On \boldsymbol{k}－Strong Distance in Strong Oriented Graphs

Miao Huifang Guo Xiaofeng
（ School of Mathematical Sciences，Xiamen University，Xiamen Fujian 361005）

Abstract

For a nonempty vertex set S in a strong digraph D ，the strong distance $d(S)$ of S is the minimum size（the number of edges）of a strong subdigraph of D containing the vertices of S ．If S contains k vertices，then $d(S)$ is referred to as the k－strong distance of S ．For an integer $k \geq 2$ and a vertex v of a strong digraph D ，the k－strong eccentricity $\operatorname{sek}(v)$ of v is the maximum k－strong distance $d(S)$ among all sets S of k vertices in D containing v ．The minimum k－strong eccentricity among the vertices of D is the k－strong radius of $D \operatorname{srad}_{k}(D)$ and the maximum k－strong eccentricity is the k－strong diameter of $D \operatorname{sdiam}_{k}(D)$ ．In this paper，we will show that for any integers r, d with ${ }_{k+} \quad 1 \leq r, d \leq_{n}$ ，there exist strong tournaments T^{\prime} and $T^{\prime \prime}$ of order n such that $\operatorname{srad} d_{k}\left(T^{\prime}\right)=r$ and $\operatorname{sdiam}_{k}\left(T^{\prime \prime}\right)=d$ ．And we also give an upper bound on the $k-$ strong diameter of strong oriented graphs．

Key words Digraph；Strong distance；Strong radius；Strong diameter
CLC number O 157．5 Document code A

1 Introduction

The familiar distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest (u, v) path in G ．Equivalently，this distance is the minimum size of a connected subgraph of G containing u and v ．This concept was extended by Chartrand Get al．in ［1］to strong dig raphs，in particular to strong oriented graphs．We refer to［2］for graph theory notation and termi nology not described here．

A digraph D is strongly connected if for every pair u, v of distinct vertices of D ，there is both a directed (u, v)－path and a directed (v, u)－path in D ．A dig raph D is an oriented graph if there is no cycle of length two．In this paper，we will be interested in strong oriented graphs． The underlying graph of a strong oriented graph is necessarily 2－edge connected．

Let D be a strong orient ed graph．The order and size of D are denoted by $n(D)$ and $m(D)$ ． For two vertices u and v of D ，the strong distance $s d(u, v)$ between u and v is the minimum size of a strong subdig raph of D containing u and $v . A(u, v)$－geodesic is a strong subdig raph of D of size $s d(u, v)$ containing u and v ．If $u \neq v$ ，then $3 \leq s d(u, v) \leq m(D)$ ．A strong oriented graph D
is a strong (u, v) path，if there is no proper strong subdigraph of D containing u and v ．An oriented graph D is simply called a strong path，if D is a strong (u, v)－path for some pair u, v of vertices of D ．We note that a (u, v)－g eodesic is a strong (u, v)－path，while a strong (u, v)－path need not be a (u, v)－geodesic．Chartrand G et al．have made some elementary observation concerning strong paths and gave the following properties in［1］．

Theorem 1．1［1］If D is a strong (u, v) path，then D contains a unique directed $(u, v)-$ path and a unique directed (v, u)－path．

