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Abstract

This paper documents the fact that in options markets, the (percentage) implied volatility
bid-ask spread increases at an increasing rate as the option’s maturity date approaches. To
explain this stylized fact, this paper provides a market microstructure model for the bid-ask
spread in options markets. We first construct a static equilibrium model to illustrate the afo-
rementioned phenomenon where risk averse and competitive option market makers quote bid
and ask prices to minimize their inventory risk in an incomplete market with both directional
and volatility risk. We extend this model to multi-periods and show that the same phenomenon
occurs there as well. Two new implications are generated: a volatility level effect and a volatility
variance effect. These implications are empirically tested, and the empirical results confirm the
model’s validity. Finally, we document the importance of de-trending the maturity effect by
showing that the de-trended percentage volatility spread explains future jump intensities better

than the original percentage volatility spread.
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1 Introduction

This paper documents an intriguing pattern observed in option markets, called the maturity effect.
First noticed in the foreign currency (FX) options market, e.g, Chong, Ding and Tan (2003), the
maturity effect is when the (percentage) bid-ask implied volatility spreads increase at an increasing
rate as an option’s maturity approaches. Using daily closing best quotes on S&P Index options over
2001-2010, we confirm the existence of the maturity effect in stock index options.

Our paper makes two contributions to the literature. Although Chong, Ding and Tan (2003)
observe the maturity effect for FX options, they compute Black-Scholes-Merton implied volatilities.
Since it is well known that the Black-Scholes-Merton model is rejected when pricing FX options, it
is an open question whether the observed maturity effect is due to model misspecification. Our first
contribution is to show, using model-free implied volatilities, that this is not the case.

Our second contribution is to construct a multi-period equilibrium model to explain the maturity
effect. Our model has risk averse and competitive option market makers (hereafter, referred to as
MMs) quoting bid and ask prices to minimize their inventory risk in an incomplete market with both
directional and volatility risk. It is shown that, although inventory risk decreases as the option’s
maturity date approaches, an increased risk premium (in term of implied volatility) is needed to
compensate the MMs for bearing the unhedgeable risk. This increased risk premium for both bid
and ask prices results in the widening of an option’s (percentage) bid-ask implied volatility spread
as the maturity date approaches.

Two new implications of the model are generated, which are currently untested. The first is that
an increase in the level of the underlying’s volatility decreases the equilibrium percentage bid-ask
implied volatility spread. The second is that, holding the level of the volatility constant, an increase
in the volatility’s variance increases the equilibrium percentage bid-ask implied volatility spread.
Using the same data set employed to document the maturity effect, these additional implications
are tested herein. The empirical evidence generally confirms these implications and, thus, the model’s
validity.

Our paper adds to the market microstructure of option markets literature, which includes among
others, Muravyev, Pearson and Broussard (2012), Hsieh, Lee and Yuan (2008), Holowczak, Simaan,
and Wu (2007), Chakravarty, Huseying, and Mayhew (2004), Easley, O’'Hara and Srinivas (1998),
and Pan and Poteshman (2006). In contrast to these papers, which focus on the information content
of option trading, our paper focuses on the unhedgeable risks that MMs face in incomplete markets.
Additionally, different from Garleanu, Pedersen, and Poteshman (2009) who model the demand side
impact on prices, we focus on the supply side of option liquidity providers. Our paper also differs

from Chen, Joslin and Ni (2016) who use CRRA utility functions in a complete market to model the



optimal consumption choice of investors and dealers. Although they incorporate supply side shocks
into the dealers’ utility function, risk premium in their model are based on aggregate demands. In
contrast, we study an incomplete market where market makers trade-off the expected hedging and
inventory holding risks to determine the equilibrium risk premium. Ours is solely a supply side
model.

This paper is organized as follows. In section [2] the maturity effect is documented. Section [3]
presents the equilibrium model. Next, in section [} we extend the model to two-periods and then
multiple-periods. Section [5] presents the data description and empirical evidence. Finally section [6]

concludes.

2 The Maturity Effect

This section presents the maturity effect, which is when the (percentage) bid-ask implied volatility
spreads increase at an increasing rate as an option’s maturity approaches. This pattern was first
observed in Chong, Ding and Tan (2003) using Black-Scholes-Merton implied volatilities. Given the
Black-Scholes-Merton model is rejected using historical data, it is an open question whether this
pattern is a result of model misspecification. Using model free implied volatilities, we show that this
is not the case. The existence of the maturity effect motivates the model formulated in the next
section to explain the economics underlying this phenomena.

To avoid model misspecification in the computation of implied volatilities, we compute model free
implied volatilities (IMV) first proposed by Carr and Madan (1998). Carr and Madan’s approach
uses only out-of-the-money (OTM) call and put options. A slight modification of their approach is
used by the CBOE to compute the VIX index. This paper employs a method similar to the CBOFE’s,
which we call the Carr Madan implied volatility (CM IMV). When constructing the VIX index, the
CBOE averages the first and second nearest term contractsﬂ However, here we only investigate the
nearest month contract because we are studying the change in volatility spreads over a short time
period. We also compute the Black-Scholes-Merton implied volatility (BSM-IMV) for ATM call and
put options. We investigate options written on the S&P 500 index from January 2, 2001 to April
18, 2010. Our sample consists of 112 nearest term contracts. For each contract, the trading days
range from 12 to 24 daysE|

In Figure 1, we graph the CM IMV, BSM-IMV, and the daily realized volatility (RV) from
01/02/2005 to 12/31/2009. An IMV is an estimate of the expected volatility over the option’s

1Because the calculation of the CBOE VIX index is a weight-averaged implied volatility of the two nearest term
contracts, the VIX index is an expected volatility for the next 30 days.

2In our sample, the contract which expires on January 20, 2001 does not include the records before 2001 so that
this contract only has 12 trading days.



remaining life. We use 20-days realized volatility for comparisonﬂ We calculate the BSM-IMV for
call and put options separately and average the IMV of the four options with strikes closest to the
spot price to get the daily BSM-IMV for at-the-money (ATM) calls and BSM-IMV ATM puts. As
seen, all the volatility measures are highly correlated reaching a maximum, above 80%, during the
2008 financial crisis. The related descriptive statistics are listed in Table 1 and discussed in a later
section.

Figures 2 and 3 document the maturity effect. In each figure, there are 3 charts representing
spreads of different volatility measures. The top chart shows the CM IMV spread, the middle and
the bottom charts plot the spreads of BSM-IMV of ATM call options and of BSM-IMV ATM put
options, respectively. Figure 2 graphs the absolute volatility spreads, while Figure 3 graphs the
percentage volatility spreads, which divides the absolute volatility spread by the realized volatility
of the corresponding contract period. The vertical dashed lines represent expiration dates, and
the dots denote the volatility spreads of 40 consecutive nearest-term contracts from 01/02/2007 to
04/15/2010. Finally, the RV is represented by a bold line for a comparison.

As shown in Figure 2, the implied volatility bid-ask spreads for all IMV measures increase at an
increasing rate as the option’s maturity approaches. The CM-IMV spread is relatively higher than
the BSM-IMV spread, and all the absolute volatility spreads start at approximately 1 ~ 2% and
increase to more than 4% at a few days before expirationﬁ As seen, the maturity effect occurs for
every contract and for the different volatility measures. The range of the absolute volatility spread
is more volatile and increases as the realized volatility increases. Figure 3 contains the percentage
implied volatility bid-ask spreads and shows that, in contrast to absolute volatility spreads, the range
of the percentage volatility spread is similar over different contracts but larger. The percentage
volatility spread starts from about 5 ~ 7% at a month remaining before maturity and increases to
over 20%. Similar to the volatility spreads, the percentage spreads increase at an increasing rate.
The maturity effect occurs for every contract.

In markets, the dollar spreads paid for a transaction are usually smaller if the transaction prices
are lower. Due to discreteness in quoted prices (the tick size), when transaction prices become very
small, a minimum discrete dollar bid-ask spread implies that the percentage bid-ask spread increases.
Although these effects exist in our option prices, they do not explain the patterns observed in figures
2 and 3 because the volatility measures are independent of the price level. In contrast, however, if the

quoted spreads are always at the minimum discrete dollar bid-ask, i.e., 0.()5E| then the transformed

3We use the definition of RV given by Andersen, Bollerslev, Diebold and Ebens (2001).

4Chong, Ding and Tan (2003) investigate at-the-money currency options. They show that the volatility spread
starts at 2 ~ 6% for options with a 1 year maturity, increases gradually until the last month, increases rapidly in the
last month, and finally reaches 8 ~ 16%.

5S&P options are quoted on a point basis, and the minimum tick is 0.05 for option prices less than 3 and 0.1 for



volatility spreads will increase as a contract approaches its expiration. Figure 4 shows the distribution
of the quoted spreads in ticks. There are less than 5 percent of the quotes occurring at the minimum
tick. Therefore, the observed pattern can not be attributed to most quotes being at the minimum

discrete dollar bid-ask spread.

3 The One-Period Model

This section presents a static model of an options market equilibrium where prices are determined
by competitive MMs optimally hedging their inventory risk contingent on the execution of a trade.
Markets are assumed to be incomplete because the underlying stock exhibits both directional and
volatility risk. MMs, being risk averse, minimize inventory risk by delta hedging, but delta hedging
can not eliminate both directional and volatility risks. Equilibrium spreads, therefore, necessarily
include compensation (risk premium) for the unhedged risk. We show that this compensation, in
conjunction with the time decay embedded in the option’s price, generates the maturity effect in the
implied volatility bid/ask spreads as an option approaches maturity.

It should be noted that the volatility risk in our incomplete market model implies that the Black-
Scholes-Merton (BSM) model is invalid and that vega hedging will not remove an option’s volatility
risk because the BSM pricing formula does not reflect the sensitivity of the option’s value to changes

in volatility (see Chatterjea and Jarrow [27] for an elaboration of this comment).

3.1 The Economy

This section describes the economy. Trading in the economy are a riskless asset, a stock, and a
call option on the stock with strike price K and maturity time 7. Let the stock price at time 0
be denoted Py, the stock’s time 0 volatility og, and the annualized time to maturity 7, measuring
time length from 0 to 7. We let Py > 0 and 0¢9 = ¢ > 0. We assume two volatility states, so the
stock’s volatility realization at time 7T is denoted o, € {0y, JH}E and the stock price can increase

or decrease at time T for each volatility level, i.e.
PT = Poe{#T+UTWT}’

where 4 is the expected return per unit time, and W, is Wiener process. This assumption states

that the MMs believe ln[E(%z)] is distributed N(ur,or) with probability 1 — ¢ and N(ug,oH)

prices larger than 10.
6For simplicity of the derivation, we assume oy = o - H and o = o - L for a fixed ¢ > 0 where L < 1 < H, see
sections 3.6 and 3.7.



with the probability ¢. These are the MM’s subjective probabilities.

The collection of competitive and homogeneous MMs quote bid and ask prices for the traded
option. Let the option’s equilibrium ask price at time 0 be denoted Cy(a) and the bid price be
denoted Cy(b). The call option’s payoff at time 7' is

Cr(o;) = max[Pr (o,) — K, 0]. (1)

3.2 Arbitrage Pricing

We assume that the stock and option market are arbitrage-free. The first fundamental theorem of

asset pricing implies that there exist risk-neutral probabilities such that

1. the stock price equals its expected (discounted) value under the risk-neutral probabilities, i.e.

P (1_¢))/Pt'f(Pt70.L77-)dPt—|—¢’/Pt~f(Pt,0'H77')dPt
= e‘m’{(l—‘I))EL(Pt)‘F(I)EH(Pt)}’ (2)

where ® is the risk-neutral probability that the volatility is (o), f(P:, o, 7) is the conditional
risk-neutral probability density function of the stock price given the volatility is (o), and
f(Pi,om,7) is the conditional risk-neutral probability density function given the volatility is

(og); and

2. the ask and bid call option prices equal their expected (discounted) values under the risk-

neutral probabilities, i.e.

Co(s) = e {1 - ;) Er [max (Pr — K,0)] + ®;Ey [max (Pr — K,0)]}

= ¢ ""{(1 - @) EL [Cr] + ®:En [Crl}, ¥

where @, is the ask or the bid price (s € {a,b}) risk-neutral probability that the volatility is

(om).

We note that the conditional risk-neutral probabilities { f (o, ), f(om,7)} are unique because, given
the volatility, the market is complete. Since the unconditional market is incomplete, however, the
risk-neutral probabilities {®, ®,, P} are non-unique and not determined by arbitrage arguments

alone[] Indeed, any call price between the quotes satisfying the no-arbitrage conditions corresponds

7This is due to the second fundamental theorem of asset pricing.



to an acceptable ®. To determine the unique arbitrage-free ask/bid call option prices, an equilibrium
model is needed. Such a model is given in the next section.
To facilitate a solution, we assume that conditional upon the volatility’s realization {o,,ox}, the

MMs’ subjective probabilities satisfy the following condition, called the independence assumption:
E(=)e =1 and FEg(=)e " =1. (4)

This condition essentially states that the expected stock price doesn’t depend on the volatility,
and that the expected return from holding the underlying asset equals the risk free rateﬂ This
assumption best describes an economy where traders’ risk premium are independent of the level
of an asset’s volatility. In the Appendix, we show that after we impose this assumption , both
Er, [max (Pr — K,0)] and Ex [max (Pr — K, 0)] satisfy the Black-Scholes-Merton formula.

3.3 The Market Maker’s Problem

Because a mean-variance objective provides tractable results, many papers employ it to study asset
allocation and hedging in an incomplete market. For example, in futures and forward markets, Lioui
and Poncet (2000) and In and Kim (2006) use this objective to study optimal hedging policy, while
Brooks, Henry, and Persand (2002) use it to investigate an interest rate market with stochastic
volatility. In option markets, it has been used by Bakshi, Cao, and Chen (1997). Viswanathan
and Wang (2002) use it to model the MMs’ quoting behavior for limit order books. Last, Basak
and Chabakauri (2010, 2012) study both dynamic portfolio choice and dynamic hedging using a
minimum-variance objective function. Following this literature, we use a mean-variance objective
function to study a MM’s optimal hedging strategy. We first do this for a one-period model to
illustrate the results in the simplest setting, and then we generalize to a two-period and a multi-
period model.

As such, we assume that the options market is populated by a collection of homogeneous MMs
with mean-variance utility functions, who delta hedge their option positions using the underlying
stock to minimize both directional and volatility risk. They behave in this manner because they
realize they are uninformed traders. Given markets are incomplete, the delta hedge cannot remove
all of the position’s risk.

