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1 Introduction and Background
In [1] the first author of this paper redefined randan nom ed spaces and further ntroduced
random nom ed modules and random inner product modules Based on these basic notbns
Gua in [1] defined the random conjugate space of a random nom ed space to be the random
nom ed m odule consisting of all aln ost surely bounded random linear functionals defned on the
random nom ed space A series of recentw ork on the theory of random conjgate spaces and
its applications” " have show n that this definition of a random conjgate space not only pro—
vides a proper fram ew otk for previous results of randan conjgate spaces but also have over-
can e all serious shortcan ings of all previous defnitions of a random con ugate space, and thus
we regard it as the definitive defmnition of a randan conjugate space

How ever the fom ative course of this defnitive definition is long intem ittent and closely
related to m any topics fran the theory of probabilistic nom ed spaces randan functional anal-

8- 10 . .. . .
s 1ol Chronologically we can divide the fom ative course nto

ysis and random m etric theory
the follow ing three stages the first is Sultanbekov s w ork on strongly bounded randan linear
fun ctionals in spaces of strongly m easurable functions " ( see also Section 2 of this paper); the
second is Zhu s w otk on alnost surely bounded randan Inear functionals under the fram ew ork
of an E-nom space[m(see also Section 3 of this paper); the third isGuo's work on random

14]

: 13 : :
conugate spaces under the fram ew ork of a random nom ed space[ " together w ith a series of
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Guols furtherw ork!" * 7]( see also Sections 4 and 5 of this paper).

The purpose of this paper is to give som e review s on the above stated each stage ofw ork
so that one canm ake clear the substantial distinctions an ong the three stages of work together
w ith sam e basic concepts presented at each stage In particular Section 6 of this paper gives
can plete relationshps anong strongly bounded topologically bounded and almost surely
bounded randan Inear functionals wherew e also discuss the reasonability of the definitive
definition of a random conjgate space from the angle of the operator space theory.

Tom ake precise our review s on the above subject w e first recall som e necessary notions
from the theory of probabilisticm etric spaces and randan functional analysis

Throughout this papes K alw ays denotes the scalar field of all real num bers (briefly R)
or of all complex num bers (briefly, C). D" = {F: (=c>, + c©)}> [Q 1] F is left continuous
nondecreasing F(0)= Q lm F(x)= 1} namely the set of all regular distance distribu tion
fun ctions ( see [8]).

A wo—place functionT: [Q 1< [Q I} [Q 1]is called aw eak t-nom if it satisfies the
follow ing three conditions 1) T (@ b)= T (b, a)¥ a b€ [0 1} 2)T(a b)=T (¢, d)¥ a=
¢ b=d; 3)T(L 0)= Q A weak ? mom 7 is called at mom if it also satisfies the follow ing
two conditions 4)T (L a)= aVa€ [Q 1} 5T (a, T(h ¢))= T(T(a b), ¢)Va b <
(@ 1]

Clearly, Twax(a, b)= 1ifa” b> Oand Oothew is¢ is the greatestw eak t nom in allw eak
t-noms M n defined byM in (@, b)= a/\ b¥a bE [Q 1] andW defined byW (a, b)=
max(a+ b - 1, 0Va b€ [0 1] arebotht-nom s

Definition 1 1" A triple (S, % T) is called aM enger probabilistic nomed space
(briefly aM engerPN space) overK ifS is a linear space overK, T isaweak {nom and ,%£ S
— D" is amapping such that the follow ing hold

, >0
(PN-D)F, ()= X(1)= {Q < (Y€ R) iftp= 0 (the null inS )

(PN 2)F73 (t)= F,,[|—fm] Vi€ R, T K and £ Q andp€ S;

(PN 3)F,= X ipliesp = 0;

(PN 4)Fpey(x+ y)=T(F,(x), Fo(y))¥p, ¢q€E S, x yE R.

HereF» stands for_% ), called the probabilisticnom of the vectorp inS. If (S, L%~T)
satisfies only (PN-1), (PN 2) and (PN —4) above then it is called a probabilistic p seudonom ed
space (briefly aM engerPPN space).

Let (S, .% T) be aM engerPN space Denote the set of all such weak ¢ noms 71 for
which (PN—4) holds by .7 defneT: [ 11X [Q@ 11> [Q 1]byT (a, b)= sup{Ti(a b)l T
€ ITVa W [Q 1] ThenT still satisfies (PN 4) and is also aw eak t -nom. T is called the
greatestw eak £ nom of (S, .7 T)" !

Defnition 1 2¥ Let(S, .7 T) be aM engerPPN space such thatT (L a) = aV¥ o€
[Q 1] G ven an elmentp inS, letp= {¢€ SIF-y= X}, S= (plp€ §) andjg-f:\':g’9 D’
be defined by F7 = F, for anyp inS. Then (S, jZiT) is aM engerPN space called the quo—
tient spaceof (S, % T).
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Reamark 1 1 TLet(S, 9/: T) be the same as inDef 1 1 p, g€ S be such thatFy-4= X.
ThenF, (t)= F,(t)¥ € R. In fact we need only to checkF,(t)= F,(1)¥ t> Q G iven a pos—
tive numbert> Q and 0< x< ¢ then (PN—4) yieldsF, ()= T (Fp-,(x), Fo(t—- x))= T (],
Fq(t- x))qu(t— x)Vx€ (0 1), andhenoer(t)qu(t)V t> OsinceFq is left continu—
ous SimilarlyF,(t)= F, (t)V t> Q thusF,= F,, this:?/?'iswell defned Obviously alli -
noms I satisfy the condition?” (1 @)= a and hence alsoT (1 a) = aV¥ a€ [Q 1]

Proposition 1 1% Let (S, .% T) be aM engerPN space overK with its greatest
weak t nom T. For eachr& (Q 1), defneN,( 2 S—> [Q + <) byN.(p)= Fl/,\ (r), where
Fy (r)= sup{t= 0 F» (1) < r} Thenwe have the follow ing statem ents

1) (S, {N.()}ew@n) is apseudonomed Inear space iff sup {7 (a, a)l 0< a< 1)= L

2) (S, IN-( )}e o n) isaBo —type space (namely eachN (" ) is a sem inom onS) iff7T =
M in namely 7 (a, b)z al\ bY a, bE [Q 1]

3) there existsanom I ~ Il onS such thatV-(p)= ll pll forallr€ (Q 1) andp€ S
iffT= Twa, namelyT (a, b)= 1lifa" b> Q and O othew ise

Remark 12 A ccording 1o LaSalle'”, that the above S, N+( )leawn) is a
pseudonom ed linear space overK m eans it satisfies the follow ng conditions

DN .(p)= Oforallr& (Q 1) iffp= 0;

N ()= [TN.(p) forallTE K, pE S and allr€ (Q 1)

3) for eachr€ (Q 1) there exists/€ (Q 1) such thatN-(p+ ¢)=N:(p)+ Ni(q) forall
p, g€ S.

Since for any fixed p inS, N:(p) is nondecreasng in 7. as shown n [17] such
pseudonom ed linear spaces as (S, {NV (" )} 1) exactly give allm etrizable lnear topolog ical
spaces and thus give allm etrizable locally convex spaceswhenT="M in Proposition 1 1 first
occurred in [16] in the above fom togetherw ith abriefproof it is a slight in provem ent of the
corresponding results m [15]

Proposition 1 2°' Let (S, % T) be aM engerPN space such that its greatest w eak ¢ —
nom T’ satisfies sup {7 (a a)| 0< a< l}= 1L Given> Q 0< A< 1 letNo(XA)= {p€E
SIFy(X> 1- 24}, then {No (X)) X> Q 0< A< 1} fomsa localbase atd of som em etrizable
linear topology forS, called the (X A) -linear topology forS. Fom now on for a given
M engerPN space we say it is a lnear topological space iff its linear topology is exactly the
above (X A)=linear topo logy.

Reanark 1 3 In fact n Proposition 1 2 the (X A)-metrizable lnear topology is exactly
that detem ined by the pseudonoms (N, ( )| r€ (Q 1)} asin [17] It is obvious that a setA
of (S, % T) is topologically bounded (nanely A can be absorbed by any neghborhood off) iff
A is probabilistically bounded n tems of [8] (nanelyDa(" ):R— [Q 1] defined byDa(¢)=
XS<11]leé'IlApr (x) for allt€ R, belong s oD” ), this is also equivalent to fé{ﬂVr (@) <+ ©© forallr
€ (qQ 1)

Defmnition 1 2 Let (S, 9?: T') and (S2, ﬁ T?) be any oM enger-PN spaces over
the sam e scalar fieldK. Then a linear operatorQ: Sr> S2 is called strongly bounded if there ex—

ists apositive numberM such thatFé(p)(t)2 F, ﬁ for allp inS1 and all’€ R; is called topo-
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log ically bounded (if(ksgplTl(Gg a)= 1and 0<S};1<p1T2(a° a)= 1) ifQ maps every topologically
bounded set ofS' to a topo logically bounded set ofS>.

