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On /—Strong Distance in Strong Oriented Graphs
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Abstract For a nonempty vertex set S in a strong digraph D, the strong distance d(S) of S'is
the minimum size (the number of edges) of a strong subdigraph of D containing the vertices of S. If
S conlains k vertices, then d(S) is referred Lo as the k—strong distance of S. For an integer &= 2 and
a vertex v of a strong digraph D, the k—strong eccentiicity se (v) of v is the maximum k-strong
distance d(S) among all sets S of k vertices in D containing v. The minimum k-strong eccentricity
among the vertices of D is the k—strong radius of D srad; (D) and the maximum k-strong eccentricity
is the k—strong diameter of D sdiam; (D). In this paper, we will show that for any integersr,d with
I+ I=r.d=n. there exist strong tournaments T and T" of order n such that srads ( T’): 7 and
sdiamy (T”): d. And we also give an upper bound on the k-strong diameter of strong oriented
graphs.
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1 Introduction

The familiar distance d (1, v) between two vertices u and v in a connected graph G is the
length of a shortest (u,v)-path in G. Equivalently, this distance is the minimum size of a
connected subgraph of G containing u and v. This concept was extended by Chartrand G et al. in
[1] to strong digraphs, in particular to strong oriented graphs. We refer to [2] for graph theory
notation and terminology not described here.

A digraph D is strongly connected if for every pair u, v of distinct vertices of D, there is
both a directed (u,v)—path and a directed (v,u)—pathinD. 4 digraph D is an oriented graph if
there is no cycle of length two. In this paper, we will be interested in strong oriented graphs.
The underlying graph of a strong oriented graph is necessarily 2-edge connected.

Let D be a strong oriented graph. The order and size of D are denoted by n( D) and m (D).
For two verticesu and v of D, the strong distance sd (u, v) between u and v is the minimum size

of a strong subdigraph of D containing u and v. A(u,v)—geodesic is a strong subdigraph of D of
size sd (u,v) containingu and v. If@## v, then 3=~sd(u,v)=m(D). 4 strong oriented graph D
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is a strong (u,v)-path, if there is no proper strong subdigraph of D containing u and v. An
oriented graph D is simply called a strong path, if D is a strong (u.v) —path for some pair u,v of
vertices of D. We note that a (#,v) —geodesic is a strong (u,v) —-path, while a strong (u,v) —-path
need not be a (u, v)—geodesic. Chartrand G et al. have made some elementary observation
concerning strong paths and gave the following properties in [1].

Theorem 1. 1 [1]If D is a strong (u,v)-path, then D contains a unique directed (u,v)—
path and a unique directed (v,u) —path.

Theorem 1.2 [1]1If D is a strong path of order = 3 and sizem, then

_m -5
n-1 3

For a nonem pty vertex set S in a connected graph G, the Steiner distance d(S) of S is the
minimum size of a connected subgraph of G containing S. This concept was extended to strong
digraph by Zhang Petal in [3]. Fora nonempty vertex set Sin astrong digraph D, the strong
Steiner distance d(S) was defined by Zhang Pet al. as the minimum size of a strong subdigraph
of D containing S. They also referred to such a subdigraph as a Steiner subdigraph with respect
to S, or, simply, S-subdigraph. Since D itself is strong, d(S) is defined for every nonem pty
vertex set S of D. Ifl SI= k, then d(S) is referred to as the k-strong Steiner distance (or simply
k—strong distance) of S. Thus, 3=d (S)=m(D), for each vertex set Sin a strong digraph D
with | 8= 2 When k= 2, the 2-strong distance is the strong distance studied in [ 1, 4]. For
example, in a strong oriented graph D of Fig. 1, let $i= {s,v.x}, &= {v.x,z}, 8= {s.x.y}.
Then the 3-strong distance of S1, 82 and S3 are d(S1)= 3,d(S2)= 4 and d(S3)= 5, respectively.

It was showed in [3] that k—strong distance satisfies an extension of triangle inequality.

Theorem 1. 3 [3] For an integer &= 2, let Si, S2 and S be vertex sets in a strong oriented
graph with | S| = & for T=i=3. If SC StJ S3and S) S5~ &, then

d(S)=d($)+ d(S).
Letv be avertex of astrong oriented graph D of order 2= 3 and let k be an integer with 2=
K=n. The k-strong eccentricity sé (v) is defined by
ser(v)= max{d(S) € =V (D).l s = k).
The k-strong diameter sdiamx (D) is
sdiam+ (D)= max {set(v)| V€ V(D)};
while the k—strong radius sradk (D) is defined by
sradr (D)= min{se:(v) € V(D) };

The 3-strong eccentricity of each vertex of a strong oriented graph D is showed in Fig. 2.
Thus, srads (D)= 8 and sdiam3 (D)= 12

For any integer 2, the k-stro ng radius and k—strong diameter of a strong oriented graph
satisfy the following familiar inequality.