MDMs quote bid and ask option prices to compensate themselves for the inventory risk they bear

contingent on the transaction. To simplify the analysis, since the MMs can hedge the option’s

2
LT

2
8The justification for this statement is the following: EL(%z; Ye~TT = ML ST — 1 oy 4 dér — 7 and
2 5
7" 2
EH(L:%")efrT:e#H‘r-ﬁ— T =1 = g+ UI;T —




directional risk given the volatility, we assume that their conditional beliefs equal the risk-neutral
beliefs, {f(or,7), f(cm,7)}. Combined with the independence assumption expression , this im-
plies that the MMs use these risk-neutral probabilities to price “directional risk.” We let the MM’s
unconditional probability beliefs over the volatility’s realizations (or,,0x) be denoted by (1 — ¢, ¢).
These beliefs differ from the corresponding risk-neutral probabilities ® given earlier.

The MM’s provide liquidity to investors. Given a price, they quote option quantities to maximize

their expected utility, i.e. they choose the trade quantity to solve the following optimization problem:

max (qE(Wa) - %Var(an) _ cq> where (5)

q, Aq
Wa(O'T) = C’o(a)e” — CT(O'T) + A, [PT (O’T) — P()GTT]

is the profit from the delta hedged option portfolio at time T for or € {o,0n}, ¢ is a transaction
or opportunity cost for a trade, v > 0 is a risk aversion coeflicient, ¢ is the quantity quoted, and A,
is the number of shares held in the underlying asset (the delta)ﬂ Note that Cy(a) — APy is the
amount invested in the portfolio at time 0.

For simplicity, our discussion focuses on the maximization problem of writing a call option and
choosing the ask price. The problem of buying a call and determining the bid price is analogous,
and the results are reported below. All derivations are given in Appendix B.

Because of expression and the fact that the MM’s conditional beliefs equal the risk-neutral
conditional probabilities, the stock’s expected payoff is zero. This implies that the MM focuses on
minimizing volatility risk. In this regard, one can show that the MM’s expected payoff E(W,) is
the option’s selling price minus the expected fair value of the option conditional upon knowledge of

the volatility, i.e.
E(Wa) = Co(a)e’™ — ¢Ey [Or] — (1 — ¢)EL [C7]  where (6)

FEy[Crl= [ max (P, — K,0) f(P;,ou,7)dP;, and

— 00

L[Crl = [ max (P, — K,0)- f(Py,0,7)dP:.

— 00
The key insight here is that the MM’s expected profit does not depend on the shares held in the

underlying stock.

9Constructing the optimization problem for the bid price is analogous to the ask price, and the portfolio’s profit
at the maturity date is
Wb(O'T) = 700(17)6”— + CT(O'T) + Ay [PT (O'T) — PoeTT} .
The optimization gives the sign for Ap. The expected profit from buying options is not the same as writing options.
The expected profit for writing is Cy(a)e”™™ — ¢Ey [Cr] — (1 — ¢)EL [Cr] and for buying it is ¢Ey [Cr] + (1 —
@)EL [Cr] — Co(b)e™™



The optimal solution for writing call options satisfies the following first order conditions.

E(W,) — 2Var(W,) —c=0
OVar(Wy) __ 0
0A, -

where

Var(W,) = ¢Vary W] + (1 — ¢)Vary [W,] (8)

+ ¢(1 = ¢)(EL [Cr] — Ex [Cr])?

The solution is
% _ Y{Co(a)=¢Eu[Cr]-(1=¢)EL[CT]—c}

9 = 2Var(Wg)
if Co(a) > ok [CT] + (1 — ¢)EL [CT] +c (9)
=0

if Co(a) < ¢Ep [Cr]+ (1= ¢)EL [Cr] + ¢

Moreover, the optimal delta A} is determined independently of ¢* because the expected return
from holding the stock is zero. Therefore, the stock holdings only affect the portfolio’s variance.

The optimal delta positions are therefore

« _ (1=¢)Covr[Pr,Cr]4+¢Covy|[Pr,C

Aa = (17¢)\?£rz(P§;+¢VarZEP§) = and (10)
x _ (1=¢)Covr[Pr,Cr]+¢Covy[Pr,Cr]

Ay =- (1—¢)VLarLT(PTT)+¢VarZ(P?) - (11)

where A? and Aj are the optimal delta hedging positions for writing and buying a call option,
respectively. The derivation is shown in Appendix B-2. Intuitively, and as shown in the appendix,
A} (A}) is approximately 0.5 (—0.5) for at-the-money call options, and that AY (A}) approaches 1
(—1) when the strike price approaches 0.

3.4 Equilibrium under Perfect Competition

We assume that there are N MMs quoting option prices on a competitive exchange, subject to
exchange rules. We assume that the exchange rules require that a MM’s quotes must be for @
shares. This quoting quantity is set for investor convenience. This fixed quoting quantity is not
the same as the actual market demands nor the equilibrium trading volume. Market demand and
trading volume are determined by the interaction among the MMs and the investors, which is

formally outside the structure of the model.



The competitive market assumption is captured by the condition that, in equilibrium, the market
marker’s optimal utility equals her reservation utility level, which is assumed to be zero. Combined,

these two conditions imply that the equilibrium call option’s ask price Cp(a) satisfies

E(W,) — %Var(Wa) —c=0, i.e. (12)
which is
Cola)e'™ = ¢FEp|[Cr]+ (1 —¢)EL[Cr]+ %Var(Wa) +c
= FE[Cr]+ %Var(Wa) +c (13)

Similarly, the equilibrium bid price Cy(b) is

EW,) — %Var(Wb) —c=0, ie. (14)

Co(b)e'™ = E|Cr] — %Var(Wb) —c (15)

Expression shows that the equilibrium ask price is composed of three parts: (1) the option’s
expected price, E[Cr], (2) the required risk premium for inventory risk, %Var(Wa), and (3) the
compensation for transaction costs, ¢. A similar interpretation holds for the option’s equilibrium

bid price The dollar spread of the quoted prices is %Var(Wa)Jr%Var(Wb) + 2c.

3.5 Risk-Neutral Probabilities

This section characterizes the unique risk-neutral ask and bid probabilities determined by the options
market equilibrium. In this regard, the ask price risk-neutral probability, ®,, is determined as the

solution to

C’o(a)e” = ¢EH [OT] + (1 — ¢)EL [CT] + %VGT(WG) +c (16)
= E"[Cr] = ®uEx [Cr] + (1 — 20)EL [C7] (17)

10This equilibrium solution is common for agents with mean-variance utility functions. In Viswanathan and Wang

(2006), their strategic bid equilibrium for the limit order book in a stock market is p;(z) = v — = [%

p is the price for stock i, v is the mean asset value, 03 is the variance of the asset value, = is the risk attitude, N is
the number of market makers, x is the submitted order, and 6 is a parameter indicating the subjective belief for the
order arrival intensity.

2
(o8
] where

10



which is

(¢Bw [C2) + (1 = O)BL[Cr] + $Var(Wa) +¢) — B [Cr]
Ey [Cr] — EL[Cr]
1 Q
o+ Fr [Cr] = By [Or] [’YVar(Wa) + c} (18)

where E* [-] corresponds to expectation under the risk-neutral probability measure.

A similar expression holds for the bid price risk-neutral probability as well. Obviously, the risk
neutral probability ®, is higher than the subjective probability because the option seller requires a
risk premium for being unhedged. The more volatile the incomplete hedging outcomes, the larger
®,, is relative to ¢. This result is consistent with the variance risk premium in Carr and Wu (2008).
It is also consistent with Coval and Shumway (2001), Bakshi and Kapadia (2003), and Broadie,
Chernov and Johannes (2009) who show that an option’s purchase price includes a risk premium

and that a long option position has negative profits (even after delta hedging).

3.6 Maturity Dependence

The purpose of this section is to obtain comparative statics relating to equilibrium ask/bid option
prices’ implied volatilities and the option’s maturity 7. As noted before, given the independence
assumption {4} it is shown in Appendix B-1 that the the formula of Ey [Cr] and Er [Cr] is the
Black-Scholes-Merton model. Next, define the ask and bid implied volatilities, denoted A - ¢ and

B - o for constants A, B > 0, respectively as the solutions to the following equations:

() +rr o)’r n(22Y 4+ rr — (A0)2r
Co(a) = N(1 (K)+Aa\+ﬁ—(A ) /2> _K.e*rr_N(l (K)‘*‘Aa\ﬁ( ) /2)
2 & T — o) T
o= N <IH(K)+;\+E(BU)QT/2> 7K'6_T7'N(IH(K)+BJﬁ(B s (19)

where Cp(a) and Cy(b) are the equilibrium prices. It can also be shown that the unconditional

variance of the position i@

Var(W,) = oVarg [Wol+ (1 — ¢)Vary [W,]

20
+¢(1 — ¢)(EL [Cr] — En [Cr])? 2

where Vary and Vary, denote the variance of the portfolio given the volatility. Substitution yieldﬁ

Varg (W, = Varg {Co(a)e™ — Cr + Ay [Pr — Pye™ |}

(21)

11 The derivation is provided in Appendix B-1.
121n the proposition, we assume that o = o - H and o, = o - L to simplify the derivation.

11



where

C = PEA2e?T {602H2T — 1}

Ay = P2 o HIT (1 _ 9N )

Ay = —P2e* " N(ocH\/T + zp) — 2Py Ke""N(—zp) + 2A,Pye" (K + Pye™)

A3 = K2N(—ZH) — QAQP()K(?TT

IS
o IH(K)—EH(% _ In(K)—e""
FH = ocH+\/T T oH+\T

3.7 Equilibrium Implications

This section shows that the previous model is consistent with the observed call option bid/ask
implied volatility spread increasing at an increasing rate as the time to maturity approaches. In
addition, new testable implications of our model are generated. These implications follow from

various partial derivatives of the equilibrium bid and ask implied volatilities using expressions @,
and ()

Proposition 1 (The Maturity Effect)
For small T, the bid-ask implied volatility spread of ATM options increases as maturity decreases

%<O,%>Oandw<0).

The proposition confirms the maturity effect documented in section Figure 5 illustrates the
intuition behind this result. Point E; gives the first equilibrium where the MMs’ expected profit,
E(W,(F1)) valued at Ajo, equals the required risk premium. As the maturity date approaches,
expected profits E(W,,) decrease to a level where the modified risk premium increases. To continue
quoting, MMs need to increase the selling volatility to Asc so that E(W,(E2)) increases to reflect
the increased risk premium at the second equilibrium point Es. As a result, as the time to maturity
approaches, implied volatilities increase.

Two considerations explain our result. First, the volatility decays proportionately to the square
root of the time remaining to maturity, which implies a non-linear rate of decay in the option’s price.
Second, MMs have mean-variance utility functions, implying a linear risk premium. Combining these
two effects, expression shows the relation between the time decay of the expected profits and

the time decay of the risk premium charged by the market markers.

OEW,) Q Var(W,)
or y or

= Decay of Extra Profits 4+ Decay of Risk Premium (22)

First, we compute the time decay of the extra profits:

OEWe) — K9 [n(24)A— ¢ n(zsr)H — (1 ¢) - n(zp) L]

+rPye" [N(z4 + 0AVT) — ¢ -N(zg +cH\/7) — (1 — ¢) - N(z2, + 0 L\/7)] .

12



To compute %ﬁwﬂ), an intermediate calculation is

Varn — D 4 BIN(20H\/T + zy) + B2N(0H /T + zpr) + B3N(zp)

+ [K*N(zp) — KPye ™ N(cH /T + zi) — AgK? + AyK Pye™ | %n(zH)

where
D = P2A? {(27" + 02H2)62"T+”2H27 — 27”62”—}
By = P3(2r + 0% H?)(1 — 2A,)e¥m+o 1
By = —2rP2e* " N(oH\/T + zp) — 2rK Pye" " N(—zp) + 2rA, K Poe™™ + 4rA,Pge*™
B3 = =2rA,KPye™™ .

Finally, the last term in the unconditional variance is

(Ep—Er)?
or

= [Eg{Cr} — EL{C7}] x 8(EH{CT(%*EL{CT})

T

= [Eg{Cr} — EL{Cr}] X ;%(n(ZH)H —n(Zy)L) + rPye’™ (N(zg + 0 H\/T) — N(z1 + 0L\/7))| .

For ATM call options, i.e. K = Pye"”, we have

n(zyg) =n(zp) =n(za) — \/% and N(zg)=N(z1) =N(z4) = L, when 7—0

27

£ aE{(jWa) and OVar(W,

o ) as follows.

This generates the limiting behavior o

OENe) = Ko (A—¢H — (1 ¢)L) +o( ) (23)
OVar(Wa)
or

= ¢P20?H? (A2 — A, + % — %) + (1= ¢)P2o? L2 (A2 — A, +
+(1 — ) R HZEE (1)

ol
¥
3

As 7 — 0, expression approaches positive infinity, while expression approaches a con-
stant, which implies that % < O Our next result proves that the maturity effect increases and

at an increasing rate as the maturity date approaches.

Proposition 2 (The Increasing Rate of the Maturity Effect)

For small 7, the bid-ask implied volatility spread of ATM options increases at an increasing rate

2
as the maturity date approaches (%i‘? > 0, %2713 <0 and? ((;QB) >0).

13The derivation is in Appendix B-3.
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We first show the following inequality.

of ﬂ} of 0%f _ 9*f of
A g [37/3‘4 _ 971 0Abr 87—2 94 -

orz or B ( %]; )

where f(A,o0,L, H,7;¢) = E(Wa) — %Var(Wa) —c= 0. Consider the numerator. Using the options pricing
formula at , we have

%{1 =Ko\/T-n(z4) >0
For ATM call options, we have
PO - B Aot~ (1- )L+ o) (29
Wearile) = O(1) (26)
oabe = G + o). 1)

As 7 — 0, becomes negative, expression approaches a positive constant, and so %
is negative. Also, as 7 — 0, expression becomes positive. Therefore, as time approaches the
maturity date, the ask volatility increases at an increasing rate.

The previous two results show that our model is able to generate the patterns observed in section

[2l We now provide some new testable implications of our model.

Proposition 3 (The Volatility Level Effect)
For small T, the bid-ask implied volatility spread of ATM options decreases as the underlying’s

volatility level o increases (aA <0, %f >0 and B(A B) <0).

