RAPD 分析在绢丝昆虫亲缘关系研究中的应用 I. 蓖麻蚕品种间的遗传差异

左正宏1,桂慕燕2,王学民2,陈元霖2

(1. 湖南省岳阳卫生学校,岳阳 414000;2. 福建省厦门大学生物学系,厦门 361005)

摘 要:用 RAPD 技术对蓖麻蚕基因组 DNA 进行多态性研究,分析了 5 个蓖麻蚕品种间的遗传差异。结果表明, 所采用的 40 个随机引物中,有 27 个引物扩增谱带清晰且重复性较好,扩增总片段数达 243 个,单个引物的扩增片段数在 4~17 之间,平均为 9条,片段大小在 0.33~3.0kb 之间。不同蓖麻蚕品种间的遗传距离(D)在 0.0683~0.1603 之间,根据 D 值,由 UPGMA 聚类分析软件绘制了它们的聚类分子树。

关键词:蓖麻蚕;RAPD;品种差异

中图分类号: Q963

文献标识码:A

文章编号:0253-9772(2001)02-0128-03

Application of RAPD Technique in Genetic Relationship Study of Silk Insect

I. Genetic Variance in Eri Silkworm

ZUO Zheng-hong¹, GUI Mu-yan², WANG Xue-min², CHEN Yuan-lin²
(1. Yueyang Heath School of Hunan, Yueyang 414000; 2. Dept. of Bio. Xiamen University, Xiamen 361005, China)

Abstract: Random amplified Polymorphic DNA (RAPD) was used to analyze the genetic diversity among eri sickworm. The genetic variance of five erisickworm was studied. The result showed that: 27 of 40 arbitrary primers could amplify clearly with repeatable bands .243 fragments were obtained. Each primer gave $4 \sim 17$ bands and the average was 9. The length of the band was $0.33 \sim 3.0$ kb. The genetic distance (\mathcal{D}) value between different breeds of Eri Silkworm was 0.0683 ~ 0.1603 . The \mathcal{D} value was used to construct a dendrogram by UPGMA.

Key words: eri silk worm; RAPD; genetic variance

蓖麻蚕(Philosamia cynthia ricini Boisduval)原产于印度东北部,20世纪50年代初引入我国试养和研究,自引种试验以来,科学工作者根据幼虫血液、皮色和斑点作为繁殖原种蓖麻蚕的标志,凭这些肉眼能辨认的性状进行分离、纯化,培育出了许多蓖麻蚕品种^[1]。蓖麻蚕与家蚕及柞蚕为我国生产天然丝的三大蚕种。作为已开发利用的非桑蚕资源,蓖麻蚕还具有一些家蚕所不及的优良经济性状:食性广、生长快、个体大、抗逆性强等。关于蚕类的RAPD研究,目前国内外多限于家蚕^[2-5],对非桑蚕

的文献报道则较少见。本研究利用我们已建立的蚕类基因组 DNA 的 RAPD 检测技术^[6,8],对蓖麻蚕不同品种的基因组 DNA 进行多态性分析,以作为种质资源保存、鉴定和利用的分子生物学依据。同时也为今后寻找品种特征分子标记作前期工作。

1 材料和方法

1.1 材料

5 个品种的蓖麻蚕由中国农业科学院蚕业研究 所吴冬秀研究员提供。其性状特征见表 1。

收稿日期:2000-04-04;修回日期:2000-09-06

基金项目:国家自然科学基金资助项目(批准号 39870410)

作者简介:左正宏(1973 -),男,汉族,安徽贵池人,硕士学位,讲师,专业方向:动物遗传学

通讯作者:陈元霖(1934 -),男,福建莆田人,副教授,专业方向:动物遗传学。Tel:0592 - 2187494,E-mail:guimuyan@263.net

表 1 蓖麻蚕各品种的性状特性

Table 1 The varietal character of Eri silkworms

品种、	品种类型	血色	茧色	幼虫斑纹
镇萬3	杂交越冬种	黄血	蓝皮	无斑
镇萬4	低温驯化种	黄血	白皮	无斑
镇萬6	低温驯化种	黄血	白皮	无斑
镇萬 9	异地杂交种	黄血	白皮	有斑
镇萬 10	引进越冬种	白血	白皮	一 无斑