Theorem 1. 4 [3] Let &= 2 be an integer. For every strong oriented graph D,

srade (D)= sdiamk (D)= 2sradx (D).
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Fig. 1 A strong oriented graph D. Fig. 2 A strong oriented graph D with
srad3(D)= 8 and sdiam3(D)= 12.

In [4], Chartrand G et al. showed that, for any integersr,d with 37~k 1and 3~d—
2%+ 1, there exist strong tournaments T' and 7' of order 2% 1 such that Sradz(T/)z r and
sdiam2 ( TH)= d. Dankelmann Pet al presented an upper bound on the strong radius of a strong
oriented graph D of order n as srad-> (D)=n'in [5]. In [1], Chartrand G el al. gave an upper
bound on the strong diameter of a strong oriented graph D as following.

Theorem 1.5 [1]1If D is a strong oriented graph of order = 3, then

sdiam> (D)= [5(n- 1) /3].

In this paper, we shall make some observation concerning the k—strong distance of strong
tournament T of order n. First we will show that for any integersr,d with &+ lgr,dgn , there
exist strong tourmnaments T'and T", such that srady ( T/) = 7 and sdiam ( T”) = d. And we also
give an upper bound on the k—strong diameter sdiam« (D) for =f=n.

2 The k-Strong Distance of Strong Tournaments

In this section, we consider strong tournaments of order n= 4 Since every strong
tournament 7 is hamiltonian, clearly, = sradi (T)=sdiams (TY=n for Z=F~n. Whenk= 2, it
has been studiedin [4]. Whilek= n, it is clear thatsrad: (T)= sdiam.(T)= n. In the following,
first we shall consider thek-strong distance for 3=k=n- 2

Lemma 2 1 For any integer k with 3~k=n- 2, there exist strong tournaments 7 and T’
of order =5 such that

sradi (T')= ¢ and sdiam: (T )= d,

where 7, di are integers with k+ =rc=n— 1 and bt 2=di=n.

Proof For a given k=3, we now construct a strong tournament T of order n such that
sradi ( T)= n— p+ k- 1 and sdiamc( T)= n— p+ k for allp with k=p=n- 2

Let V(T)= {vi,v2,-- ,w}. We partition the vertex set of T into two subsets Vi= {vi,v2,
v tand V2= {vpr 1,000 s ), wherekgjgn— 2. Furthermore, let

A(T)= {(v.v)] =i <ji=p)
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U (o )l pr =i=n- 1)
U {(v/',w)‘p+ Si<j§n,%ﬁj— 1}
U {((v.v)vE Vi,w€ 12 {(mov) )= {(viova))  (see Fig. 3).

Let S= {v,, vi,»** »w, }, where =i <p < <i=n. Ifﬂcép and vi= w,€ S, then the
directed (/& 1)—cycle viviy-- vivaviis a S—subdigraph. Sod(S)= & 1. If i==p and v€ S, then
the directed (/& 2)-cycleviviviy-- vi,vavi is a S—subdigraph. Sod(S)= k+ 2 Otherwise, leti; be
the smallest subscnpt satisfying p < i=n. If vi= vwE S, then the directed (n— i+ j)-cycleviw,

Vi vivi, - wviis a S-subdigraph. So d(S)= n- it . If vi€ S, then the directed (n— i j
+ 1) —cycle viviviy-- v vivi, - wvi is a S-subdigraph. So d(S8)= n- i+ j+ 1. So we have se

(v1)= max{k+ 1, n— ir j|p <l/< = '<k}— n—p+t k= L se(vi)= max{k+ 1, i+ 2, n-
i+ j, n— i+ j+ ﬂp<l] S ~k}=n- p+ k for ﬁlgp, sa (v 1)= max{n— i j, n— i
+ 4 U p<ic=n, E=j=k)=n- p+ k; sa(v;)= max{n—i# j, n—i+ j+ 1 p<i=n, I=j=
k)= n- p+ k- 1 for pr 2=j=n

Therefore, sradi( T)= n— p+ k- 1 and sdiam«( T)= n— p+ k for any p with képén— 2,
implying that, for any integers i, di with b+ I=r=n—- 1 and k+ 2=di=n, there exist strong
tournaments T and T of order n= 5 such that Si'adk(T/): 7e and Sdiamk(T”): de. 0

Now we will show that, for any integer k& with 3=f=n- 1, the tournament T of order 7
satisfying sradx (T)= n exists.