To prove this result, we need to show the following inequality.

oA oL
9o~ ar =0
OA

Agaln we have shown that 2 59 A = Ko\/T -n(z4) > 0; therefore, we only need to determine the

OE(W,) Q OVar(Ws)
Jdo Ty Jdo '

sign of 2 % =
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For aEg/V”), we have
(e}

DE(W.)
do

For dVag(Wa)
g

= K [n(z4)AVT — ¢ - n(zg) HYT — (1 — ¢) -n(zL)LV7] . (28)

, we first calculate 6‘/8%.

WVarn — 9PIA2 H?roe? ™+ H'T 1 2(1 — 2A,)PEH?10e® T+ TN (20 HA\/T + 217)
+2 [K?N(zp) — KPye" ' N(cH\/T 4 zp) — Ao K? + A K Pye™™ | Hy/T - n(zp)

2
We also need to calculate W .

(r‘)(EHB—UEL)2 = [Ex{Cr} — EL{CT}] x O(EH{CT}:;;EL{CT})
= [Eu{Cr} — EL{Cr}] x Kn(zp)H/T — n(z)L/7]

For ATM call options, i.e. K = Pye"", we have

n(zn) = n(20) = n(24) > —— and N(zn) = N(21) = N(24) —

Ver

, when T—0

N |

The limiting behavior and %{SW“) is as follows:

OE(We) — KVT(A— ¢H — (1 - ¢)L) +o(y7) O(y/7) and 220 — o(r)

As T — 0, dominates %(EW“) . Therefore, % > 0 as the maturity date approaches, which
implies that ‘g—’;l < 0.

To confirm this result in market prices, we average the percentage implied volatility bid-ask
spread using the different measures for each option contract and plot the average percentage spreads
in Figure 6. The bold line denotes the realized volatility during the contract period, while the dashed
line represents the averaged percentage volatility of CM-IMV, BSM-IMV ATM call and put options,
respectively in the top, middle and bottom charts. As seen in the sample period from 01/02/2007
to 04/15/2010, when RV is near its maximum, the BSM-IMV spreads are at their lowest levels. The
realized volatility are lower at the beginning and the end of this sample period, where it can be
observed that the locally lowest percentage spreads are relatively higher. This documents a negative
relationship between the percentage implied volatility bid-ask spread and the level of the realized
volatility. This confirms the model’s implication that MMs do not increase the implied volatility
bid-ask spread proportional to an increase in the level of the volatility.

Next, we study the relation between the percentage implied volatility bid-ask spread and the

stochastic volatility’s variance. We define the variance of the volatility as
Var(v) = ¢(cH)*1 + (1 — ¢)(cL)*r — E(v)® where (29)
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E(Ww)=¢cH\/T+ (1 —¢)oLy/T andv € {oL,0H}.

It is easy to show that changing the parameters {o, L, H }, changes the variance of the volatility:

Varv) — 92¢(1 — ¢p)o?r(H — L) > 0,

OH
Warlo) — 2¢(1 — ¢)o®r(L — H) <0,
Warlo) — 257¢(1 — ¢)(L — H)? > 0.

As seen, the variance of the volatility increases as the largest volatility level increases or the
lowest volatility level declines. Additionally, an increase in the volatility level also increases the

variance of the VolatilityE Given these insights, we can prove the following proposition.

Proposition 4 (The Variance of the Volatility Effect)

For small T, an increase in the variance of the volatility due to increasing H and/or decreasing L

results in a larger implied bid-ask volatility spread (a(gl—{B) > 0, a(ng) <0). If (H,L) move in the

same direction and with the same magnitude, the volatility spread and volatility uncertainty remain
8(A—B)
oL

unchanged (8(3;3) + =0). An increase in the variance of the volatility due to an increase

in the volatility level o results in a lower percentage implied volatility bid-ask spread (W <0).

Proposition 4 states that a change in the implied volatility bid-ask spread is positively correlated
with the variance of the stochastic volatility, after controlling for the volatility’s level (due to AH and
AL). However, it also implies that an increase (decrease) in the volatility’s variance does not always
imply an increase (decrease) in the implied volatility bid-ask spread due to a changing volatility

level Ao, which is the reason to control for the volatility’s level in any test of proposition 4.

4 The Multiple-Period Model

In this section we extend the one-period model to a multiple-period model. We show the multiple-
period models generate similar patterns in option ask/bid implied volatility spreads as obtained in

the single period model.

4.1 Two-Periods

Here we let X7 and X5 denote the stock’s log price return at time 1 and time 2, respectively where X,
follows a Bernoulli-type random normal distribution. That is, for each period, X; N (1, Vi) and with
probability ¢, (ut, Vi) = (ug AT, 0% A7) and with probability (1—¢), (ut, Vi) = (uL AT, 02 AT). ATis

Here we do not discuss volatility uncertainty over ¢, because it is similar to the case where H and L shift in
opposite directions.
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2
the length of each time period. Because our independence assumption implies pg AT+ ”H2AT —rAT =

2
o AT

0 and pup AT + ~L5— —rA7 = 0, the amount of stock held in the hedged portfolio does not affect the

portfolio’s return but only its variance. Moreover, hedging doesn’t affect the expected value of the
option. Consequently, the option’s equilibrium price at each time t can be calculated directly from
the conditional risk neutral probabilities, allowing us to focus on volatility risk.

Given the independence assumption (4]), mean-variance optimization reduces to the variance

minimization problem

Min Varg|W,

where W, » denotes the value of portfolio containing a written call option which expires at period
2. The total variance of a dynamic hedge given Hamilton-Jacobi-Bellman (HJB) equation for our

discrete-time problem is

VCLT'O [Wa)g] = EO [VCLT’O (CLQ — A()Pl) —+ Varl (0272 — A1P2)} ; (30)

where C 5 is the "fair value” at time 1 of a option expiring at time 2 and Cy o = (P> — K)*.
This equation shows that under minimum-variance criteria the total variance of hedging error is the
sum of expected hedging error variance of each period. In general, solving a variance minimization
problem involves the issue of time-inconsistency of dynamic hedges; i.e., the ¢ 4+ 1 hedging strategy
will change the evaluation measure at ¢. In simpler terms, the future hedging strategy changes the
equilibrium option prices today. Basak and Chabakarui (2012) gives a sufficient condition, which
is the same as our assumption , which eliminates this time-inconsistency problem. They also
provide the general solutions for the hedge ratios A; at each time ¢ in a dynamic hedging settingE

which are

A¥ — Covy (Ciy1,Pi41)
t VaTt(Pt+1) :

As given EH(%) = EL(%) = €27 algebra yield

AF — (1—¢)Cov1,1(C2,2,P2)+¢Covi 1 (C2,2,P2)
1 — [ 2 2 1
P2e2rAT | pe”H +(1—¢)e’L —1

AF — (1=¢)Covo,L(C1,2,P1)+¢Covo, u (C1,2,P1)
(Vi [ 2 2 1
P2e2rA7 | ge’H +(1—¢)e’L —1

15The general solution is derived by Basak and Chabakarui (2012). We provide the same derivation in Appendix
C-1.
16Given the covariance decomposition,
A* — (1—¢)Covy 1 (C2,2,P2)+¢Covy g (Cz 2,P2)+Covi(E1(Cz,2|V),E1(P2|V))
1= #Vary, g (P2)+(1-¢)Vary 1 (P2) ’

(1—¢)Covy,(C2,2,P2)+¢Covi g (C2,2,P2)

Since E(P»2|V) is constant, the covariance can be expressed as SVar: 1 (Pa) F(A—#)Varr .1 (P2)
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Here, at every t, the "equilibrium call” price at ¢t + 1 is needed to derive the optimal A}. Given

the independence assumption, the equilibrium options’ prices are the expected fair value for C o

and 0072.

Cro=e " By[(Py — K)*]
= fOB [(P — K)T (X1 =1, Vo = ou| + (1 9)B1 [(Po — K)T Xy =1, Vo = o] }
= ¢BSMy, g+ (1 —¢)BSM,, 1,

where x1,0 and oy are the realization of X; and Vo. BSM,, g and BSM,, 1 are

Pry ot n(EL)4ro
BSM,, gy =P, -N (1“( R ) AT LN (1 S Sk H)

oy VAT ogVAT
ln(ﬂ)-i-rJr —r ln(i)+r7
BSMxl,LZPl'N<af¢rf> —e K'N(ofwrf :

+

A
where 7, = rAT + UH T

a'LAT

2
o7 AT

2
— o AT _
rg =rAT — =—and r; =rA7 — :

,TL—TAT+

(1,2 is similar formula to that obtained in the 1 period model. The fair value of Cy 2 is

Con = e "ATEy [C1o] = e~ 2757 By {(P2 _ K)+] = ¢*BSMy. i+ 26(1 — $)BSMp. + (1 — $)2BSMp1
where

P _
BSMHH — PN (111( 2 )+7‘H*2> _ 6_2,,ATK ‘N (1n(£)+rH*2)

ouV2AT ouV2AT
In T r In(20)4r7 40~
sy = roo (SRREL ) - i (S )
In T *2 — In( 52 )47 %2
BSMypp =Fy-N ( by ) —e KN (if@%) :

The derivation is in Appendix C-2

4.2 N-Periods

This subsection extends the 2-period model to N-periods. We first derive the general equalities for
the fair call values and the conditional covariances at time ¢, allowing us to calculate the optimal
hedging ratios and get numerical solutions for the total variance of the hedging error. The derivation

is given in Appendix C-3.

Proposition 4 (The fair call options price for bernoulli type volatility)

Cor =31 (7) (1 — )t {Pt (dy) —e "ATK -N (d2)}

di — ln(%)-l—imz—&-(n—i)'rL
1 \/z a'?{AT-i-(n i)o2 AT ’
dg o In( 2 L)4i- rHJr(n 1) T n— T

\/z 02 AT+(n— z)o‘2 AT’



The covariance equation if"|
Cov(Cey1,1 , Pry1)
=X < >¢’(1 — )i {PQeQ’“;?N (di.gg) — Pre= (" —DrATR N (dQ,H)}
( . >¢z 1— n —1 {PthQT;:N (dl,L) _ Ptef(n 71)T‘ATK X N(d2,L)}

=l “( i )«M — g (PRAATN (df) — P (" TUMATR N (d3) )

and

ln(%)Jri-r;;Jr(n*7i)-rg+[r;+J§IA'r]
\/(z+1 2 AT+(n* 71)02 AT

* —
dl,H =

d; o= ln( LY +i- TH+(n —i)-rp +r
s \/(;—i-l) U%—AT-‘r,‘(n —zl—a A: ,
dI L= In(Z)+i-r;+(n 71)-TL+[TL+O'LAT]
) Pt\/z:a%ATt(n’ffzjrl)i%AT
d; L= 1n(7)2+1-rH+(n —i)-r; 1]
i AT—&-(n*—z-&-l)U%AT
dl _ In( 7 L)+ (i+1)- ’I‘H-'r(’ﬂ i+1)-7‘z
\/’L o2 ATJr(’I’L*f’LJrl)O'z AT
ln( )+(z+1) (T =it 1)
\/1 ‘0L AT+(n*—i+1)o AT

dy =
nr=T"000 S 0 T > 41

Next, we apply our propositions to derive the dynamic hedging plan, and we provide numerical
results for the total variance Var W, r] at each time ¢. For the numerical results, we set o =
02, 0-H=022,0-L=0.18,r=0.04, ¢ = 0.5, P, = 1500, ¢ = 0.4 and fix 10 days to maturityE

Figure 7 shows the variance of the hedging error for different number of options hedged n =
1,2,3,...,10. Our result at Chart (a) indicates that for 10-day tenor contracts Varg[W, 10] drops
from about 233.57 to 55.49 when the number of hedged options increases from 1 to 5, but the variance
only reduces by about 25 when the number of hedged options increases from 5 to 10. Apparently
the marginal benefit of hedging is decreasing when hedging frequency increases. Second, fixing the
number of hedged options to 10, for different maturities, Chart (b) shows Var,[W, 1] for different
tenors. We see that as days to maturity declines, the variance steadily decreases. The variance is
about 30 for 10-days tenor and drops by approximately 3 when DTM (days to maturity) decreases
by 1.

To consider the case where traders hedge at a daily frequency, we let the ratio of DTM to the
total number of hedged options equal 1 and we study the total variance of N-day tenors, hedged

daily. As shown in Chart (c¢) of Figure 7, the hedging error variance increases as the days to maturity

17

In the one-period model, n* = 0. Therefore, the covariance for the one-period model uses equation (9) with
Cov [ (Y — k)T ] as calculated in appendix B.

18 Again, we use oy = o - H and o, = o - L in the simulations and the calibration.
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increase. Finally, Chart (d) shows the call prices for different days to maturity. Compared to a flat
pattern at Chart (c), the ATM call option price (denoted by solid dark line) decreases faster than
the variance of the hedging error. The dashed line shows the ratio of the standard deviation of the
hedging error to the option price. This ratio increases from 0.257 at 10 DTM to 0.751 at 1 DTM. In
short, though both the hedging variance and the option’s price decrease when time approaches the
expiration date, the rates of their decrease are very different. And, it is this disproportional decay
rate that leads to the previously discussed patterns of option bid-ask spreads in implied volatility

measures.

4.3 The Implied Volatility Spread

The equilibrium condition remains the same as in the single period model. Let C; r(a) denote the
fair value of the ask call price and Var; (W, r) the variance of hedging error delivered by the optimal
daily hedging strategy. Without loss of generality, we let @ = 1 and ¢ = 0.4 for equilibrium analyses
. Hence, for each time ¢, the MMs quote at a price which satisfies the equations

1
Cir(a) —Cir — ;Vart(Wa,T) —c = 0 (31)

1
Cir — Cyr(b) — ;Va’f‘t(Wb,T) —¢c = 0O0and¢=1,2,3..T, (32)

where the equilibrium ask price Cy 1 + %Va?"t(Wa,T) and bid price Cy 7 — %Vart(vaT) are inverted
to obtain the implied volatilities Ao and Bo, respectively.

In our numerical analyses, we use the same parameter values listed in the previous section and
we assume that % = 0.01 and 0.05. Figure 8 summarizes the results. Chart (e) shows the daily
equilibrium IMV Ao and Bo for tenors of 10 days to 1 days. The dashed lines represent the IMV
of bid and ask prices, respectively, when % is 0.01, and the solid lines are the IMV of ask and bid
prices at % = 0.05. Given o = 0.2, the ask IMV is increasing, and the bid IMV is decreasing. Chart
(f) shows the difference in the IMV, and we observe an increasing IMV spread with an increasing
magnitude. Charts (g) and (h) use the multipliers A and B to present the same information. These
results support propositions 1 and 2 in the one period model.