1.2 基因组 DNA 的提取

蚕类基因组 DNA 的提取根据本实验室已建立和应用的方法^[6],取早期蚕蛹,在预冷的 1×SSC中,捣碎匀浆,3000r/min 离心 15 min,弃上清,用 1×SSC 反复漂洗沉淀,去除部分蛋白质及脂肪等杂质,直至上清液清澈。称取沉淀部分,按 1 ml/g 加提取缓冲液,混匀后加入蛋白酶 K至 200μg/ml。50℃消化 24h后,加 5M 的 KAc 至终浓度为 1.3 M,冰浴 20 min,加等体积的氯仿:异戊醇(24:1)摇匀,8000r/min 离心 20 min 去蛋白。取上相,以 2 倍体积预冷的无水乙醇沉淀 DNA,再用 70% 乙醇洗涤并稍干后,溶于适量的 TE 缓冲液,再经 RAN酶、蛋白酶 K处理,酚、氯仿抽提,异丙醇沉淀,溶于 TE 中, -20℃保存。样品经紫外检测和琼脂糖凝胶电泳检测,A₂₆₀/A₂₈₀介于 1.69~1.81 之间,分子量在 50kb以上。

1.3 PCR 反应

引物为美国 Operon 公司出品的试剂盒,标号为 OPI-01 至 OPI-20 和 OPW-01 至 OPW-20 共 40 个。在 25μl 的 PCR 反应液中,含有 1U Taq 酶 (Promega)、约 5pmol 引物、100μmol /L dNTP、约 25ng 的基因组 DNA。反应混合物用石蜡油覆盖。PCR 反应程序:94℃变性 5s,36℃复性 30s,72℃延伸 60s,共40 个循环,最后在 72℃延伸 5min。RAPD 产物经 1.4%的琼脂糖凝胶电泳分离,溴化乙锭染色后于多色荧光凝胶成像仪上成像及数据处理。

1.4 数据分析

任何两个样本之间的遗传距离(D)的计算可以通过以下公式: D=1-F。 F 为两个样本 RAPD 标记的共享度,计算公式为 $F=2N_{xy}/(N_x+N_y)$,在此, N_{xy} 是样本 x 和样本 y PCR 扩增分子量相同的 DNA 片段总数, N_x 和 N_y 分别是样本 x 和样本 y PCR 扩增 DNA 片段的总数。根据遗传距离(D),利用 UPGMA (unweighted pair group method with

arithmetic mean)[7]聚类分析方法构建分子系统树。

2 结果与讨论

2.1 RAPD 扩增结果

我们采用了 40 个 10bp 的随机引物进行 PCR 扩增,对其中扩增谱带清晰、重复性较好的 27 个引物进行数据统计,其碱基序列及扩增结果见表 2。

表 2 RAPD 引物及其 PCR 扩增情况

Table 2 The primes of RAPD and the amplification of PCR

引	物	序列	RAPD 标记总数	RAPD 标记可变数	多态百分率
OP	I01	ACCTGGACAC	9	3	33.33
OP	I02	GGAGGAGAGG	10	3	30.00
OP	I03	CAGAAGCCCA	7	0	0
OP	106	AAGGCGGCAG	9	3	33.33
OP	107	CAGCGACAAG	13	4	30.77
OP	109	TGGAGAGCAG	5	0	0
OP	110	ACAACGCGAG	9	4	44.44
OP	I11	ACATGCCGTG	10	2	20.00
OP	I13	CTGGGGCAGA	8	1	12.5
OP	I14	TGACGGCGGT	11	4	36.37
OP	I19	AATGCGGGAG	9	4	44.44
OP	I20	AAAGTGCGGC	17	9	52.94
OP	W 01	CTCAGTGTCC	8	6	75.00
OP	₩03	GTCCGGAGTG	5	4	80.00
OP	W05	GGCGGATAAG	7	4	57.14
OP	W06	AGGCCCGATC	11	4	36.37
OP	W08	GACTGCCTCT	9	5	55.56
OP	₩09	GTGACCGAGT	8	4	50.00
OPV	W 10	TCGCATCCCT	12	5	41.67
OP	W11	CTGATGCGTG	10	5	50.00
OPV	W12	TGGGCAGAAG	14	5	35.71
OPV	W13	CACAGCGAGC	7	3	42.86
OPV	W 15	ACACCGGAAC	7	1	14.29
OPV	W 16	CAGCCTACCA	4	0	0
OPV	W 17	GTCCTGGGTT	6	2	33.33
OPV	W 18	TTCAGGGCAT	9	2	22.22
OPV	W 19	CAAAGCGCTC	9	2	22.22
合	计		243	89	

根据 27 个引物的扩增谱带进行分析, 27 个引物扩增谱带总数为 243 条,每个引物的扩增所得的条带数平均为 9 条,变动范围在 4~17 之间。这些DNA 片段的分子量在 330bp~3000bp之间。和我们以前的结果相比较^[6,8,9],其 RAPD 图谱的重复性较好,带型基本相符。图 1 为引物 OPW - 01、OPW - 08 的电泳图谱。由此表明, 在各种实验条件稳定,采用同一 PCR 扩增仪时,可获得重复性较好的结果。