Lemma 2. 2  For any integer k with 3= k=n- 1, there exists a strong tournament 7 of
order 7= 4 such that

srade (T)= sdiamc (T)= n.
Proof Tet V(T)= {vi,v2,>* ,m}. And
A(T)= {(v,vi 1) =i=n- 1)
U {(w.w)l E=i</=ni# j- 1)

(see Fig. 4).

For any vertex vi, let Si= {(wlJ {vi,w},i= 1,2,-- ,n. Sncesd (vi, w)= n, we have d
(S)zsd(vl,w)= n. On the other hand, 7 has a Hamilton cycle. So d(Si)= n,which implies
that ses(vi)= n,i= 1,2,-- ,n. Hence, srads(T)= sdiams(T)= n.

By the definition of k—strong radius and k—strong diameter, for any k with 4=k=n- 1,
srade ( T)=srads (T)= n, sdiamc( T)= sdiam>(T)= n, And T has a Hamilton cycle. So sradk
(T)= sdiam:(T)= n, for any k with 3~j=n- . 0

By Lemmas 2. 1 and 2 2, we have the following result.

Theorem 2. 3 For any integer k with 3=k=n— 1, there exists a strong tournament T of
order = 4 such that

sradi (T)=r,
for every r with &t = =~n. [

Lemma 2. 1 shows that for any k with 3=k=n—- 2, there exists strong tournament T such

that sdigmi (T)= . d for any d with k+ 2=d=n, In the following we show that the strong
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Fig. 3 The strong tournament 7. Fig. 4 The strong tournament T.

tournament T with sdiam«(T)= k+ 1 can be found-

Lemma 2 4 For any integer k with 3= &=n— 1, there exists a strong tournament T» of
order = 4 such that

sdiame (Tn)= k& 1.

Proof Let V(Ti)= {vi,v2,-- ,w}.

Let Tt, Tk 1 be the strong tournaments constructed in Lemma 2 2 with sdiamr1( Tk) = k
and sdiams( T 1)= &+ 1.

Now, we construct Tw 2 from 7, by replacing exactly one vertex of a directed 3—cycle Cs

with a copy of T, and for any vertex v& V(T»), (vw 1,v), (v,v= 2)& A( T+ 2) (see Fig. 5) for

n= k.
//. Ver {

Tuiz .
) \' Vrfzj

i
Fig. 5 Strong tournament T« 2.

Now we will show that for any i, n with 0=i=k- 2,n> k, and any k— i vertices of T,
there is a directed path just containing all these k— i vertices in Tn; and sdiame ( Tn)= &+ 1.

We show it by induction on n. When n= k+ 1,by the construction of T 1, for any k- i
vertices, there is a directed path just containing all thesek— i verticesin Tt 1; and sdiami ( Tk 1)
=k L

When n= k+ 2. By the construction of Tk, for any k— i vertices, there is a directed path
just containing all these k— i vertices in Tk. Let S= {v v, vy &=V (Tw2). K S V(Ti),

then itis ¢lear that thereis a directed path just containing all these k=i vertices in Tk 2; and d
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(S)ék. If S contains only one vertex of {w 1,1 2}, we may assume that vi_,= v € S, and

Tk exists a directed path just containing the vertices v, v,,"** ,v4_, . Then w 1 P is a directed
pathin 7k 2 and the directed (k= i+ 1) cycle w 1 Pus 2+ 1 is a S—subdigraph in Tk 2. So d(S)
=k-& L. If{w 1,ve2)= S, we may assume that v . = V& 1,%,_,= V& 2, and Tk contains a

directed path Q just containing the vertices vi, ,vi, -+ ,,_,_,. Then Ows 2w 1 is a directed path in
T+ 2 and the directed (k= i) —cycle v 1 Qv 2k 1 ia a S—subdigraph in Tk 2. So d(S)= k- i.
Therefore, s (vi)= k 1 for =~k 2, which implies sdiamr ( T 2)= J& 1.