We next study the volatility level effect and variance of volatility effect. Setting % = 0.01, we
observe that the level effect happens a couple few days before expiration. In Figure 9, we show the
price and variance of the final 10 hours in the option’s life. Chart (i) shows the ATM call prices for
volatility 0.2 and 0.3. The dashed line is the call price valued at ¢ = 0.3, and it is always higher than
the solid line which denotes the call price at o = 0.2. Chart (j) shows the variance of the hedging

error at two different volatility levels. A shown, the higher volatility level the higher the variance.
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However, in Chart (k), the solid lines, representing the bid and ask IMV multipliers at o = 0.2,
lie outside dashed lines which denote the multipliers at ¢ = 0.3. In other words, even though the
hedging variance is higher at a 0.3 volatility, the multiplier of the ask (bid) IMV at a 0.2 volatility
is larger (lower) than that at a 0.3 volatility. Shown in Chart (1), when DTM is very small the
percentage spread is larger as the volatility level decreases. These results confirm the implications

of proposition 3.

5 Data and the Empirical Evidence

We use the Options Metric’s database focusing on SP index options. Our sample contains daily best
closing quotes, and the time period is from January 2, 2001 to April 17, 2010. The contracts are
European style options, and the nearest maturities expire every third Saturday with the settlement
value determined by the opening selling price on the third Friday. The nearest maturity contracts
have a strike interval of 5 points, and the minimum tick size for quotes is $0.05 if the traded price
is below $3 dollars and $0.1 if the traded price is above $3.

Two implied volatility measures, the Black-Scholes-Merton implied volatility (BSM-IMV) and
the Carr and Madan model-free implied volatility (CM-IMV), are used to calculate the volatility
spreads. Table 1 provides descriptive statistics of BSM-IMV, CM-IMV, and bid-ask spreads in term
of those two measures. As shown in Panel (1) of Table 1, CM-IMV has larger means than at-the-
money BSM-IMV. The average CM-IMYV for bid and ask prices are 21.29% and 23.81%, respectively,
while the average BSM-IMV is 17.48% (20.81%) and 19.58% (23.27%) for ATM Call (Put) options.
Since out-of-the money (OTM) options commonly trade at relatively larger implied volatilities, the
higher CM-IMV mean may be the result of the CM-IMV calculation containing deep OTM options.
We also find that the ATM put options have larger BSM IMV means than do call options. Moreover,
the standard deviation, skewness and kurtosis are also larger for put options.

Panel (B) presents the statistics for the ”spread” calculated using the 3 volatility measures. The
implied volatility spreads are 1.99%, 2.25% and 2.44% for BSM-IMV Call, BSM-IMV Put, and CM-
IMV. For the BSM-IMVs, the spreads for the put options do not have larger skewness and kurtosis
than the spreads for call options, although the mean and standard deviation of put spreads are still
larger. Because the CM-IMV calculation includes OTM options, the mean of the CM-IMV spread
is relatively larger than the BSM-IMV spreads of ATM options, but the skewness and kurtosis are
lower. Interestingly, if we compare the percentage spreads of BSM-IMV and CM-IMYV, it is surprising
to find the kurtosis of percentage volatility spreads is much lower than that of the volatility spreads.

In the bottom three rows of Panel (B), the kurtosis for the percentage spread of implied volatility
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for BSM-IMYV call and put options are 8.46 and 9.98, and 11.99 for the kurtosis of CM-IMV spread,
while they are 65.5, 64.33 and 51.47 for volatility spreads. Because the kurtosis of the BSM-IMV
spread and CM-IMV spread are much larger, ordinary econometric estimation will work better for

percentage implied volatility spreads.

5.1 Calibration

In this subsection, we confirm that our theoretical model fits well. We use the call contracts expiring
on November, 22, 2014 to calibrate the modelE For each of the final 25 trading days, dollar spreads
of call options having a delta between 0.4 to 0.6 are collected. To calibrate the 5 parameters

(r, Ao, Bo, ¢,7) we compute

2
Miny~, %Vart(Wk,T) 4+ 0.05 — Spreaduk} ,

where k is the strike and 0.05 is the transaction cost (also minimum tick) [

Assuming that the MMs delta hedge once per day, the calibration results are contained in Figure
10. In Panel (m), (o) and (p), we provide the real spreads and the estimated theoretical spreads
for options which have strikes nearest to the spot price. In Panel (m), the theoretical spread fits
the market dollar spread well and both lines moves together. As the index keeps increasing during
the final 25 trading days, Panel (n) shows that the traded volatility is decreasing and remains at a
relatively low level (about 15%). Panel (o) transforms the dollar spread into a percentage volatility
spread. We see the market and theoretical multiplier spreads are increasing as the expiration date
approaches. Finally, we compare the theoretical and market ask and bid prices in Panel (p). This
panel shows that our theoretical (bid and ask) prices are relatively larger than market prices. Again,

this may be the result of using OTM call options in our calibration.

5.2 The Econometric Model
To test Propositions 1 - 4, we apply panel regression to capture the covariance relationship between

consecutive contracts. Our first estimation model is

SpPct.; = a+0 +51-RV,+B2-VRP, 1+ f3- Jump_intensity. s +vc+ece, t=1,2,3,4.. (33)

1
TM; .

where the dependent variable, SpPct; ., is the percentage volatility bid-ask spread multiplied

190ur empirical work covers the time period January 2, 2001 to April 17, 2010, where we used OTM calls and puts
for the CM IMV calculations and 4 ATM strikes to derive the BSM IMV.

20For each day, we use the initial values (r,0 - L,o - H, $,v) = (0.04,VIX;—1 +0.1,VIX;_1 —0.1,0.05,0.02) in the
calibration.
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by 100. The subscript ¢ indicates the contract of a given expiration date, and ¢ denotes the date.
We use the realized volatility RV during the contract period as the denominator when calculating
SpPct . By doing so, the realized volatility RV reflects the volatility level effect, and any change
of SpPct ’s risk premium is due to a change in the numerator, the volatility spread. T'M refers to
the annualized time to maturity, and the variance risk premium V RP is used as a proxy for the

volatility’s variance. VRP is defined as

VRP,, = IMV,, — RV,,, (34)

see Carr and Wu (2009). The RV, ; in equation is different from the RV, in equation . RV,
is per contract over the sample period, while RV, ; is the past annualized 30-day realized volatility,
computed every day. IMV,, is implied volatility.

In analogy to a stock’s bid-ask spread which reflects the stock’s risk to a MM, the volatility
spread measures the options’ risk to a MM. It is well understood that jumps in the underlying
stock hinders a trader’s ability to hedge and results in an incomplete market. Jarrow, Lando and
Yu (2005) show that if a stock’s jump risk is diversifiable, then a unique option price still results.
Therefore, it is of interest to study the relationship between the percentage spread and the index’s

jump risk. In this regard, we add the independent variable
M
Jump_intensity, = Z I(ry; > k),
i=1

where [ is a indication function, which equals 1 if the 5-minute return r; is greater than a threshold
value k and 0 otherwise. M is the number of 5-minute intervals within a day. We let k equal the
smallest tenths value which lies above the largest 4% of the total 5-minute returns.

Propositions 1 and 2 correspond to the maturity effect, i.e. the bid-ask percentage volatility
spread should increase at an increasing rate (convex shape) as the option’s maturity approaches.
To confirm the time to maturity effect, the coefficient 6 should be positive in equation . Pro-
position 3 concerns the volatility level effect, i.e. the percentage volatility spread should decrease
as the volatility level increases. Since the realized volatility RV, is included in equation (33| to
capture this effect, we expect the coeflicient 5; to be negative. Finally, Proposition 4 states that
after controlling for the volatility level, a change in the volatility’s variance (uncertainty) should be
positively correlated with changes in the percentage volatility spread; hence in equation , Ba or
(B3 should be positive.

In addition, because traders in the options market often know particular news arrival times,

e.g. the date of a earnings announcement, trading information may reflect market information. To
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investigate this possibility, we study whether the percentage spread can predict the future jump

intensity by estimating the following regression

Jump_intensityc 41 = o + B1 - DeT'rend_SpPct.; + B2 - SpPctcy + B3 - VRP, ; (35)
+04 - RVey + Bs - Jump_intensityes + €t

where Delrend_SpPct.; is de-trended percentage volatility spreadﬂ We also consider the
original percentage spread SpPct.; to see if the de-trended volatility spread performs better than

original spread in explaining future jump intensities.

5.3 Empirical Results

Table 2 presents the estimation results of expression ([33). Panels (A), (B) and (C) are the results
for the volatility measures CM-IMV, BSM-IMV (ATM) call and BSM-IMV (ATM) put options,
respectively. Because VRP and Jump_intensity are both significant, we find that RV becomes
significant when the Jump_intensity is added as a control variable. Because the realized volatility
and the jump intensity are highly correlated but have opposite effects, we focus on the regression
models which include the jump intensity.

As seen, the coefficient 6 is significantly positive; hence the maturity effect exists. And, if we only
control for the jump intensity, a 1% increase in the level of the realized volatility decreases SpPct by
0.139%, 0.178% and 0.247% for CM-IMV, BS-IMV call and BS-IMV-put; and by 0.068%, 0.121%,
and 0.194% if both the volatility risk premium and the jump intensity are included as regressors.
An increase in the jump intensity enlarges the spread by 0.282%, 0.244% and 0.247% for 3 different
implied volatility measures before including the volatility risk premium. They enlarge the spread by
0.178%, 0.161% and 0.17% after VRP is included in model. Finally a 1% increase in V RP results
in an increase in the percentage volatility spread by 0.244%, 0.197% and 0.184% for the different
volatility measures. The R? in Panel (A) reaches 0.43, while the largest R? are 0.54 and 0.67 in
Panels (B) and (C).

Having confirmed our theoretical propositions, we now show the importance of de-trending the
maturity effect. First, we examine the jump’s contemporaneous effect on the percentage spread
and include as regressors the daily realized volatility RV, ., the realized volatility level RV,, the
volatility risk premium VRP.;, and the jump intensity Jump_intensity.;. Then, we run the panel

regression separately on DeTrend_SpPct.; and SpPct.;. As shown in Table 3, all independent

21We first run the regression SpPctc: = a + 0 - ﬁ After deriving the estimated é\, we subtract 0 - ﬁ from
SpPctc ¢ to derive Detrend_SpPctc,t. 7
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variables have daily contemporaneous effect on the spreads, and, if the spread is de-trended, then
the jump intensity becomes more significant in explaining the variation of DeTrend_SpPct. ;.

Finally, Table 4 shows that both DeT'rend_SpPct.; and SpPct.; predict the future jump in-
tensity in accordance with expression . For all the volatility measures, the de-trended spreads
always perform better. If the regressor contains only either DeTrend_SpPct.; or SpPct.:, both
explain the next day’s jump intensity. However, if we use the detrended and non-detrended spreads
together, only DeTrend_SpPct. . is significant in explaining the future jump intensity. Finally, we
add VRP,;, RV, and VRP,; as control variables, and the results show that DeTrend_SpPct. . is
significant, but SpPct. is not.

6 Conclusion

This paper empirically documents the fact that the percentage implied volatility bid-ask spread
increases at an increasing rate as an option’s maturity date approaches. This maturity effect is
confirmed using quotes from options on the CBOE S&P index over the time period 2001/01/02 -
2010/04/17. This effect is validated using model-free implied volatilities as well as Black-Schole-
Merton implied volatilities.

We construct an equilibrium model in an incomplete market with volatility risk to explain this
phenomena. The equilibrium model has risk averse and competitive option MMs quoting bid and
ask prices to minimize their inventory risk. Two additional testable implications of the model are
generated. The first is that an increase in the level of the underlying asset’s volatility decreases the
percentage bid-ask implied volatility spread. The second is that, holding the level of the volatility
constant, an increase in the volatility’s variance increases the percentage bid-ask implied volatility
spread. These implications are also empirically tested herein. The empirical evidence generally

confirms these implications and the model’s validity.

25



References

[1]

Andersen, T., T. Bollerslev, F. X. Diebold and H. Ebens. (2001). ”"The Distribution of Realized
Stock Return Volatility”, Journal of Financial Economics. 61(1): 43-76

Bakshi, G., C. Cao and Z. Chen. (1997). "Empirical Performance of Alternative Option Pricing
Models”, Journal of Finance, 52, 2003--2049.

Bakshi, G., and N. Kapadia. (2003). ”Delta-hedged Gains and the Negative Volatility Market
Risk Premium”, Review of Financial Studies, 16, 527--66.

Basak, S., and G. Chabakauri. (2010). "Dynamic Mean-variance Asset Allocation”, Review of
Financial Studies, 23(8), 2970--3016.

Basak, S. and G. Chabakarui. (2012). "Dynamic Hedging in Incomplete Markets: A Simple
Solution”, Review of Financial Studies, 25(6), 1845-1896.

Black, F. and M. Scholes. (1972). "The pricing of options and corporate liabilities”, Journal of
Political Economy, 81, 637-659.

Bollerslev, Tim. (1986). “Generalized Autoregressive Conditional Heteroskedasticity”, Journal

of Econometrics, 31:307-327

Broadie, M., M. Chernov and M. Johannes. (2009). ”"Understanding Index Option Returns”,
Review of Financial Studies, 22(11), 4493-4529.

Brooks, C., O. T. Henry and G. Persand. (2002). "The Effect of Asymmetries on Optimal Hedge
Ratios”, Journal of Business 75, 333--352.

Cao, M. and J. Wei. (2010). "Option market liquidity: Commonality and other characteristics”,
Journal of Financial Market, 13, 20-48

Carr, P. and D. Madan. (2001). "Towards a Theory of Volatility Trading”, Handbooks in Mat-
hematical Finance: Option Pricing, Interest Rates and Risk Management, eds. J. Cvitanic, E.

Jouini and M. Musiela, Cambridge University Press, 458-476

Carr, P. and L. Wu. (2009). ”Variance Risk Premiums”, Review of Financial Studies, 22(3),
1311-1341.

CBOE Volatility Index White Paper.

Chakravarty, S., H Gulen and S Mayhew. (2004). “Informed trading in stock and optioton
markets”, Journal of Finance, 1235-1257

26



[15]

[16]

[17]

[25]

[26]

[27]

[28]

Chen, H., S. Joslin, and S. Ni. (2016). “Demand for Crash Insurance, Intermediary Constraints,

and Risk Premia in Financial Markets”, working paper.

Chong, B.S., D.K. Ding and K.H. Tan. (2003). "Maturity Effect on bid-ask Spreads of OTC

Currency Options”, Review of Quantitative Finance and Accounting, 21, 5-15.

