpoint of the bid-ask spread for each option with strike price Ki.

The forward index level is:

F = strike price + erτ ( Call price − Put price )

where the strike price selected is that for which the absolute difference between the call and put prices is the smallest.

In our paper, we use the strike price that is closest to the spot price to calculate the forward index level, sometimes

called the effective forward price. The original formula proposed by Carr and Madan doesn’t include the term involving

[ F
K0
− 1].

Appendix B
Appendix B-1 (Expected Profit and Variance)

Portfolio Expected Profit Given σY :

Assume y = lnY ∼ N(µY , σ2
Y ) and Z ∼ N(0, 1), then

X = σY Z + µY , Y = exp (σY Z + µY )

The calculation of E [Y · I(Y ≥ y)] and V ar [Y · I(Y ≥ y)] is detailed as follows:

E [Y · I(Y ≥ y)] =E [exp(σY Z + µY ) · I(exp(σY Z + µY ) ≥ y)]

=E
[
exp(σY Z + µY ) · I(Z ≥

ln(y)− µY
σY

)
]

=
∫ ∞
z

exp(σY u+ µY ) ·
1
√

2π
exp(−

u2

2
)du;Let z =

ln(y)− µY
σY

= exp(
σ2
Y

2
+ µY )

∫ ∞
z

1
√

2π
exp(−

(u− σY )2

2
)du

= exp(
σ2
Y

2
+ µY ) ·N(σY − z)
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E
[
Y 2 · I(Y ≥ y)

]
=E [exp(2σY Z + 2µY ) · I(exp(σY Z + µY ) ≥ y)]

=
∫ ∞
z

exp(2σY u+ 2µY ) ·
1
√

2π
exp(−

u2

2
)du;Let z =

ln(y)− µY
σY

= exp(2σ2
Y + 2µY )

∫ ∞
z

1
√

2π
exp(−

(u− 2σY )2

2
)du

= exp(2σ2
Y + 2µY ) ·N(2σY − z)

V ar [Y · I(Y ≥ y)] =E
[
Y 2 · I(Y ≥ y)

]
− {E [Y · I(Y ≥ y)]}2

= exp(σ2
Y + 2µY )

{
exp(σ2

Y ) ·N(2σY − z)− [N(σY − z)]2
}

Let y → 0, that is z → −∞, we have

E [Y ] = exp(σ
2
Y
2 + µY )

V ar [Y ] = exp(σ2
Y + 2µY )

[
exp(σ2

Y )− 1
]

Let Cτ = (P0Y − P0k)+. The expectation and variance of the portfolio value can be explicitly calculated below.

let z = ln(k)−µY
σY

, ∆ is the holded stocks for hedging, P0k is the strike price, and B = pc −∆aP0 is the amount

of money market account at very beginning.

E [Wa] =E[∆a · Pτ − Cτ +Berτ ]

=E[∆a · P0Y − (P0Y − P0k)+ +Berτ ]

=∆a · P0 · exp(
σ2
Y

2
+ µY )− P0

[
exp(

σ2
Y

2
+ µY ) ·N(σY − z)− k ·N(−z)

]
+Berτ .

If we express the mean and volatility in annualized term, we can show the formula for Cτ is the same as Black-

Scholes-Merton pricing model. Let µY = µτ , σ2
Y = σ2τ and K = P0k. Given the expectation operator is the

risk neutral probability, we have e(
σ2τ

2 +µτ) = erτ . Then the following equation for Cτ is exactly the same as

Black-Scholes-Merton Formula after discounted by risk-free rate.

P0

[
exp(σ

2
Y
2 + µY ) ·N(σY − z)− k ·N(−z)

]
= P0erτ ·N

(
σ2
Y −ln(k)+µY

σY

)
− P0k ·N(− ln(k)+µY

σY
)

= P0erτ ·N
(
σ2
Y /2−ln(k)+ln(eµY +σ2

Y
/2)

σY

)
− P0k ·N(−σ

2
Y /2−ln(k)+ln(eµY +σ2

Y
/2)

σY
)

= P0erτ ·N

 ln(P0e
µY +σ2

Y
/2

P0k
)+σ2

Y /2
σY

−K ·N
 ln(P0e

µY +σ2
Y
/2

P0k
)−σ2

Y /2
σY


= P0erτ ·N

(
ln(P0

K
)+rτ+σ2

Y τ/2
σY
√
τ

)
−K ·N( ln(P0

K
)+rτ−σ2

Y τ/2
σY
√
τ

)

The variance of the portfolio is
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V ar [Wa] =V ar[∆a · Pτ − Cτ +Ba · erτ ] and Ba = Ca0 −∆aP0

=V ar[∆a · P0Y ] + V ar
[
(P0Y − P0k)+

]
− 2∆a × cov(P0Y, (P0Y − P0k)+)

= [∆a · P0]2 V ar[Y ] + P 2
0 V ar

[
(Y − k)+

]
− 2∆aP

2
0 × cov(Y, (Y − k)+)

V ar [Wb] =V ar[∆b · Pτ + Cτ +Bb · erτ ] and Bb = −Cb0 −∆bP0

=V ar[∆b · P0Y ] + V ar
[
(P0Y − P0k)+

]
+ 2∆b × cov(P0Y, (P0Y − P0k)+)

= [∆b · P0]2 V ar[Y ] + P 2
0 V ar

[
(Y − k)+

]
+ 2∆bP

2
0 × cov(Y, (Y − k)+)

We need to calculate V ar
[
(Y − k)+

]
and cov(Y, (Y − k)+) .

V ar
[
(Y −K)+

]
=V ar [(Y − k) · I(Y > k)]

=V ar [Y · I(Y > k)− k · I(Y > k)]

=V ar [Y · I(Y > k)] + k2V ar [I(Y > k)]− 2k · cov [Y · I(Y > k), I(Y > k)]

= exp(σ2
Y + 2µY )

[
exp(σ2

Y )N(2σY − z)− [N(σY − z)]2
]

+k2N(z)N(−z)− 2k · exp(
σ2
Y

2
+ µY )N(σY − z)N(z)

Cov
[
Y, (Y − k)+

]
= Cov [Y, (Y − k) · I(Y > k)]

= E [Y (Y − k) · I(Y > k)]− exp
(
σ2
Y
2 + µY

)[
exp
(
σ2
Y
2 + µY

)
N(σY − z)− k ·N(−z)

]
= E

[
Y 2 · I(Y > k)

]
− k · E[Y · I(Y > k)]− exp

(
σ2
Y
2 + µY

)
·
[

exp
(
σ2
Y
2 + µY

)
N(σY − z)− k ·N(−z)

]
= exp

(
2σ2
Y + 2µY

)
N(2σY − z)−

(
k + exp

(
σ2
Y
2 + µY

))
· exp

(
σ2
Y
2 + µY

)
N(σY − z)

+k · exp
(
σ2
Y
2 + µY

)
N(−z)

Plugging V ar
[
(Y − k)+

]
and cov(Y, (Y − k)+) into V ar [Wa], and rearranging the terms, we obtain

V ar [Wa] = V ar [Wb] = P 2
0 [C +A1 ·N(2σY − z) +A2 ·N(σY − z) +A3 ·N(−z)]

where

C = ∆2
a exp

(
σ2
Y + 2µY

) [
exp
(
σ2
Y

)
− 1
]

A1 = exp
(
2σ2
Y + 2µY

)
(1− 2∆a)

A2 = − exp(σ
2
Y
2 + µY )

[
exp(σ

2
Y
2 + µY )N(σY − z) + 2k ·N(z)− 2∆a

(
k + exp(σ

2
Y
2 + µY )

)]
A3 = k

[
k ·N(z)− 2∆a exp(σ

2
Y
2 + µY )

]
Portfolio Mean and Variance given a Bernoulli type Volatility.
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• We assume a Bernoulli type random volatility, which is a probability with independence assumption (4) for

different annual volatility levels, σL and σH . In our math derivation, we let σL=σ ·L and σH=σ ·H. We also

use (L,H) in subscripts to denote the volatilities (σL, σH).