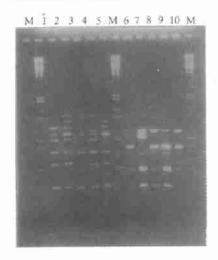


图 1 引物 OPW-08(1~5)、
OPW-01(6~10)的 RAPD 图谱
1,6:镇麓 10;2,7:镇鹿 9;3,8 镇鹿 6;
4.9:镇麓 4;5,10:镇麓 3;
M:\(\lambda\)DNA - EcoRI/Hind III。
Fig. 1 The RAPD pattern of

Opw-08(1~5),OPW-01(6~10)

2.2 品种间的遗传多态性和 UPGMA 聚类

五个品种间的遗传距离(D)见表 3。根据 D 值,由 UPGMA 聚类分析软件绘制的分子进化树见图 2。

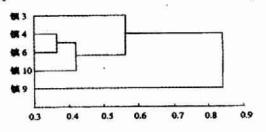


图 2 萬麻蚕品种间聚类分子树 Fig. 2 The dendrogram by UPGMA of Eri Silkworm

表 3 蓖麻蚕品种间的遗传距离(D)

Table 3 The genetic distance between different breeds of Eri Silkworm

V	镇萬3	镇萬4	镇蔥6	镇萬9	镇蒐 10	
镇萬3	214					
镇萬4	0.1046	197				2
镇蔥6	0.0726	0.0683	213			
镇蔥9	0.1463	0.1603	0.1491	196		
镇第10	0.0773	0.0730	0.0702	0.1364	200	

对角线上数字为每个品种的 RAPD 扩增总带数。

蓖麻蚕五个品种间存在大量的共有片段,它们 之间 D 值均很小,在 0.0683 ~ 0.1603 之间。考虑 到蓖麻蚕原产于印度,1951 年和引入我国,它的地 域隔离和分化只有四十几年,本文所用的品种又同 来源于镇江,其遗传分化甚小应是合理的。这五个 品种又以镇重 9 与其它品种的遗传分化稍大(见图 2),这也和它们的表型性状相吻合。

参考文献(References):

- [1] 张 果.蓖麻蚕种选育[M].北京:科学出版社,1959,3.
- [2] 翁宏庵,徐孟奎,张耀洲,家蚕的 RAPD 及其品种(系)间差异。
 [1].浙江农业大学学报,1996,22(2):152~156。
- [3] 夏庆友,等.家蚕 RAPD 的扩增条件、重复性及遗传模型研究。
 [J].蚕业科学、1996,22(1):20~25.
- [4] 夏庆友,周泽汤,等.家蚕 Y. NI 基因和 Z 染色体的 RAPD 分子标记研究[J].西南农业大学学报,1996,18(2):114~118.
- [5] 夏庆友,周泽汤,鲁 成,等.家蚕不同地理品种(系)分子系统 学研究[J].昆虫学报,1998,41(1):32~40.
- [6] 刘春宇,陈元霖,桂嘉燕,等.家蚕与蓖麻蚕杂交后代变异机制 探讨——基因组 RAPD 检测[J].遗传,1998,20(2):5~8.
- [7] Sneath P H A, et at. Numerica Taxonomy [M]. San Francisco, 1973.
- [8] 张春玲, 陈元霖, 桂嘉燕, 等. 蓖麻蚕 DNA 导人引起家蚕遗传 变异的研究——基因组 DNA 的 RAPD 检测[J].遗传, 1998, 20 (3):1-4.
- [9] 桂驀蕪,左正宏,陈元霖.五种網丝昆虫随机扩潜多态性 DNA 分析[J].遗传,2001,23(1):25~28.

中国生物工程学会第三次代表大会暨学术讨论会即将召开

[本刊讯] 中国生物工程学会第三次代表大会暨学术讨论会定于 2001 年 6~7 月在北京召开,大会主题是 21 世纪初的中国生物技术。会议将邀请知名专家就生物技术重大和热点问题作大会报告,并组织若干专题研讨会,具体安排见正式通知。欢迎参加征文和报名参加会议。征文摘要限 1200 字,请以纯文本形式寄送,不得作为附件。

联系地址:北京中关村科学院南路8号 中国生物工程学会办公室(100080)

电 话:010-62562548(传真),010-62534585

电子信箱: biotech@ mail.las.ac.cn