Coval, J., and T. Shumway. (2001). ”"Expected Option Returns”, Journal of Finance 56, 983--
1009.

Dufour, JM, R. Garcia and A. Taamouti. (2010). "Measuring High-Frequency Causality bet-
ween Returns, Realized Volatility and Implied Volatility”, Discussion Paper, McGill University
(Department of Economics), CIREQ and CIRANO.

Easley, D., M. O’Hara and P. Srinivas. (1998). "Option volume and stock prices: Evidence on

where informed traders trade”, Journal of Finance, vol. 53, no. 2, pp. 431-465.

Engle, R.F. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Vari-
ance of United Kingdom Inflation”, Econometrica, vol. 50, No. 4, pp. 987-1007.

Engle, R.F. (1995). ARCH Models. Oxford University Press, Oxford.

Garleanu, N., L. H. Pedersen and A. M. Poteshman. (2009). "Demand-Based Option Pricing”,
Review of Financial Studies, 22(10), 4259-4299.

Hasbrouck, J. (1995). "One security, many markets: Determining the contributions price dis-

covery”, Journal of Finance, vol. 50, no. 4, pp. 1175-1199

Holowczak, R., S. Yusif and L. Wu. (2007). ”Price Discover in the U.S. Stock and Stock Options
Markets: A Portfolio Approach”, Review of Derivatives Research 9, Issue 1, pp. 37-65

Hsieh, W.L.G., C.S. Lee and S.F. Yuan. (2008). "Price discovery in the options markets: An
application of put-call parity”, Journal of Futures Markets, vol. 28, no. 4, pp. 354-375.

In, F., and S. Kim. (2006). "The Hedge Ratio and the Empirical Relationship Between the Stock
and Futures Markets”, Journal of Business 79, 799-820.

Jarrow, R. and A. Chatterjea (2013). An Introduction to Derivative Securities, Financial Mar-

kets, and Risk Management, W.W. Norton and Co., N.Y.

Jarrow, R., D. Lando and F. Yu (2005). Default Risk and Diversification: Theory and Empirical
Implications. Mathematical Finance, Vol. 15, No. 1, 1-26.

27



[29]

[30]

[31]

[35]

[36]

Jiang, G.J. and Y. S. Tian. (2005). "The Model-Free Implied Volatility and Its Information
Content”, Review of Financial Studies 18(4), 1305-1342.

Lioui, A. and P. Poncet. (2000). "The Minimum Variance Hedge Ratio Under Stochastic Interest
Rates”, Management Science 46, 658--668.

Muravyev, D, N.D. Pearson and J.P. Broussard. (2012). ”Is There Price Discovery in Equity

Options?”, Journal of Financial Economics.

Newey, Whitney K and Kenneth D West. (1987). “A Simple, Positive Semi-definite, Heteroske-

dasticity and Autocorrelation Consistent Covariance Matriz”, Econometrica 55 (3): 703--708

Pan, J. and A.M. Poteshman. (2006). ”"The information in option volume for future stock pri-
ces”, Review of Financial Studies, 19(3), 871-911.

Robert C. Merton. (1973). "Theory of rational option pricing”, Bell Journal of Economics and
Management Science, 4, 141-183.

Viswanathan, S. and J.D. Wang. (2002). "Market Architecture: Limit-Order Books Versus De-
alership Markets”, Journal of Financial Markets, vol. 5, 126-167.

Wei, J. and J.G. Zheng. (2010). "Trading activity and bid--ask spreads of individual equity
options”, Journal of Banking & Finance, 34, 2897-2916

28



Appendix A
The Carr Madan Implied Volatility (CM IMYV)
The following is the CBOE formula for the VIX index, denoted as CM IMV.

AK; F
Ten = %Zz Kfl (T, Ki) — %[ITO -1

CM IMV = oo + 100

T : Time to expiration

F : Forward index level derived from put-call parity

Ko : First strike price below the forward index level, F'

K; : Strike price of the it? out-of-the-money option; a call if K; > Ko, and a put if

K; < Kp; both put and call if K; = Ky

Kii1—K;_
AK; = il il 5 L
I : Risk-free spot rate of interest
Q(7, K;) : The ask price/bid price for the option with strike K;

In the VIX index calculation, Q(K;) is the midpoint of the bid-ask spread for each option with strike price K;.

The forward index level is:

F = strike price + "7 ( Call price — Put price )

where the strike price selected is that for which the absolute difference between the call and put prices is the smallest.
In our paper, we use the strike price that is closest to the spot price to calculate the forward index level, sometimes

called the effective forward price. The original formula proposed by Carr and Madan doesn’t include the term involving

[ — 1]

Appendix B

Appendix B-1 (Expected Profit and Variance)
Portfolio Expected Profit Given oy :

Assume y =InY ~ N(uy,0%) and Z ~ N(0,1), then

X =0y Z+py,Y =exp(oyZ + py)

The calculation of E[Y - I(Y > y)] and Var [Y - I(Y > y)] is detailed as follows:

E[Y -I(Y 2 y)] =E[exp(oy Z + py) - I{(exp(oy Z + py ) > y)]

=E {exp(ayZJruy) I(Z > ln(yii;w)
lﬂ(y) — KHy

o 1 u?
= exp(oyu + py) - —— exp(——)du; Let z =
. 2 oy

V2T
0_2 o0
—ep(% 4 ay)
z

2
g
:eXP(TY +py) - N(oy —2)

du

u — o 2
(7( Y))

1
exp
V2 2
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E Y2 I(Y > y)| =Elexp(20y Z + 2uy) - I(exp(oy Z + py) > y)]

In(y) — py

w2
exp(——)du; Let z =
2 oy

* 1
:/ exp(20yu + 2uy ) - ot
. T

(u —20y)?

[e o]
1
=exp(202 + 2uy) / Wor exp(ff)du
z

=exp(20% +2uy) - N(20y — 2)

Var[y - 1(Y > )] =E [Y2 1(Y > y)| —{E[Y - 1(Y > y)]}?

=exp(0y + 2uy) {exp(03) - N(20y — 2) — [N(oy — 2)]°}

Let y — 0, that is z = —oo, we have

02
EY] = exp(3- +py)

Var [Y] = exp(c2 + 2uy) [exp(o%,) — 1]

Let Cr = (PyY — Pok)™. The expectation and variance of the portfolio value can be explicitly calculated below.

ln(mi;w, A is the holded stocks for hedging, Pok is the strike price, and B = p. — A, Py is the amount

o

let z =

of money market account at very beginning.

E[W,] =E[Aq - Py — Cr + Be'™]

=E[Aq - PoY — (PoY — Pok)T 4 Be™™]

a? o2
=Aq-FPo- exp(% +py)—Po exp(Ty +py) -N(oy —z) —k-N(—2)| + Be'™.

If we express the mean and volatility in annualized term, we can show the formula for C; is the same as Black-

Scholes-Merton pricing model. Let puy = ur, O’?, = 027 and K = Pok. Given the expectation operator is the
U2T

risk neutral probability, we have e(TZmtHT) = '™ Then the following equation for Cr is exactly the same as

Black-Scholes-Merton Formula after discounted by risk-free rate.

2

P [exp(%’/ +uy)-N(oy —2) — k- N(—z)]

2 _
— Pye™ N (ay lz(j)Jruy _ Pok.N(—ln(ol-c‘)/JrMY)

2 2

2 /2 In(k)+1 wy +oy/2 —02 /2—1In(k)+1 wy +o3./2
— Poe'm' N <UY/ n( )U)r/‘(e ) o P()k . N( UY/ n( )ayn(e )

1 <7P°ew+o§/2) 2 /2 1 (7P°ew+0%}/2) 2 /2

n - +o n -
= Ppe’™ -N PO’;Y Y —-K-N PO’;Y Y

(28 )trrto21/2 In(L8)t+rr—o2 /2
= Ppe™™ - N <K0yT\FUYT 7KvN(%)

The variance of the portfolio is
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Var [Wa] =Var[Aq - Pr — Cr + Bq - €""] and Bq = C§ — Ag Py
=Var[Aq - PoY]+ Var [(PY — Pok) "] — 244 x cov(PyY, (PoY — Pok) ™)

=[Aa- R Var[Y]+ BiVar [(Y = k)T] = 284 PF x cou(Y, (Y = k)T)

Var [Wy] =Var[Ay - Pr +Cr + By -€""] and B, = —C8 — APy
=Var[Ay - RY] + Var [(PoY = Pok)T| + 244 x cov(RyY, (PoY — Pok) ™)

=[Ap - Po)* Var[Y] + PgVar [(Y — k) T] + 24, B x cou(Y, (Y — k)™)

We need to calculate Var [(Y - k)""] and cov(Y, (Y — k)T) .

Var [(Y = K)T| =Var (Y — k) - I(Y > k)]
=Var[Y -I(Y 2 k) — k- I(Y > k)]
=Var[Y - I(Y > k)] + k*Var [I(Y > k)] — 2k -cov[Y - I(Y > k), [(Y > k)]
=exp(03 + 2uy) [exp(05)N(20y — 2) — [N(oy — 2))°]
+E2N(2)N(—2) — 2k - exp(% + py)N(oy — 2)N(2)
Cov [V, (Y — k)*]
=Cov[Y,(Y —k)-I(Y > k)]
—EY(Y —k)-I(Y > k)] — exp (% + W) {exp (7 + uy) N(oy —2) — k- N(—z)}
=E[Y2-I(Y > k)| —k-E[Y - I(Y > k)] — exp <T+uy : exp(?#»,uy)N(o‘yfz)fk-N(fz)
= exp (203 + 2py ) N(20y — 2) — (k + exp ("TY +uy ) - exp (% + ,uy) N(oy — )

2
+k - exp (UTY + My) N(—-=2)
Plugging Var [(Y - k)ﬂ and cov(Y, (Y — k)T) into Var [W,], and rearranging the terms, we obtain
Var [Wy] = Var [Wy] = P2 [C + A1 - N(20y — 2) 4+ Az - N(oy — 2) + Az - N(—2)]
where

C = A2 exp (0’%/ + 2[,Ly) [exp (O’%) — 1]
A1 = exp (201% + Quy) (1—2A,)
Az = —exp(—~ + py) [exp(TY + py )N(oy — 2) + 2k - N(z) — 27, (k + exp(—- +/,Ly)):|

02
Az =k |:k “N(z) — 244 exp(—- + ,I.Ly):|

Portfolio Mean and Variance given a Bernoulli type Volatility.
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® We assume a Bernoulli type random volatility, which is a probability with independence assumption for
different annual volatility levels, o7, and og. In our math derivation, we let oy, =0 - L and og=0c - H. We also

use (L, H) in subscripts to denote the volatilities (o1, o).

® Traders assign the subjective probability (1 — ¢) and ¢ to volatility oL and o H, respectively.

Expected Profit given a Bernoulli type Volatility
For a ”"written” and a “long” call option position, after traders apply delta hedging, the final wealth of W, and
W, are
Wa=2q -Pr—Cr+(Cy—Aq-Py) €™

Wy =Ap-Pr+Cr+(=C) — Ay - Py) - ™"

where C2 and C’g are selling price and buying price respectively, Cr is final option payoff (Cr = Maxz[Pr — K, 0]),
and A are the hedging positions. Cp > 0 and is cash-outflow for a written call, while (€0 > (0 and is cash inflow
for a written call. Conversely, Cp and Cl? are cash-inflow and cash-outflow respectively for a long position. A
positive (negative) A means a long (short) position of the stock; therefore, if A, is positive, A, - Pp is the amount

of cash-inflow from selling stocks at Py and—A, - Py is the cash-outflow to buy stocks at Py. Given assumption ,

B(Pr) = PoE%) -nfa- ¢>)EL<§,—§) 4 ¢EH<%§>} = Py {(1 = $)™ + $e™} = Poe™™.

And the expected final wealth for selling a call option and purchasing a call options are,

E(Wa) =¢Eg {Ce’™ = Cr + Aa[Pr — Poe™ ™|} + (1 = ) EL {CRe’™ — Cr + Au[Pr — Poe ]}
=CQe"™ — ¢Eg {Cr} — (1 — ¢)EL {Cr} =Che™ — E{Cr}

E(Wy) =¢En {~CPe"™ + Cr + Ap[Pr — Poe™ |} + (1 — $)Er {—CPe™™ + Cr + Ay[Pr — Poe™™] }

=E{Cr}—CPe™

Using Appendix B-1 formula, we can derive the option price formula which is the same as Black-Schole-Merton

Model. The expected prices under different volatility levels are,

In % + (r— %O'ZHQ)T
ocH\/T
In % + (r— %O’QLQ)T

oL\/T

Ey[Cr] =e"" [Po “N(zg +0H\T) — Ke ™" - N(zH)] and zpg =

EpL[Cr] =e"" [Po “N(zp +oL\/7) — Ke "7 - N(zL)] and zp =

1n(K)—Ep (FL)

o .Therefore, the expected final wealth is

where zg =
BE(Wa) =Cge™™ — e {Py [¢-N(zur + 0Hv/7) + (1 = ¢) - N2, + oLy/7)| = Ke™"" [¢ - N(z1) + (1 — ¢) - N(21)] }

Variance given a Bernoulli type Volatility

Var(Wa) = ¢Varg {Cge” — Cp + Ag|Pr — Poe”}} +(1—-9¢)Varg {Cge” — Crp + Ag|Pr — Poe”}}

+¢(1—¢)(EL — Ep)?
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where £, = Ep, {C’ge”’ — Cr + Aq[Pr — Pge”}} and Eg = {Cge” —Cr + Aq[Pr — Poe”']} .
To calculate Varg {Cge” — Cp + Ag[Pr — Poe”']}7 we can rewrite Varg {Cge” — Cr + Aq[Pr — Poe”']} as

Varg {C0'™ — Cr + Aa[Pr — Poe’™]} = A2Vary {Pr} + Varg {Cr} — 2+ Ag - Covy (Pr, Cr)
ln(%g) follows N ((r - %UQHQ)T, O'2H2T). Then, the variance of P; is |?|
Varg {Pr} = Ey {P}} — [Ex(Pr)® = F3e*7 [602’12* - 1} :
The variance of C; is

Varg(Cr) =Vary [(Pr — K) - I(Pr > K)]
=Vary [Py - I(Py > K) — K - I(Py > K))
—Varg|Py - I(P > K)] + K2 - Varg [[(Pr > K)] — 2K - Covg [Py - I(Pr > K), I(Py > K))

=p2e¥T {602H2TN(20- CH\T+ 2) — [N(a -HT+ zH)] 2} + K2N(2g)N(—zg)
— 2P Ke""N(ocH/T + zg)N(—zg)
The co-variance of Pr and C; is

Covy (Pr,Cr) =Covy (Pr, [Pr — K| - I(Pr > K))
=By {Pr® - I(Pr > K)} = K - Eg {Pr - I(Pr > K)} — Eg(Pr) - Eg [(Pr — K)T]

=P3e* o TN (20 H VT + 211) — (PoKe'™ + P3e* ™) N (oHVT + 211) + PoKe ™ N(zpr)
Therefore,
Vary {COe™ — Cp + Aa [Pr — Poe’|} = C+ AINQ0HV/T + z11) + AsN(0 Hy/T + 2p1) + A3N(211)
C = P2A2e?T [e"2H2T - 1]
Ay = P22+t H (1 _9A,)

Ag = —P2e2""N(cH /7 + 2p1) — 2Py Ke""N(—zp1) + 284 Poe™™ (K + Poe’™)
Az = K2N(—zp) — 2A4,PyKe™™

The derivation for Vary, is the same. And the unconditional Variance for a bernoulli type random volatility is:

Var(Wa) = oVarg {—Cr + Ao - P} + (1 —¢)Varp, {—Cr + Ao - Pr}

+¢(1 - ¢)(EL [Cr] — Eg [C1))?

