Sep. 2008

Multiple Periodic Solutions for Nonlinear Difference Equations

Fang Fei Wang Nan Liu Shibo

(School of Mathematical Sciences, Xiamen University Xiamen, Xiamen Fujian 361005)

Abstract Multiple solutions for a class of nonlinear difference equations are obtained by variational methods. Our results generalize a recent result of Cai, Yu and Guo [Comput. Math. Appl., 52 (2006), 1630–1647], and the argument here is considerably simpler.

Key words periodic solutions for difference equations; palais-Smale condition; three critical points theorem; Clark's theorem

CLC number 0 151

Document code A

1 Introduction

In a recent paper [1], Cai, Yu and Guo considered the existence of multiple m-periodic solutions for the nonlinear difference equations of the form

$$\Delta(p_n(\Delta x_{n-1})^{\delta}) + f(n, x_n) = 0, \qquad n \in \mathsf{Z}; \tag{1}$$

where $m \geq 2$ is a fixed integer, Δ is the forward difference operator defined by $\Delta x_n = x_{n+1} - x_n$, $\{p_n\}$ is a real sequence such that $p_n > 0$, $p_{n+m} = p_n$ for all $n \in \mathbb{Z}$; f is a continuous function on $\mathbb{Z} \times \mathbb{R}$ such that

$$f(n+m,z) = f(n,z),$$
 for all $(n,z) \in Z \times R$;

and $\delta > 0$. Throughout this paper, the convention $(-1)^{\delta} = -1$ is made.

Let $F(n, z) = \int_0^z f(n, s) ds$. Assuming in addition that f(n, z) satisfies the following conditions:

(H₁) for any
$$z \in \mathbb{R}$$
, $F(n, z) \ge 0$,
$$\lim_{z \to 0} \frac{f(n, z)}{z^{\delta}} = 0,$$
 (2)

Received date: 2007-07-08

Foundation item: Supported by National Natural Science Foundation of China (10601041) and by NCETFJ

 (H_2) there exists $R_2 > 0$ and $\beta > \delta + 1$ such that for $n \in \mathbb{N}$ and $z \in \mathbb{R}$ with $|z| \ge R_2$,

$$zf(n,z) \ge \beta F(n,z) > 0.$$

It follows from (2) that f(n,0) = 0, therefore $x_n = 0$ is a trivial m-periodic solution of (1). In [1] Theorem 3.1, under the assumptions (H_1) and (H_2) , the authors obtained two nontrivial m-periodic solutions for the problem (1) by using variational methods and the linking theorem [2] Theorem 5.3.

In this paper we will generalize their result. We impose the following conditions on the nonlinearity f(n,z):

$$(f_0)$$
 there exists $r>0$ such that $F(n,z)\geq 0$ for all $|z|\leq r$, and $\lim_{z\to 0}\frac{F(n,z)}{|z|^{1+\delta}}=0$,

$$(f_{\infty})$$
 $\lim_{|z| \to \infty} \frac{F(n, z)}{|z|^{1+\delta}} = +\infty$ uniformly in $n \in \mathbb{Z}$.

Then we have

Theorem 1 Assume that (f_0) and (f_{∞}) are satisfied, then the problem (1) has at least two nontrivial solutions.

Remark The limit in (f_0) implies that f(n,0) = 0, so $x_n = 0$ is a trivial *m*-periodic solution of (1).

Note that the condition (H_1) of Cai, Yu and Guo [1] is a global assumption, while our (f_0) only requires $F(n,z) \geq 0$ for small |z|. By an easy computation, it is easy to see that (H_2) implies that there exists $a_1 > 0$, $a_2 > 0$ such that

$$F(n,z) \geq a_1 |z|^{\beta} - a_2.$$

Since $\beta > \delta + 1$, we see that (H_2) is stronger that our (f_{∞}) . Therefore, our Theorem 1 generalizes [1] Theorem 3.1 considerably.

If f(n, z) is odd in z, then we can obtain better result.

Theorem 2 Assume that (f_0) and (f_∞) are satisfied, if f(n,z) = -f(n,-z) for all $(n,z) \in \mathbb{Z} \times \mathbb{R}$, then the problem (1) has at least m-1 pairs of nontrivial solutions.