• Traders assign the subjective probability (1− φ) and φ to volatility σL and σH, respectively.

Expected Profit given a Bernoulli type Volatility

For a ”written” and a “long” call option position, after traders apply delta hedging, the final wealth of Wa and

Wb are

Wa = ∆a · PT − CT + (C0
a −∆a · P0) · erτ

Wb = ∆b · PT + CT + (−C0
b −∆b · P0) · erτ

where C0
a and C0

b are selling price and buying price respectively, CT is final option payoff (CT = Max[PT −K, 0]),

and ∆ are the hedging positions. CT > 0 and is cash-outflow for a written call, while C0
a > 0 and is cash inflow

for a written call. Conversely, CT and C0
b

are cash-inflow and cash-outflow respectively for a long position. A

positive (negative) ∆ means a long (short) position of the stock; therefore, if ∆a is positive , ∆a · PT is the amount

of cash-inflow from selling stocks at PT and−∆a · P0 is the cash-outflow to buy stocks at P0. Given assumption (4),

E(PT ) = P0E(
PT

P0
) = P0

{
(1− φ)EL(

PT

P0
) + φEH(

PT

P0
)
}

= P0 {(1− φ)erτ + φerτ} = P0e
rτ .

And the expected final wealth for selling a call option and purchasing a call options are,

E(Wa) =φEH
{
C0
ae
rτ − CT + ∆a[PT − P0e

rτ ]
}

+ (1− φ)EL
{
C0
ae
rτ − CT + ∆a[PT − P0e

rτ ]
}

=C0
ae
rτ − φEH {CT } − (1− φ)EL {CT } = C0

ae
rτ − E {CT }

E(Wb) =φEH
{
−C0

b e
rτ + CT + ∆b[PT − P0e

rτ ]
}

+ (1− φ)EL
{
−C0

b e
rτ + CT + ∆b[PT − P0e

rτ ]
}

=E {CT } − C0
b e
rτ

Using Appendix B-1 formula, we can derive the option price formula which is the same as Black-Schole-Merton

Model. The expected prices under different volatility levels are,

EH [Cτ ] =erτ
[
P0 ·N(zH + σH

√
τ)−Ke−rτ ·N(zH)

]
and zH =

ln P0
K

+ (r − 1
2σ

2H2)τ
σH
√
τ

EL [Cτ ] =erτ
[
P0 ·N(zL + σL

√
τ)−Ke−rτ ·N(zL)

]
and zL =

ln P0
K

+ (r − 1
2σ

2L2)τ
σL
√
τ

where zH =
ln(K)−EH (PT

P0
)

σJ
.Therefore, the expected final wealth is

E(Wa) = C0
ae
rτ − erτ

{
P0
[
φ ·N(zH + σH

√
τ) + (1− φ) ·N(zL + σL

√
τ)
]
−Ke−rτ [φ ·N(zH) + (1− φ) ·N(zL)]

}
Variance given a Bernoulli type Volatility

V ar(Wa) = φV arH
{
C0
ae
rτ − CT + ∆a[PT − P0e

rτ ]
}

+ (1− φ)V arL
{
C0
ae
rτ − CT + ∆a[PT − P0e

rτ ]
}

+ φ(1− φ)(EL − EH)2
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where EL = EL
{
C0
ae
rτ − CT + ∆a[PT − P0erτ ]

}
and EH =

{
C0
ae
rτ − CT + ∆a[PT − P0erτ ]

}
.

To calculate V arH
{
C0
ae
rτ − CT + ∆a[PT − P0erτ ]

}
, we can rewrite V arH

{
C0
ae
rτ − CT + ∆a[PT − P0erτ ]

}
as

V arH
{
C0
ae
rτ − CT + ∆a[PT − P0e

rτ ]
}

= ∆2
aV arH {PT }+ V arH {CT } − 2 ·∆a · CovH (PT , CT )

ln(Pτ
P0

) follows N
(
(r − 1

2σ
2H2)τ, σ2H2τ

)
. Then, the variance of Pτ is 22

V arH {PT } = EH
{
P 2
T

}
− [EH(PT )]2 = P 2

0 e
2rτ
[
eσ

2H2τ − 1
]
.

The variance of Cτ is

V arH(Cτ ) =V arH [(Pτ −K) · I(Pτ ≥ K)]

=V arH [Pτ · I(Pτ ≥ K)−K · I(Pτ ≥ K)]

=V arH [Pτ · I(Pτ ≥ K)] +K2 · V arH [I(Pτ ≥ K)]− 2K · CovH [Pτ · I(Pτ ≥ K), I(Pτ ≥ K)]

=P 2
0 e

2rτ
{
eσ

2H2τN(2σ ·H
√
τ + zH)−

[
N(σ ·H

√
τ + zH)

]2}
+K2N(zH)N(−zH)

− 2P0Ke
rτN(σH

√
τ + zH)N(−zH)

The co-variance of Pτ and Cτ is

CovH (Pτ , Cτ ) =CovH (PT , [PT −K] · I(PT ≥ K))

=EH
{
PT

2 · I(PT ≥ K)
}
−K · EH {PT · I(PT ≥ K)} − EH(PT ) · EH

[
(PT −K)+

]
=P 2

0 e
2rτ+σ2H2τN

(
2σH
√
τ + zH

)
−
(
P0Ke

rτ + P 2
0 e

2rτ
)

N
(
σH
√
τ + zH

)
+ P0Ke

rτN(zH)

Therefore,

V arH
{
C0
ae
rτ − CT + ∆a [PT − P0e

rτ ]
}

= C +A1N(2σH
√
τ + zH) +A2N(σH

√
τ + zH) +A3N(zH)

C = P 2
0 ∆2

ae
2rτ
[
eσ

2H2τ − 1
]

A1 = P 2
0 e

2rτ+σ2H2τ (1− 2∆a)

A2 = −P 2
0 e

2rτN(σH
√
τ + zH)− 2P0KerτN(−zH) + 2∆aP0erτ (K + P0erτ )

A3 = K2N(−zH)− 2∆aP0Kerτ

The derivation for V arL is the same. And the unconditional Variance for a bernoulli type random volatility is:

V ar(Wa) = φV arH {−CT + ∆a · PT }+ (1− φ)V arL {−CT + ∆a · PT }

+ φ(1− φ)(EL [CT ]− EH [CT ])2

22For the general log-normal random variable ln(X) ∼ N(µ, σ2), we have the following general results:
(1)The First and Second Moment of X.

E(X) = eµ+ 1
2σ

2
and E(X2) = e2µ+2σ2

.

(2)The Restricted First and Second Moment of X.

E [X · I(X ≥ x)] = E(X) · Φ
(
σ +
− ln(x) + µ

σ

)
and E

[
X2 · I(X ≥ x)

]
= E(X2) · Φ

(
2σ +

− ln(x) + µ

σ

)
.
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V ar(Wb) = φV arH {CT + ∆b · PT }+ (1− φ)V arL {CT + ∆b · PT }

+ φ(1− φ)(EL [CT ]− EH [CT ])2

The derivation of V ar (Wb) is the same as we did for V ar (Wa) . Variance are the same, because ∆a = −∆b, the

proof of which is shown next.