22For the general log-normal random variable In(X) ~ N(u, ?), we have the following general results:
(1)The First and Second Moment of X.

E(X)=e't397 and E(X?) = 201207,

(2)The Restricted First and Second Moment of X.

E[X-I(Xza:)]zE(X)-@(a+ M) and E[X?-I(X > )| :E(XQ)-<1>(2U+

—In(z) +u> .

33



Var(Wp) = ¢Varg {Cr + Ap - Pr} + (1 = ¢)Var, {Cr + Ay - Pr}

+¢(1 - ¢)(EL [Cr] — Eg [Cr])?

The derivation of Var (W}) is the same as we did for Var (W, ). Variance are the same, because A, = —Ayp, the

proof of which is shown next.

Appendix B-2 (The Optimal Delta)
The portfolio value at the expiration date W, and W}, can have two volatility realizations (o L, 0 H) with subjective

probability 1 — ¢ and ¢ respectively. The variance of W, and W} can be written as

Var(Wa) =(1 — ¢)Varp[Wa] + ¢Vary, (Wa] + (1 — ¢)¢ [EL(Wa) — Ex(Wa))]?

=(1 - ¢) {AZVar(Pr) + Vary, [Cr] — 2A4Covr,(Pr,Cr) }
+é {AgVarH(PT) + Varyg [Cr] — 2A.Covy (Pr, CT)} + (1= ¢)p [Er(Wa) — Egr(Wa))?

Var(Wb) =(1 — d))VarL [Wb] =+ ¢VCLT'H [Wb] + (1 — ¢)¢ [EL(WI,) — EH(Wb)}Q
=(1-—1¢) {AgVaT’L(PT) + Vary, [CT] + QAZ,C'O’UL(PT7 CT)}

+¢ {AVary (Pr) + Varg [Cr] 4+ 28,Covy (Pr, Cr) } + (1 — $)$ [EL(Ws) — Ex (Wy))?
The necessary conditions to minimize Var [Wg] and Var [W;] are

0= OVar(Wg)
OA
= (1—¢){AuVarL(Pr) - Cov(Pr,(Pr — K)*)} + ¢ { AuVarg (Pr) — Covn (Pr, (Pr — K)*)}

+(1 = ¢)¢ {AuBL(Pr) — Er [(Pr — K)T| = AaEn(Pr) + B [(Pr — K)*| } [EL(Pr) — Eu(Pr)]
0= OVar(Wy)

98
=(1-9¢) {AbvaT'L(PT) + Covr,(Pr, (Pr — K)Jr)} +¢ {AbV(M’H(PT) + Covy (Pr, (Pr — K)ﬂ}

+(1 = ¢)p { Ay EL(Pr) + B [(Pr — K)*| = B (Pr) — By [(Pr — K)*| } [BL(Pr) — En(Pr))]

Therefore, the optimal A} and A} are

A* — E(Cov(|Pp—K]*t Pp|V))
a E[Var(Pr)|V]

_ (1=¢)Covy (Pr,(Pr—K)T)+¢Covy (Pr,(Pr—K)T)+(1—¢)¢[EL (Pr)—En (P)|{EL[(Pr—K)Y]|-Ex [(Pr—K)*]}

- (1—¢)Vary (Pr)+¢Vary (Pr)+(1—¢)¢[EL (Pr)—Em (Pr)]?

AF = _ E(Cov([Pp—K]T,Pp|V))
E[Var(Pp)|V]
(1=¢)Couvr, (Pr,(Pr—K) ") +¢Covy (Pr,(Pr—K) ") +(1-¢)¢[Er (Pr) - Ex (Pr){ EL[(Pr—K) T]|-Ex [(Pr—K) ]}
(1—¢)Vary (Pr)+¢Vary (Pr)+(1—¢)¢[EL (Pr)—Eg (Pr)]?

Appendix B-3 (Comparative Statics for 1)
Let f(A,o,L,H,7;¢) = E(W,) — %Var(Wa) — ¢ = 0. We show the following propositions.
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When time to maturity decreases, the ask volatility increases for ATM options, i.e.

oA o

—2= <0
of
or oA

Assume the ask volatility corresponds to the ask price C¥ in the risk neutral probability measure, i.e.

In % + (r— %A2O'2)T

CO =Py N(cAYT+24) — Ke "™ -N(z4) and za = AT

‘We have
of . oc

0A 0A
of

Now, we derive the equations for 7 and 24
T or

> 0.

of  0BE(Wa) Q0oVar(Wa)
or Ot o or

To calculate m, we first calculate w
T T
8 eTTCa K . ) A
(87- O) = néf;‘?) g —‘,—TPOeTT-N(ZA—i-U-A\/;)
Since agf and aa% are similar to w with H, L replacing a respectively, we can finally write %‘f‘l) as
OE(W,
OB e) — K2 [n(za)A—¢-n(zm)H — (1-¢)-n(z1)L]
+rPoe"" [N(ZA +0AVT) —¢-N(zg + ocH\/T) — (1 — ¢) - N(21 + o'Lﬁ)]
To calculate %S_W"), we first calculate 6‘/8# and the details follow.
Dt = B2 4 BUNQoH VT + 2m) + GEN(GHVT + 21) + G2 N(zp)
+A; 8N(20‘I‘é;ﬁ+zH) + Ay aN(aHa\f-&-zH) + A 8N3(7Z-H)
We have
23We have the basic results regarding the normal density function.
1 _1,a 2 1 1,242,-1.2 oA 7 K _
nzA+0A\/; - . 5(0AVT+z4) — e 3° T—523—0 TEA — e "Tn(za
( ) V2T V2T Py (24)
1 1 2 1 242 1.2 K2 242
n ZA+20'A\/77' _ 6_5(20A\/;+ZA) — 6—20' AST— 523 —20ATza _ 76727'770' A n(za
( ) V2T V2T PO2 (24)
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% — P3A2 I:(QT + 0.2H2)€2TT+02H27' _ 27,.627'7']

YA N(20H /7 + zp1) = P2(2r + 02 H2)(1 — 2A)e2r ™+ H*TN(20 H\/T + zp1)

ON((20H~\/T+2 g 9z
Ay NQeHVTEZ) _ ge2(1 - 2A) (TFTI 3f) n(zg)

Y2 N(oH /T + 211)

2
= —KPye™™ (% + agf) n(zy)N(cH\/T + zg) — 2rP3e*™ [N(oH\/?—l— zH)]

+2K Poe’™ ZHn (2 )N(oH/T + 257) — 2rK Poe "N(—25r)N(0 H\/T + 257)

+2rAKPye" " N(ocH/T + zg) + 4rAPZe* " N(c H\/T + zp1)

Ao BN(UHB\TﬁJrzH)

— {~KPRoe" N(oH\/7 + 2) — 2K2N(~2p7) + 20K + 2AK Poe™ } (% + "’gf) n(zx)

%N(zb{) = (—K2 85:1 n(zg) — QTAKP()GTT) N(zmg)

Ag PR — (K2N(-zy) - 28Ry Ke™) %n(zp)

-

Adding up all the parts and rearranging, we finally havelﬂ

OVard — D+ BIN(20H\/T + zp) + BeN(0H+/T + 2p7) + BsN(zp1)

+ [K2N(2h) — KPoe" 'N(oH /T + 211) — AK? + AK Poe™™ | 2fn(zr)

D = P2A? [(27" + 02H2)62T7—+J2H2T — 27"62TT}

B1 = P2(2r + 02H?)(1 — 2A)e2r+o  H?7

By = 72TP§€2TTN(UH\/? + zg) — 2rKPoe" " N(—zg) + 2rAK Poe™™ + 4TAP0262”'
B3 = —2rAKPye™™

Var(Ws) (Eg—FEr)?
oT ot .

To calculate , we also need to calculate

NEu—Er)® = [Eg{Cr} — EL{CT}] x o(Ep{Cr}-Er{Cr})

or or

= [EH{CT} - EL{CTH X ;f—;(n(ZH)H - n(ZL)L) -|—T‘P0€70T(N(ZH +o- H\/F) - N(zL +o- L\/F)):I

We discuss the limiting behavior of % for ATM, OTM and ITM call options in turn.
(1) For ATM call option, i.e. K = Pye"™, we have

n(zy) =n(zp) =n(za) — L and N(zyg)=N(z1) =N(z4) > =, when 7—0

1
V2 2

24%% can be written in the similar format with L replacing H .
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Then we have the limiting behavior 8E§_’/_V") and BVagE—Wa) s follows,

9EWa) _ _Ko (A= ¢H — (1= §)L) +o(J=)

or 2v/2mT
dVar(Wa) 2 2772/ A2 1 1 2 _272/A2 1 1 K202(H—L)?
WapWe) — §PRo>HA(AL = Aa+ 4 = 5) + (1 = )PFo?L2 (A2 — Mg+ — ) + 91 — ) 2 H=LE 4 (1)

As 7 — 0, %approaches positive infinity , while w is a constant. Therefore, % > 0 as time

approaches maturity date, which implies that % < 0.
(2) For OTM call option, i.e. K > Pye"™, we have

nzn) _ n(r) _ n(za) —0 and N(zg)=N(zr) =N(z4) =1, when 7—0

iV r

Then, the limiting behavior of 8Eé o) and Bva(;( ) js as follows,
T T
OE(Wa)
— —0(1
or o(l)
12)% W
7a(;(- a) :¢>P02A202 H? + 1- ¢)P5A302L2 + o(1)

25The last term of %# is messy, and needs special attention. The detailed derivation, assuming 7 — 0, follows.

[KZN(zH) — KPye" " N(cHy/T + zp) — AK? + AKPoe"T] %n(zH) = [K2N(—%UH\E) - K2N(%aHﬁ) %n(zH)

N(ioH\/7T) - N(=ioH/T 1
=—0?H?K? x (z0HVT) (—3oHVT) x n(—=cH\/T)
ocH\/T 2
As time T goes to 0, we have
N(icH\/7) - N(-icHT 1 1 1
lim (30HVT) (=3oHVT) =n(0)= — and lim n(—=cH/7)=n(0) = —
70 ocH\/T V2T T—0 2 vV
Therefore,
H 1
lim [K*N(zg) — KPoe" 'N(oHVT + z21) — AK? + AK Poe™ | 7 n(zg) = ——o?H?K?
T—0 \/; 27

2
The limiting behavior of w is also tricky, and the derivation is

W8 = BL)’ (o toy — B{C) x KL (2 H = n(Z1)L) + o(1)

97 24/T
— 2Ppe™™ N(%UH\E) - N(%aLﬁ)] X %(n(zH)H —n(ZL)L) + (1)
1 . N(30H/7) — N(50L/T)
= 5KP0€ o2(H — L)? x 2 %U(H*L)\j?‘ x n(0) + o(1)

As time T goes to 0, we have
Eg — Er)?  K20%(H — L)?
lim 2&H —Er)® Ko ) +o(1)
T—0 vT 4m

26To compensate for the hedging uncertainty and transaction cost, we have E(W,) > 0. For ATM call option,

E(W,) =KI[2- N(%O’A\/;) -1 -9¢-K[2- N(%O’H\/;) -1 -(1-¢)K[2- N(%aLﬁ) -1>0
SN(GoAVT) — ¢ N(GoHVT) — (1= 6) N(5oLy7) > 0

= (N + 30Avm(0)) = ¢ (NO) + 3oHVm0) = 1= 6)- (NO) + 3oLyTn©) ) +o(v7) >0

=A—-—¢H—-(1—¢)L+0(1)>0=>A—-(1-XNH—-AL>0 as 7—0
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% becomes 0, while QVar(Wa)
T oT

As 1T — 0, ) hecomes a constant positive number. Therefore, Bf < 0 as time
approaches maturity date, which implies that % > 0.

(3) For ITM call option, i.e. K < Ppe"™, we have

n(zn) = n(zr) = n(za) —0 and N(zg)=N(zr) =N(z4) =1, when 7—0

VT VT VT

OE(W,) and BVag(Wa)
T

is

Then, the limiting behavior

OE (W,
PEWa) _o1)
or
Var(W,
785 a) =¢pPE(1 — Ag)?0?H? + (1 — ¢)PE(1 — Ag)?0% L% + o(1)
AsT— 0, % becomes 0, while w becomes a positive constant. Therefore, 8’; < 0 as time approaches

maturity date, which implies that % > 0.

Appendix B-4 (Second Derivative of 7)

af 1 8f af &*f _ 9%*f of
9*A 0[5t/ 5%] 97 9AbT " 629
2

or2 P - of
T T (5%)
Based on B-S model, we have
% =Kov/mn(z4) >0
02 f 1 0za
=K IR -
pagr ~Hovmlza) [27 * or }

In Proposition 1, we have already discussed the limiting behav1or of for ATM ,0TM and ITM call options,
and now we continue on discussing the limiting behavior of 2 W for the three different cases.
(1) For ATM call option, we have

2
2 gi‘éva) =T \/m(A oH — ( —¢)L) + 0(\/%)

OVar(Wy
segeel o)

9%2f _ Kon(zy) 1
aaor = —aye - T o)

2 2
AsT—0, %‘g@ becomes negative, %W tends to a positive constant, so % is negative. Also, as 7 — 0,

2
% becomes positive. Therefore, we can conclude that as time approaches maturity date, the ask volatility will

increase at an increasing rate.