Theorem 1． 2 ［1］If D is a strong path of order $n \geqq 3$ and size m ，then

$$
\frac{m}{n-1} \leq \frac{5}{3} .
$$

For a nonem pty vertex set S in a connected graph G ，the Steiner distance $d(S)$ of S is the minimum size of a connected subgraph of G containing S ．This concept was extended to strong digraph by Zhang P et al．in［3］．For a no nem pty vertex set S in a strong dig raph D ，the strong Steiner distance $d(S)$ was defined by Zhang Pet al．as the minimum size of a strong subdig raph of D containing S ．They also referred to such a subdigraph as a Steiner subdigraph with respect to S ，or，simply，S－subdigraph．Since D itself is strong，$d(S)$ is defined for every no nem pty vertex set S of D ．If $S=k$ ，then $d(S)$ is referred to as the k－strong Steiner distance（or simply k－strong distance）of S ．Thus， $3 \leq d(S) \leq m(D)$ ，for each vertex set S in a strong digraph D with $|S| \geq 2$ ．When $k=2$ ，the 2 －strong distance is the strong distance studied in［1，4］．For example，in a strong oriented graph D of Fig．1，let $S_{1}=\{s, v, x\}, S_{2}=\{v, x, z\}, S_{3}=\{s, x, y\}$ ． Then the 3－strong distance of S_{1}, S_{2} and S_{3} are $d\left(S_{1}\right)=3, d\left(S_{2}\right)=4$ and $d\left(S_{3}\right)=5$ ，respectively．

It was showed in［3］that k－strong distance satisfies an extension of triangle inequality．
Theorem 1． 3 ［3］For an integ er $k \geq 2$ ，let S_{1}, S_{2} and S_{3} be vertex sets in a strong oriented g raph with $|S|=k$ for $\subseteq_{i} \leq 3$ ．If $S \subseteq S \cup S_{3}$ and $S \cap S \supsetneqq \not \varnothing$ ，then

$$
d\left(S_{1}\right) \leq d\left(S_{2}\right)+d\left(S_{3}\right)
$$

Let v be a vertex of a strong oriented graph D of order $n \geqq 3$ and let k be an integer with $2 \leq$ $k \leq_{n}$ ．The k－strong eccentricity $s e_{k}(v)$ is defi ned by

$$
\operatorname{sek}(v)=\max \{\mathrm{d}(S)|\mathcal{V} \in V(D),|S|=k\} .
$$

The $k-$ strong diameter $\operatorname{sdiam}^{k}(D)$ is

$$
\operatorname{sdiam}^{k}(D)=\max \{\operatorname{sek}(v) \mid \mathfrak{V} \in V(D)\} ;
$$

while the k－strong radius $\operatorname{srad}_{k}(D)$ is defined by

$$
\operatorname{srad} k(D)=\min \{\operatorname{sek}(v) \mid \in V(D)\} ;
$$

The 3－strong eccentricity of each vertex of a strong oriented graph D is show ed in Fig． 2. Thus， $\operatorname{srad}_{3}(D)=8$ and $\operatorname{sdiam}^{3}(D)=12$ ．

For any int eger $k 2$ ，the k－strong radius and k－strong diameter of a strong oriented graph satisfy the following familiar inequality．

Theorem 1． 4 ［3］Let $k 2$ be an integ er．For every strong orient ed graph D ，

Fig. $1 \quad A$ strong oriented graph D.

Fig. 2 A strong oriented graph D with $\operatorname{srad}_{3}(D)=8$ and $\operatorname{sdiam}_{3}(D)=12$.

In [4], Chartrand Get al. showed that, for any integers r, d with $3 \leq_{r} \leq k+1$ and $3 \leq d \leq$ $2 k+1$, there exist strong tournaments T^{\prime} and $T^{\prime \prime}$ of order $2 k+1$ such that $\operatorname{srad}_{2}\left(T^{\prime}\right)=r$ and $\operatorname{sdiam} 2\left(T^{\prime \prime}\right)=d$. Dankelmann Pet al. presented an upper bound on the strong radius of a strong oriented graph D of order n as $\operatorname{srad} 2(D) \leq_{n}$ in [5]. In [1], Chartrand G el al. gave an upper bound on the strong diam eter of a strong oriented graph D as following.

Theorem 1. $5 \quad[1]$ If D is a strong oriented graph of order $n \geq 3$, then $\operatorname{sdiam}^{2}(D) \leq[5(n-1) / 3]$.
In this paper, we shall make some observation concerning the $k-$ strong distance of strong tournament T of order n. First we will show that for any integers r, d with $k+\leqslant_{r}, d \leq n$, there exist strong tournaments T^{\prime} and $T^{\prime \prime}$, such that $\operatorname{srad}_{k}\left(T^{\prime}\right)=r$ and $\operatorname{siaiam}_{k}\left(T^{\prime \prime}\right)=d$. And we also give an upper bound on the k-strong diameter $\operatorname{sdiamk}(D)$ for $S_{k} S_{n}$.