In this sequel of this paper all the greatestw eak t -nom s7 ofM enger-PN spaces appear—
ing in this paper are assum ed to satisfy the condition(ksblplT (& a)= 1 Then itis easy to check
that a strongly bounded lnear operator is topolotically bounded and that a linear operator is
topologically bounded iff it is continuous

Let (S, Il = Il 1) and (S2 Il - Il 2) be any wo nom ed spaces over the sam e scalar fiel
K. Define, 7. S>D" and .7 S2>D" byFs(1)= X(t- Il pll YW pE Sy, 1€ R; Fi (1)
= X(t- Il pll 2)Vp€E S» t€ R. Hered is the sane as in Definition L 1 then (S, %
M in) and (S2 %, M in) are bothM engerPN spaces and it is obvious that their (X A) ~linear
topolog ies are exactly the ordinary nom —topo logies of (S1, Il * Il 1) and (S Il * Il 2) respec—

tively It is also clear that at this tme a strongly bounded linear operatorQ fram (S1, 7

M
Q) 2=M1Il pll 1 for allp € Sy, this is again iffQ is topologically bounded G enerally

M in) to (S %7 M in) satisfiesFQZ(p)(t)zF,}[_t} for allt€ R, p€ S1 for someM > 0 iff

speak ng a topo logically bounded linear operator is not necessarily strongly bounded, see Sec—
tion 6 of this paper

A lthough the topological boundedness of linear operators is strictly w eaker than the strong
boundedness of lnear operators the set of all topo logically bounded lnear operators from a
M engerPN space to another fom s a linear space under the ordinary scalar m ultip licatbn and
additbn operation of linear operators How ever the smilar conclusion generally no longer
holds for strongly bounded linear operators a not very dificult counterexam ple on this respect
is left to the reader W e give only the follow ing affim ative result

Proposition 1 3 Let (S, .77, T') and (S, .77, T?) be any twoM engerPN spaces over
the sam e scalar fieldK, and7°=M in Then the set of all strongly bounded linear operators
form S1 t0S2 fom s a lnear space overK .

Proof Let{N/( )}e@n and{N7( )}ew@ 1 correspond to .7 and .77 respectively as n
Prop L 1 SinceT’=M in then for each7€ (Q DN,’( ) isa san inom onS2 by Prop L 1
W e need only to check Qi1+ (2 is still strongly bounded if bothQ)1 andQ2 are strongly bounded

14
linear operators from S1 toS2 SupposeM 1 andM 2 are positive such thatF¢ e (1) =F wile

ngu,)(t)>F;[ﬁ7tJ for allt€ R and allp € S5 equivalenth N7 Q1(p)) =M1~ N'(p), and
N2Q2:p))=M2 N!(p) forallr€ (Q 1) and allp € S.

Since N2((Q 1+ Q2)(p))=N7(Q1(p))+ N2@Q2p)) =M1 Ni(p)+ M2 Ni(p)= (M
+ M2)" Ni(p) forallp€ Siand allr€ (Q 1), then equivalently we can have

3
Foroym (1) =F, Vs M

Qi1+ Q21is clearly also lineat and thusQ i+ (2 is stilla strongly bounded linear opera—

for all’€ R and allp € Su

tor
This completes the proof
Proposition 1 4 Let(S, /OZH Tl) and (S2, 92: Tz) be w oM enger-PN spaces overk,.
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Then w e have the follow ing
1) T =M n, then there exists a nonzero continuous linear operator from S1 toSz
. . ' . . . .
2) if 7= M in and there doesn t exist a nonzero continuous linear functionalon (S1, &7

Tl)7 then it is m possible that there exists a nonzero continuous linear operator from (S1, &7,
') w0 (S> J7 T,

Proof 1) SinceT'= M n, then (S, % T') must be locally convex of course there
ex ists a nonzero contnuous linear functbnalf onS1. Letg be any nonzero element inS2 then
Q: Sr> Sa2definedbyQ (p)= f(p) g forallp& S, isclearly anonzero continuous linear op—
erator from S1 toS2

2) Suppose there exists a nonzero continuous linear operator) fromS1 t0S2 namelyQ (p)
# 0 for somep inS. SinceT’=M n, (S3 ,%, T’)mustbe locally convex then by H ahn-Ba-
nach theorem there must be some nonzero continuous linear functional /' on S2 such that
S(@Q () Q DefneF:Sr> K byF (p)= (f°Q)(P)¥pE€ Si1, then it is obvious thatF is a
nonzero contnuous Inear functional onS1, this is a contradiction to the hypothesis on 2).

This completes the proof

Remark 1 4 Proposition 1 4 show s there are not necessarily nontrivial continuous ( e—
quivalently, topo logically bounded) Inear operators betw eenM enger-PN spaces Despite this
fact many scholars have discussed the so—alled operator space problen s under the hypothesis
thatT>’=M i, we hope these scholars can take seriously this fact

E —nom spaces and sem rmomm —generated spaces are frequently em ployed in this papes be—
fore they are cited let us first recall som e basic notbns Throughout the rest of this papey
(K, 4 ) alvays denotes a g ven probability space unless othemw ise stated

Definition 1 3 Let B, Il - Il ) be a nomed space A mappnV: (K 72 )—> @B,
Il - 1) is called an , /Z-random elament (also called an , Z-generalized random variable) if
vV 1(G): (k€ Klv (k)€ ¢} _ Aor all open setG ofB (an, /Z~random elan ent is often sin —
ply said to be a randan element if no other € -algebras than , Zare considered)™ "5 An /-
random elmentV: (K Z )> B is called smple if V takes only finitely many values inB,
furthemoreamapping fran (K _Z ) to (B, Il - Il ) is called an , Z-random variable if it is
the pontw ise lim it of a sequence of sinple, Zrandom elem ents - A m apping from (K, 7
Yto(B, Il ~Il) is called a strongly m easurable function if it is the pointw ise lim it alm ost ev—
eryw here of a sequence of smple, /Zrandom elan ents

Remnark 1 5 It isw ellknown fran [9 10] that am apping is, Z-randan variable iff it is
_#-random elem ent and its range is separable It is easy to see that the notbn of a strongly
m easurable function anounts to that of a_ measurable function ntroduced in [20] For any
two, #Zrandan variablesV, Vz (K Z > (B, Il - Il), itiswellknown from [9] thatV
+ V2 is still an, Z-random variable, and hence Il Vi+ Vall defned by Il Vi+ Vall (k)=
Il vi(ky+ VoK)l forallk nK is anonnegative, /Zrandom variable Howeves whenV1, V2
are only | //-random elements Vi+ V2 isnot necessarily a, /Z/-random element and evenll V1
+ Vall isnot necessarily . /Z/measurable either (See [9]). Finally it is also obvious that ev—

ery strongly m easurable function musthe_ -equivalent to an  Z-random variable
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Defiition 1 4°*"" A n ordered pair (S, %) is called an £ nom space w ith base (K,
A4 _)and target(B, Il ~ Il ) (where (B, Il * Il ) isanomed space overK ) ifS is a linear
space overK ofmappngs from (K, _Z ) o B, Il Il ) under the ordinary pointw ise addi-
tion and scalarm ultp lication and if, 57 is am apping from S toD” such that the follow ing hold:

(EN -1) foreachp€ S, Il pll : K& [Q + ©o) defined byll pll (k)= Il p(k)ll forallk
inK, is a nonnegative, /Z-randan variabls

(EN=2) F, (1)= _ ({k€ K[ Il p (k) < ¢}) for all#€ R and allp € S.

Furthemore ifF,= X mpliesp (k)= 0 for allk€ K (where0 is the nullofB ), then (S,
P is called a canonicalE mom space

Renark 1 6 Let (S, %) be anE -nom space w ith base (K 7 ) and target (B,
Il 11'). Then (S, . % W) is aM engerPPN space™, whereW (¢, b)= max(a+ b - 1
0)Va b€ [Q 1] furthemoreif(S, &) is canonical then (S, 74 W) is aM enger-PN space
It shoul also be pointed out that the null ofS is the m apping taking the constant value0 (the
nullofB ), and thus for any o elmentsp andg inS, p= gm eansp (k)= q(k) forallk n K
That(S, ,%) is canonicalmeans it is i possble thatp andg are sin ultaneously contaned nS
ifp andq are only equal alnost surely but not identical this is rather stringent

Defiition 1 5 > An ordered pair (S, %) is called a sem inom -generated space overk
w ith base (K, _Z ) ifS is a linear space overK, % is am apping from S toD ", and there is
asaninom || Il x onS for each k in K'such that the follow ing ho Ik

DI plhe= 0forallk nKiffp= 0 (the null nS )

2) foreachp € S, Il pll x is a nonnegative , /Z-m easurable function of k;

3)F, ()= (k€ K[ Il pll k< ¢}) forallt€ R and allp € S.