This symmetric case has not been considered in [1]. The proof of [1] Theorem 3.1 is based on the linking theorem [2] Theorem 5.3, which requires some tedious estimates. We shall prove Theorem 1 and Theorem 2 using the three critical points theorem [3], [4] and the Clark's theorem [5], [2]. It turns out that our approach is considerable simpler.

The three critical points theorem and the Clark's theorem have played a significant role in the study of differential equations. Recently, Liu [6] applied these theorems to

difference equations and obtained some interesting results. This work is motivated by Liu [6].

2 Proofs of the theorems

As in [1], we define the linear operations on

$$E_m = \left\{ x = \left\{ x_n \right\}_{n \in \mathbb{Z}} : \, x_n \in \mathbb{R}, \, \mathsf{x}_{\mathsf{n}+\mathsf{m}} = \mathsf{x}_{\mathsf{n}}, \, \mathsf{n} \in \mathbb{Z} \right\}$$

in an obvious way, then define the inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$ on E_m as follows:

$$\langle x, y \rangle = \sum_{n=1}^{m} x_n y_n, \qquad ||x|| = \left(\sum_{n=1}^{m} x_n^2\right)^{1/2}, \qquad x, y \in E_m.$$

Then, E_m is a m-dimensional Hilbert space and linear isomorphic to \mathbb{R}^m .

We define a functional $I: E_m \to R$,

$$I(x) = \frac{1}{\delta + 1} \sum_{n=1}^{m} p_{n+1} (\Delta x_n)^{\delta + 1} - \sum_{n=1}^{m} F(n, x_n), \qquad x = \{x_n\} \in E_m.$$

Since $f \in C(Z \times R, R)$, it follows that $I \in C^1(E_m, R)$. According to [1], the critical points of I are exactly the m-periodic solutions of (1). So we have to find critical points of I. For this purpose we need the following results.

Proposition $1^{[3,4]}$ Let E be a Banach space, $\varphi \in C^1(E,\mathbb{R})$ satisfies the Palais-Smale (PS) condition and is bounded from below. Suppose φ has a *local linking* at the origin 0, namely, there are a decomposition $E = Y \oplus W$ and a positive real number $\rho > 0$ such that $k = \dim Y < \infty$,

$$\varphi(x) < \varphi(0) \text{ for } x \in Y, \ 0 < \|x\| \le \rho, \qquad \varphi(x) \ge \varphi(0) \text{ for } x \in W, \ \|x\| \le \rho; \qquad (3)$$

then φ has at least three critical points.

Recall that φ satisfies the (PS) condition, if any sequence $\{x^{(i)}\}$ such that $\{\varphi(x^{(i)})\}$ is bounded and $\varphi'(x^{(i)}) \to 0$, has a convergent subsequence.

Proposition $2^{[2,5]}$ Let E be a Banach space and $\varphi \in C^1(E, \mathbb{R})$ be an even functional satisfying the (PS) condition and $\varphi(0) = 0$. Assume that φ is bounded from below and there are $\rho > 0$ and a k-dimensional linear subspace Y of E such that

$$\sup_{x\in Y, \|x\|=\rho} \varphi(x) < 0,$$

then φ possesses at least k pairs of critical points.

Note that these critical points are nonzero, because the values of φ over these points are negative, see the proof of [2] Theorem 9.1 for the details.

Now we are ready to prove our theorems.

Lemma 3 If (f_{∞}) holds, then $I(x) \to -\infty$ as $||x|| \to \infty$.

Proof The proof of this lemma is slightly difference from that of [1] Lemma 3.1. Let

$$v_2 = \max_{1 \le n \le m} p_n > 0.$$

By (f_{∞}) , there exists C > 0 such that

$$F(n,z) \ge \left(\frac{2^{\delta+2}v_2}{\delta+1} + 1\right)|z|^{\delta+1} - C.$$
 (4)

Remember $x_{n+m} = x_n$ and $p_{n+m} = p_n$, we obtain

$$I(x) \leq \frac{1}{\delta+1} \sum_{n=1}^{m} p_{n+1} |x_{n+1} - x_n|^{\delta+1} - \sum_{n=1}^{m} F(n, x_n)$$

$$\leq \frac{v_2}{\delta+1} \sum_{n=1}^{m} \left[2^{\delta+1} (|x_{n+1}|^{\delta+1} + |x_n|^{\delta+1}) \right] - \sum_{n=1}^{m} F(n, x_n)$$

$$\leq \frac{2^{\delta+2} v_2}{\delta+1} \sum_{n=1}^{m} |x_n|^{\delta+1} - \left(\frac{2^{\delta+2} v_2}{\delta+1} + 1 \right) \sum_{n=1}^{m} |x_n|^{\delta+1} + Cm$$

$$= -\sum_{n=1}^{m} |x_n|^{\delta+1} + Cm \to -\infty, \quad \text{as } ||x|| = \left(\sum_{n=1}^{m} x_n^2 \right)^{1/2} \to \infty,$$

the desired result follows.