Appendix B-2 (The Optimal Delta)

The portfolio value at the expiration date Wa and Wb can have two volatility realizations (σL, σH) with subjective

probability 1− φ and φ respectively. The variance of Wa and Wb can be written as

V ar(Wa) =(1− φ)V arL[Wa] + φV arH [Wa] + (1− φ)φ [EL(Wa)− EH(Wa)]2

=(1− φ)
{

∆2
aV arL(PT ) + V arL [CT ]− 2∆aCovL(PT , CT )

}
+φ
{

∆2
aV arH(PT ) + V arH [CT ]− 2∆aCovH(PT , CT )

}
+ (1− φ)φ [EL(Wa)− EH(Wa)]2

V ar(Wb) =(1− φ)V arL[Wb] + φV arH [Wb] + (1− φ)φ [EL(Wb)− EH(Wb)]2

=(1− φ)
{

∆2
bV arL(PT ) + V arL [CT ] + 2∆bCovL(PT , CT )

}
+φ
{

∆2
bV arH(PT ) + V arH [CT ] + 2∆bCovH(PT , CT )

}
+ (1− φ)φ [EL(Wb)− EH(Wb)]2

The necessary conditions to minimize V ar [Wa] and V ar [Wb] are

0 = ∂V ar(Wa)
∂∆

= (1− φ)
{

∆aV arL(PT )− CovL(PT , (PT −K)+)
}

+ φ
{

∆aV arH(PT )− CovH(PT , (PT −K)+)
}

+(1− φ)φ
{

∆aEL(PT )− EL
[
(PT −K)+

]
−∆aEH(PT ) + EH

[
(PT −K)+

]}
[EL(PT )− EH(PT )]

0 = ∂V ar(Wb)
∂∆

= (1− φ)
{

∆bV arL(PT ) + CovL(PT , (PT −K)+)
}

+ φ
{

∆bV arH(PT ) + CovH(PT , (PT −K)+)
}

+(1− φ)φ
{

∆bEL(PT ) + EL
[
(PT −K)+

]
−∆bEH(PT )− EH

[
(PT −K)+

]}
[EL(PT )− EH(PT )]

Therefore, the optimal ∆∗a and ∆∗b are

∆∗a = E(Cov([PT−K]+,PT |V ))
E[V ar(PT )|V ]

= (1−φ)CovL(PT ,(PT−K)+)+φCovH(PT ,(PT−K)+)+(1−φ)φ[EL(PT )−EH (PT )]{EL[(PT−K)+]−EH [(PT−K)+]}
(1−φ)V arL(PT )+φV arH (PT )+(1−φ)φ[EL(PT )−EH (PT )]2

∆∗b = −E(Cov([PT−K]+,PT |V ))
E[V ar(PT )|V ]

= − (1−φ)CovL(PT ,(PT−K)+)+φCovH(PT ,(PT−K)+)+(1−φ)φ[EL(PT )−EH (PT )]{EL[(PT−K)+]−EH [(PT−K)+]}
(1−φ)V arL(PT )+φV arH (PT )+(1−φ)φ[EL(PT )−EH (PT )]2

Appendix B-3 (Comparative Statics for τ)

Let f(A, σ, L,H, τ ;φ) = E(Wa)− Q
γ
V ar(Wa)− c = 0. We show the following propositions.
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When time to maturity decreases, the ask volatility increases for ATM options, i.e.

∂A

∂τ
= −

∂f
∂τ
∂f
∂A

< 0

Assume the ask volatility corresponds to the ask price C0
a in the risk neutral probability measure, i.e.

C0
a = P0 ·N(σA

√
τ + zA)−Ke−rτ ·N(zA) and zA =

ln P0
K

+ (r − 1
2A

2σ2)τ
σA
√
τ

We have
∂f

∂A
= erτ ×

∂C0
a

∂A
> 0.

Now, we derive the equations for ∂f
∂τ

and ∂A
∂τ

.

∂f

∂τ
=
∂E(Wa)
∂τ

−
Q

γ

∂V ar(Wa)
∂τ

To calculate ∂E(Wa)
∂τ

, we first calculate ∂(erτCa0 )
∂τ

.23

∂
(
erτCa0

)
∂τ

=
K · n(zA) · σA

2
√
τ

+ rP0e
rτ ·N(zA + σ ·A

√
τ)

Since ∂CH
∂τ

and ∂CL
∂τ

are similar to ∂(erτCa0 )
∂τ

with H,L replacing a respectively, we can finally write ∂E(Wa)
∂τ

as

∂E(Wa)
∂τ

= Kσ
2
√
τ

[n(zA)A− φ · n(zH)H − (1− φ) · n(zL)L]

+rP0erτ
[
N(zA + σA

√
τ)− φ ·N(zH + σH

√
τ)− (1− φ) ·N(zL + σL

√
τ)
]

To calculate ∂V ar(Wa)
∂τ

, we first calculate ∂V arH
∂τ

and the details follow.

∂V arH
∂τ

= ∂C
∂τ

+ ∂A1
∂τ

N(2σH
√
τ + zH) + ∂A2

∂τ
N(σH

√
τ + zH) + ∂A3

∂τ
N(zH)

+A1
∂N(2σH

√
τ+zH )

∂τ
+A2

∂N(σH
√
τ+zH )

∂τ
+A3

∂N(zH )
∂τ

We have
23We have the basic results regarding the normal density function.

n(zA + σA
√
τ) =

1
√

2π
e−

1
2 (σA

√
τ+zA)2 =

1
√

2π
e−

1
2σ

2A2τ− 1
2 z

2
A−σA

√
τzA =

K

P0
e−rτn(zA)

n(zA + 2σA
√
τ) =

1
√

2π
e−

1
2 (2σA

√
τ+zA)2 =

1
√

2π
e−2σ2A2τ− 1

2 z
2
A−2σA

√
τzA =

K2

P 2
0
e−2rτ−σ2A2τn(zA)
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∂C
∂τ

= P 2
0 ∆2

[
(2r + σ2H2)e2rτ+σ2H2τ − 2re2rτ

]
∂A1
∂τ

N(2σH
√
τ + zH) = P 2

0 (2r + σ2H2)(1− 2∆)e2rτ+σ2H2τN(2σH
√
τ + zH)

A1
∂N(2σH

√
τ+zH )

∂τ
= K2(1− 2∆)

(
σH√
τ

+ ∂zH
∂τ

)
n(zH)

∂A2
∂τ

N(σH
√
τ + zH)

= −KP0erτ
(
σH
2
√
τ

+ ∂zH
∂τ

)
n(zH)N(σH

√
τ + zH)− 2rP 2

0 e
2rτ
[
N(σH

√
τ + zH)

]2
+2KP0erτ

∂zH
∂τ

n(zH)N(σH
√
τ + zH)− 2rKP0erτN(−zH)N(σH

√
τ + zH)

+2r∆KP0erτN(σH
√
τ + zH) + 4r∆P 2

0 e
2rτN(σH

√
τ + zH)

A2
∂N(σH

√
τ+zH )

∂τ

=
{
−KP0erτN(σH

√
τ + zH)− 2K2N(−zH) + 2∆K2 + 2∆KP0erτ

}(
σH
2
√
τ

+ ∂zH
∂τ

)
n(zH)

∂A3
∂τ

N(zH) =
(
−K2 ∂zH

∂τ
n(zH)− 2r∆KP0erτ

)
N(zH)

A3
∂N(zH )
∂τ

=
(
K2N(−zH)− 2∆P0Kerτ

)
∂zH
∂τ

n(zH)

Adding up all the parts and rearranging, we finally have24

∂V arH
∂τ

= D +B1N(2σH
√
τ + zH) +B2N(σH

√
τ + zH) +B3N(zH)

+
[
K2N(zH)−KP0erτN(σH

√
τ + zH)−∆K2 + ∆KP0erτ

]
σH√
τ

n(zH)
D = P 2

0 ∆2
[
(2r + σ2H2)e2rτ+σ2H2τ − 2re2rτ

]
B1 = P 2

0 (2r + σ2H2)(1− 2∆)e2rτ+σ2H2τ

B2 = −2rP 2
0 e

2rτN(σH
√
τ + zH)− 2rKP0erτN(−zH) + 2r∆KP0erτ + 4r∆P 2

0 e
2rτ

B3 = −2r∆KP0erτ

To calculate ∂V ar(Wa)
∂τ

, we also need to calculate ∂(EH−EL)2
∂τ

.

∂(EH−EL)2
∂τ

= [EH{CT } − EL{CT }]× ∂(EH{CT }−EL{CT })
∂τ

= [EH{CT } − EL{CT }]×
[
Kσ
2
√
τ

(n(ZH)H − n(ZL)L) + rP0erτ (N(zH + σ ·H
√
τ)−N(zL + σ · L

√
τ))
]

We discuss the limiting behavior of ∂f
∂τ

for ATM, OTM and ITM call options in turn.