Furthemore ifFs = X impliesp = 0, then (S, %) is called separated

Let (S, .%) is a sem ino m -generated space then (S, % W) is aM engerPPN space If
(S, .9 is separated then (S, .7 W ) is aM engerPN space N ow, suppose(S, .7) is anE
nom spacew ith base (K 7 ) and target (B, Il ~ Il ), definell - Il kS—> [Q + =) by
Il pll =1l p (Kl forallk nKand allp€ S, then {Il - Il il k& K} is a fam ily of sem nom s
on S and satisfies Defnition L § and hence (S, %) becomes a sem i-nom -generated space
The follow ing proposition show s a sem imom —generated space can essentially, also be regard-
ed as anE —nom space

Proposition 1 37! A M engerPPN space (S, £ T) is anE —nom space iff it is isom or—
phically isom etric to a sem imom —generated space w here isom etricm eans probabilisticmom -

preserving

2 Sane Reviews on Sultanbekov s W ork on Randan Functionals in Spaces of

Strongly M easurable Functions
Let®B, Il = Il ) be a nom ed space overK, denote byLO(K, B) the Inear space of all random
variables from (K Z ) o B, Il Il ), andbyL (K B) the linear space of all equivalence
classes of the elam ents inL" (K, B )

Define, 7~ L' (K B)y> D" byFs(n=__ (1ke Kl Il p(k)l < 1) forallp € L°( . B)
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and allt€ R, then (LO(K, B), ﬁ) isanE -nom spacew ith base (K, L/g _ ) and target B,
I 1), namel allB —~valued random variable generatedE mom space in tem s of [8] Clear—
ly, LK B), .7 ismerely anE -nom space but notnecessarily canonical By Rem ark 1 1,
(L°(K B), 7) adm its a quotient space (S, 77, it is obvious thatS is exactly L (K B), and
hence (L (K B), .7) is aM engerPN space under the t nom W , whenB= K, we sinpl
write L, K ), 7)) for (L(K B), 7.

A s spaces of equivalence classes our (L K B), % is identicalw ith the space of all e~
quivalence classes of the strongly m easurable functions en polyed in [11]

Defiition 2 1" LetB, I 1) be a real nom ed space A linear operatorf fran L (K,
B) oL (K R) is called a random linear functional A strongly bounded linear operatorf from
(LK B), 2 to (LK R), 7) is called a strongl bounded random linear functional on

L (K B), nanely there exists san e positive num bexM such thatF/ ) ()= Fp[ﬁ} for allp €

LK B)and altl€ R, Il flIl = infd > 0F ) (1)= FF[M‘} forallp€ L (K B) and allt€

R} is called the nom off. Denote by L (K B )/ the set of all strongly bounded random linear
fun ctionals on L (K, B).

Sultanbekov'' also considered the generalization problem ofH ahn-Banach theorem. H ow —
ever by his result in [11], he can only obtain the follow ing w eak result

Proposition 2 1" Let B, I - II') be a real separab le reflex ive Banach space Then for
any nonzero elmentp € L (K B) there exists a nonzero strongly bounded random linear func—
tionalf onL (K, B) such thatf(p )7 0 (the nullofL (K R)) andll fIl = 1

Review 2 1 LetK= [0 1] 7 the ©-algebra of all L egesguem easurable subsets of
[@ 1] and_ = the Lebesgue measure on, 7 Then (K _Z ) is a complete probability
space andL (K, R) is exactly the linear space of all equivalence classes of the real Lebesgue
m easurable functions on [Q 1] and thus (L (K, R), &) is a completeM engerPN space un—
derW, itisw ellknov n thatnot even a nonzero continuous linear functionalon (L (K R), .77)
exists Proposition 2 1 show s there exists sufficiently m any strongly bounded random linear
fun ctionals onL (KX R), this brings a nev hope to look for a new theory of conjgate spaces
instead of classical con pgate spaces in the study of SuchM engerPN spaces as (L (K B), 2.
Therefore Sultanbekov' sw ork™ is of great m portance

Review 2 2 Unfortunately not onk because his result of Hahn-Banach theorem of
strongly bounded randan Inear functionals is too lm ited, but also because as Sultanbekov
sail in [11] L (K B)' doesn t necessarily form a linear space theno tion of a strongly bound-

ed random linear functional can not eventually lead to a satisfying theory of random conpgate

spaces forL (K B).

3 SaneReviews on Zhu Lin-hu sW ork on Randan Conjugate Spaces under the

Franework of £ -nomm Spaces
Let B, Il Il') be anomed space overK. A ccording to [22 23] am apping f: & 7 _)
X B—> K, iscalled a random functional iff (. b) K> K is, Zmeasurable for eachbS B; a
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random functional f: KX B— K is called sample-lnear (accordingly, sam ple—continuous) if
f(k " ) B—> K is linear (correspondingly, continuous) foreach KinK a random functbnalf:
KX B—>K s called linear if_({k€ Klf(k T+ W)= Tr(k b))+ Ur(k k)})= 1forall
T Ue K and allb, € B.

LetLO(K, K )andL (K K ) be the sam e as in Section 2 of this paper Then a random func—
tionalf: KX B> K can be regarded as them app ng.f: B> L°(K, K ) defined by f(b)= (.
b) Y b€ B. Then it is clear thatf is san p le-lnear iff]; is linear and thatf is linear iff the lifting
7 offA7 namely 7: B> L (K K ) defined by 7 (b) = the equivalence class offA(b) (Ybe B), is
linear Obviousl, the sanple-lnearily’ and the  linearily” of random functionals are essen tial-
ly different fran each other

In [9] W ang posed the follow ing query let (B, Il ~ Il ) bea realnomed space M as In-
ear subspace ofB and f: KX M— R a sam ple-linear and san p leconthuous random functional
then canf be extended to a sam ple-linear and sam ple—continuous random functional on X B?

¥ 1241
H ans

gave an affim ative ansv er whenB is separable it rem ains to solve the nonseparable
case
Zhu'"”’ attem pted to attack this problem by using the fran ew otk ofE -nom spaces Before

we give his results let us recall the follow ng tw o propositions

Proposition 3 1”°! LetL°(K R) be the set of all realvalued random variables on (K
A4 ) andA be a subset ofLO(K, R). & LO(K, R) is called an essentialupper (low er) bound
ofA ifd(k)= a(k) (34 k)= q(k))_ -a s foreacha€ A. Sim ilarl, one can have anotion of
an essential supranum (or nfmum) ofA. Then every subsetd having an essential upper ( low —
er) bound must have an essential supranun (infmum), and is unque n the sense of alm ost
sure equality denoted byv A (/\ A'), furthem ore there exists a sequence {a»} inA such that
Vieciaw=V A N zia= N A).

Proposition 3 2below is merely an equivalent variant of Proposition 3 L but it ismore
natural fran the traditional lattice theo ry.

Proposition 3 2% et (K, R) be the setof all equivalence classes of the elem ents n
L°(K R). ThenL (K R) is a canplete lattice by the orderng™: &= Ziff® (k)= 2 (k)_
—a s for arbitrarily chosen representatives 2 and 2 of *andZ respectively  SupposeA is a sub—
set of L (K R), iV A(\ A) exists then there exists a sequence {a } inA such thatV = 1a.= V
A (resp, N ia= /N A),

Denote the set {2€ L°(K R)l a(k)= 0 -a s } byLo (K), and the set of all equivalence
classes of the elam ents in Lo (K) by L* (K).

" Zhu introduced the follow ing no tion in [12] Throughout

Independent of Sultanbekov
hiswork n [12] Zhu alv ays assum ed any two elaments that are equal aln ost surely n anE —
nom space Lo (K) andL°(K R) respectively are ilentified Zhu introduced Definition 3 1
below under the fom er assump tion

Defmition 3 1! Let (B, Il Il Ybe a realnom ed space and (E, %) be a realE -nom
spacew ith base (K Z ) and target B, I * Il ). A linearoperatorf from £ toL° (K R) is

called a random linear functbnal furthem oref iscalled almost surely bounded (briefly a s
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bounded) if there exists som e 2 Lo (K) such thatl S )(k)‘ = a(k)~ I (p (k)“ _a s Vp
€ E, namely  ({k€ K| [F(p) (k)= ak) Il p(k)ll })= 1Y p€ E. DenotebyE  the linear
space of all a s bounded randam linear functionals onE, defne ﬁ S*—> D* by Fy (1) =

_({k€ KX} (k)< 1)) forallt€ R and allf€ E*, whereX7 = A (€ Lb (K)| [ £(p) (k)
=ak)y llp(KIl _-as YpE€ E), then Zhu asserted in [12] that (E , & ) is isom orphi-
cally isanetric to a sem imom generated space and hence it can be regarded as an £ mom
space by Proposition L § thisE -nom space (still deno ted by (E* , /6/7)) is called (by Zhu)
the random con pgate space of (E, 2.

