On *k*–Strong Distance in Strong Oriented Graphs

Miao Huifang Guo Xiaofeng

(School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005)

Abstract For a nonempty vertex set S in a strong digraph D, the strong distance d(S) of S is the minimum size (the number of edges) of a strong subdigraph of D containing the vertices of S. If S contains k vertices, then d(S) is referred to as the k-strong distance of S. For an integer $k \ge 2$ and a vertex v of a strong digraph D, the k-strong eccentricity set (v) of v is the maximum k-strong distance d(S) among all sets S of k vertices in D containing v. The minimum k-strong eccentricity among the vertices of D is the k-strong radius of $D \operatorname{srad}_k(D)$ and the maximum k-strong eccentricity is the k-strong diameter of $D \operatorname{sdiam}_k(D)$. In this paper, we will show that for any integers r, d with $k+1 \le r, d \le n$, there exist strong tournaments T' and T'' of order n such that $\operatorname{srad}_k(T') = r$ and $\operatorname{sdiam}_k(T'') = d$. And we also give an upper bound on the k-strong diameter of strong oriented graphs.

Key wordsDigraph;Strong distance;Strong radius;Strong diameterCLC number0157.5Document codeA

1 Introduction

The familiar distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest (u, v)-path in G. Equivalently, this distance is the minimum size of a connected subgraph of G containing u and v. This concept was extended by Chartrand G et al. in [1] to strong digraphs, in particular to strong oriented graphs. We refer to [2] for graph theory notation and terminology not described here.

A digraph D is strongly connected if for every pair u, v of distinct vertices of D, there is both a directed (u,v)-path and a directed (v,u)-path in D. A digraph D is an oriented graph if there is no cycle of length two. In this paper, we will be interested in strong oriented graphs. The underlying graph of a strong oriented graph is necessarily 2-edge connected.

Let *D* be a strong oriented graph. The order and size of *D* are denoted by n(D) and m(D). For two vertices *u* and *v* of *D*, the strong distance sd(u, v) between *u* and *v* is the minimum size of a strong subdigraph of *D* containing *u* and *v*. A(u, v)-geodesic is a strong subdigraph of *D* of size sd(u, v) containing *u* and *v*. If $u \neq v$, then $\Im sd(u, v) \leq m(D)$. A strong oriented graph *D*

Received date 2005- 01- 21

[?] Foundation item. The Project Supported by NSFC(10331020). ?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www

is a strong (u, v)-path, if there is no proper strong subdigraph of D containing u and v. An oriented graph D is simply called a strong path, if D is a strong (u, v) -path for some pair u, v of vertices of D. We note that a (u,v)-geodesic is a strong (u,v)-path, while a strong (u,v)-path need not be a (u, v)-geodesic. Chartrand G et al. have made some elementary observation concerning strong paths and gave the following properties in [1].

[1] If D is a strong (u,v) -path, then D contains a unique directed (u,v) -Theorem 1.1 path and a unique directed (v, u)-path.

[1] If D is a strong path of order $n \ge 3$ and size m, then Theorem 1. 2

$$\frac{m}{n-1} \leq \frac{5}{3}$$

For a nonempty vertex set S in a connected graph G, the Steiner distance d(S) of S is the minimum size of a connected subgraph of G containing S. This concept was extended to strong digraph by Zhang P et al. in [3]. For a nonempty vertex set S in a strong digraph D, the strong Steiner distance d(S) was defined by Zhang P et al. as the minimum size of a strong subdigraph of D containing S. They also referred to such a subdigraph as a Steiner subdigraph with respect to S, or, simply, S-subdigraph. Since D itself is strong, d(S) is defined for every nonempty vertex set S of D. If |S| = k, then d(S) is referred to as the k-strong Steiner distance (or simply k-strong distance) of S. Thus, $3 \leq d(S) \leq m(D)$, for each vertex set S in a strong digraph D with $|S| \ge 2$. When k=2, the 2-strong distance is the strong distance studied in [1, 4]. For example, in a strong oriented graph D of Fig. 1, let $S_1 = \{s, v, x\}, S_2 = \{v, x, z\}, S_3 = \{s, x, v\}$. Then the 3-strong distance of S_1 , S_2 and S_3 are $d(S_1) = 3$, $d(S_2) = 4$ and $d(S_3) = 5$, respectively.