(1) For ATM call option, i.e. K = P0erτ , we have

n(zH) = n(zL) = n(zA)→
1
√

2π
and N(zH) = N(zL) = N(zA)→

1
2
, when τ → 0

24 ϑV arL
ϑτ

can be written in the similar format with L replacing H .
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Then we have the limiting behavior ∂E(Wa)
∂τ

and ∂V ar(Wa)
∂τ

25as follows,

∂E(Wa)
∂τ

= Kσ

2
√

2πτ
(A− φH − (1− φ)L) + o( 1√

τ
)

∂V ar(Wa)
∂τ

= φP 2
0 σ

2H2(∆2
a −∆a + 1

2 −
1

2π ) + (1− φ)P 2
0 σ

2L2(∆2
a −∆a + 1

2 −
1

2π ) + φ(1− φ)K
2σ2(H−L)2

4π + o(1)

As τ → 0, ∂E(Wa)
∂τ

approaches positive infinity 26 , while ∂V ar(Wa)
∂τ

is a constant. Therefore, ∂f
∂τ

> 0 as time

approaches maturity date, which implies that ∂A
∂τ

< 0.

(2) For OTM call option, i.e. K > P0erτ , we have

n(zH)
√
τ

=
n(zL)
√
τ

=
n(zA)
√
τ
→ 0 and N(zH) = N(zL) = N(zA)→ 1, when τ → 0

Then, the limiting behavior of ∂E(Wa)
∂τ

and ∂V ar(Wa)
∂τ

is as follows,

∂E(Wa)
∂τ

=o(1)

∂V ar(Wa)
∂τ

=φP 2
0 ∆2

aσ
2H2 + (1− φ)P 2

0 ∆2
aσ

2L2 + o(1)

25The last term of ϑV arH
ϑτ

is messy, and needs special attention. The detailed derivation, assuming τ → 0, follows.[
K2N(zH)−KP0e

rτN(σH
√
τ + zH)−∆K2 + ∆KP0e

rτ
] σH
√
τ

n(zH) =
[
K2N(−

1
2
σH
√
τ)−K2N(

1
2
σH
√
τ)
]
σH
√
τ

n(zH)

= −σ2H2K2 ×
N( 1

2σH
√
τ)−N(− 1

2σH
√
τ)

σH
√
τ

× n(−
1
2
σH
√
τ)

As time τ goes to 0, we have

lim
τ→0

N( 1
2σH

√
τ)−N(− 1

2σH
√
τ)

σH
√
τ

= n(0) =
1
√

2π
and lim

τ→0
n(−

1
2
σH
√
τ) = n(0) =

1
√

2π
Therefore,

lim
τ→0

[
K2N(zH)−KP0e

rτN(σH
√
τ + zH)−∆K2 + ∆KP0e

rτ
] σH
√
τ

n(zH) = −
1

2π
σ2H2K2

The limiting behavior of ϑ(EH−EL)2
ϑτ

is also tricky, and the derivation is

ϑ(EH − EL)2

ϑτ
= [EH{Cτ} − EL{Cτ}]×

Kσ

2
√
τ

(n(ZH)H − n(ZL)L) + o(1)

= 2P0e
rτ
[
N(

1
2
σH
√
τ)−N(

1
2
σL
√
τ)
]
×

Kσ

2
√
τ

(n(ZH)H − n(ZL)L) + o(1)

=
1
2
KP0e

rτσ2(H − L)2 ×
N( 1

2σH
√
τ)−N( 1

2σL
√
τ)

1
2σ(H − L)

√
τ

× n(0) + o(1)

As time τ goes to 0, we have

lim
τ→0

ϑ(EH − EL)2

ϑτ
=
K2σ2(H − L)2

4π
+ o(1)

26To compensate for the hedging uncertainty and transaction cost, we have E(Wa) > 0. For ATM call option,

E(Wa) = K[2 ·N(
1
2
σA
√
τ)− 1]− φ ·K[2 ·N(

1
2
σH
√
τ)− 1]− (1− φ)K[2 ·N(

1
2
σL
√
τ)− 1] > 0

⇒N(
1
2
σA
√
τ)− φ ·N(

1
2
σH
√
τ)− (1− φ) ·N(

1
2
σL
√
τ) > 0

⇒
(

N(0) +
1
2
σA
√
τn(0)

)
− φ ·

(
N(0) +

1
2
σH
√
τn(0)

)
− (1− φ) ·

(
N(0) +

1
2
σL
√
τn(0)

)
+ o(
√
τ) > 0

⇒A− φH − (1− φ)L+ o(1) > 0⇒ A− (1− λ)H − λL > 0 as τ → 0
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As τ → 0, ∂E(Wa)
∂τ

becomes 0, while ∂V ar(Wa)
∂τ

becomes a constant positive number. Therefore, ∂f
∂τ

< 0 as time

approaches maturity date, which implies that ∂A
∂τ

> 0.

(3) For ITM call option, i.e. K < P0erτ , we have

n(zH)
√
τ

=
n(zL)
√
τ

=
n(zA)
√
τ
→ 0 and N(zH) = N(zL) = N(zA)→ 1, when τ → 0

Then, the limiting behavior ∂E(Wa)
∂τ

and ∂V ar(Wa)
∂τ

is

∂E(Wa)
∂τ

=o(1)

∂V ar(Wa)
∂τ

=φP 2
0 (1−∆a)2σ2H2 + (1− φ)P 2

0 (1−∆a)2σ2L2 + o(1)

As τ → 0, ∂E(Wa)
∂τ

becomes 0, while ∂V ar(Wa)
∂τ

becomes a positive constant. Therefore, ∂f
∂τ

< 0 as time approaches

maturity date, which implies that ∂A
∂τ

> 0.

Appendix B-4 (Second Derivative of τ)

∂2A

∂τ2 = −
∂
[
∂f
∂τ
/ ∂f
∂A

]
∂τ

=
∂f
∂τ

∂2f
∂A∂τ

− ∂2f
∂τ2

∂f
∂A(

∂f
∂A

)2
Based on B-S model, we have

∂f

∂A
=Kσ

√
τn(zA) > 0

∂2f

∂A∂τ
=Kσ

√
τn(zA)

[ 1
2τ
− zA ×

∂zA

∂τ

]
In Proposition 1, we have already discussed the limiting behavior of ∂f

∂τ
for ATM ,OTM and ITM call options,

and now we continue on discussing the limiting behavior of ∂
2f
∂τ2 for the three different cases.

(1) For ATM call option, we have

∂2E(Wa)
∂τ2 = − Kσ

4·
√

2πτ3 (A− φH − (1− φ)L) + o( 1√
τ3 )

∂V ar(Wa)
∂τ

= O(1)

∂2f
∂A∂τ

= Kσn(zA)
2
√
τ

+ o( 1√
τ

)

As τ → 0, ∂
2E(Wa)
∂τ2 becomes negative, ∂V ar(Wa)

∂τ
tends to a positive constant, so ∂2f

∂τ2 is negative. Also, as τ → 0,
∂2f
∂A∂τ

becomes positive. Therefore, we can conclude that as time approaches maturity date, the ask volatility will

increase at an increasing rate.

(2) For OTM call option, we have

∂2E(Wa)
∂τ2 = O(

n(zA)
√
τ5

)
∂2V ar(Wa)

∂τ2 = O(1) and
∂2f

∂A∂τ
= O(

n(zA)
√
τ3

)

As τ → 0, ∂
2E(Wa)
∂τ2 becomes 0, ∂

2V ar(Wa)
∂τ2 tends to a positive constant, so ∂2f

∂τ2 is a negative constant . The order

of ∂f
∂A

is O(n(zA)
√
τ), while the order of ∂2f

∂A∂τ
is O( n(zA)√

τ3 ), which implies that ∂2f
∂A∂τ

dominates ∂f
∂A

. Therefore, as

time approaches the maturity date, the ask volatility will decrease at a decreasing rate.