D efinition 3 1 gwen by Zhu n [12] is full of serious vagueness on the Inearity of random
functionals and his assertbn that(E* , 92') isan £ -nom space is avitalmistake Follow ing
are wo review s on hisDefnition 3 1

Review 3 1 SnceE -nom spaces are not necessarily H ausdorff spaces it is in order to
guarantee the w o mnom spaces (E, % andLO(K, R) nDefinition 3 1 1o have theH aus—
dorff separatbn property that Zhu assumed in [12] any t o elem ents that are equal alm ost
surely both in (E, %) and inLO(K, R) are identified H owever once the hypo thesis ism ade
then (E, %) andLo(K, R) are stricty speaking their quotient spaces (E, % and (L (K
R). %) assuch a linearoperatorf fran £ toL"(K, R) is in principle a linear operator from
E toL (K R). If the hypothesis had not been m ade according to the oringinal linear structure
of E andL"(K R), f isa linearoperator from E toL’ (K R) ifff (i+ U2) (k)= Trp1)(k)
+ U (p2)(Kk) forallk n K Clearl, f beng a linear operator fran E ol (K R) is essen tially
different from f being a lhearoperator fran £ toL O(K, R ), and this two kinds of linearily can
not coexist in general in a single definition How evex Zhu in [12] som etim es considerf to
be a Inearoperator from £ toL’ (K R), and som etim es considerf to be a linear operator from
E toL (K R) only by a single definiton, which leads tom any confusions in his and sequent
w otk on the topics of random conugate spaces

Review 3 2 Ifw e remove the hypothesis that any tw o elanents equal almost surely n
(E, % Lo (K) and LO(K, R) are identified it is not very difficult for one to realize that
Zhu's assertion that(E', %7 ) isanE nom space is falsé snce by Proposition 3 1 for any
given IE R and any two a s bounded random linear functbnalsf andg onE one in general
can only obtain the fo llow ing infom aton

DXy (ky= T X7 (k) -as;

)X (W)=X7 (B)+ Xi (k) s

And one can not get the further nfom ation: there exists a single —null set,_/J such that
for each k inK\ /Il - Il k B — [Q + ©o) defined by Il fIl k= X7 (k) forallf€ E , isa
sem inom onkE . Thus there is no argument for Zhu's asertion that (E , % ) is a sem i-
nom —generated space and hence allow s hin to defne (E*, % ) to be anE nom space and it
tumed out to be am isuse of Proposition L 5 that Zhu sail (E . % ) to be anE mom space n
[12] Hism isuse of Propositbn 1 5 had let Zhu to m ake a vital m istake since this m istake

makes him in [12] not to realize the im portance of randan nom ed spaces in the theory of ran—

dan. conjugate spaced
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W ith the above attendant shortcom ings of his D efinition 3 1 Zhu gave an anabgue of the
H ahn-Banach extension theorem for real Inear spaces and som e other vague conclusions as fol-
low s
Proposition 3 3 Let(E, .7 be the sane as in Definition 3 L M C E a real subspace
and M — L°(K R) an a s bounded random linear functional Then there exists an a s
bounded randan lnear functional¥ onE such that N7 (p)= f(p) VpE M and 2) Fr= F; .
Review 3 3 Replacing the supremum and nfinum principle for the sy stam of real num —
bers by Proposition 3 lorPropositbn 3 2 Zhum ade use of the sin ilar technjues for classical
H ahn-Banach theoran to prove Proposition 3 3 Smultaneously, Zhu said in [12] it is also ob-
vious that the can plex fom ulation of Proposition 3 3 hols How ever Zhu's so-called obvious
reason for the complex form ulation is that he inexplicitly en ployed the follow ing fact let (E,
7 be a complexE mom space M C E a subspace andf: M—> L°(K C) ana s bounded ran—
dan lnear functional Supposefr M— L°(K R) is the real part of f w ith an extensonfr E
— L"(K, R), then thereexists a single_ mullset,/J/such that for each k nK\_Jthe follow ing
tw o conditions are satisfied 1) 71(Ti+ o) (k)= Trip)(k)+ Ui(p2) (k) forall reals T
UE R and allpy, p2€ E, and 2) | 71(p) (K) =X75 (k)" Il p (k)Il forallp€ E. Since his de-
sired sngle_ sullset_/J/ in general seldom exists i particular the property 2) can not be
guaranteed at all by Proposition 3 1 orby any kind of linearity as described n our Review 3 2
and then Zhu's conclusions on H ahn-Banach theorem fora s bounded random linear fun ction—
als onE mnom spaceshide great vagueness because of Definition 3 1 asw ell as false assertbns
Indeed, it is not very easy to give a proper revew on Zhu's above work as a part of the
wholework in [12] Just as stated in ourReviews 3 1 3 2 and 3 3 this part contains bts of
vagueness and vitalm istakes on the other hand, this partm arks the beg nning of the study of
a s bounded random linear functionals There is no doubt that this part of [12] is ex tran ely

motivating n the fom ative course of the theory of random conjugate spaces

4 Same Reviews on Guo Tie=xin sW ork on the Theory of Randan Conjugate
Spaces under the Fram evork of Randan N om ed Spaces
BeforeGuo swo k'™ appeared random metric theory is not only not system atic but also rela-
tively surfacial it occupies in [8] only one chapter//Rand(m M etric Spaces//where the theory
of E —spaces is still the subject of [8] in particular the notion of a randan nom ed spacew as
m erely mentoned in a mexp licitw ay in Chapter 15 of [8] How ever a series of recentdevelop—
ments of randan m etric theory and its applications to functional analy sis and randam fun ctional
analysis have shown randan m etric theory, n particulay the theory of randan nom ed spaces
is both an outgrow th of several closely related branches mM athem atics and an ex trem ely fruit—
fulpart of the theory of probabilisticm etric spaces

For the subpct of this paper letus first recall a randan nom ed space n the sense of [8]

Defiition 4 1" An ordered pair (S, %) is called a random nom ed space (briefly an
RN space) overK with base (K 7 ) ifS is a lnear space overK and , % is am apping from
S to L (K), such that the follow ing hold:



26 6

RN-DX5 (k)= [T X, (k)as for any’IE K and anyp inS;

(RN2)X, (k)= O0as impliesp= 0 (the nullinS);

(RN-3)X e o(K) =X, () + X4(k) as foranyp, ¢ nS.

HereX, = _Z(p) is called the randan nom of the vectorp inS. If 2 only satisfies the
above (RN-1) and (RN -3) then,% s called a randan sem inom, at this tine (S, %) is called
a random sem inom ed space if n addition, there exists a single_ —null set I' ofK such that
for each k& K\L, Il -~ [« S— [0 + ©©) defined by” pll = Xp(k) VpE S, isan ordinary
san inom onS, then (S, %) is sail to be a unifom random sem inom ed space

Let (E, %) be anE -nom spacew ith base (K, _Z ) and target (B, Il * Il ). Define
%‘E# L% (K) bep(k)= Il p (k)“ for allp inE and allk n K then (E, %‘ is aunifom
random sem i-nom ed space [8] In spite of this fairly w elbknow n fact it is rather strange that
the authors of the paper [26] still did not know the essential difference betw een anE -nom
space and an random nom ed space

Let (S, %) be a random sem i- nomed space w ith base (K | % ). Define, % S— D"
byF, ()= ({k€ KX, (k)< ¢}) forallp inS and all/€ R, then(S, . % W) is aM enger—
PPN space its(X A) —lnear topology is also called the (X A) -linear topology of (S, .Z).

Let(B, Il I ) be anom ed space Then as n Section 2 of this paper the setL’ (K B) of
allB ~valied |_/Z-random variables on (K 7 ) foms anE -nom space LetR (_# B) be
the set of allB wvalied, /Z-random elments on (K 7 ), then it isw ell known from [9]
thatR (,_# B) does not fom a linear space form any nonseparable spaces (B, Il ~ Il'), and
from Remark L 5 it is npossble that the linear space generated by R (, #Z B) can abv ays be
made into anE -nom space the follow ng construct show sR (4 B) can be en bedded into a
random sem i-nom ed space in a natural and usefulw ay.

Proposition 4 1'°' Let(B, Il - Il ) be anomed space andS= {p: (K _Z )—> B
there exists san e nonnegative randan variab le A sudh thatll p (k)H = a(k)_ = s }. Define
S~ Ly (KybyX,= A (2 Ly ) Tp (Bl = 4k)_ = s }VpE S, then(S, 2 is
a random sem imom ed space w ith base (K L/g ). Setl O( /% B)=the linear topological
closure of the lnear space generated byR (_# B) in (S,  4). we stilldenote the I itation of
DL’ (A4 B)by % then L°(_#4B), .4) is arandom sem i-nom ed spacew ith base (K,
A ) called allB ~valued , /Z-random elem ent generated randan sem inom ed space and it
is also can plete ifB is a Banach space W henB separable LO(,/% B)is exactlyLO(K B).