2 The \boldsymbol{k}-Strong Distance of Strong Tournaments

In this section, we consider strong tournaments of order $n \geq 4$. Since every strong tournament T is hamiltonian, clearly, $\leqslant_{\operatorname{sradk}(T) \leq} \operatorname{sdiamk}(T) \leq \leq_{n \text { for }} \leq_{k} \leq_{n}$. When $k=2$, it has been studied in [4]. While $k=n$, it is clear that $\operatorname{srad}_{n}(T)=\operatorname{sdiam}_{n}(T)=n$. In the following, first we shall consider the $k-$ strong distance for $3 \leq k \leq n-2$.

Lemma 2. 1 For any integer k with $3 \leq_{k} \leq_{n-2}$, there exist strong tournaments T^{\prime} and $T^{\prime \prime}$ of order $n \geq 5$ such that
$\operatorname{sradk}\left(T^{\prime}\right)=r^{k}$ and $\operatorname{sdiam} k\left(T^{\prime \prime}\right)=d k$,
where $r_{k}, d k$ are integers with $k+\subseteq_{r_{i}} \leq_{n-1}$ and $k+2 \leq_{d k} \leq_{n}$.
Proof For a given $k \geq 3$, we now construct a strong tournament T of order n such that $\operatorname{srad}_{k}(T)=n-p+k-1$ and $\operatorname{sdiam}_{k}(T)=n-p+k$ for all p with $k \leq p \leq n-2$.

Let $V(T)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. We partition the vertex set of T into two subsets $V_{1}=\left\{v_{1}, v_{2}\right.$, $\left.\cdots, v_{p}\right\}$ and $V_{2}=\left\{v_{p+1}, \cdots, v_{n}\right\}$, where $K_{p} \leq_{n-2 \text {. Furthermore, let }}$


```
U{(vi,vi+1)|p+ < < < n- 1}
```



```
U{(\mp@subsup{v}{i}{},\mp@subsup{v}{j}{\prime})|v\in\mp@subsup{V}{1}{},\mp@subsup{v}{j}{\prime}\in\mp@subsup{V}{2}{}\{(\mp@subsup{v}{n}{\prime},\mp@subsup{v}{1}{})}-{(\mp@subsup{v}{1}{},\mp@subsup{v}{n}{})}\quad(\mathrm{ see Fig. 3).}
```