(3) For ITM call option, we have the same conclusion as for the OTM call option. The insight lies in noting that

for OTM and ITM call option, the normal density function of z is an infinitesimal in any order of τ , i.e. n(z)
τm
→ 0 as

τ → 0, for all m ∈ R.

Appendix B-5 (The Volatility Level Effect)
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Consider
∂A

∂σ
= −

∂f
∂σ
∂f
∂A

In Proposition 2, we proved that ∂f
∂A

= Kσ
√
τn(zA) > 0. Hence, we only need to determine the sign of ∂f

∂σ
=

∂E(Wa)
∂σ

− Q
γ
∂V ar(Wa)

∂σ
.

For ∂E(Wa)
∂σ

, we have

∂E(Wa)
∂σ

= K
[
n(zA)A

√
τ − φ · n(zH)H

√
τ − (1− φ) · n(zL)L

√
τ
]

For ∂V ar(Wa)
∂σ

, we first calculate ∂V arH
∂σ

using the Chain Rule.

∂V arH

∂σ
=
∂C

∂σ
+
∂A1

∂σ
N(2σH

√
τ + zH) +

∂A2

∂σ
N(σH

√
τ + zH) +

∂A3

∂σ
N(zH)

+A1
∂N(2σH

√
τ + zH)

∂σ
+A2

∂N(σH
√
τ + zH)

∂σ
+A3

∂N(zH)
∂σ

For every part of ∂V arH
∂σ

, we have

∂C
∂σ

= 2P 2
0 ∆2

aH
2στe2rτ+σ2H2τ

∂A1
∂σ

N(2σ ·H
√
τ + zH) = 2(1− 2∆a)P 2

0H
2τσe2rτ+σ2H2τN(2σH

√
τ + zH)

A1
∂N(2σH

√
τ+zH )

∂σ
= K2(1− 2∆a)

(
2H
√
τ + ∂zH

∂σ

)
n(zH)

∂A2
∂σ

N(σH
√
τ + zH) = P0Kerτ

(
∂zH
∂σ
−H
√
τ
)

n(zH)N(σH
√
τ + zH)

A2
∂N(σH

√
τ+zH )

∂σ
=
{
−KP0erτN(σH

√
τ + zH)− 2K2N(−zH) + 2∆aK2 + 2∆aKP0erτ

}(
H
√
τ + ∂zH

∂σ

)
n(zH)

∂A3
∂σ

N(zH) = −K2 ∂zH
∂σ

n(zH)N(zH)

A3
∂N(zH )
∂σ

=
(
K2N(−zH)− 2∆aP0Kerτ

)
∂zH
∂σ

n(zH)

Adding up all the parts and rearranging, we finally have27

∂V arH
∂σ

= 2P 2
0 ∆2H2τσe2rτ+σ2H2τ + 2(1− 2∆a)P 2

0H
2τσe2rτ+σ2H2τN(2σH

√
τ + zH)

+2
[
K2N(zH)−KP0erτN(σH

√
τ + zH)−∆aK2 + ∆aKP0erτ

]
H
√
τn(zH)

To calculate ∂V ar(Wa)
∂σ

, we also need to calculate ∂(EH−EL)2
∂σ

and the details follow.

∂(EH−EL)2
∂σ

= [EH{Cτ} − EL{Cτ}]× ∂(EH{Cσ}−EL{Cτ})
∂σ

= [EH{Cτ} − EL{Cτ}]×K
[
n(zH)H

√
τ − n(zL)L

√
τ
]

27 ϑV arL
ϑσ

can be written in the similar format with L replacing H .
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We will discuss the limiting behavior of ∂f
∂σ

for ATM, OTM and ITM call options in turn.

(1) For ATM call option, i.e. K = P0erτ , we have

n(zH) = n(zL) = n(zA)→
1
√

2π
and N(zH) = N(zL) = N(zA)→

1
2
, when τ → 0

Then we have the limiting behavior ∂E(Wa)
∂τ

and ∂V ar(Wa)
∂τ

as follows,

∂E(Wa)
∂σ

=
K
√
τ

√
2π

(A− φH − (1− φ)L) + o(
√
τ)˜O(

√
τ) and

∂V ar(Wa)
∂σ

= O(τ)

As τ → 0, ∂E(Wa)
∂σ

dominates ∂V ar(Wa)
∂σ

. Therefore, ∂f
∂σ

> 0 as time approaches maturity date, which implies

that ∂A
∂σ

< 0.

(2) For OTM call option, i.e. K > P0erτ , we have

∂E(Wa)
∂σ

= O(n(z)
√
τ) and

∂V ar(Wa)
∂σ

= O(τ)

Since n(z) is an infinitesimal of o(τn) for any n when z →∝, ∂V ar(Wa)
∂σ

dominates ∂E(Wa)
∂σ

, which implies that
∂f
∂σ

< 0 as τ → 0. Therefore, ∂A
∂σ

> 0 as time approaches maturity date.

(3) For ITM call option, i.e. K > P0erτ , we use the similar reasoning as in OTM, and we reach the same

conclusion.

Appendix C
Appendix C-1 (The optimal dynamic hedging strategy)

We first compute the variance over two periods. According to the law of total variance, the total variance for a

two-periods model is

V ar0 (Wa,2)

= E0[V ar1(Wa,2)] + V ar0 [E1(Wa,2)]

∵ V ar1(Wa,2) = E1[V ar2(Wa,2)] + V ar1 [E2(Wa,2)]

= E0[V ar0[E1(Wa,2)] + V ar1 [E2(Wa,2)]]

= E0 [V ar0 (−C1,2 + ∆0P1) + V ar1 (−C2,2 + ∆1P2)]

and V ar2(Wa,2) = 0

where

V ar0 {E1(Wa,2)}

= V ar0
{

[−e−r∆τ · E1(P2 −K)+ + ∆0e−r∆τ · E1(P2)]
}

= V ar0 {[−C1,2 + ∆0P1]}

V ar1 {E2(Wa,2)} = V ar1[−E2(P2 −K)+ + ∆1P2] = V ar1 [−C2,2 + ∆1P2]

Therefore,

V ar0 (Wa,2)

= E0 {V ar0[−C1,2 + ∆0P1] + V ar1 [−C2,2 + ∆1P2]}

We let C1,2 denote the equilibrium call price at time 1 where C1,2er∆τ = E1(P2 − K)+. In addition, C2,2 =

(P2 −K)+.

Now we derive the optimal hedging strategy. We follow the methodology in Basak and Chabakauri (2010) and

apply dynamic programming to the value function Jt , which is defined as
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J = V art(Wa,2).

The law of total variance yields a recursive representation for the value function.

Jt = min
∆t

{
Et(Jt+∆τ ) + V art[−Et+∆τ ([PT −K]+ + ∆tPt+∆τ )]

}
.

where ∆t is the stock holding and ∆τ is time interval. We first check optimization for period 1.

J0 = min
∆0

{
E0(J1) + V ar0[−E1([P2 −K]+ + ∆0P1)]

}
= min

∆0
{E0(J1) + V ar0[−C1,2 + ∆0P1]}.

By F.O.C, we get optimal ∆0as,

∆∗0 = Cov0(C1,2,P1)
V ar0[P1] .

We continue to get optimal ∆1 for period 2.

J1 = min
∆1

E1(J2) + V ar1[−E2([P2 −K]+ + ∆1P2)] = min
∆0

E0(J2) + V ar1[−C2,2 + ∆1P2].

The solution is

∆∗1 = Cov1(C2,2,P2)
V ar1[P2] .

The general solution for multiple-periods model is also provided by Basak and Chabakauri (2012). To get ana-

lytical solution for ∆∗, we advance to compute covariance. Given in each period we have two possible realizations

(µH∆τ, σ2
H∆τ) and (µL∆τ, σ2

L∆τ) with a bernoulli random arrival rate, law of total covariance yields

Cov1(C2,2, P1)

= (1− φ)Cov1,L [C2,2, P2] + φCov1,H [C2,2, P2]

+Cov1
[
(1− φ)E1,L (C2,2) + φE1,H (C2,2) , (1− φ)E1,L (P2) + φE1,H (P2)

]
.