It was showed in [3] that k-strong distance satisfies an extension of triangle inequality.

Theorem 1.3 [3] For an integer $k \ge 2$, let S_1 , S_2 and S_3 be vertex sets in a strong oriented graph with |S| = k for $\leq i \leq 3$. If $S \subseteq S \cup S^3$ and $S \cap S \neq \emptyset$, then $d(S_1) \leq d(S_2) + d(S_3).$

Let v be a vertex of a strong oriented graph D of order $n \ge 3$ and let k be an integer with $2 \le 3$ $k \leq n$. The k-strong eccentricity set (v) is defined by

 $se_{k}(v) = \max\{d(S) \mid v \in S = V(D), \mid S \mid = k\}.$

The k-strong diameter sdiam(D) is

 $sdiam_k(D) = \max\{se_k(v) \mid v \in V(D)\};$

while the k-strong radius $srad_k(D)$ is defined by

 $srad_k(D) = \min\{se_k(v) | \notin V(D)\};$

The 3-strong eccentricity of each vertex of a strong oriented graph D is showed in Fig. 2. Thus, $srad_3(D) = 8$ and $sdiam_3(D) = 12$.

For any integer $k \ge 2$, the k-strong radius and k-strong diameter of a strong oriented graph satisfy the following familiar inequality.

Theorem 1.4 [3] Let $k \ge 2$ be an integer. For every strong oriented graph D,

?1994-2017 China Academic Journal Electronic Publiching (D)se. All rights reserved. http://www

Fig. 1 A strong oriented graph D. Fig. 2 A strong oriented graph D with $srad_3(D) = 8$ and $sdiam_3(D) = 12$.

In [4], Chartrand G et al. showed that, for any integers r, d with $3 \le r \le k+1$ and $3 \le d \le 2k+1$, there exist strong tournaments T' and T'' of order 2k+1 such that $srad_2(T') = r$ and $sdiam_2(T'') = d$. Dankelmann P et al. presented an upper bound on the strong radius of a strong oriented graph D of order n as $srad_2(D) \le n$ in [5]. In [1], Chartrand G et al. gave an upper bound on the strong diameter of a strong oriented graph D as following.

Theorem 1.5 [1] If D is a strong oriented graph of order $n \ge 3$, then

$$sdiam_2(D) \leq [5(n-1)/3].$$

In this paper, we shall make some observation concerning the *k*-strong distance of strong tournament *T* of order *n*. First we will show that for any integers *r*, *d* with $k+ \leq r, d \leq n$, there exist strong tournaments T' and T'', such that $srad_k(T') = r$ and $sdiam_k(T') = d$. And we also give an upper bound on the *k*-strong diameter $sdiam_k(D)$ for $3 \leq k \leq n$.

2 The *k*-Strong Distance of Strong Tournaments

In this section, we consider strong tournaments of order $n \ge 4$. Since every strong tournament T is hamiltonian, clearly, $k \le srad_k(T) \le sdiam_k(T) \le n$ for $2 \le k \le n$. When k=2, it has been studied in [4]. While k=n, it is clear that $srad_n(T) = sdiam_n(T) = n$. In the following, first we shall consider the k-strong distance for $3 \le k \le n-2$.

Lemma 2.1 For any integer k with $3 \le k \le n-2$, there exist strong tournaments T' and T'' of order $n \ge 5$ such that

 $srad_k(T') = r_k$ and $sdiam_k(T') = d_k$,

where r^k , d^k are integers with $k+ \leq r \leq n-1$ and $k+ \leq d \leq n$.

Proof For a given $k \ge 3$, we now construct a strong tournament T of order n such that $srad_k(T) = n - p + k - 1$ and $sdiam_k(T) = n - p + k$ for all p with $k \le p \le n - 2$.