Let $S=\left\{v_{i_{1}}, v_{i_{2}}, \cdots, v_{k}\right\}$ ，where $\leqslant_{i 1}<\dot{v}_{2}<\cdots<i_{k} \leq_{n}$ ．If $\dot{i} k \leq p$ and $v^{1}=v_{i_{1}} \in S$ ，then the directed（k＋1）－cycle $v_{1} v_{i_{2}} \cdots v_{i_{k}} v_{n} v_{1}$ is a S－subdigraph．So $d(S)=k+1$ ．If $\dot{i}_{k} \leq p$ and $v \in S$ ，then the directed（k＋2）cycle $v_{1} v_{i_{1}} v_{i_{2}} \cdots v_{i_{k}} v_{n} v_{1}$ is a S－subdig raph．So $d(S)=k+2$ ．Otherwise，let i_{j} be the smallest subscript satisfying $p<i_{j} \leq_{n}$ ．If $v_{1}=v_{1} \in S$ ，then the directed $(n-\dot{j}+j)-\operatorname{cycle} v_{1} v_{i_{2}}$ $\cdots v_{i_{j-1}} v_{i_{j}} v_{j+1} \cdots v_{n} v_{1}$ is a S－subdigraph．So $d(S)=n-i_{j+} j$ ．If $v \in S$ ，then the directed（ $n-i_{j+} j$ $+1)$－cycle $v_{1} v_{i_{1}} v_{i_{2}} \cdots v_{i_{j-1}} v_{i_{j}} v_{i_{j+1}} \cdots v_{n} v_{1}$ is a S－subdig raph．So $d(S)=n-j_{j}+j+1$ ．So we have sek $\left(v_{1}\right)=\max \left\{k+1, n-i j+j \mid p<i j \leq_{n}, \leq_{j} \leq k\right\}=n-p+k-1 ; ~ s e t(v i)=\max \{k+1, k+2, n-$ $\left.i j+j, n-i_{j}+j+1 \mid p<i_{j} \leq n, \leq_{j} \leq k\right\}=n-p+k$ for $2 \leq_{i} \leq p ; \operatorname{se}\left(v_{p+1}\right)=\max \left\{n-i_{j}+j, n-i_{j}\right.$ $\left.+j+1 \mid p<i_{j} \leq n, \leq j \leq k\right\}=n-p+k ; \operatorname{se}_{k}\left(v_{j}\right)=\max \left\{n-i_{j+} j, n-i_{j}+j+1 \mid p<i_{j} \leq n, \leq_{j} \leq\right.$ $k\}=n-p+k-1$ for $p+2 \leq j \leq n$ ．
 implying that，for any integers n_{k}, d_{k} with $k+1 \leq r_{k} \leq n-1$ and $k+2 \leq d_{k} \leq n$ ，there exist strong tournaments T^{\prime} and $T^{\prime \prime}$ of order $n \geqq 5$ such that $\operatorname{srad}_{k}\left(T^{\prime}\right)=r_{k}$ and $\operatorname{sdiam}_{k}\left(T^{\prime \prime}\right)=d_{k}$ ．

Now we will show that，for any integer k with S_{n-1} ，the tournament T of order n satisfying $\operatorname{srad}_{k}(T)=n$ exists．

Lemma 2． 2 For any integer k with $3 \leq n-1$ ，there exists a strong tournament T of order $n \geq 4$ such that

$$
\operatorname{srad}_{k}(T)=\operatorname{sdiam}_{k}(T)=n .
$$

Proof Let $V(T)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ ．And

$$
\begin{aligned}
& A(T)=\left\{\left(v_{i}, v_{\dot{*}} 1\right) \mid \leq_{i} \leq_{n-1}\right\} \\
& \quad \cup\left\{\left(v_{i}, v_{i}\right) \mid \leqslant_{i<j} \leq_{n, \neq j}=1\right\}
\end{aligned}
$$

（ see Fig．4）．
For any vertex v_{i} ，let $S_{i}=\left\{v_{i} \bigcup\left\{v_{1}, v_{n}\right\}, i=1,2, \cdots, n\right.$ ．Since $s d\left(v_{1}, v_{n}\right)=n$ ，we have d $(S) \gtrless s d\left(v_{1}, v_{n}\right)=n$ ．On the other hand，T has a Hamilton cycle．So $d\left(S_{i}\right)=n$ ，which implies that $\operatorname{se}_{3}\left(v_{i}\right)=n, i=1,2, \cdots, n$ ．Hence， $\operatorname{srad}_{3}(T)=\operatorname{sdiam}_{3}(T)=n$ ．

By the definition of k－strong radius and k－strong diameter，for any k with $4 \leq k \leq n-1$ ， $\operatorname{srad}^{k}(T) \geq \operatorname{srad}_{3}(T)=n, \operatorname{sdiam}^{k}(T) \geq \operatorname{sdiam}_{3}(T)=n$ ，And T has a Hamilton cycle．So srad^{k} $(T)=\operatorname{sdiam}^{\prime}(T)=n$ ，for any k with $3 S_{k} \leq_{n-1}$ ．

By Lemmas 2． 1 and 2．2，we have the following result．
Theorem 2． 3 For any integer k with $3 \leq n-1$ ，there exists a strong tournament T of order $n \geq 4$ such that

$$
\operatorname{srad}^{2}(T)=r,
$$

for ev ery r with $k+\quad \leq_{r} \leq_{n}$ ．
Lemma 2． 1 shows that for any k with $3 \leq k \leq_{n-2}$ ，there exists strong tournament T such

Fig. 3 The strong tournament T.