Proposition 4 1 shows random sem tnom ed spaces are of fundam ental mportance in ran—
dan functionalanalysis The follow ing defnitbn further show s random sem i- nom ed spaces
are also of fundam ental m portance in the theory of random conjugate spaces

Defnition 4 2! Let(S, %) be arandom sem i-nom ed space oveiK w ith base (K %

) A mappng f: S— L°(K K ) is called a random linear functional if f (Tp + U) (k)=
Tr(p)(&)y+ U(g)(k)as forallp, ¢ nS andallT UK, i i addition, thereexists a sh-
gle_ mull set I ofK such that/ (b + Up) (k)= T £(p) &)+ U f(q) (K) for allk in K\T,
allp, ¢ nS, and allT UinK, then f is called a sam ple-linear random functbnal A random

linear, functional f. on S is called a s  bounded if there exists sane 2€ Lo (K) such that
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L fp)( = ak)y X, (k)as forallp€ S. Denote the linear space of alla s bounded ran-
dan linear functionals on (S, %) under the pointw ise addition and scalarm ultip lication opera—
tions by S™, define . 2= S — Lo (KybyX;= /N (%€ Lt (K) | £(p) (k) = ak) x,(k)a s
forallp€ S) forallf € S, then it is easy to check fran Proposition 3 1 that (S, %) is
stilla randan sem i-no m ed space w ith base (K, | Z ), called the random conjugate space of
S, 2

Review 4 1 From the paragraph follow ing Definition 4 1, anE -nom space can be natu—
rally regarded as a unifom random sem imomed space hence Defnition 4 2 is of course
suitable for anE -nom space Reviev 3 2 show s us that one can only guarantee the random
conjigate space of anE -nom space to be a random sem imom ed space (generall speaking this
random sem i-nom ed space is seldlom an E -nom space). Thus the framework of anE —-nom
space is som ew hat not self-sufficient for the theory of random conpgate spaces

Review 4 2 Let (S, .Z") be the random conjgate space of a random sem i-nom ed
space (S, %) A lthough (S* , /%/), being a random sem i-nom ed space detem nes a
M engerPPN spaceFr (1)= _ ({k€ KlX; (k) < 1)) forallt€ R and allf € S, the triangle
inequ ality: X g(k)ng (k)+ X (kyas forallf, g€ S", ismuch stronger than the trian—
gle inequality: Fr. o ()=W (Fy (r), Fi (s)) forallf, g€ S and all ther, s€ R such thati=
r+ s and the fomer triangle inequality is key to the deep development of random conjgate
spaces it is because of this thatw e have not called (s, ,9?1 W) the random conjugate space
of (S, .2).

Review 4 3 Forany two elmentsp and ¢ in anE mom space L% (Ky andL° (K, K) re-
spectively, w e say they are equal iffp (k)= ¢(k) for alk€ K and thus in Definition 4 2we
have to select the fran ew otk of a random sem i-nom ed space It should also be pointed out that
all possble vagueness occurring n D efinition 3 1have been rem oved by D efinition 4 2 in par—
ticular the Inearity and the sam ple-linearity for a random functional are also m ade clear in an

explicit way Based on Definiton 4 2 the Hahn-Banach extension theorem of random linear
functionals can be gven In a concise way, as follow s

Proposition 4 2! Let(S, .%)be arandan sem inom d space overK w ith base (K _ #
_ ), M C S alinear subspace andf: M = L°(_, K ) ana s bounded random linear functional
Then there exists an a s bounded randan linear functionalf: S L°(K, K) such that the fol-
low ing tw o properties ho ld

DT ()K= f(p)(k) forallp € M and allk in K

X7 (k)= X7 (k) for allk nK,

Furthey if f is san ple-lineay thenf can also be asked to be san ple-lnear

Remark 4 1 For a rigorous proofo fProposition 4 2 see [Guo 2} In 2) of Proposition
42 sinceXr=N (2 Ly K| )0 =3k X, (kas VpE M }andX; = N (3€
Ly (K[ [7(p) (k) = aky- x,(k)as VYV p inS}, and it is easy to see by Proposition 3 1 and
by the process of the proof of Proposition 4 2 thatX7 (K)= X7 (k) a s, thus one can seeX 7
is also an essential infmum of the set { % Lo (K)| [7(p) (k)| =3 k) X, (k) as Yp€E S},

and hence w e, can takeX7 .to beX .
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Renark 4 2 WhenK = R, in the proof of Proposition 4 2we adopted an idea of the
proof of Proposition 3 3 given in [12] W henK = the canplex fieldC, there werem any other
scholars interested n the proof of Proposition 4 2 but their proofs are all w rong, the first
right proof of itw as given n [Guo 13]whomake full use of the separability of the com p lex
num ber fieldC. LetK be the real number fieldR, (S, %), M, f and7 be the sane as n
Proposition 4 2 even iff is san ple—linear and there exists a single_ mull set1'1 ofK such that
L Fp) (k) =Xx7 (k) X» (k) forallp€ M and allk in K\T, one can not guarantee that there
exists a single_ mnull set I ofK such thatl 7 (p ) (k) =X’ (k). X, (k) forallp inS and allke
KAL) cither Thus the proof of Proposition 4 2 for the caseK = C can not be com pleted by a
can pletely m m ick ng w ay that is used n the proof of classical H ahn-Banach theorem.

Renark 4 3 In [13] Guo also showed the set of all, /Zrandom elan ents from a prob a—
bility space X, £ _) to ametric space M, d) alvays fom s a random pseudam etric space
(see also [2 Theoren 3 1])withbase (K, 7 ) Canbining this Propositbn 4 2 and Defi-
nition 4 2 Guo first recognized the fundam ental mportance of randan m etric theory in random
fun ctional analy sis and first put forw ard in [13] a new approad to randan functional analy sis
This nev approach anounts to regarding random functional analysis as analysis founded on

random m etric theory, w hich w as further enriched and m ade perfect in [14 27]

5 SameR eviews on Guo sW ork on aN ew Fom of the Theory of Randan Conju-
gate Spaces

Just asw as shown n [2], both a random sem i-no m ed space and a randan linear functional de—
fned on it can be regarded as a stochastic process it is to enableus to obtain asmud infom a—
tion about sam ples of these stochastic processes as possible thatw e are forced to develop the
theory of randan conpgate spaces under the fran ew otk of a random sem i-nom ed space n Sec-
tion 4 of this paper However whenw edeeply developed randan m etric theory and its app lica—
tions to traditional functional analysis ( see [4]) w e often need a direct connection betw een ran—
dan m etric theory and functional analysis this leadsGuo in [1] to anew fom of the definition
of a random nom ed space togetherw ith its randan conjgate space namely the quotient—space
fom, since the nomed spaces that are closely related to random nomed spaces (e g,

: 20
LebesgueBochner function spaces[ "

take the corresponding quo tient— space fom. In partic—
ulat based on this new form we smoothly presented the notion of a random nom ed m odule
that has been the key bridge connecting random m etric theory and functional analysis ( see [2

3]).

In this section. let (K Z ) be a € finite m easure space and B, Il ~ Il ) be agien
nom ed space overk . LO(J B') is the linear space of allB —valued_ -m easurable functions on
K, 4 ) andL (, B) is the linear space of all -equialence classes of the elments n
Lo(i, B), n particularwhenB = K, L(_, K) isan algebra overK under the ordinary addi-
tion multip lication and scalarmultip lication operatbns on_ -equivalence classes™ w e sin pk
w rite O and 1 for thenullelem ent and the identity elem ent respectively Specially, for any ele—

mentp, nL (., B) letp’€ L°(, B) be an arbitrarily, chosen representative of p, we deno te
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the_ —equivalence class of ll pOH by I p” , where |l POH : (K, ,/g_)_’ [0 + <) is defined
byl p°ll (ky= 1 p° (k) forallk mK

It iswellknown fran [20] thatL (, R) is a canplete lattice by the o rdering=: &= Z iff
P(ky=2(k) -ae for arbitrarily chosen representatives & andZ of 2and Z respectively. W e
denote the set {3€ L (_, R)l 3= 0} byL™ ().

Defiition 5 1"  An ordered pair (S, %) is called a random nom ed space (briefly, an
RN space) overK with base (K, | Z ) ifS is a lnear space ovelk and if ,% is am app ing from
S tol” (_) such that writingX» for Z(p) forallp nS, the follow ing hold

DXt = |TX, forallT€ K and allp € S;

2)Xr= Ompliesp= 0 (thenull inS ),

)Xy s =X,+ Xy forallp andq inS.