Let $V(T) = \{v_1, v_2, \dots, v_n\}$. We partition the vertex set of T into two subsets $V_1 = \{v_1, v_2, \dots, v_p\}$ and $V_2 = \{v_{P^+}, \dots, v_n\}$, where $k \leq p \leq n-2$. Furthermore, let

- $\bigcup \{(v_{1}, v_{+1}) \mid p_{+1} \leq n 1\}$
- $\bigcup \{(v_j, v_i) \mid p + 1 \leq i < j \leq n, \neq j 1\}$
- $\bigcup \{ (v_1, v_j) | v \in V_1, v \in V_2 \bigcup \{ (v_n, v_1) \} \{ (v_1, v_n) \}$ (see Fig. 3).

Let $S = \{w_1, v_{i_2}, \dots, w_k\}$, where $i \leq i_1 < i_2 < \dots < i_k \leq n$. If $i_k \leq p$ and $v_1 = v_1 \in S$, then the directed (k+1)-cycle $v_1v_2 \cdots v_k v_nv_1$ is a S-subdigraph. So d(S) = k+1. If $i_k \leq p$ and $v \in S$, then the directed (k+2)-cycle $v_1v_i_1v_i_2 \cdots v_k v_nv_1$ is a S-subdigraph. So d(S) = k+2. Otherwise, let i_j be the smallest subscript satisfying $p < i \leq n$. If $v_1 = v_1 \in S$, then the directed (n-i+j)-cycle $v_1v_1v_2 \cdots v_nv_nv_1$ is a S-subdigraph. So d(S) = k+2. Otherwise, let i_j be the smallest subscript satisfying $p < i \leq n$. If $v_1 = v_1 \in S$, then the directed (n-i+j)-cycle $v_1v_2 \cdots v_{j_{j-1}}v_{i_j}v_{j_{j+1}} \cdots v_nv_1$ is a S-subdigraph. So $d(S) = n-i_j+j$. If $v \in S$, then the directed (n-i+j)-cycle $v_1v_1v_2 \cdots v_{j_{j-1}}v_{i_j}v_{j_{j+1}} \cdots v_nv_1$ is a S-subdigraph. So $d(S) = n-i_j+j$. If $v \in S$, then the directed (n-i+j+j) -cycle $v_1v_1v_1v_2 \cdots v_{j_{j-1}}v_{i_j}v_{j_{j+1}} \cdots v_nv_1$ is a S-subdigraph. So $d(S) = n-i_j+j$. If $v \in S$, then the directed (n-i+j+j) + 1) -cycle $v_1v_1v_1v_2 \cdots v_{j_{j-1}}v_{i_j}v_{j_{j+1}} \cdots v_nv_1$ is a S-subdigraph. So $d(S) = n-i_j+j+j+1$. So we have se_k $(v_1) = \max\{k+1, n-i+j \mid p < i_j \leq n, m \leq j \leq k\} = n-p+k-1$; $se_k(w) = \max\{k+1, k+2, n-i_j+j, n-i_j+j+1 \mid p < i_j \leq n, m \leq j \leq k\} = n-p+k$ for $2 \leq i \leq p$; $se_k(v_{p+1}) = \max\{n-i+j, n-i_j+j, n-i_j < k\} = n-p+k-1$ for $p+2 \leq j \leq n$.

Therefore, $srad_k(T) = n - p + k - 1$ and $sdiam_k(T) = n - p + k$ for any p with $k \le p \le n - 2$, implying that, for any integers n_k , d_k with $k + 1 \le r_k \le n - 1$ and $k + 2 \le d_k \le n$, there exist strong tournaments T' and T'' of order $n \ge 5$ such that $srad_k(T') = r_k$ and $sdiam_k(T'') = d_k$.

Now we will show that, for any integer k with $3 \leq k \leq n-1$, the tournament T of order n satisfying srad_k(T) = n exists.

Lemma 2.2 For any integer k with $3 \le k \le n-1$, there exists a strong tournament T of order $n \ge 4$ such that

$$srad_k(T) = sdiam_k(T) = n.$$

Proof Let $V(T) = \{v_1, v_2, \dots, v_n\}$. And

$$A(T) = \{ (v_i, v_{*-1}) | 1 \leq i \leq n-1 \}$$
$$\bigcup \{ (v_j, v_i) | 1 \leq i < j \leq n, i \neq j-1 \}$$

(see Fig. 4).