Fig. 4 The strong tournament T.
tournament T with $\operatorname{siam}^{k}(T)=k+1$ can be found .
Lemma 2. 4 For any integer k with $3 \leq n-1$, there exists a strong tournament T_{n} of order $n \geqq 4$ such that

$$
\operatorname{sdiam}^{k}\left(T_{n}\right)=k+1
$$

Proof Let $V\left(T_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$.
Let $T_{k}, T_{k} 1$ be the strong tournaments constructed in Lemma 2. 2 with $\operatorname{sdiam}_{k-1}\left(T_{k}\right)=k$ and $\operatorname{sdiam}_{k}\left(T_{k+} 1\right)=k+1$.

Now, we construct T_{n+2} from T_{n} by replacing exactly one vertex of a directed 3-cycle C_{3} with a copy of T_{n}, and for any vertex $\mathcal{E} \in\left(T_{n}\right),\left(v_{n+1}, v\right),\left(v, v_{n+2}\right) \in A\left(T_{n+2}\right)$ (see Fig. 5) for $n \geq k$.

Fig. 5 Strong tournament $T_{1+} 2$.

Now we will show that for any i, n with $\sigma_{i} \leq k-2, n>k$, and any $k-i$ vertices of T_{n}, there is a directed path just containing all these $k-i$ vertices in T_{n}; and $\operatorname{sdiam}_{k}\left(T_{n}\right)=k+1$.

We show it by induction on n. When $n=k^{+} 1$, by the construction of T_{k+1}, for any $k-i$ vertices, there is a directed path just containing all these $k-i$ vertices in T_{k+1}; and $\operatorname{sdiam}_{k}\left(T_{k+1}\right)$ $=k+1$.

When $n=k+2$. By the construction of $T k$, for any $k-i$ vertices, there is a directed path just containing all these $k-i$ vertices in T_{k}. Let $S=\left\{v_{t_{1}}, v_{t_{2}}, \cdots, v_{t_{k-i}}\right\} \subseteq V\left(T_{k+2}\right)$. If $S \subseteq V\left(T_{k}\right)$, then it his clear that there is a directed path just co staining all these k A i y vertices in T_{k+2}; and d
$(S) \leq k$ ．If S contains only one vertex of $\left\{v_{k+1}, v_{k+2}\right\}$ ，we may assume that $v_{k-i}=v_{k+} \in S$ ，and T_{k} exists a directed path just containing the vertices $v_{t_{1}}, v_{t_{2}}, \cdots, v_{k-i-1}$ ．Then $v_{k+1} P$ is a directed path in T_{k+2} and the directed $(k-i+1)$ ceycle $\nu_{k+1} P \nu_{k+}+2 \nu_{k+1} 1$ is a S－subdig raph in T_{k+2} ．So $d(S)$ $=k-$ i＋1．If $\left\{v_{k+1}, v_{k+2}\right\} \subseteq S$ ，we may assume that $v_{k-i-1}=v_{k+1}, v_{t_{k-i}}=v_{k+2}$ ，and T_{k} contains a directed path Q just containing the vertices $v_{t_{1}}, v_{t_{2}}, \cdots, v_{t_{k-i-2}}$ ．Then $Q v_{k+2} v_{k+1}$ is a directed path in
 Therefore， $\operatorname{set}^{t}\left(v_{j}\right)=k+1$ for $\leqslant_{j} \leq k+2$ ，which implies $\operatorname{sdiam}^{k}\left(T_{k+} 2\right)=k+1$ ．