Assume that when n= m> k, for any k— i vertices of Tn, thereis a directed path just
containing all these k— i vertices; and sdiam« (Tn )= k+ 1. Consider the strong tournament T+ 2
constructed from Tn. Let S= {w, ,v,,=- ;v = V(Tm 2). If S V(Tn), then by the induction
hypothesis, thereis a directed path just containing all these k— i vertices in T+ 2; and d(S) =k
+ 1. If S contains only one vertex of {vm: 1,V 2}, we may assume v;,_ = v 1. By the induction
hypothesis, Tn exists a directed path P just containing the vertices v, ,vi,,"*- , v,_,_,. Similar to
the case n= k+ 2,vm 1P is a directed path just containing the vertex of S'in Tw 25 and d(S)= k
- 1. K {vm 1,02} S, we may assume that vi_._ = Vm 1,V,_,= Vm 2, and Tw contains a

directed path O just containing the vertices v, , v, ,-** , Similar to the case n= & 2, there

e s -
is a directed path Qws+ 2vm 1 just containing thevertex of S in 7w 25 andd (S)= k- i. Hence, sex
(vi)=k+ 1for I==j=m+ 2, which implies sdiani ( Tn: 2)= k+ 1. L]
Lemmas 2. 1,2. 2 and 2. 4 give the following result.
Theorem 2 5 For any integer k with 3=~f=n- 1, there exists a strong tournament T of
order 7= 4 such that
sdiami ( T)= d,
for every d with b+ I=d=n. U

3 A Bound on k-Strong Diameter

The k-strong diameter of a strong oriented graph is at least k. In this section, we present an
upper bound on the k—strong diameter of a strong oriented graph of order = 3.

An ear decomposition of a digraph D is a sequence X= {Po, Pi, ---, P.}, where Po is a
directed cycle and each P:is a directed path or a directed cycle with the following properties

(a) Pi and Pj are arc—disjoint when 7 J-

(b) For each i= 1,2, .z Let Di be the digraph induced byU » 04 (P;). If Pi is a cycle,
then it has precisely one vertex in common with V' (Di- 1). Otherwise the end vertices of Pi are
distinct vertices of Di- 1 and no other vertex of Pi belongs to V(Di- 1).

(VU f- 0A(P))= A(D).

Anear Piis trivial if | 4(P)l= 1. Tn [2], it has been showed that every strong digraph has
an ear decomposition X% {Po,P1,-- ,P-}. We now show that for every S-subdigraph D' of a
strong oriented graph, m (D/)g Qn(D/)— 3.

Lemma 3.1 Tet D bea S—subdigraph with, respect to a vertex: subset S of, a strong
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oriented graph D, where | sl = /= 3. Then m(D/)é 2n(D/)— 3.
Proof Let X {Po, Pi, ", Pr} be an ear decomposition of D. By the minimality of m
(D/ ), Xdoes not contain any trivial ear, and Po contains at least 3 arcs. Hence, each Pi, i= 1,2,
© ,r contains at least one internal vertex, and rén(D,)— | V(PO)‘ én(D/) -3 Letmi=|4

(P))| , we can make the follow ing estimate

r r

m(D/)=ZFJOmi: | V(po)|+21(mi— )+ r=n(D)+ r
=n(D'W n(D)- =20(D)- 3,
where equality only holds il V(Po)| = 3 and each Pi,i= 1,2,--- ,r, has length 2. ]

Theorem 1. 5 gives an upper bound on 2-strong diameter. In the following, we will give an
upper bound on k-—strong diameter for =f=n.
Theorem 3.2 If D is an oriented graph of order = 3, then
sdiamk (D)= 2n— 3,
for every k with 3=k=n.
Proof Let S= ¥ (D) such that d(S)= sdiam: (D). wherel S| = k. Let D bea S-
subdigraph in D with respect to S. By Lemma 3. 1, then
sdiami (D)= m(D' =20 (D)~ 3= - 3. O

References

[1] Chartrand G, Erwin D, Raines M, and Zhang P- Strong Distance in Strong Digraphs. } Combin. Math.
Com bin. Com put. , 1999,31 33— 44.
Bang Jensen, Gutin G. Digraphs Theory, Algonthms and Applications. Londorr Springer, 2000.

[3] Zhang P, Kalazoo. On k-Strong Distance in Strong Digraphs. Mathematical Bohemica, 2002, 127 557-
570.

[4] Chartrand G- Erwin G, Raines M, Zhang P. On Strong Distance in Strong Orented Graphs. Congr
Numer. , 1999, 138 49- 63.

[5] Peter Dankelmann, Henda C. Swart, David P. Day. On Strong Distance in Oriented Graphs. Discrete
Math. , 2003,266 195- 201.

ZRF  FRE
( s 361005)
D S,D S
S Steiner S Steiner d(S) S Steiner . IS =k, d(S) S k-
k2 2 D Vv,V k— sa(v) D v k
k- . D k- D k- s srady (D), k- D
k- s sdiam, (D). s e+ lgr,dgn r,d, n

/ " ! "

T T, sradi(T )= r  sdiame (T )= d; k-

2 ’ ’