For any vertex v_i , let $S_i = \{v_i \mid \bigcup \{v_1, v_n\}, i = 1, 2, \dots, n$. Since $sd(v_1, v_n) = n$, we have $d(S) \ge sd(v_1, v_n) = n$. On the other hand, T has a Hamilton cycle. So $d(S_i) = n$, which implies that $se_3(v_i) = n$, $i = 1, 2, \dots, n$. Hence, $srad_3(T) = sdiam_3(T) = n$.

By the definition of k-strong radius and k-strong diameter, for any k with $4 \le k \le n-1$, $srad_k(T) \ge srad_3(T) = n$, $sdiam_k(T) \ge sdiam_3(T) = n$, And T has a Hamilton cycle. So $srad_k(T) = sdiam_k(T) = n$, for any k with $3 \le k \le n-1$.

By Lemmas 2. 1 and 2. 2, we have the following result.

Theorem 2.3 For any integer k with $3 \le k \le n-1$, there exists a strong tournament T of order $n \ge 4$ such that

$$srad_k(T) = r$$
,

for every r with $k + 1 \leq r \leq n$.

Lemma 2. 1 shows that for any k with $3 \le k \le n-2$, there exists strong tournament T such that $sdiam_k(T) = d$ for any d with $k + 2 \le d \le n$. In the following we show that the strong 1994-2017 China Academic Journal Electronic Publishing House. All rights reserved.

Fig. 3 The strong tournament T. Fig. 4 The strong tournament T.

tournament T with sdiam_k (T) = k + 1 can be found.

Lemma 2. 4 For any integer k with $3 \leq k \leq n-1$, there exists a strong tournament T_n of order $n \geq 4$ such that

$$sdiam_k(T_n) = k+ 1.$$

Proof Let $V(T_n) = \{v_1, v_2, \dots, v_n\}.$

Let T_k , T_{k-1} be the strong tournaments constructed in Lemma 2.2 with $sdiam_{k-1}(T_k) = k$ and $sdiam_k(T_{k-1}) = k+1$.

Now, we construct T_{n+2} from T_n by replacing exactly one vertex of a directed 3-cycle C_3 with a copy of T_n , and for any vertex $v \in V(T_n)$, (v_{m+1}, v) , $(v, v_{m+2}) \in A(T_{m+2})$ (see Fig. 5) for $n \geq k$.

Fig. 5 Strong tournament T₁₊ 2.

Now we will show that for any *i*, *n* with $0 \le i \le k - 2$, n > k, and any k - i vertices of T_n , there is a directed path just containing all these k - i vertices in T_n ; and *sdiam*_k (T_n) = k + 1.

We show it by induction on *n*. When n = k + 1, by the construction of T_{k+1} , for any k - i vertices, there is a directed path just containing all these k - i vertices in T_{k+1} ; and *sdiam*_k (T_{k+1}) = k + 1.

When n = k + 2. By the construction of T_k , for any k - i vertices, there is a directed path just containing all these k - i vertices in T_k . Let $S = \{v_{i_1}, v_{i_2}, \dots, v_{i_{k-i}}\} \subseteq V(T_{k+2})$. If $S \subseteq V(T_k)$, then it is clear that there is a directed path just containing all these k - i vertices in T_{k+2} ; and d_{WW}

 $(S) \leq k$. If S contains only one vertex of $\{v_{k+1}, v_{k+2}\}$, we may assume that $v_{t_{k-i}} = v_{k+1} \in S$, and T_k exists a directed path just containing the vertices $v_1, v_2, \cdots, v_{t_{k-i-1}}$. Then $v_{k+1}P$ is a directed path in T_{k+2} and the directed (k-i+1)-cycle $v_{k+1}Pv_{k+2}v_{k+1}$ is a S-subdigraph in T_{k+2} . So d(S) = k - i+1. If $\{v_{k+1}, v_{k+2}\} \subseteq S$, we may assume that $v_{t_{k-i-1}} = v_{k+1}, v_{t_{k-i}} = v_{k+2}$, and T_k contains a directed path Q just containing the vertices $v_{t_1}, v_2, \cdots, v_{t_{k-i-2}}$. Then $Qv_{k+2}v_{k+1}$ is a directed path in T_{k+2} and the directed (k-i)-cycle $v_{k+1}Qv_{k+2}v_{k+1}$ is a S-subdigraph in T_{k-2} . So d(S) = k-i. Therefore, $se(v_i) = k+1$ for $k \leq j \leq k+2$, which implies $sdiam_k$ (T_{k+2}) = k+1.