Assume that when $n=m>k$ ，for any $k-i$ vertices of T_{m} ，there is a directed path just containing all these $k-i$ vertices；and $\operatorname{sdiam}_{k}\left(T_{m}\right)=k+1$ ．Consider the strong tournament T_{m+2} constructed from T_{m} ．Let $S=\left\{v_{t_{1}}, v_{2}, \cdots, v_{k-i} \subseteq V\left(T_{m+2}\right)\right.$ ．If $S V\left(T_{m}\right)$ ，then by the induction hypothesis，there is a directed path just containing all these $k-i$ vertices in T_{m+2} ；and $d(S) \leq k$ +1 ．If S contains only one vertex of $\left\{v_{m+1}, v_{m+2}\right\}$ ，we may assume $v_{t_{k-i}}=v_{m+1}$ ．By the induction hypothesis，T_{m} exists a directed path P just containing the vertices $v_{t_{1}}, v_{t_{2}}, \cdots, v_{k-i-1}$ ．Similar to the case $n=k+2, v_{m+1} P$ is a directed path just containing the vertex of S in T_{m+2} ；and $d(S)=k$ －i＋1．If $\left\{v_{m+1}, v_{m+2}\right\} \subseteq S$ ，we may assume that $v_{t_{k-i-1}}=v_{m+1}, v_{t_{k-i}}=v_{m+2}$ ，and T_{m} contains a directed path Q just containing the vertices $v_{t_{1}}, v_{t_{2}}, \cdots, v_{t_{k-i-2}}$ ．Similar to the case $n=k+2$ ，there is a directed path $Q \nu_{m+2} v_{m+1}$ just containing thevertex of S in T_{m+2} ；and $d(S)=k-i$ ．Hence，sek $\left(v_{j}\right)=k+1$ for $\leq_{j} \leq m+2$ ，which implies $\operatorname{sdiam}_{k}\left(T_{m+2}\right)=k+1$ ．

Lemmas 2．1，2． 2 and 2.4 give the follow ing result．
Theorem 2．5 For any integer k with $3 \leqslant_{n-1}$ ，there exists a strong tournament T of order $n \geq 4$ such that

$$
\operatorname{sdiam}_{k}(T)=d
$$

for every d with $k+1 \leq d \leq n$ ．

3 A Bound on k－Strong Diameter

The k－strong diameter of a strong oriented graph is at least k ．In this section，we present an upper bound on the k－strong diameter of a strong ori ented graph of order $n \geq 3$ ．

An ear decomposition of a digraph D is a sequence $\mathrm{X}=\left\{P_{0}, P_{1}, \cdots, P_{r}\right\}$ ，where P_{0} is a directed cycle and each P_{i} is a directed path or a directed cycle with the following properties
（a）P_{i} and P_{j} are arc disjoint when $\not \approx j$ ．
（b）For each $i=1,2, \cdots, r$ ．Let D_{i} be the digraph induced by $\bigcup{ }_{j=0}^{i} A\left(P_{j}\right)$ ．If P_{i} is a cycle， then it has precisely one vertex in common with $V\left(D_{i-1}\right)$ ．Otherwise the end vertices of P_{i} are distinct vertices of D_{i-1} and no other vertex of P_{i} belongs to $V\left(D_{i-1}\right)$ ．
$(\mathrm{c}) \cup \underset{j=0}{r} A\left(P_{j}\right)=A(D)$ ．
An ear P_{i} is trivial if $\left|A\left(P_{i}\right)\right|=1$ ．In［2］，it has been show ed that every strong digraph has an ear decomposition $\mathrm{X}\left\{P_{0}, P_{1}, \cdots, P_{r}\right\}$ ．We now show that for every S－subdigraph D^{\prime} of a strong oriented graph，$m\left(D^{\prime}\right) \leq 2 n\left(D^{\prime}\right)-3$ ．

oriented graph D ，where $|S|=k 3$ ．Then $m\left(D^{\prime}\right) \leq 2 n\left(D^{\prime}\right)-3$ ．
Proof Let $\mathrm{X}=\left\{P_{0}, P_{1}, \cdots, P_{r}\right\}$ be an ear decomposition of D^{\prime} ．By the minimality of m
 \cdots, r contains at least one internal vertex，and $r \leq_{n}\left(D^{\prime}\right)-\left|V\left(P_{0}\right)\right| \leq_{n\left(D^{\prime}\right)-3 \text { ．Let } m_{i}=\mid A}$ $\left(P_{i}\right) \mid$ ，we can make the following estimate

