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Abstract Multiple solutions for a class of nonlinear difference equations are obtained by variational methods.
Our results generalize a recent result of Cai, Yu and Guo [Comput. Math. Appl., 52 (2006), 1630-1647], and

the argument here is considerably simpler.
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1 Introduction

In a recent paper [1], Cai, Yu and Guo considered the existence of multiple m-periodic

solutions for the nonlinear difference equations of the form
A(n(Azp1)’) + f(n,2,) =0, ne€Z (1)

where m > 2 is a fixed integer, A is the forward difference operator defined by Az, =
Tnt1 — ZTn, {Pn} is a real sequence such that p, > 0, ppym = ps foralln € Z; fis a

continuous function on Z x R such that
f(n+m,2) = f(n,z), for all (n,z) € Z x R;

and § > 0. Throughout this paper, the convention (—1)% = —1 is made.
Let F(n,z) = [ f(n,s)ds. Assuming in addition that f(n,z) satisfies the following

conditions:

(H,) for any z € R, F(n,z) >0,

i 72 g, (2)

z—0
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(H,) there exists Ry > 0 and 8 > & + 1 such that for n € N and z € R with |2| > R,

zf(n,z) > BF(n,z) > 0.

It follows from (2) that f(n,0) = 0, therefore z,, = 0 is a trivial m-periodic solution
of (1). In [1] Theorem 3.1, under the assumptions (H;) and (H,), the authors obtained
two nontrivial m-periodic solutions for the problem (1) by using variational methods and
the linking theorem [2] Theorem 5.3.

In this paper we will generalize their result. We impose the following conditions on

the nonlinearity f(n, 2):

F
(fo) there exists r > 0 such that F(n,z) >0 for all [z| < r, and lin(l) % =0,
(fo) lllim % = +o00 uniformly in n € Z.
zl—oo |z

Then we have

Theorem 1 Assume that (fo) and (f.,) are satisfied, then the problera (1) has at
least two nontrivial solutions.

Remark The limit in (fy) implies that f(n,0) = 0, so z, = 0 is a trivial m-periodic
solution of (1).

Note that the condition (H;) of Cai, Yu and Guo [1] is a global assumption, while
our (fo) only requires F'(n,2) > 0 for small |z|. By an easy computation, it is easy to
see that (Hz) implies that there exists a; > 0, as > 0 such that

F(n,2) > a1]2” — a.

Since B > § + 1, we see that (H,) is stronger that our (f.). Therefore, our Theorem 1
generalizes [1] Theorem 3.1 considerably.

If f(n,z) is odd in 2z, then we can obtain better result.

Theorem 2 Assume that (fo) and (f) are satisfied, if f(n,z) = —f(n, —2) for all
(n,2z) € Z x R, then the problem (1) has at least m — 1 pairs of nontrivial solutions.

This symmetric case has not been considered in [1]. The proof of [1] Theorem 3.1 is
based on the linking theorem [2] Theorem 5.3, which requires some tedious estimates. We
shall prove Theorem 1 and Theorem 2 using the three critical points theorem [3], [4] and
the Clark’s theorem [5], (2]. It turns out that our approach is considerable simpler.

The three critical points theorem and the Clark’s theorem have played a significant
role in the study of differential equations. Recently, Liu [6] applied these theorems to
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difference equations and obtained some interesting results. This work is motivated by Liu

[6].
2 Proofs of the theorems

As in [1], we define the linear operations on
En= {-'17 = {mn}ngz P In € R; Xntm = X, N € Z}

in an obvious way, then define the inner product (-,-) and norm ||-|| on E,, as follows:

m m 1/2
©3) = 3" Tat llxll=(2w§) , syeE,
n=1 n=1

Then, E,, is a m-dimensional Hilbert space and linear isomorphic to R™.
We define a functional I : E,,, — R,

1z m
n=1 n=1

Since f € C(Z x R,R), it follows that I € C(E,,,R). According to [1], the critical points
of I are exactly the m-periodic solutions of (1). So we have to find critical points of I.
For this purpose we need the following results.