Assume that when n = m > k, for any k - i vertices of T_m , there is a directed path just containing all these k - i vertices; and $sdiam_k(T_m) = k + 1$. Consider the strong tournament T_{m+2} constructed from T_m . Let $S = \{w_1, w_2, \dots, w_{k-i}\} \subseteq V(T_m + 2)$. If $S \subseteq V(T_m)$, then by the induction hypothesis, there is a directed path just containing all these k - i vertices in T_{m+2} ; and $d(S) \leq k + 1$. If S contains only one vertex of $\{v_{m+1}, v_{m+2}\}$, we may assume $v_{i_{k-i}} = v_{m+1}$. By the induction hypothesis, T_m exists a directed path P just containing the vertices $v_1, v_{i_2}, \dots, v_{k_{k-i-1}}$. Similar to the case $n = k + 2, v_{m+1}P$ is a directed path just containing the vertex of S in T_{m+2} ; and d(S) = k - i + 1. If $\{v_{m+1}, v_{m+2}\} \subseteq S$, we may assume that $v_{i_{k-i-1}} = v_{m+1}, v_{i_{k-i}} = v_{m+2}$, and T_m contains a directed path Q just containing the vertex of S in T_{m+2} ; and d(S) = k + 2, there is a directed path vertices $v_1, v_2, \dots, v_{k_{k-i-2}}$. Similar to the case n = k + 2, there is a directed path Q just containing the vertex of S in T_{m+2} ; and d(S) = k - i + 1. If $\{v_{m+1}, v_{m+2}\} \subseteq S$, we may assume that $v_{i_{k-i-1}} = v_{m+1}, v_{i_{k-i}} = v_{m+2}$, and T_m contains a directed path Q just containing the vertices $v_1, v_2, \dots, v_{k_{k-i-2}}$. Similar to the case n = k + 2, there is a directed path Q vertices $v_1, v_2, \dots, v_{k_{k-i-2}}$. Similar to the case n = k + 2, there is a directed path Q vertices $v_{i_1}, v_{i_2}, \dots, v_{k_{k-i-2}}$. Similar to the case n = k + 2, there is a directed path Q vertices $v_{i_1}, v_{i_2}, \dots, v_{k_{k-i-2}}$. Similar to the case n = k + 2, there is a directed path Q vertices $v_{i_1}, v_{i_2}, \dots, v_{k_{k-i-2}}$. Similar to the case n = k + 2, there is a directed path Q vertices $v_{i_1}, v_{i_2}, \dots, v_{k_{k-i-2}}$. Similar to the case n = k + 2, there is a directed path Q vertices $v_{i_1} = v_{i_1} = v_{i_1} = v_{i_2} = k + 1$.

Lemmas 2. 1, 2. 2 and 2. 4 give the following result.

Theorem 2.5 For any integer k with $3 \le k \le n-1$, there exists a strong tournament T of order $n \ge 4$ such that

$$sdiam_k(T) = d$$
,

for every d with $k + 1 \leq d \leq n$.

3 A Bound on *k*-Strong Diameter

The *k*-strong diameter of a strong oriented graph is at least *k*. In this section, we present an upper bound on the *k*-strong diameter of a strong oriented graph of order $n \ge 3$.

An ear decomposition of a digraph D is a sequence $X = \{P_0, P_1, \dots, P_r\}$, where P_0 is a directed cycle and each P_i is a directed path or a directed cycle with the following properties

(a) P_i and P_j are arc-disjoint when $\not = j$.

(b) For each $i=1, 2, \dots, r$. Let D_i be the digraph induced by $\bigcup_{i=0}^{i} A(P_i)$. If P_i is a cycle, then it has precisely one vertex in common with $V(D_{i-1})$. Otherwise the end vertices of P_i are distinct vertices of D_{i-1} and no other vertex of P_i belongs to $V(D_{i-1})$.