Given E1(P2|V ) = P1er∆τ is constant by assumption (4), we simplify the covariance as

Cov1(C2,2, P2) = (1− φ)Cov1,L [C2,2, P2] + φCov1,H [C2,2, P2] ,

Cov0(C1,2, P1) = (1− φ)Cov0,L [C1,2, P1] + φCov0,H [C1,2, P1] .

Appendix C-2 (The optimal dynamic hedging strategy)

Here we compute C1,2 and C0,2.

C1,2 = E1[(P2 −K)+]

= e−r∆τ
{
φE1

[
(P2 −K)+ |X1 = x1, V2 = σH

]
+ (1− φ)E1

[
(P2 −K)+ |X1 = x1, V2 = σL

]}
= φBSMx1,H + (1− φ)BSMx1,L,

where x1, σH , σL are the realizations of X1 and V2.

BSMx1,H = P1 ·N

(
ln(P1

K
)+[r∆τ+

σ2
H

∆τ
2 ]

σH
√

∆τ

)
− e−r4τK ·N

(
ln(P1

K
)+[r∆τ−

σ2
H

∆τ
2 ]

σH
√

∆τ

)
BSMx1,L = P1 ·N

(
ln(P1

K
)+[r∆τ+

σ2
L

∆τ
2 ]

σL
√

∆τ

)
− e−r4τK ·N

(
ln(P1

K
)+[r∆τ−

σ2
L

∆τ
2 ]

σL
√

∆τ

)
.
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C0,2 = e−2r∆τE0[(P2 −K)+]

= e−2r∆τ
{
φ2E0

(
E1
[
(P2 −K)+ |X1, V2 = σH

]
|V1 = σH

)
+ (1− φ)φE0

(
E1
[
(P2 −K)+ |X1, V2 = σH

]
|V1 = σL

)}
+e−2r4τ

{
(φ(1− φ)E0

(
E1
[
(P2 −K)+ |X1, V2 = σL

]
|V1 = σH

)
+ (1− φ)2E0

(
E1
[
(P2 −K)+ |X1, V2 = σL

]
|V1 = σL

)}
= φ2BSMH,H + 2φ(1− φ)BSMH,L + (1− φ)2BSML,L

The following is the derivation for BSMEH,H , BSMEH,Land BSML,L. Here in Appendix C2, for the notation

convenience, we let ∆τ = 1.

E0
(
E1
[
(P2 −K)+ |X1, V2 = σH

]
|V1 = σH

)
= E0(E1[P2 · I(P2 > K)|X1, V2 = σH ]|V1 = σH)− E0(E1[K · I(P2 > K)|X1, V2 = σH ]|V1 = σH)

Let fX1,H the normal density function. The first term can be derived as

E0(E1[P2 · I(P2 > K)|X1, V2 = σH ]|V1 = σH)

=
∫
X1,H

P0e
X1,H+X2,H Pr(X2,H > ln( K

P0
)−X1,H |X1,H)fX1,HdX1,H

∵ X2,H = uH + σ ·Hε2

=
∫
X1,H

P0e
X1,H+uH+σHε2 Pr(ε2 >

ln( K
P0

)−X1,H−uH
σH

|X1,H)fX1,HdX1,H .

let Z =
ln( K

P0
)−X1,H−uH
σH

=
∫
X1,H

P0e
X1,H+uH

[∫
ε2>Z

eσHε2 1√
2π
e−

ε22
2 dε2

]
fX1,HdX1,H

=
∫
X1,H

P0e
X1,H+uH+σ2H2

2

[∫
Z

1√
2π
e−

(ε2−σH )2
2 dε2

]
fX1,HdX1,H

=
∫
X1,H

P0e
X1,H+uH+

σ2
H
2

[
1−N(

ln( K
P0

)−X1,H−uH
σH

− σH)
]
fX1,H dX1,H

=
∫
X1,H

P0e
uH+σε1+uH+

σ2
H
2

[
N(

X1,H−
[
ln( K

P0
)−uH−σ2

H

]
σH

)
]

1√
2πσH

e
−

(X1,H−uH )2

2σ2
H d[σHε1]

NoteN(
X1,H−[ln( K

P0
)−uH−σ2

H

σH
) = Pr(ε2 >

ln( K
P0

)−X1,H−uH−σ2
H

σH
).

= P0e
2[u+

σ2
H
2 ] ∫

ε1

[
N( ln(P0

K
)+2uH+σ2

H
σH

+ ε1)
]

1√
2π
e−

(ε1−σH )2
2 dε1

apply theorem :
∫

N(m+ sε1) 1√
2π
e−

(ε1−g)2
2 dε1 = N

(
m
s

+g√
( 1
s

)2+1

)
.

= P0e
2[uH+

σ2
H
2 ]N

(
ln(P0

K
)+2uH+2σ2

H√
2σH

)
.

Then we derive the second term.

E0(E1[K · I(P2 > K|X1, V2 = σH)|V1 = σH ])

= K
∫
X1,H

Pr(X2,H > ln( K
P0

)−X1,H |X1,H)fX1,HdX1,H

= K
∫
X1,H

Pr(ε2 >
ln( K

P0
)−X1,H−uH
σH

|X1,H)fX1,HdX1,H

=
∫
X1,H

K

[
N(
− ln( K

P0
)+X1,H+uH
σH

)
]

1√
2πσH

e
− (X1−uH )2

2σ2
H dX1,H

=
∫
ε1
K

[
N( ln(P0

K
)+2uH
σH

+ ε1)
]

1√
2π
e−

(ε1)2
2 dε1

= K ·N
(

ln(P0
K

)+2uH√
2σH

)
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Given uH + (σH )2
2 = r,

e−2r
{
E0
(
E1
[
(P2 −K)+ |X1, V2 = σH

]
|V1 = σH

)}
= P0 ·N

(
ln(P0

K
)+[r+

σ2
H
2 ]∗2

σH
√

2

)
− e−2rK ·N

(
ln(P0

K
)+[r−

σ2
H
2 ]∗2

σH
√

2

)
= BSMH,H

Using the same procedure, we can derive

e−2r
{
E0
(
E1
[
(P2 −K)+ |X1, V2 = σL

]
|V1 = σL

)}
= P0 ·N

(
ln(P0

K
)+[r+

σ2
L
2 ]∗2

σL
√

2

)
− e−2rK ·N

(
ln(P0

K
)+[r−

σ2
L
2 ]∗2

σL
√

2

)
= BSML,L

and

e−2r
{
E0
(
E1
[
(P2 −K)+ |X1, V2 = σH

]
|V1 = σL

)}
= P0 ·N

(
ln(P0

K
)+[r+

σ2
H
2 +r+

σ2
L
2 ]√

σ2
H

+σ2
L

)
− e−2rK ·N

(
ln(P0

K
)+[r−

σ2
H
2 +r−

σ2
L
2 ]√

σ2
H

+σ2
L

)
= BSML,H

and

e−2r
{
E0
(
E1
[
(P2 −K)+ |X1, V2 = σL

]
|V1 = σH

)}
= P0 ·N

(
ln(P0

K
)+[r+

σ2
H
2 +r+

σ2
L
2 ]√

σ2
H

+σ2
L

)
− e−2rK ·N

(
ln(P0

K
)+[r−

σ2
H
2 +r−

σ2
L
2 ]√

σ2
H

+σ2
L

)
= BSMH,L

Appendix C-3 (Proof of Proposition 5)

Let Y =
∑T

j=t+∆τ Xj , PT = P0eY with each Xj a Bernoulli-type random normal distribution.