(2) For OTM call option, we have

O2E(W, 0?Var(W, 0?
( a) :O(H(ZA) aT’( a) ZO(]_) and f :O(H(ZA))
72 N 72 HAdT V13
2 2
AsT —0, % becomes 0, %ﬂwa) tends to a positive constant, so gzjf is a negative constant . The order

O(“(ZA) ), which implies that dominates '— Therefore, as

of g—f‘ is O(n(z4)+/7), while the order of aAaT 314237'
time approaches the maturity date, the ask volatility will decrease at a decreasing rate.

(3) For ITM call option, we have the same conclusion as for the OTM call option. The insight lies in noting that
for OTM and ITM call option, the normal density function of z is an infinitesimal in any order of 7, i.e. I;(z) — 0 as
7 — 0, for all m € R.

Appendix B-5 (The Volatility Level Effect)
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Consider

oA oL
—=-5%
do =
e af _ : . of _
In Proposition 2, we proved that 54 = Koy/Tn(z4) > 0. Hence, we only need to determine the sign of 55 =
OE(W4) Q 9Var(Wa)
do Ty do .
For %, we have
OE(W,
OEW) — ¢ [n(za)AVF 6 m(a) HVF — (1= 6) - n(0)LV7]

, we first calculate BVB(ZH using the Chain Rule.

For 8Vag(Wa)
o

v ac 94 9A 9A
IH 7 L PAN@oHT + 211) + 2 N(oHVT + 21) + 2 N(2p1)

do do do do do
A ON(20H\/T + zg) YA ON(cH\/T+ zg) YA ON(zg)
do do do

OVaryg
For every part of —5, =, we have

aC _ 2 A2 172 2rr+02H21
5c = 2PFALH%oTe

9ALN(20 - Hy/T + 257) = 2(1 — 284) P2 H210e2 ™+ HTN(20 H /7 + 2p1)

Ay INCoIT 2) - j2(1 — 9A,) (2H 7 + %2) n(zx)

LLN(H T+ 21) = PoKe'™ (%2 — Hy7T) n(zp)N(cH VT + 21)

AN BT 2m) K Poem N(oH\/T + 217) — 2K°N(—2p1) + 280K + 28K Poe™™ } (Hy/7 + %) n(zxr)
GBN(en) = —K2FEn(z1)N(zn)

ON
Ay PR = (KN (—zh) — 280 PKe™™) Zn(zp)

Adding up all the parts and rearranging, we finally hav@
7‘9\;"(‘:1‘1 = 2P02A2H270'62”'+02H2" +2(1 - 2Aa)P02H27'0'62”+‘72H2"'N(20Hﬁ +zH)
+2 [K2N(2p) — KPoe" " N(o Hy/T + 2) — Ao K2 + AgK Poe™™ | Hy/Tn(z1)
and the details follow.

, we also need to calculate

To calculate %(W“)
o

A Ey—Ep)?
do

_ 2 _
A(Eg—FEr) = [Bp{Cr} — BEL{C}] x B(EH{CU‘%U Ep{C-})

do
= [Bu{Cr} - EL{C:}] x K [n(zg)H\/T — n(21)L/7]

27% can be written in the similar format with L replacing H .
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We will discuss the limiting behavior of % for ATM, OTM and ITM call options in turn.
(1) For ATM call option, i.e. K = Pye"™, we have

1 1
n(zyg) =n(zr) =n(zq) > — and N(zg) =N(zr) =N(z4) > =, when 7 —0
(21) =n(zr) =n(za) oz (zm) (21.) (24) 5
Then we have the limiting behavior 8Eg;_v“) and 8‘/“(;(_‘/‘/“) as follows,
OE(W,) KT - OVar(Wy)
—_— = A—¢H —(1—9)L O d —=0
o = A (A= 0H — (1= O)L) + o(V7)OWT) and =2 ()
As 7 — 0, % dominates W%(EW“) . Therefore, % > 0 as time approaches maturity date, which implies

A
that e < 0.
(2) For OTM call option, i.e. K > Pye™™, we have

OE(W, oVar(W,
OEWa) _ on(z)v7) ana YVUWa) _ o
0o do
Since n(z) is an infinitesimal of o(7™) for any n when z —, %((TW“) dominates 6Eé‘;va) , which implies that

24

% < 0as 7 — 0. Therefore, 3%

> 0 as time approaches maturity date.
(3) For ITM call option, i.e. K > Ppe"”, we use the similar reasoning as in OTM, and we reach the same

conclusion.

Appendix C
Appendix C-1 (The optimal dynamic hedging strategy)
We first compute the variance over two periods. According to the law of total variance, the total variance for a

two-periods model is

Varg (Wa,2)
= Eo[Vari(Wa,2)] + Varg [E1(Wa,2)]
~Vari(Wa,2) = E1[Vara(Wa,2)] + Vary [E2(W,,2)] and Varz(Wa,2) =0
= Eg[Varg[E1(Wa,2)] + Vary [E2(Wq,2)]]
= Eg [Varg (—Ci,2 + AgP1) + Vary (—C2,2 + A1 P2)]

where

Varg{E1(Wa,2)}

= Varg {[7€_TAT - By (P2 - K)+ + Aoe_TAT - Ey (P2)]}

=Varg{[-Ci,2 + AoP1]}

Vary {Ez(Wayg)} = VaT‘l[—EQ(PQ — I()Jr + Alpg} = Vary [—0272 + Alpg}
Therefore,

Varg (Wa,z)
= Eo{Varo[—Ci,2 + AoP1] + Vari [-Ca2 + A1 P2]}

We let C1,2 denote the equilibrium call price at time 1 where C’LzeTAT = Ei1(P2 — K)*. In addition, C2,2 =
(P, — K)*t.
Now we derive the optimal hedging strategy. We follow the methodology in Basak and Chabakauri (2010) and

apply dynamic programming to the value function J; , which is defined as
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J =Vari(Wy,2).

The law of total variance yields a recursive representation for the value function.

J = min {Ec(Jiynr) + Vard—Epoar ((Pr — KIY + AcPryas)] )
t

where Ay is the stock holding and Aris time interval. We first check optimization for period 1.

Jo = HAlin {Eo(Jl) + VaT()[—El([PQ — I(]+ + A()Pl)}} = HAlin{E()(Jl) + Va’r‘()[—CLQ + A()Pﬂ}.
0 0
By F.O.C, we get optimal Agas,

Covg(C1,2,P1)

Ag = Varg[P1]

We continue to get optimal A; for period 2.

J = rginEl(Jg) =+ Va’l‘l[—EQ([PQ — K]+ + Alpg)] = n&inEo(Jg) + VaTl[—CQ’Q + Alpg}.
1 0
The solution is

Cov1(C2,2,P2)

A’1‘ = Vary[Pz]

The general solution for multiple-periods model is also provided by Basak and Chabakauri (2012). To get ana-
lytical solution for A*, we advance to compute covariance. Given in each period we have two possible realizations

(pg AT, U%IAT) and (pp AT, O’%AT) with a bernoulli random arrival rate, law of total covariance yields

Covi(Ca,2, P1)
= (1 - ¢)Couvy 1, [Ca 2, P2] + ¢Covy 11 [C2,2, P2]
+Covy [(1 — ¢)E1,L (C22) + ¢E1, 1 (C2,2),(1 — ¢)E1 L (P2) + ¢FE 1 i (P2)] .

Given E1(P2|V) = P1e"™®7 is constant by assumption , we simplify the covariance as

Covp (0272, PQ) = (1 — ¢)COU1,L [02’2, PQ] + ¢COU17H [0272, Pz} s
Covg(C1,2,P1) = (1 — ¢)Couvg,p, [C1,2, P1] + ¢Covo g [C1,2, P1] .

Appendix C-2 (The optimal dynamic hedging strategy)

Here we compute C1 2 and Cp 2.

Ci2 = E1[(Pz — K)*]
=8 0B (P~ K)T X1 =21, Va = o + (1= 9)B1 (P2~ K) T [X1 =21, V2 = 01] }
= ¢pBSMy, . m+ (1 —¢)BSM,, 1,

where x1, o, o are the realizations of X; and Va.

7 2
B PLyyrary ZHET P o ar
Sle,H P -N In(x )j::\/‘rit— o e~ TATK N In( )tZA\/% 5]
o2 At 2 an
= 7 L Py _°7
BSMy,,1, = P1-N In(x )i[:rﬁ; 7| ot N | RGE )J;[LTj;T —]

41



Co2 = e 2"ATBy[(Py — K) 7]

)

= e {2 (B2 [(Pa = K" 150,V5 = o] IV = o) + 1= 0080 (B2 [(P2 = K7 31,2 = o] Vi = 7))}
b2 {01 )8 (51 [(Pa— KV 1X0,V5 = 2] IV = o) + (1= 91280 (s [(Pa ~ K 10, = 0] Wi = 7))

= ¢?BSMu g +2¢(1 — ¢)BSMp 1 + (1 — ¢)2BSM [,

The following is the derivation for BSMEy i, BSMEy rand BSMjy, 1,. Here in Appendix C2, for the notation

convenience, we let A7 = 1.

Eo (Bx [(Py = K)V X1,V = o] Vi = on)
= Eo(E1[P2 - [(PQ > K)|X1,V2 = O’H”V1 = O'H) — Eo(El[K~I(P2 > K)‘XI,VQ = O'H”Vl = O’H)

Let fx, m the normal density function. The first term can be derived as

EO(El[P2 S I(Py > K)|X1,V2 = O'HHV1 = O'H)
— le,H PoeX1. 0T X2 1 Pr(Xy g > 1n(§0) — X1, 1| X1, 1) fx, mdX1, 1
XQ,H =ug + o - HEQ

ln(PLO)*XLH*uH

_ PyeX1,Htugtopea p
le,H 0e r(eg2 > o

1n<p£0>7X1,H7"J'H

|X1,15)fx,,0dX1,H.

let Z =
oH
2

€3
= PyeX1.HtuH ecHe2 L o= 3 ¢ dx
le‘H 0 fe2>Z or e | fx1,HdX1,H

_ (e2—o)?

fz \/%6 2 d52:| fx1,5dX1.H

2 42
H

— f P06X1,H+UH+“ >
X1,H

o2 In(E
H n(p-)—X1,H—un
:f PyeX1HtuEt {1_N(F’0
X1 g

o —UH)] Ixy g dX1H
_ (Xl,H—“H)2
1 202
H
oH ) \/ﬁJHe d[O-Hel]

2 _ K \_ _ 2
_ f PoeuH+051+uH+6TH N(Xl,H [ln( P ) UH aH]
X1,H

l,H_[1n<pL0)_uH_g ln(pﬁo)_XI,H_“H_”IZLI

¥ 2
Note N( ) = Pr(ez >

oH H )-
1 _fleimem)?

a2 P 2
_ p2lut—H] In(F)+2up+of;
= Pye 2 fsl N( +e1)| =e 7 dey

OH

(e1—9)2 m
apply theorem : IN(’I’TL+S€1)\/%€7 = der =N <:1_;_:+1> .

o2 Py 2
_ 2up+—2] In(52)+2upg +20
Poe 2 1N —ﬁoH .

Then we derive the second term.

EO(El[K . I(P2 > Kle,VQ = O'H)|V1 = O'H])
= Kle,H Pr(Xo,m > In(£;) = X1, ml X1, 1) fx,, mdX1,m

)—X1 H—ung

| X1,8)fx:,2dX 1 H

(X1—up)?
1“(%)+X1,H+’U«H )] 1 iy

= le,H K [N( — B dXi g

E (e )2
= K|:N(1D(KO_>1:21”{ +€1):| 1 - é deq

oH

ln(PL0
= fol‘H Pr(ez >

€1

- ) ln(%)+2uH
KN (m)
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Given ugy

2
+ (0121) =,

e { By (B1 [(Pa— K)* [X1,Ve = o] Vi = o) }

2 2
P T P a
11\(70)-9—[7'-{» 2H]*2 76_2TK-N 11\(70)-0»[7'—71{]*2

=FP-N p—5 -~
= BSMp y

Using the same procedure, we can derive

e 2 {Eo (B [(P2 = K)T [X1,Va=0L] [Vi=0)}
2 2

In(52)4r+ Tk ]2 In(50)4r—ZL 42

_ . _ -2 . )
=P -N = e K .-N e
= BSMy, 1,

and

e 2 {Eo (Br [(P2 = K)T [X1,Va =on| Vi =01) }

2 02 02 02
RN LG it e o i) NP RGN (LL1G o R ke ke
\/J?{+di \/o'i{#»o'i

=BSMp. u

and

e~ {Eo (B [(P. — K)T |X1,Va =oL] [Vi =0H)}

2
I R
WG+ Frr+ )\ o g [ WO T - TR

2, 2 2, 2
\/‘TH+UL \/JH+‘7L

=P)-N

= BSMy 1,

Appendix C-3 (Proof of Proposition 5)
Let Y = ZJ'T:t+AT X, Pr = PyeY with each X a Bernoulli-type random normal distribution.
ny . )
Therefore, we know Cy 1 = :L_O ( A)qbl(l —¢)""Ey [(PT —K)t|Var(Y) =i-(og)2A1+ (n—1i) - (O'L)ZAT}
=044

Cor =300 (1) 60— 9= { P N (dy) — =7 A7 K N ()}

2 A o2 AT
iy — In(E8) 4 [rar+ ZH D)4 (n—i) [rar+ ZL—
i»a%AT«k(nfi)o'iAT ’
2 A LN
n(E2) i rar— 22T (ni) rar— ZLT T
d2 = M= A7

\/i-ai{AT-!—(n—i)aiAT

Next,

Covt(Cyy1,17 , Pry1)
= F [Covt(0t+1,T,Pt+1|Vt+1)} + Covy I:Et(ct+1,T“/1t+1)7 Et(Pt+1|Vt+1)]
" Bt (Pgy1|Vi41) is constant by our assumption.
= F [Covt(ct+1,T,Pt+1|Vt+1)}
=9 {Et(ct+1,TPt+1|Vt+1 =o0g) — Et(Ciy1,7|Viv1 = oq)E(Piy1|Vig1 = UH)}

+(1—9) {Et(Ct+1,TPt+1|Vt+1 =o0r) — Et(Ciy1,7|Vix1r = 0L)E(Pry1|Vig1 = UL)}
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The detail of first term of covariance is

Et(Ciya, T-Pt+1|‘/t+1 =0g)