(c) $\bigcup_{j=0}^{r} A(P_j) = A(D)$.

An ear P_i is trivial if $|A(P_i)| = 1$. In [2], it has been showed that every strong digraph has an ear decomposition $X = \{P_0, P_1, \dots, P_r\}$. We now show that for every S-subdigraph D' of a strong oriented graph, $m(D') \leq 2n(D') - 3$.

2199-2017 China Academic a Strand digraph with respect to a vertex subset S of a strong www.

oriented graph D, where $|S| = k \ge 3$. Then $m(D') \le 2n(D') - 3$.

Proof Let $X = \{P_0, P_1, \dots, P_r\}$ be an ear decomposition of D'. By the minimality of m (D'), Xdoes not contain any trivial ear, and P_0 contains at least 3 arcs. Hence, each P_i , $i = 1, 2, \dots, r$ contains at least one internal vertex, and $r \leq n(D') - |V(P_0)| \leq n(D') - 3$. Let $m_i = |A|$ $(P_i)|$, we can make the following estimate

$$m(D') = \sum_{i=0}^{r} m_i = |V(P_0)| + \sum_{i=1}^{r} (m_i - 1) + r = n(D') + n$$

$$\leq n(D') + n(D') - 3 \leq 2n(D') - 3,$$

where equality only holds if $V(P_0) = 3$ and each P_i , $i = 1, 2, \dots, r$, has length 2.

Theorem 1. 5 gives an upper bound on 2-strong diameter. In the following, we will give an upper bound on k-strong diameter for $3 \leq k \leq n$.

Theorem 3. 2 If D is an oriented graph of order $n \ge 3$, then

sdiamk
$$(D) \leq 2n - 3$$
,

for every k with $3 \leq k \leq n$.

Proof Let $S \subseteq V(D)$ such that $d(S) = sdiam_k(D)$, where |S| = k. Let D' be a S-subdigraph in D with respect to S. By Lemma 3. 1, then

$$sdiam_{k}(D) = m(D') \leq 2n(D') - 3 \leq 2n - 3.$$

References

- Chartrand G, Erwin D, Raines M, and Zhang P. Strong Distance in Strong Digraphs. J. Combin. Math-Combin. Comput., 1999, 31 33-44.
- [2] Bang Jensen, Gutin G. Digraphs Theory, Algorithms and Applications. London Springer, 2000.
- [3] Zhang P, Kalazoo. On k-Strong Distance in Strong Digraphs. Mathematical Bohemica, 2002, 127 557-570.
- [4] Chartrand G. Erwin G, Raines M, Zhang P. On Strong Distance in Strong Oriented Graphs. Congr. Numer., 1999, 138 49- 63.
- [5] Peter Dankelmann, Henda C. Swart, David P. Day. On Strong Distance in Oriented Graphs. Discrete Math., 2003, 266 195-201.

强定向图的 k 强距离

缪惠芳 郭晓峰

(厦门大学数学科学学院,福建厦门 361005)

摘要 对强连通有向图 D的一个非空顶点子集 S, D中包含 S的具有最少弧数的强连通有向子图称为 S的 Steiner子图, S的强 Steiner距离 d(S)等于 S的 Steiner子图的弧数 . 如果 |S| = k, 那么 d(S)称为 S的 k-强距离 . 对整数 $k \ge 2$ 和强有向图 D的顶点 v,v的 k强离心率 $se_k(v)$ 为 D中所有包含 v的 k 个顶点的子集的 k 强距离的最大值 . D中顶点的最小 k强离心率称为 D的 k强半径 ,记为 $srad_k(D)$,最大 k强离心率称为 D的 k-强直径 ,记为 $sdiam_k(D)$. 本文证明了,对于满足 $k + \leq r, d \leq n$ 的任意整数 r, d,存在顶点数为 n的强竞 赛图 T[']和 T^{''},使得 $srad_k(T) = r$ 和 $sdiam_k(T) = d$;进而给出了强定向图的 k-强直径的一个上界 .

关键词 有向图;强距离;强半径;强直径