Therefore, we know Ct,T =
∑n

i=0

(n
i

)
φi(1− φ)n−iEt

[
(PT −K)+|V ar(Y ) = i · (σH)2∆τ + (n− i) · (σL)2∆τ

]
Ct,T =

∑n

i=0

(n
i

)
φi(1− φ)n−i

{
Pt ·N (d1)− e−nr∆τK ·N (d2)

}
d1 = ln(Pt

K
)+i·[r∆τ+

σ2
H

∆τ
2 ]+(n−i)·[r∆τ+

σ2
L

∆τ
2 ]√

i·σ2
H

∆τ+(n−i)σ2
L

∆τ

d2 = ln(Pt
K

)+i·[r∆τ−
σ2
H

∆τ
2 ]+(n−i)·[r∆τ−

σ2
L

∆τ
2 ]√

i·σ2
H

∆τ+(n−i)σ2
L

∆τ
, n = T

∆τ

,

Next,

Covt(Ct+1,T , Pt+1)

= Et
[
Covt(Ct+1,T , Pt+1|Vt+1)

]
+ Covt

[
Et(Ct+1,T |Vt+1), Et(Pt+1|Vt+1)

]
∵ Et(Pt+1|Vt+1) is constant by our assumption.

= Et
[
Covt(Ct+1,T , Pt+1|Vt+1)

]
= φ
{
Et(Ct+1,TPt+1|Vt+1 = σH)− Et(Ct+1,T |Vt+1 = σH)E(Pt+1|Vt+1 = σH)

}
+(1− φ)

{
Et(Ct+1,TPt+1|Vt+1 = σL)− Et(Ct+1,T |Vt+1 = σL)E(Pt+1|Vt+1 = σL)

}
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The detail of first term of covariance is

Et(Ct+1,TPt+1|Vt+1 = σH)

= Et

{∑n∗

i=0

(n∗
i

)
φi(1− φ)n∗−i

{
P 2
t+1N (d1)− Pt+1e−n

∗r∆τKN (d2)
}
|Vt+1 = σH

}
,

where n∗ = T−(t+∆τ)
∆τ . And we advance to express the terms as

Et
{
P 2
t+1N (d1)− Pt+1e−n

∗r∆τKN (d2) |Vt+1 = σH
}

= Et


P 2
t e

2uH∆τ+2σH
√

∆τεt+1N

 ln(Pt
K

)+i·
[
r∆τ+

σ2
H

∆τ
2

]
+(n∗−i)·

[
r∆τ+

σ2
L

∆τ
2

]
+uH∆τ

√
i·(σH )2∆τ+(n∗−i)(σL)2∆τ

+ εt+1


−Pte−n

∗r∆τ euH∆τ+σH
√

∆τεt+1K ·N

 ln(Pt
K

)+i·
[
r∆τ−

σ2
H

∆τ
2

]
+(n∗−i)·

[
r∆τ−

σ2
L

∆τ
2

]
+uH∆τ√

i·σ2
H

∆τ+(n∗−i)σ2
L

∆τ
+ εt+1

 |Vt+1 = σH


∵
∫

N(m+ sε) 1√
2π
e−

(ε1−g)2
2 dε1 = N

(
m
s

+g√
( 1
s

)2+1

)
= P 2

t e
2r∆τ+σ2

H∆τN

 ln(Pt
K

)+i·
[
r∆τ+

σ2
H

∆τ
2

]
+(n∗−i)·

[
r∆τ+

σ2
L

∆τ
2

]
+[r∆τ+

3σ2
H

∆τ
2 ]√

(i+1)·σ2
H

∆τ+(n∗−i)σ2
L

∆τ


−Pte−(n∗−1)r∆τK ·N

 ln(Pt
K

)+i·
[
r∆τ−

σ2
H

∆τ
2

]
+(n∗−i)·

[
r∆τ−

σ2
L

∆τ
2

]
+[r∆τ+
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Similarly, details inside Et(Ct+1,TPt+1|Vt+1 = σL) are
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The second term Et(Ct+1,T |Vt+1 = σH)E(Pt+1|Vt+1 = σH) and Et(Ct+1,T |V1 = σH)E(Pt+1|Vt+1 = σL) can
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Combining,
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The analytical solution for covariance is
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Table 1: Descriptive Statistics

Panel (A): Descriptive Statistics for Volatility

Mean Min Max Std Skewness Kurtosis

BSM-IMV (ATM) Call (bid) 17.48% 4.59% 85.21% 10.19% 2.14 7.34

Call (ask) 19.58% 4.68% 117.50% 13.96% 2.56 11.57

Put (bid) 20.81% 7.75% 91.76% 10.56% 2.09 6.63

Put (ask) 23.27% 9.48% 132.54% 12.34% 2.54 10.90

CM-IMV (OTM+ATM) Call+Put (bid) 21.29% 8.54% 97.14% 10.84% 2.14 7.12

Call+Put (ask) 23.81% 9.68% 129.78% 12.56% 2.56 10.85

Realized Volatility 30 Days 18.57% 5.72% 88.50% 12.35% 2.59 8.75

Panel (B): Descriptive Statistics for Volatility Spread

Mean Min Max Std Skewness Kurtosis

BSM-IMV Spread (ATM) Call (ask-bid) 1.99% 0.36% 28.42% 1.89% 6.30 65.5

Put (ask-bid) 2.25% 0.40% 32.12% 2.06% 6.22 64.33

CM-IMV Spread ask-bid 2.44% 0.83% 29.64% 1.94% 5.56 51.47

P. BSM-IMV Spread Call 11.17% 1.60% 52.95% 5.59% 2.33 8.46

Put 13.14% 1.59% 75.20% 7.46% 2.52 9.98

P. CM-IMV Spread 14.43% 3.24% 88.90% 6.94% 2.34 11.99
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Table 2: Estimation Results (1)

Model : SpPctc,t = α+ θ · 1
TMt,c

+ β1 ·RVc + β2 · V RPc,t + β3 · Jump intensityc,t + vc + εc,t

Panel (A) : Dependent Variable: Percentage CM-IMV spread
α θ β1 β2 β3 adj −R2

6.2
(0.625)∗∗∗

0.037
(0.002)∗∗∗

0.024
(0.028)

0.314
(0.018)∗∗∗ 0.40

8,90
(0.625)∗∗∗

0.046
(0.002)∗∗∗

-0.139
(0.033)∗∗∗

0.282
(0.019)∗∗∗ 0.38

7.377
(0.626)∗∗∗

0.038
(0.002)∗∗∗

-0.068
(0.029)∗∗

0.244
(0.019)∗∗∗

0.178
(0.020)∗∗∗ 0.43

Panel (B): Dependent Variable: Percentage BSM-IMV (ATM Call) spread
α θ β1 β2 β3 adj −R2

7.631
(0.717)∗∗∗

0.072
(0.002)∗∗∗

-0.038
(0.032)

0.261
(0.022)∗∗∗ 0.53

9.916
(0.799)∗∗∗

0.08
(0.002)∗∗∗

-0.178
(0.037)∗∗∗

0.244
(0.023)∗∗∗ 0.53

8.692
(0.707)∗∗∗

0.074
(0.002)∗∗∗

-0.121
(0.033)∗∗∗

0.197
0.023∗∗∗

0.161
(0.024)∗∗∗ 0.54

Panel (C): Dependent Variable: Percentage BSM-IMV (ATM Put) spread
α θ β1 β2 β3 adj −R2

9.108
(0.858)∗∗∗

0.113
(0.002)∗∗∗

-0.106
(0.038)∗∗

0.251
(0.024)∗∗∗ 0.66

11.37
(0.938)∗∗∗

0.121
(0.002)∗∗∗

-0.247
(0.043)∗∗∗

0.247
(0.025)∗∗∗ 0.66

10.23
(0.847)∗∗∗

0.115
(0.002)∗∗∗

-0.194
(0.039)∗∗∗

0.184
(0.026)∗∗∗

0.170
(0.027)∗∗∗ 0.67

The t values in tables are already adjusted by Newy-West variance and covariance estimator.
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Table 3: Estimation Results (2)