$$
\begin{aligned}
m\left(D^{\prime}\right) & =\sum_{i=0}^{r} m_{i}=\left|V\left(P_{0}\right)\right|+\sum_{i=1}^{r}\left(m_{i}-1\right)+r=n\left(D^{\prime}\right)+r \\
& \leq n\left(D^{\prime}\right)+n\left(D^{\prime}\right)-3 \leq 2 n\left(D^{\prime}\right)-3,
\end{aligned}
$$

where equality only holds if $V\left(P_{0}\right) \mid=3$ and each $P_{i}, i=1,2, \cdots, r$ ，has length 2 ．
Theorem 1.5 gives an upper bound on $2-$ strong diameter．In the following，we will give an upper bound on k－strong diameter for $\leq_{k} \leq n$ ．

Theorem 3．2 If D is an oriented graph of order $n \geq 3$ ，then

$$
\operatorname{sdiamk}(D) \leq 2 n-3,
$$

for ev ery k with $3 \leq k \leq n$ ．
Proof Let $S \subseteq V(D)$ such that $d(S)=\operatorname{sdiamk}(D)$ ，where $|S|=k$ ．Let D^{\prime} be a S^{-} subdigraph in D with respect to S ．By Lemma 3．1，then

$$
\operatorname{sdiam}_{k}(D)=m\left(D^{\prime}\right) \leq 2 n\left(D^{\prime}\right)-3 \leq 2 n-3 .
$$

References

［1］Chartrand G，Erw in D，Raines M，and Zhang P．Strong Distance in Strong Digraphs．J．Combin．Math． Com bin．Comput．，1999，31 33－ 44.
［2］Bang Jensen，Gutin G．Digraphs Theory，Algorithms and Applications．Londor Springer， 2000.
［3］Zhang P，Kalazoo．On k－Strong Distance in Strong Digraphs．Mathematical Bohemica，2002，127．557－ 570.
［4］Chartrand G．Erwin G，Raines M，Zhang P．On Strong Distance in Strong Oriented Graphs．Congr． Numer．，1999， 138 49－ 63.
［5］Peter Dankelmann，Henda C．Swart，David P．Day．On Strong Distance in Oriented Graphs．Discrete Math．，2003， 266 195－ 201.

强定向图的 k 强距离

缪惠芳 郭晓峰

（厦门大学数学科学学院，福建 厦门 361005）
摘 要 对强连通有向图 D的一个非空顶点子集 S, D 中包含 S 的具有最少弧数的强连通有向子图称为 S 的 Steiner子图，S 的强 Steiner距离 $d(S)$ 等于 S 的 Steiner子图的弧数。如果 $\mid S=k$ ，那么 $d(S)$ 称为 S 的 k－强距离．对整数 $k \geq 2$ 和强有向图 D 的顶点 v, v 的 k 强离心率 $\operatorname{sek}(v)$ 为 D 中所有包含 v 的 k 个顶点的子集的 k 强距离的最大值．D 中顶点的最小 k 强离心率称为 D 的 k 强半径，记为 $\operatorname{srad}_{k}(D)$ ，最大 k 强离心率称为 D的 k 强直径，记为 $\operatorname{siam}_{k}(D)$ ．本文证明了，对于满足 $k+\leqslant_{r}, d \leq_{n}$ 的任意整数 r, d ，存在顶点数为 n 的强竞赛图 T^{\prime} 和 $T^{\prime \prime}$ ，使得 $\operatorname{srad}_{k}\left(T^{\prime}\right)=r$ 和 $\operatorname{sdiamk}\left(T^{\prime \prime}\right)=d$ ；进而给出了强定向图的 k－强直径的一个上界．

关键词 有向图；强距离；强半径；强直径