X, is called the random nom of the vectorp inS. If % onl satisfies 1) and 3) as above
then % s called a random sem nom onS, and (S, %) is called a random sem imom ed space

If (S, %) isan RN space overK w ith base (K | Z ), and if n addition, there exists
anotherm apping® : L (, K )X S— S such that the follow ing ho Id

4) (S, * ) isa leftmodule over the algebral (_, K );

S5Xe,= |4 X, forall®inl (, K) and allp inS.

Then the triple (S, .2 * ) is called a random nomed module (briefly an RN m odule)
overK w ith base (K, A ).

From now on thatwe say that (S, .2 is an RN space alv aysmeans (S, %) isone n
the sense of Definition 3 1 rather than Defnition 4 1 unless othew ise stated

Remark 51 As [1]showed if(S, (4" * ) isan RN module overK w ith base (K, 7
_ ) then, according to 4) of Def 5 1 themodulemultiplication* : L (|, K X S> S can be re—
garded a natural ex tension of the scalarm ultplication”: K X S— S whenK and {T 1/TE K}
are identified where 1, as at the beginning of this section denotes the identity elenent n
L(, K), so1)and 5) ofDef 5 1 are obviously compatible Thus once* isunderstoodw e
can smplyw rite (S, .Z) and @ p for (S, .2 * ) and & p respectively for any RN m odule
(S, l%j* ), allp inS and all®nl (_, K ).

Remark § 2 A swas shown in [4] mDef 5 1we enployed_ -measurable functions n-
stead of, /Zm easurable functions becausel “(K K )YC L°(, K ) and each elmentofL’(_, K )
is exactly ;g-measurable and partiaularly because %1‘5 the Lebesgue can pletion of v ith
respect to_ so thatw e can m ake fulluse of the liftng property established in [28]

Proposition 5 1" Let (S, %) be an RN space overK with base (K #Z ) and
P (A= (A€ _#0< (A)<+ o) ForeachA€ Z (_#, % Q and0< A< _(4),
setUo (A, XA)= p€ S| ({k€ AIX) (k)< X})> (A) - A} whereX] is an atbitrarily cho-
sen_ -m easurable representative ofX, (since ({k€ Al X} (k)< X}) is ndependent of a partic—
ular choice ofX;, w e oftenw rite_ ({k€ Al X, (k)< X)) for ({k€ AlX) (k)< X)). Denote
YA)y= [, XA)Xs 0 0< A< _(A)) for eachAd € F (A and Yf=
Use 7. (9 Z4(A), then %4 is abase of the neighborhood system at0 of som e H ausdo rff linear

topology forS, called the (X 1) -linear topology of(S, Y and the linear topo bgy is induced
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by the quasinom | || [|[: > [0 + =) defined byl [ [p[|] = Z E%Jdﬁdee S,
I A D

where {An} is an atbitrarily chosen countable partiton of K 1o # Clearly a sequence {ps} n
(S, .2 converges n the (X ) -linear topobgy to a pointp inS iff {X, ~, } converges in m ea—
sure_ to Oon eachA € 7% (A), hencew eoften called the (X ) —lnear topo logy the topology
of convergence locally in measure L (_, K), as an RN space (see Exanple 3 1 below ), be-
can es a topological algebra overK when endow ed w ith its (X A) —lnear topology, namely the
algeb ra m u ltip lication operation : L (_, K )X L(_, K )> L(_, K) is jointly contnuousw ith
respect to the natural product topology. In particular when (S, 2 is an RN module S be-
can es a topological module over the topological algebra L (_, K ) under the (X A) Hinear
topologies of (S, . %) andL(_, K ) respectively, namely them odule multiplicaton': L (_, K )
X 8> S is pintly continuous

Defnition 5 2" Let (S, .#)bean RN space overK w ith base (K 7 ). A linearop-
eratorf from S tol (_, K ) is called a random linear functional on S, further f is called a s
bounded if there exists some % L™ () such that|f(p)‘ = a X, forallp€ S. Denote the ln—
ear space of alla s bounded randan lnear functionalsunder the ord mary operations on linear
operators by S”, define %S — L' (_)byX) = N e O)lrp)l=axVvpe
S}V fe S", then (S* , %) is an RN space overK with base (K 7 ). D efine & L ,
K)X S8 by (D f)p)= & (f(p)) forall@inL(_, K ), allp inS and allf€ S*, then
S, .2 @) isan RN module overk with base (K _Z ), still denoted by (S*, .Z").
called the random con pgate space of (S, . Z).

Renark 53 InDefinition 3 2 the set (%€ L ()l [ f(p)| = # X, Y p€ S} hasa low -
er bound 0 in the can plete latticeL ((, R), and it is also dually directed, and thusX s exists
and| f (p)l =X/ " X» for allf € S" and allpe S.

Exanple § 1 DefineL%‘L(_, B)y> L () by X = Ipll VpE L(, B define* :
L, KX L(,B)yY>L(,K)by# p= 2 p where? p is the_ -equivalence class of the
_ -measurable function @ p°defned by (2 p°) (k)= @(k) p°(k)V k& K here ® andp® are
arbitrarily chosen representatives of *andp, respectively Then (L (_, B), %‘ * ) is an RN
module overK w ith base (K 7 ), so L (_, K ).

Example § 2 LetB be the classical conpgate space of (B, Il I ). Denote byLOL, B,
k ) the linear space of allB " valued K — -measurable functions on (K | 7 ) under the o rdi-
nary operatbns and by L (_, B LK ) the Inear space of allK — —equivalence classes of the el-
ements inL " (, Bl, K ). Defne AL, B /, Ky—rL" () by X 4= Vol <a q)\ | b€ B and
ol =13VgeL(,B', K), and* :L(,K)X L(, B, K)y>L(, B, K )by& 4=
a g forallgc L (, B/, K Yand all® L(_, K ), where foran arbitrarily chosen represen ta—
tive qo of ¢ and for an arbitrarily chosen representative dofa a q is the K - —equivalence
class of @ ¢"defned by (¥ ¢°) (k)= (k)" ¢"(k) ¥V k€ K and{(h ¢) is the -equivalence
class of (b q°> defined by (b, q0>(k)= (b, qo(k)>= (qo(k))(b) for allb€ B, and allk€ K
Then (L (_, B Lk ), 2% ) isan RN module overK w ith base (K _#Z ).

Example § 3 Let(SO, %1) be a random sem inom ed space overK w ith base (K . 7 )

in the sense of Definition 4 L and f% S>> L°(K K) bean 2 s bounded random linear func—
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tional in the sense of D efinition 4 2 For anyp 'c S° setp = {qoe SO‘X:O_ qO(k)= Oa s }and
S= (plp°€ $°). Define ZS— L () (notel” (_)= L' (K)) byX, = the_ —equivalence
class ofX;)O YpE S, andf: S> L(, K )byf(p)= the -equivalence class off’(p") ¥ pE€

S. Then it is easy to check that (S, %) is an RN space overK with base (K, 7 ) in the
sense of Definition 5 1 and thatf is an a s bounded randan linear functionalon (S, %) n
the sense of Definition 5 2w ith the property: X7 = the_ —equivalence class of the random
nom off*. Thus Definition 5 1 and Definition 3 2 provide the quotien t-space fom s of D efini-
tion 4 1 and Definition 4 2 respectvely W ith the aid of the Choice axiom, for every RN
space (S, ‘/Ué) and every a s bounded randam linear functionalf in the sense of Definition 5 1
and D efinition § 2 respectively there exist an RN space (S°, %) and ana s bounded random
linear ﬁJnctiona]f0 on (SO, %) in the sense of Defnitbns 4 1 and 4 2 respectively such that
the fom er correspondence relations hold This leads directly to the follow ing quotient—space
form of Proposition 4 2 (due to G uo).

Proposition 3 2" Let (S, .2) be an RN space overK with base K Z ), MC S a
linear subspace andf an a s bounded random linear functionalonM. Then there exists anf€
S" such that7 is an extension off andX7 = X /.

Corollary 5 1" Let (S, .%)be an RN space overK with base (K _Z ), andp€ S be
anonzero elment The there exists/€ S such that/ ()= X» andXs = I, where /i denotes
the_ —equivalence class of o andA’= {kE K| @ (k% 0} for an arbitrarily chosen rep resen ta—
tive @ ofX,.

Remark § 4 Itisobvous thatCorollary 3 1 includes Sultanbekov’ s Proposition 2 1 as an
ex trem ely special case

For an RN module (S, ?). ana s bounded randan lnear functionalon$S hasm any nice
properties such that the theory of random conjugate spaceshas obtained a deep development for
the past sk years Follow ng are san e convincing conclusions

Proposition 5 3 [Guo 1] Let (S, .%) be an RN module overK w ith base (K _Z ),
andf: S L (_, K) be a linear operator Then w e have

1) f isa s bounded ifff is a continuousm odule han om orphisn;

2) iff isa s bounded thenX7 =V {[f(p) [p€ S andX, = 1} and there exists a se—
quence {p.} in {p € SIX, = 1} such that {| f(p.)| } (in factwe can ask {f (p:)}) converges to
X7 n anondecreasing w ay.