Model :
{

SpPctc,t = α+ β1 ·RVc,t + β2 ·RVc + β3 · V RPc,t + β4 · Jump intensityc,t + εc,t ,
DeTrend SpPctc,t = α+ β1 ·RVc,t + β2 ·RVc + β3 · V RPc,t + β4 · Jump intensityc,t + εc,t ,

Panel (A) : Percentage CM-IMV spread

Dependent Variable α β1 β2 β3 β4 R2

DeTrend SpPctc,t
5.48
(0.78)∗∗∗

0.35
(0.03)∗∗∗

-0.35
(0.04)∗∗∗

0.35
(0.02)∗∗∗

0.1
(0.02)∗∗∗

0.24

SpPctc,t
6.9
(0.88)∗∗∗

0.39
(0.03)∗∗∗

-0.36
(0.04)∗∗∗

0.4
(0.02)∗∗∗

0.08
(0.02)∗∗∗

0.26

Panel (B): Percentage BSM-IMV (ATM Call) spread

Dependent Variable α β1 β2 β3 β4 R2

DeTrend SpPctc,t
6.92
(0.87)

0.33
(0.03)∗∗∗

-0.38
(0.05)∗∗∗

0.3
(0.03)∗∗∗

0.08
(0.03)∗∗∗

0.14

SpPctc,t
9.68
(0.99)∗∗∗

0.36
(0.03)∗∗∗

-0.39
(0.05)∗∗∗

0.34
(0.03)∗∗∗

0.07
(0.03)∗∗∗

0.14

Panel (C): Percentage BSM-IMV (ATM Put) spread

Dependent Variable α β2 β3 β4 β5 R2

DeTrend SpPctc,t
9.17
(0.92)∗∗∗

0.22
(0.04)∗∗∗

-0.37
(0.05)∗∗∗

0.23
(0.03)∗∗∗

0.13
(0.03)∗∗∗

0.09

SpPctc,t
13.3
(1.07)∗∗∗

0.26
(0.04)∗∗∗

-0.39
(0.05)∗∗∗

0.29
(0.03)∗∗∗

0.1
(0.03)∗∗∗

0.10
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Table 4: Estimation Results (3)

Model :
{
Jump intensityc,t+1 = α+ β1 ·DeTrend SpPctc,t + β2 · SpPctc,t

+β3 · V RPc,t + β4 ·RVc,t + β5 · Jump intensityc,t + εc,t
Panel (A) : Dependent Variable: Jump Intensity at t+1, Spread Measurement: Percentage CM-IMV spread

α β1 β2 β3 β4 β5 adj −R2

2.352
(0.628)∗∗∗

0.229
(0.027)∗∗∗ 0.04

2.378
(0.633)∗∗∗

0.176
(0.023)∗∗∗ 0.03

2.23
(0.634)∗∗∗

0.17
(0.049)∗∗∗

0.059
(0.041) 0.04

-3.828
(0.441)∗∗∗

0.102
(0.051)∗∗

-0.188
(0.047)∗∗∗

0.345
(0.025)∗∗∗

0.338
(0.02)∗∗∗

0.316
(0.024)∗∗∗ 0.42

Panel (B): Dependent Variable: Jump Intensity at t+1, Spread Measurement: Percentage BSM-IMV (ATM Call) spread

α β1 β2 β3 β4 β5 adj −R2

3.015
(0.629)∗∗∗

0.138
(0.024)∗∗∗ 0.02

3.1
(0.629)∗∗∗

0.086
(0.017)∗∗∗ 0.01

2.895
(0.635)∗∗∗

0.105
(0.033)∗∗∗

0.033
(0.024) 0.02

-3.957
(0.447)∗∗∗

0.053
(0.033)∗

-0.104
(0.027)∗∗∗

0.332
(0.024)∗∗∗

0.335
(0.02)∗∗∗

0.309
(0.024)∗∗∗ 0.42

Panel (C): Dependent Variable: Jump Intensity at t+1, Spread Measurement: Percentage BSM-IMV (ATM Put) spread

α β1 β2 β3 β4 β5 adj −R2

3.194
(0.631)∗∗∗

0.112
(0.021)∗∗∗ 0.01

3.347
(0.625)∗∗∗

0.054
(0.013)∗∗∗ 0.01

3.072
(0.637)∗∗∗

0.089
(0.026)∗∗∗

0.022
(0.016) 0.02

-4.067
(0.461)∗∗∗

0.046
(0.025)∗

-0.067
(0.018)∗∗∗

0.325
(0.024)∗∗∗

0.331
(0.021)∗∗∗

0.305
(0.024)∗∗∗ 0.41
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Figure 1: The Implied Volatility
Figure 1 graphs the 3 measures of implied volatilities, including CM IMV, BSM-IMV ATM Call and BSM-IMV ATM
Put. The light bold line represents CM IMV, the circle signs denote BSM-IMV ATM Call, and the plus signs are
BSM-IMV ATM Put. The top chart draws the IMV for bid prices of S&P index options, while the bottom chart
graphs the IMV for ask prices. The 20-days realized volatility (RV) is given by the dashed line in both charts. To
compute the RV, we use 5-minute high frequency returns for a historical time window of 20 days. As shown in this
figure, the volatility measures are highly correlated, reaching their largest values, approximately 80%, during the 2008
financial crisis and declining to 20% in the late 2009.
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Figure 2: The Implied Volatility Spread
Figure 2 graphs the implied volatility spreads from 01/02/2007 to 04/15/2010. The first chart contains the CM-IMV
spreads, the second and third charts are the IMV spreads of ATM call and ATM put, respectively. The vertical dashed
lines are the expiration date, while the solid bold line is the realized volatility. As each dot represents the implied
volatility spread, it can be observed that the volatility spread increases at an increasing rate as the expiration date
approaches.
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Figure 3: The Percentage Implied Volatility Spread
Figure 3 graphs the percentage implied volatility spread. The dots denote the percentage volatility spreads, while the
other signs represent the same variables in figure 2. The patterns are similar to those in Figure 2, although the width
of the spreads differs.
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Figure 4: Minimum Spread in Ticks
Figure 4 show the spreads in terms of ticks for ATM options. The top chart display the frequency of tick spreads
for call options, and the bottom one demonstrates the same information of put options. The first column divides the
whole sample into by the number of tick spreads of closing prices. Those groups include: (1) tick spread ≤ 2, (2) 2 <
tick spread ≤ 10, (3) 10 < tick spread ≤ 18 (3) 18 < tick spread ≤ 24, and (5) 24 < tick spread. The second column
is the histogram graphically representing the number of the observations of each group, and the numerical number of
frequency is shown in column 4. The percentage and the accumulated percentage of total observations number are
shown in column 4 and 5.
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Figure 5: Quotation Dynamic
Figure 5 illustrates the maturity effect. E1 is the first equilibrium selling the options at volatility A1. The expected
profit decays faster than the required risk premium so that expected profits fall below the risk premium as the time to
maturity decreases. To compensate, MMs increase the selling volatility to A2, shifting the expected extra profit curve
upward, resulting in the equilibrium E2. The result is that the implied volatility increases as the time to maturity
approaches.
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Figure 6: Averaged Volatility Percentage Spread and Volatility Level
In Figure 6, a negative relationship between percentage volatility spread and volatility level is exhibited. The dashed
line is the volatility spread, and the bold line is the realized volatility. Because the increasing pattern obscures the
level effect, the negative relationship is not easily observed if every data point is displayed. Here we averaged the
daily data and we plot the averaged daily volatility percentage spread for each contract at the expiration date. As
seen, especially in the bottom chart, when the realized volatility level is high, the spread in the percentage of implied
volatilities tends to be low.
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Figure 7: Total Variance and Call Prices for Different Dynamic Hedging Schemes
Figure 7 shows the numerical results for the total variance and the call price under different dynamic hedging plans.
The model parameters are σ=0.2, σH =0.22, σL =0.18, r =0.04 and Po =K =1500.
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Figure 8: The IMV spread and Percentage IMV spread
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Figure 9: The Total Variance of the Hedging Error at Different Volatility Levels
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Figure 10: Calibrated Results for ATM call Option Spreads
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