_Et{z ( )d)l(l yn —1{ t+1 — Pipie ™ TATKN(dQ)}|Vt+1=O'H},
where n* = w. And we advance to express the terms as
By {PtHN(dl) Pip1e” " TATKN (da) Vi1 = UH}

% o2 AT
1n( L)+ti. |:'I’AT+ :|+(" —i) |:7"AT+ Lz i|+uHAT

PtZGQuHAT+2JH\/ATEt+1 N : : teon
Vi(og)?Ar+(n*—i)(oL)? AT

[Vi+1 =on

o2 AT Ar
ln( Lyti- [rAT— HQ +(n*—i)-[ra L2 fugAT

_Ptefn*rATeuHAT+UH\/Est+1K N

2 ) +et41
\/1'UHAT+(7L 71)¢7LA7'

(c1-9)2 m
B L = 519
. fN(m+ss)me 7 dey =N ( (1)2+1)

% o2 AT 302 A
ln( £+ |:TAT+ :|+(" —1i) |:TAT+ Lz :|+[7‘AT+ Ig

2
— Pt2e2'rAT+a'HATN
\/(i+1)40?{A7+(n* _i)g%AT

2 5 2’5
}—F(n —i)- |:T‘AT—GL2 T:|+[TAT+UH2 iy

o2 At
ln( £y 4i- [TAT—

,Pte—(n* —I)TATK N
\/(i+1)-a§{Ar+(n*—i)a§AT

2
A
,r+:rAT+oL2 i

L

2
2 A
Let r =rAr+ UHQ . andr; =rAt — oLAT

2
— oL AT
Ty = TAT — el

Et{ i+1 dl)*PtH@*" TATKN(d2)|Vt+1 —UH}
_ ppving (B o]
\/(1+1)»a§{Ar+(n —i)o? AT

(PR
—Pe~(W"-DrAT g N B AT Gl TL+[TH] .
\/(i+1)<o%IAT+(n*fi)o'%Ar

Similarly, details inside Ei(Ciy17Pit1|Vig1 = o) are
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By {P2, - N(d1) = Prp1e " "ATK - N (d2) [Vi1 = o1, }

2
In( %)+1 |:'rA‘r+

o2 Ar
+(n*—i)- | rAT+ L2 +up AT

Pt262uLAT+2crL VATEi 1N + et

\/i~o'2 A‘r+(n*77ﬁ)aiA‘r

=B = o2 An [Vig1 =or,
7 |:TA7'7 ]+(n —1i)- |:’I‘A7'7 L2 ]:| +up AT
_Ptefn*rATeuLAT+o'L\/ATE,:+1 K-N + E¢41
HAT«%(nfi)o'iAT
2 Aar] [ 2A 302 A
R ln(%)«ki- |:’I‘AT+0H2 il +(n*—1)- TAT+UL2 T:|+[’I‘AT+ Ulé T]
— P2€2rA7'+dLATN i
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Table 1: Descriptive Statistics

Panel (A): Descriptive Statistics for Volatility

Mean Min Max Std Skewness Kurtosis
BSM-IMV (ATM) Call (bid) 17.48% 4.59% 85.21% 10.19% 2.14 7.34
Call (ask) 19.58%  4.68%  117.50%  13.96%  2.56 11.57
Put (bid) 20.81% 7.75% 91.76% 10.56% 2.09 6.63
Put (ask) 23.27%  9.48%  132.54%  12.34%  2.54 10.90
CM-IMV (OTM+ATM) Call4+Put (bid) 21.29% 8.54% 97.14% 10.84% 2.14 7.12
Call+Put (ask)  23.81%  9.68%  120.78%  12.56%  2.56 10.85
Realized Volatility 30 Days 18.57% 5.72% 88.50% 12.35% 2.59 8.75
Panel (B): Descriptive Statistics for Volatility Spread
Mean Min Max Std Skewness Kurtosis
BSM-IMV Spread (ATM) Call (ask-bid) 1.99% 0.36% 28.42% 1.89% 6.30 65.5
Put (ask-bid) 2.25% 0.40% 32.12% 2.06% 6.22 64.33
CM-IMV Spread ask-bid 2.44% 0.83% 29.64% 1.94% 5.56 51.47
P. BSM-IMV Spread Call 11.17% 1.60% 52.95% 5.59% 2.33 8.46
Put 13.14% 1.59% 75.20% 7.46% 2.52 9.98
P. CM-IMV Spread 14.43% 3.24% 88.90% 6.94% 2.34 11.99
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Table 2: Estimation Results (1)

Model : SpPct.;, =a+0- ﬁ + 51 RVe+ Ba- VRP. ¢ + 3 - Jump_intensityct + ve + €ct

Panel (A) : Dependent Variable: Percentage CM-IMV spread

o] 4 b1 B2 B3 adj — R
6.2 0.037 0.024 0.314 0.40
(0.625)*** (0.002)*** (0.028) (0.018)*** '

8,90 0.046 -0.139 0.282 0.38
(0.625)*** (0.002)*** (0.033)*** (0.019)*** ‘
7.377 0.038 -0.068 0.244 0.178 0.43
(0.626)*** (0.002)*** (0.029)** (0.019)*** (0.020)*** '

Panel (B): Dependent Variable: Percentage BSM-IMV (ATM Call) spread

o 0 B1 B2 B3 adj — R’
7.631 0.072 -0.038 0.261
O.717***  (0.002)***  (0.032) (0.022)*** 0-53
9.916 0.08 -0.178 0.244 0.53
(0.799)*** (0.002)*** (0.037)*** (0.023)*** '

8.692 0.074 -0.121 0.197 0.161 0.54
(0.707) % (0.002)*** (0.033)** 0.023*** (0.024)*** '

Panel (C): Dependent Variable: Percentage BSM-IMV (ATM Put) spread

a 4 b1 B B3 adj — R’
9.108 0.113 -0.106 0.251 0.66
(0.858)*** (0.002)*** (0.038)** (0.024)*** ‘

11.37 0.121 -0.247 0.247 0.66
(0.938)*** (0.002)*** (0.043)*** (0.025)*** '
10.23 0.115 -0.194 0.184 0.170 0.67
(0.847)*** (0.002)*** (0.039)*** (0.026)*** (0.027)*** '

The t values in tables are already adjusted by Newy-West variance and covariance estimator.
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Table 3: Estimation Results (2)

Model : SpPctet =a+B1-RVey + 2 - RVe + B3 - VRP: ¢ + B4 - Jump_intensityct + €c,¢ ,
’ DeTrend_SpPctet = a+ 1 - RVeyi + B2 - RVe+ B3 - VRP. ¢ + Ba - Jump_intensityct + ec,t ,

Panel (A) : Percentage CM-IMV spread

Dependent Variable e b1 B2 B3 Ba R2
DeTrend.SoPet 5.48 0.35 -0.35 0.35 0.1 0.24
eTrend- c .

PrCest (0.78)*** (0.03)*** (0.04)*** (0.02)*** (0.02)***
SpPet 6.9 0.39 -0.36 0.4 0.08 0.26
(e .
P et (0.88)*** (0.03)*** (0.04) % (0.02)*** (0.02)***
Panel (B): Percentage BSM-IMV (ATM Call) spread
Dependent Variable e 51 B2 B3 B4 R?2
DeTrend.SoPet 6.92 0.33 -0.38 0.3 0.08 0.14
elrend. (& .
prcle.t (0.87) (0.03)*** (0.05)*** (0.03)*** (0.03)***
SpPet 9.68 0.36 -0.39 0.34 0.07 0.14
c .
PECheyt (0.99)*** (0.03)*** (0.05) % (0.03) % (0.03)***
Panel (C): Percentage BSM-IMV (ATM Put) spread
Dependent Variable « B2 B3 Ba Bs R?2
DeTrend.SpPet 9.17 0.22 -0.37 0.23 0.13 0.0
elrend. fe .
p C’t (0'92)*** (0.04)*** (0.05)*** (0.03)*** (0.03)***
SpPet 13.3 0.26 -0.39 0.29 0.1 0.10
cte .
pHChe (1.07)* (0.04)*** (0.05)*** (0.03) % (0.03)***
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Table 4: Estimation Results (3)

Model : Jump_intensityc 41 = o+ P1- Delrend_SpPct.: + Pz - SpPct.
: +083 - VRP.+ + Ba- RVey + B5 - Jump_intensityc: + €c
Panel (A) : Dependent Variable: Jump Intensity at t+1, Spread Measurement: Percentage CM-IMV spread

o b1 B2 B3 B4 Bs adj — R
2.352 0.229
2.378 0.176
2.23 0.17 0.059 0.04
(0.634)*** (0.049)*** (0.041) )
-3.828 0.102 -0.188 0.345 0.338 0.316 0.42
(0.441)*** (0.051)** (0.047)*** (0.025)*** (0.02)*** (0.024)*** :
Panel (B): Dependent Variable: Jump Intensity at t+1, Spread Measurement: Percentage BSM-IMV (ATM Call) spread
a By Ba Bs Ba Bs adj — R’
3.015 0.138
3.1 0.086
2.895 0.105 0.033
(0.635)*** (0.033)*** (0.024) 0.02
-3.957 0.053 -0.104 0.332 0.335 0.309 0.42
(0.447)*** (0.033)* (0.027)*** (0.024)*** (0.02)*** (0.024)*** )
Panel (C): Dependent Variable: Jump Intensity at t+1, Spread Measurement: Percentage BSM-IMV (ATM Put) spread
o b1 B2 B3 B4 Bs adj — R*
3.194 0.112
3.347 0.054
3.072 0.089 0.022 0.02
(0.637)*** (0.026)*** (0.016) )
-4.067 0.046 -0.067 0.325 0.331 0.305 0.41
(0.461)*** (0.025)* (0.018)*** (0.024)*** (0.021)*** (0.024)*** :
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Figure 1: The Implied Volatility

Figure 1 graphs the 3 measures of implied volatilities, including CM IMV, BSM-IMV ATM Call and BSM-IMV ATM
Put. The light bold line represents CM IMV, the circle signs denote BSM-IMV ATM Call, and the plus signs are
BSM-IMV ATM Put. The top chart draws the IMV for bid prices of S&P index options, while the bottom chart
graphs the IMV for ask prices. The 20-days realized volatility (RV) is given by the dashed line in both charts. To
compute the RV, we use 5-minute high frequency returns for a historical time window of 20 days. As shown in this
figure, the volatility measures are highly correlated, reaching their largest values, approximately 80%, during the 2008
financial crisis and declining to 20% in the late 2009.
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Figure 2: The Implied Volatility Spread
Figure 2 graphs the implied volatility spreads from 01/02/2007 to 04/15/2010. The first chart contains the CM-IMV
spreads, the second and third charts are the IMV spreads of ATM call and ATM put, respectively. The vertical dashed
lines are the expiration date, while the solid bold line is the realized volatility. As each dot represents the implied
volatility spread, it can be observed that the volatility spread increases at an increasing rate as the expiration date
approaches.
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Figure 3: The Percentage Implied Volatility Spread
Figure 3 graphs the percentage implied volatility spread. The dots denote the percentage volatility spreads, while the
other signs represent the same variables in figure 2. The patterns are similar to those in Figure 2, although the width
of the spreads differs.
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CuM CUM
tick_spread FREQ. FREQ PCT PCT

(1) tick spread <=2 401 401 4.45 445

(2) 2= tick spread<=10 3469 3870 3846 4290
(3) 10< tick spread=<=18 3117 6987 3456 7746

(4) 18< tick spread<=24 1302 8288 1443 9180

(5) 24< tick spread 731 9020 8.10 100.00
1000 2000 3000 4000
Frequency - Call Options
cum Cum
tick_spread FREQ. FREQ FCT PCT

(1) tick spread <=2 292 292 323 323

(2) 2< tick spread<=10 2481 2773 2747 3070
(3) 10< tick spread<=18 3691 6464 4087 7157
[4) 18< tick spread<=24 1703 8167 1886 9042

(5) 24< tick spread 865 9032 9.58 100.00

1000 2000 3000 4000
Frequency - Put Options

Figure 4: Minimum Spread in Ticks

Figure 4 show the spreads in terms of ticks for ATM options. The top chart display the frequency of tick spreads
for call options, and the bottom one demonstrates the same information of put options. The first column divides the
whole sample into by the number of tick spreads of closing prices. Those groups include: (1) tick spread < 2, (2) 2 <
tick spread < 10, (3) 10 < tick spread < 18 (3) 18 < tick spread < 24, and (5) 24 < tick spread. The second column
is the histogram graphically representing the number of the observations of each group, and the numerical number of
frequency is shown in column 4. The percentage and the accumulated percentage of total observations number are
shown in column 4 and 5.
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S E(W|A1): Expected Profit from Selling the options at volatility A1
E(W|A2): Expected Profit from Selling the options at volatility A2
(Q/r)VarfW)+c: Required premium

E—— Y R
""""""""""""""""" e AAL T
(Q/r)Var(w)+C = g
_— \
juil 2 0

Time to Maturity

Figure 5: Quotation Dynamic
Figure 5 illustrates the maturity effect. Eq is the first equilibrium selling the options at volatility Al. The expected
profit decays faster than the required risk premium so that expected profits fall below the risk premium as the time to
maturity decreases. To compensate, MMs increase the selling volatility to A2, shifting the expected extra profit curve
upward, resulting in the equilibrium Es. The result is that the implied volatility increases as the time to maturity
approaches.
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Figure 6: Averaged Volatility Percentage Spread and Volatility Level
In Figure 6, a negative relationship between percentage volatility spread and volatility level is exhibited. The dashed
line is the volatility spread, and the bold line is the realized volatility. Because the increasing pattern obscures the
level effect, the negative relationship is not easily observed if every data point is displayed. Here we averaged the
daily data and we plot the averaged daily volatility percentage spread for each contract at the expiration date. As
seen, especially in the bottom chart, when the realized volatility level is high, the spread in the percentage of implied
volatilities tends to be low.
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(&) Variance of Hedging error (Hedge number=N, Days To Expiration=10}) (b) Variance of Hedging error { Mumber Hedge=10, Days To Maturity=t )
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Figure 7: Total Variance and Call Prices for Different Dynamic Hedging Schemes
Figure 7 shows the numerical results for the total variance and the call price under different dynamic hedging plans.
The model parameters are 0=0.2, oy =0.22, o, =0.18, r =0.04 and Po =K =1500.
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Figure 8: The IMV spread and Percentage IMV spread
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(i) Call Prices atvol=0.2 and vol=0.3
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Figure 9: The Total Variance of the Hedging Error at Different Volatility Levels
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Figure 10: Calibrated Results for ATM call Option Spreads
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