Proposition 5 4 [Guo 4] The canonicalmapping : L (_, B, K )= (L(_, B)) de
fned by Ty (p )= {p, @ forallp& L (_, B)and allgc L (_, B LK ) (whereT, denotesT (q))
is a random -nom —preserving m odule isan orphism. If replacing L (_, B Lk ybyL(, B ,),
then T is a randan nom preserving m odu le isom orphian iffB "has theR adonN kodym proper—
tyw ith respect o (K 74 ).

Proposition 3 4 solves all representation problem s about the random conjugate space of the
random nomed modulel (|, B). Inacompletely smilarw ay to Definition 5 1 Guo ntroduced
the notion of a random nner productm odule (briefly an RIP module) and proved the follow ing

Riesz representation theorem in [1].
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Proposition & S Let(S, %) be a complete RIP m odule overK w ith base K A4_).

Then for any a s bounded randan Inear functionalf on S there exists uniquely an element

q(f) nS such thatf (p)= Xp..anVpE S andX;' = X, where:ég)sé L (_) is given by X,

= X4¢ Vg€ S (note (S, ;%) is an RN m odule).

Proposition 3 6 below connects the theory of random conjugate space to that of classical
conjigate spaces Let I==p =+ < and (S, .%) be an RN module overK w ith base (K, %
_). Definell = Il :S—> [Q + = ]byll gll » = the ordnaryp -nom ofX« Vg€ S, namely

Il gll = UK(Xg)Pd_} " hen I=p<+ o, Il gll == the -essentialsupranum ofX .. Then

(L’ (S), Il - 1l,) isa nomed space overK for everyp, 1= p=+ oo, wherel” (S)= {g€ Sl

Ilglly <+ ©°}, and everyL’ (S) is dense nS n the (X A) inear opology for (S, %)
Proposition 5 6 Let1=p < + ©©. Then the canonicalm apping T2 (L"(S" ), Il - 1I)

— (L"), I -1, ), (the conjgate spaceof (L (S), Il -~ II',)) defined by T (g)= JKf(g)d_
forallf€ L'(S ) and allgE€ L"(S), is an isom etric isom orphisn, whereTs denotesT (f) for
allfF € L(S ), L'(S )= {f€ S | Il fll ;= the ordinaryg -nom ofX; <+ ©°} andp and

q are a pair of conjugate num bers nam ely?l+ _ql =

Renark 55 WhenS= L (, B) in Proposition 3 @ L’ (S) i exactly the ordinary
LebesgueBochner function spacel”(_, B) (see [19 20]), and LS ) is exactly L (_, B,
k ), and thus Propositbn 3 6 unifies all representatbn theoramns of the conpugate space of

L"(_, B) (see [5] for details). Propositbn 5 6 is of vital mportance in characterizing random

reflexive spaces W e say a com plete randan nom edmodule (S, %) is random reflex ive if the

canonical en bedding J: (S, . 2)> (S, .2~ ) defned by (J (p)) (f)= f(p) forallpE S
and allf€ S, is surjective where (S
%) Thenw ehave the follow ing

Proposition § 7' Let1< p <+ o be a given positive nimber Then a com plete RN
module (S, %) is random reflexive iff (L’ (S), I = Il ;) is reflexive

In [4] By Propositbn 3 4Guo provedL (_, B) is randan reflexive iffB is reflexive In

. .9 ™ ) denotes the randan conjugate space of (S )
jug P

particulat Guo has recently proved the fanous Janes theorem still holds for com plete RN
modules n [3]

Proposition 5 87 A com plete RN module (S, %) is random reflexive iff for every /€
S" there exists somep € S such thatX, = landf(p)= X7.

Review 51 From the viewpont of traditbnal functional analysis D efinitions & 1 and
5 2 arem ore natural than Definitions 4 1 and 4 2 respectively n particular these propositions
presented in this section are enough to convince anyone thatD efinitions 3 1 and 5 2 are m ost
fruitful and that RN modules have played an essential role in the course of the deep develop-

ment of random m etric theory and its applicatbns

6 The Relations anong Strongly Bounded Topologically Bounded and a s

Bounded Randam L inear Func tionals
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In this section let(X  Z _) be a probability space Suppose (S, %) is an RN space overK
w ith base (K, _Z ), then (S, %) detem nes aM enger-PN space (S, .7 W ) oveK as fol-
lows Fr(t)= _ ({k€ KlX, (k)< ¢}) forallp € S and alli€ R. Clearly, L (S)= {p€ S|
there exists sane t> 0 such thatFp (t)= 1} and foranyp € L (S) it is easy to check that
Il pll= nf{t> 0F, ()= 1}

Throughout this section let (S | ,%l) and (Sz, L%) be any two given RN modules over
the identical scalar fieldK w th the identical base (K, L/g _ ) unless othemw ise stated they de-
tem ine the tw oM enger-PN spaces (S | 92: W) and (S 2 92, W) respectively. A linear oper—
atorT: S S is called a s bounded if there exists some % L' (_) such thatX?» = & X, for
allp€ S, Xr=N {3€ " (H)IX7H = 2 X, forallp€ S'} called the random nom of .

Since the? mom W (see Section 1) satisfies the condition(ks}liplw (o a)= 0<SEI<P1M ax(2a —
1 0)= 1 A ccording to Definition L 2 and the fact that(S', 2" and (S°, . Z) aremetrizable
linear topo logical spaces one can easily see that a strongly bounded linear operator from S' t0S*
is topologically bounded linear operator and thatan a s bounded linear operator from S' s’
is topologically bounded, namely contnuous The follow ing Exanple 6 1 show s a strongly
bounded (hence also topo logically bounded) randan linear functional defined on an RN m odule

isnot a s bounded

Exanple6 177 TakeK= | - L 12 thee algebm of allL ebesguem casurab e
subsets of Kand = the Legesguem easure on, 4 then (K, 7 ) is aprobability space Con-
silerS= L (_, R) and defnef: S S as follows

F(p)= p forallp€ S, where foreachp€ S, letpobe an arbitrarily chosen represen tative
ofp, then; stands for the_ -equivalence class of;o defined by;)o(k): po(— k) forallke

gy
> .

Then it is obvious thatS= L (_, R) is a com plete RN module overR w ith base (K, _Z )
(seeExanple 3 1), andf is a strongly bounded random linear functionalonS: in fact Fri) (1)
= F,(t) forallp€ S and all#&€ R, namelyf is also probabilisticcnom —preserving

Butf isnota s bounded If there exists some 3 L* () such thatl f(p)l = 2 X, for
allp € S, namely ‘;)‘ = a [p| ¥p € S, however this is mpossble since define po:

[— —é —ﬂ» R bypo(k)=" 0ifke [— —é & and bypo(k)=" 1ifke [0 —ﬂ then p =

the_ -equivalence class ofpo clearly does not satisfy | }/)| = a [pl.

W e knew from [1] thata linearoperator? from S' toS” is a s bounded iff it is a continu—
ousm odule hom an orphism, and in this caseX7 = A {X%p|p € S andX, = 1}, in particular
there exists a sequence {p»} in {p € S'x,) = 1} such that (X szn } converges toX7 n a nonde-
creasngw ay T hus it is also obvious that a strongly boundedm odule hom an orph ism from S to
S’mustbe a s bounded conversely, wehave the follow ing

Proposition 6 1 An a s bounded linear operator T from (S, %h) to (S°, %27) is
strongly bounded iff Xr is_ -essentially bounded.

Proof (Sufficiency)  IfXr is —essentially bounded, and dengte hy M the  -essential
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sup rem um ofX 7, then 0=M < + ©o. ObviouslyX%péXT' Xplé M+ 1) X, forallp € S',

1

and hence alsoF%p () sz[

I _: J forallp € S'and alli€ R, nam ely T is strong ly bounded.

(N ecessity) HT is strongly bounded namely there exists a positive numbeM such that

1

Fi, (t)=F, ]ﬁt for allp& S'and all&€ R. Therefore, ifp€ L (S'), by the begnnigof this

section namely there existsto> Osuch thatFpl(lr)): 1 thenF%p(Mm)>Fpl[Mﬁﬂ = F,,l(m):

1 nanelyF7i, M n)= 1 this mpliesTp € L (S?). It is easy to check that for eachp €
L SHITpll = inf{t> 0F7 (1)= 1)= 'n{t> dF;[ﬂ—ﬂ: }: M- (inf{r> OF,) (1)=
)= M Il pll~, nam ely the Im itation of T tol” (Sl) is a bounded linear operator from
(LY, N ey o (@7 (8%, I 1oy,

Noting {p€ S'IX,= 1} isexactly {(p€ S'Ill pll == 1}, one can easily seeT maps {p €
S' X, = 1} into {¢€ S°| Il gll ===M } Since there exists a sequence {p.} in {p€ S'| X, = 1}
such that {X %p”} converges X 7 in a nondecreasingw ay, and shce for eachn Il Tpull == M,
nanelyX 7, (K) =M_ = s, thismeansaloX7 (K)=M_ -a s SoXr is_ -essentially bound-
ed

This completes the proof

Corollary 6 1 Let (S, .%)be anRN module overK w ith base (K _Z ). Thenana s
bounded random linear functbnalf on (S, .2) is strongly bounded iffX 7 is
bounded.