Proposition 154 Let E be a Banach space, ¢ € C'(E, R) satisfies the Palais-Smale
(PS) condition and is bounded from below. Suppose ¢ has a local linking at the origin
0, namely, there are a decomposition £ =Y & W and a positive real number p > 0 such
that £k =dimY < oo,

p(z) <p) forzeY,0< |z <p, z)2¢0) forzeW, |z]|<p (3)

then ¢ has at least three critical points.

Recall that ¢ satisfies the (PS) condition, if any sequence {z(¥} such that {o(z®)}
is bounded and ¢’(z®)) — 0, has a convergent subsequence.

Proposition 225 Let E be a Banach space and ¢ € C'(E, R) be an even functional
satisfying the (PS) condition and ©(0) = 0. Assume that ¢ is bounded from below and
there are p > 0 and a k-dimensional linear subspace Y of E such that

sup ¢(z) <0,

zeY||zll=p

then  possesses at least k pairs of critical points.
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Note that these critical points are nonzero, because the values of ¢ over these points

are negative, see the proof of [2] Theorem 9.1 for the details.

Now we are ready to prove our theorems.

Lemma 3 If (f) holds, then I(z) — —o0 as ||z]| — oo.

Proof The proof of this lemma is slightly difference from that of [1] Lemma 3.1.
Let

V9 = max > 0.
2 ISnSmpn

By (fw), there exists C > 0 such that
542

F(n,z) > (25 +?f + 1) 12 - C. | (4)

Remember z,,,, = z, and p,4m = Pn, We obtain

1 m m
I(CL‘) S — an+1l$n+1 - xnl6+1 - E F(n,xn)
6 + 1 n=1 n=1
V2 on [od41 5+1 o+1y] ¢
< X 25 (it + [2al*H)] 3 Fin,z)
26+2’Ug i 5+1 25+2'U2 i §+1
—|—+1 Ty +Cm

m ’ m 1/2
-y |nt:n|‘erl +Cm— —oo, as|z| = (Z zﬁ) — 00,

n=1
the desired result follows.
Proof of Theorem 1 Let
W = {a:={a:n}nezz T, =z €R, nEZ},

and Y be the orthogonal complement of W in E,,,. Then E,, =W & Y,dimY =m — 1.
It has been proven in (1] Page 1643-1644 that the limit in (fo) implies the existence

of an n > 0 such that
I(z) >0, forzeYNaB,, (5)

where B, = {z € E,, : ||z|| < 0} and OB,, its boundary. Note that by the argument there,
(5) is still valid if we decrease 7). Therefore, there exists p € (0,7) such that

I(z)>0, forzeYNB,. (6)

If z € W, ||lz|| < p, then |z,] < p <7 and we have Az,, = 0. Thus by (f,) we obtain

I(z) = — zi:lF(n, Z) < 0.
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Therefore, —I has a local linking at the origin 0. By Lemma and the fact that dim E,,, <
00, it is easy to see that —I is bounded from below and satisfies the (P.S) condition.
Applying Proposition 1, —I has at least three critical points. Therefore, I has two nonzero
critical points, which are nontrivial m-periodic solutions of the problem (1).

Remark 4 In [1], after obtaining (5), in order to apply the linking theorem. some
tedious estimates are involved and the global condition F(n,z) > 0 for all (n,z) € Z xR
is needed. Our argument above does not need this global condition, and simplifies the
proof considerably.

Proof of Theorem 2 If f(n,z) = —f(n,~z) for all (n,2) € Z x R, then I is an
even functional. We know that I(0) = 0, —I is bounded from below and satisfies the
(PS) condition. By (5), since Y N By, is compact, we have

sup (—I)(z) <0.

z€Y||zll=n
Now the desired result follows from Proposition 2.

Remark 5 By the proof of Lemma , we see that replacing (f) with the following

..  F(n,z) 2%y,
TP R S

the conclusion of Theorem 1 and Theorem 2 is still valid.
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