Proof of Theorem 1 Let

$$W = \left\{ x = \left\{ x_n \right\}_{n \in \mathbb{Z}} : \, x_n = x \in \mathbb{R}, \, \mathbf{n} \in \mathbb{Z} \right\},\,$$

and Y be the orthogonal complement of W in E_m . Then $E_m = W \oplus Y$, dim Y = m - 1.

It has been proven in [1] Page 1643–1644 that the limit in (f_0) implies the existence of an $\eta > 0$ such that

$$I(x) > 0, \quad \text{for } x \in Y \cap \partial B_{\eta},$$
 (5)

where $B_{\eta} = \{x \in E_m : ||x|| \leq \eta\}$ and ∂B_{η} its boundary. Note that by the argument there, (5) is still valid if we decrease η . Therefore, there exists $\rho \in (0, r)$ such that

$$I(x) > 0, \quad \text{for } x \in Y \cap B_{\rho}.$$
 (6)

If $x \in W$, $||x|| \le \rho$, then $|x_n| \le \rho < r$ and we have $\Delta x_n = 0$. Thus by (f_0) we obtain

$$I(x) = -\sum_{n=1}^{m} F(n, x_n) \leq 0.$$

Therefore, -I has a local linking at the origin 0. By Lemma and the fact that dim $E_m < \infty$, it is easy to see that -I is bounded from below and satisfies the (PS) condition. Applying Proposition 1, -I has at least three critical points. Therefore, I has two nonzero critical points, which are nontrivial m-periodic solutions of the problem (1).

Remark 4 In [1], after obtaining (5), in order to apply the linking theorem, some tedious estimates are involved and the global condition $F(n,z) \geq 0$ for all $(n,z) \in \mathbb{Z} \times \mathbb{R}$ is needed. Our argument above does not need this global condition, and simplifies the proof considerably.

Proof of Theorem 2 If f(n,z) = -f(n,-z) for all $(n,z) \in \mathbb{Z} \times \mathbb{R}$, then I is an even functional. We know that I(0) = 0, -I is bounded from below and satisfies the (PS) condition. By (5), since $Y \cap B_{\eta}$ is compact, we have

$$\sup_{x\in Y, \|x\|=\eta} (-I)(x)<0.$$

Now the desired result follows from Proposition 2.

Remark 5 By the proof of Lemma, we see that replacing (f_{∞}) with the following

$$\liminf_{|z|\to\infty}\frac{F(n,z)}{|z|^{1+\delta}}>\frac{2^{\delta+2}v_2}{\delta+1},$$

the conclusion of Theorem 1 and Theorem 2 is still valid.

References

- [1] Cai X C, Yu J S, Guo Z M. Periodic solutions of a class of nonlinear difference equations via critical point method. Comput. Math. Appl., 2006, 52: 1630-1647.
- [2] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, American Mathematical Society, 1986, 65.
- [3] Liu J Q, Li S J. Existence theorems of multiple critical points and their applications. Kexue Tongbao, 1984, 17: 1025-1027.
- [4] Brezis H, Nirenberg L. Remarks on finding critical points. Comm. Pure Appl. Math., 1991, 44: 939-963.
- [5] Clark D C. A variant of the Ljusternik-Schnirelmann theory. Indiana Univ. Math. J., 1972, 22, 65-74.
- [6] Liu S B. Multiple periodic solutions for second order difference systems. preprint.

非线性差分方程的多重周期解

方 飞 王 楠 刘轼波

(厦门大学数学学院, 福建 厦门 361005)

摘 要 用变分方法得到一类非线性差分方程多重周期解的存在性. 我们的结果推广了 Cai, Yu 和 Guo [Comput. Math. Appl., 52 (2006), 1630-1647] 的结果, 并且这里给出的证明显著地简化了.

关键词 差分方程的周期解; Palais-Smale 条件; 三临界点定理; Clark 定理