—essen tially

Proof TakngS'=s S andS’= L (_, K ), then our desired conclusion follow s mm ediately
from Proposition 6 1

Remark 6 1 By Corllary 6 1 one can easily find an a s bounded (of course
continuous) random linear functional defined on an RN module such that it is not strongly
bounded, this fact and Exanple @ 1 show the three notions of a topo logically bounded (nam e-
ly, continuous), strongly bounded and a s bounded randan linear functbnal are essentially
different the first is properly w eaker than the latter tw o and neither of the latter tw o imp lies
anothex but ifa topologically bounded or strongly bounded randan linear fun ctional defined on
an RN module is am odule hom an orphism then itmustbe a s bounded

Considering Proposition L 4 Proposition 6 2 below is of new interest
2

Proposition @ 2 Let (Sl, 1%1) be an RN space overK w ith base (K, _Z ) and (S,
%b) be an RN module overK w ith base (K, _Z ). If there existpo ins' and go n S’ such that
Xplo' quoi 0 then there exists both a nonzero a s bounded linear operator and a nonzero
strongly bounded lnear operator fran S' 0S” of course there exists a nonzero topo logically
bounded (equivalently, a nonzero continuous) linear operator from S'w0S>

Proof Since (S ? % is an RN module we can, without loss of generality, supposeX 50
=1 (if not w e can replace qo byQ (X (,20)' q, whereQ (X 420) denotes the generalized inverse of
quﬂ, then() (quo) " go satisfies our desire see [1 Definition 1 1] for the definition of the gener—
alized nverse).

By Corollary, 5 1 there exists an a s bounded randan, Inear functional f on (Sl, %ﬁ
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such thatXs = In (whereA = [Xplo¢ 0]) and f (po) = Xplo' DefneI: S'—> S* by T(p)=
(f(p)) @ forallpE S' thenT is anonzero linear operator and T is also a s bounded since
T(po)= f(po) qo= (X,,)° g7 0 (thenullinS*) andX7o)=|f () X, =1f(p)l =X7
: X])léXpl for allp € s’

It is also obv bus thatF 7o) (l)szl(t) for allt€ R and allp€ S’ this mplies T is also
both strongly bounded and continuous

This completes the proof

Let (S | %‘) and (Sz, %3 be any two RN spaces overK w ith base (K, (/g _) and (SZ,
%}) be an RN module DenotebySBL (S L, S?) the set of all strong ly bounded Inearoperators
from S' 1057 byCL (S | 52) the set of all continuous (equivalently, all topo logically bounded)
linear operato s fram S' toS% and by BL (S, Sz) the setofalla s bounded linear operators
from S' 105> Herew e do not intend to give any review s onSBL (S ! 52) since it is not neces—
sarily a linear space, wehave the follow ing tw o reviev s conceming the other tw o since they are
both linear spacesw ith the addition and scalarm ultip lication as usual

Review 6 1 First the linear spaceCL (S ! Sz) becom es a leftm odule overL (_, K ) under
the modulem ultiplication® : L (|, K )X CL(S', S°y> CL(S', §°) given by (% T)(p)= &
(T (p)) foralld L (, K) allT€ CL(S', S°) and allp € S'. Second wew ill ntroduce a
linear topology forCL (S, S?) such that this lnear topology is exactly the one of convergence
of operators inCL (S], SZ) unifom ly on each bounded suset of(Sl, !%h) (where "bounded’
means linear topo logically bounded, which is equivalent to ”p robab ilistically bounded’ in (S',
92: W), nanely theM enger-PN space detem ined by (S, l%')) as follow s denote by, %the
fan ily of all bounded subsets of (S', %), then foreach E€  Alefine F7: CL(S', S*)> D*
byFr ()= sup infFiy) (v) forallt€ R and allT € CL(S', S*). where(S% J7 W) is the
M engerPN space detem ined by (S% %), it is not very difficult to prove &7 satisfies
Fior,(n+ p)=W (Ff (n), Fi (1)) foralll, T2 nCL(S', S*), (CL(S', S*), {(F e 5

W) fom s a so—called probabilistic locally convex space n tems of [30] the (X A) —linear
topology of CL(S', S*) detem ined by the fam ily {7 Jic #is exactly our desired lnear topolo—
gy» this topology m ay be rather can plicated since, %ls too comp licated up to now w e have not
even know n w hether it ismetrizable (although it is alw ay s H ausdo rff), w e onk know it is
m etrizable in the rather sm ple casew hen (S L % adm its a bounded neighborhood/No (X, Ao)
atd (the null nS'), whereNo (% Xo)= {(p€ S'I[F,(%)> 1- o}, ¥> 0and0< o< 1 De-
fne GFCL (S, )= D" byFr(1)= s Oi(r;&fxﬂ)F%(,,)(x) for allT € CL (S', S?) and all 1€

A pEN
R, then it is easy to see that(CL (Sl, SZ), %W ) is aM engerPN space and that the (X A) —
linear topology detem ined by the sngle % is equivalent to the one detem ined by the fam ily
{7 Jre % Buteven for quite sinple RN modules lkeL (., R) in Example 6 1 they do not ad—
mit any bounded neighborthood Hence generally speaking CL(S', S*) does not possess so
nice and smple structures as an RN module so thatw e can further develop it deeply Clearly
for an RN space (S, %) overK with base (K 7% ), CL(S, L (, K)) is exactly the linear
space of all continuous random linear functionals on (S, %), hence one can easily seewhywe

have not defned (CL (S, L (_, K)), (.9 we # W) to be the random con ugate space of (S,
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Review 6 2 Clearly BL (S, S?) is anL (_, K ) -submodule of CL(S", S*), defne %"
BL (S, Sy L ()byXr=A {3 L' ()IX7»)=2a X, forallp nS'} for allT inBL (S,
S?), then it is easy to chek that(BL (S', S*), .27 is an RN module oveX w ith base (K 7%
). When (Sl, sz/h) is also an RN module the (X A) —lnear topo logy of (BL ( S S AR
quivalent to the linear topology of convergence of operators inBL (S', S?) unifom ly on each
a's bounded subsetof(S, .2 (asetECS' iscalled a s bounded if there exists & L' ()
such thatX ,= aVy pE E). Generally speakng an a s boundet set is alv ays bounded, but the

converse is false and hence the (X A) -lnear topology o f (BL (S, S . ) is strictly w eaker
than the limitation of the (X A) -linear topo logy of (CL (S', S7), {?}EE % W) toBL (S,
Sz). But the fact thatBL S S .2 is an RN module is very mportant sncew e can m ake
fulluse of the theory of RN modules to develop it deeply, in particularwhen (S', %) is an
RN module every T nBL (S', S*) behaves very well forexample T is a continuousm odule
hom an orphism andX r= V X 70 | pe S'andX , = 1}, and further there exists a sequence {pn}
in{p€ Sx)= 1} such that {XT(/)") } converges toX7 n anondecreasngm anner Even if(Sl,
%) ismerely an RN spacew e can also convert the study ofBL (S L SZ) to the casew hen (Slv
%3 isan RN module in [31]w e succeeded in proving (BL (Sl, Sz), ) is com plete if(Sz,
%}) is complete by m eans of this converting w ay, in particularweproved n [31] that the ran-
dan conjugate space of an RN space is alv ays com plete

Retumng to the classical casewhen (S', .2 and (S% %) are both ordinary nom ed
spaces the case anounts to taking the base space (KK | 7 ) to be trivial namely , /&
H) thenSBL (S', S*), CL(S", S?) andBL (S', S*) all autan atically reduce to the lnear space
of allbounded lnear operators fran S' t0S” which isanomed space under the ord inary opera-
tor nom, denoted by B (S', S*), Il * Il ). I the nomed space (S', .%'), the topological
boundedness and nom — boundedness for a set coincide butw hen (K, '/g _ ) is not trivial
nam ely in the random nom ed space (S, .2, the topo logicalboundedness and thea s bund-
edness no longer concide (see [1 Definition 3 4 and Lemma 3 1]), and the distinctions be-
tweenSBL (S | Sz), CL (Sl, Sz) andBL (S 1, Sz) are obvious Our above investigations show
(BL (Sl, Sz), (/O%)} is the best random generalization of the nom ed space of all bounded linear
operators fran a nom ed space to another T herefore our Defnitbn 5 2 is the best random
generalizatbn of the traditbnal conjugate space of a nom ed space
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