4,4,4三氟3(吲哚3)丁酸和吲哚丁酸对水稻和莴苣幼苗种子根长度 及侧根原基发生的影响

¹(「南京农业大学农学系植物激素研究室、南京 210095; ²厦门大学生命科学学院、厦门 361005)

提要 适宜浓度的 TFIBA 显著促进了莴苣和水稻初生种子根的伸长生长, 抑制了水稻种子根侧根原基的发生, 但对莴苣侧根 原基的发生无任何作用,对根顶端优势的调控与IBA 相反。

关键词 TFIBA: IBA: 根的伸长生长: 侧根原基

The Effects of TFIBA and IBA on Seminal Root Length and Initiation of Lateral Root Primordial of Rice and Lettuce Seedlings

ZHANG Hong Xin^{1,2}, ZHOU Xie¹ (¹Laboratory of Plant Hormones, Department of Agronomy, Nanjing Agricultural University, Nanjing 210095; ² The School of Life Science, Xiamen University, Xiamen 361005)

Abstract The effects of 4, 4, 4 trifluore 3-(indole 3-) butyric acid (TFIBA) and indole 3-butyric acid (IBA) on the growth of primary roots and the genesis of lateral root primordial (LRP) were investigated. It was found that TFIBA at range of 0.001 ~ 10 \(\mu\moderapsilon\) inhibited the initiation of LRP while promoted the growth of primary roots of rice seedlings, whose effect was contrary to that of IBA. TFIBA at range of 0.1~ 100 \(\mu\modernight\) mol* L-1 also promoted the growth of lettuce seedlings while did not exhibit any promotive effect on the initiation of LRP. **Key words** TFIBA; IBA; root growth; lateral root primordial

由于氟代生理活性物质常常起着模拟或阻断的 作用, 以及多种氟代化合物已广泛应用于医学和农 业生产实践[1]。因此 Katayama 等[2]用 CF3取代吲 哚丁酸(indole-3-butyric acid, IBA) C3原子上的 H, 合成了 4, 4, 4 三氟 3 (吲哚 3) 丁酸 (4, 4, 4 trifluore-3-(indole-3-) butyric acid, TFIBA),

IBA 抑制根的伸长生长, 而促进侧根原基的发 生,在根的顶端优势的调控中起着非常重要的作用。 作为 IBA 类似物的 TFIBA, 对根的顶端优势的影响 如何,尚少见报道。为此,我们进行了以下实验。

材料与方法

莴苣(Lactuca sativa)品种"白尖叶"种子浸泡6 h之后,放在填有两层滤纸的培养皿中 20℃催芽。 露白后,播于固定在装有 1/2H oagland 营养液容器 的湿纱布上,在 20℃、每天光照 12 h 的条件下培养。 根长至 1.5 cm 左右时, 挑选生长一致的幼苗, 用 T FIBA (0.1, 1.0, 10.0 和 100.0 μmol·L⁻¹)或 IBA (0.1、1.0、2.5 和 10.0 µmol·L⁻¹) 浸泡种子根 72 h, 然后测量种子根的长度,并在显微镜(放大50倍)下 观察经 Schiff 试剂染色后的侧根原基, 计算侧根原 基的密度。

0.1%的 HgCl₂消毒后, 浸种 24 h。催芽至露白时, 播于含有 T FIBA (0.001、0.01、0.1、1.0 和 10.0 μmol• L⁻¹) 或 IBA(0. 001, 0. 01, 0. 1 和 1. 0 μmol• L⁻¹)的琼脂培养基上(0.4%), 然后置于 25℃、每 天光照 12 h 条件下培养 6 d, 测量种子根的长度, 并 在显微镜下(放大 50 倍)观察经 TTC 染色后的侧根 及侧根原基,并计算单位厘米侧根及其原基的数目。

莴苣种子根侧根原基的染色按 Schiff 法^[4]。

水稻种子根侧根原基染色用 TTC 法, 其步骤 为: 将稻根浸入 0.4% 的 TTC 溶液中反应 2~3 h 后,取出根,抽气 20 min,用蒸馏水冲洗几次后用 10%的HCl解离10mim,再用10%的甘油透明,最 后在放大 50 倍的解剖镜下观察侧根原基。

实验结果

如表 1 所示, 0. 1~ 100. 0 μmol• L⁻¹的 T FIBA 显著促进莴苣种子根的伸长生长,浓度越大,其促进 效应越显著,至 100.0 µmol·L-1时,种子根长度比 未作处理的增加 63.7%。IBA 与 TFIBA 的作 用相反,在浓度为 $1.0\mu \text{mol} \cdot \text{L}^{-1}$ 时就显著抑制了

修定 2003-02-19

水稻(分介汉zahsativa) 品种"汕优 63"种子以 which have a secured. http://www.cnki.net

种子根的生长。

TFIBA 也显著促进水稻种子根的伸长生长,而且水稻种子根比莴苣的对TFIBA 更敏感。如 10.0 μ_{mol} L⁻¹的 TFIBA 对稻种子根的促进作用达到最高值,超过此浓度,促进效应减弱,而 TFIBA 在 100.0 μ_{mol} L⁻¹时,对莴苣种子根伸长生长的促进效应才达最大值(表 1)。

表 1 TFIBA 和 IBA 对水稻和莴苣幼苗种子根长度的影响

Table 1 The effects of TFIBA and IBA on seminal root length of rice and lettuce seedlings

	The and return securings					
	浓度/μmol• L- 1 -	种子根长度/ cm				
	Wisch mor E	水稻	莴苣			
TFIBA	0	2. 83 ± 0. 44 3. 75 ±				
	0.001	2.91 ± 0.11	_			
	0.01	2.94 ± 0.19	_			
	0. 1	4.21 ± 0.14	4. 25±0. 24			
	1.0	6.67 ± 0.67	4.43±0.39			
	10	8.56 ± 1.18	5. 27±0. 40			
IBA	100	4.26 ± 0.16	6. 14±0. 15			
	0	2.83 ± 0.44	3.75±0.33			
	0.001	2.35 ± 0.23	-			
	0.01	1.81 ± 0.17	-			
	0. 1	1.91 ± 0.25	3.62±0.26			
	1.0	1.46±0.11	2. 95±0. 27			
	2. 5	-	2. 54±0. 23			
	10. 0	-	2. 65±0. 21			

TFIBA 促进水稻种子根伸长生长的同时, 还显著抑制水稻种子根的侧根原基发生, 其浓度越大, 抑制效应越明显, 至 $10.0\,\mu\text{mol} \cdot \text{L}^{-1}$ 时, 侧根原基密度仅为未作处理的 10.7%。与 TFIBA 的作用相反, $0.01 \sim 1.0\,\mu\text{mol} \cdot \text{L}^{-1}$ IBA 显著促进种子根侧根原基的发生(表 2)。

T FIBA 对莴苣种子根侧根原基的发生没有显著作用, 即使浓度高达 $100.0~\mu \text{mol} \cdot \text{L}^{-1}$ 。而 $0.1 \sim 10.0~\mu \text{mol} \cdot \text{L}^{-1}$ 的 IBA 即显著促进了莴苣种子根侧根原基的发生(表 2)。

讨 论

本文结果显示, IBA 的氟代化合物 TFIBA 显著促进莴苣和水稻种子根的伸长生长, 抑制水稻种子根侧根原基的发生, 但对莴苣种子根侧根原基的发生无明显作用。 TFIBA 和 IBA 对根的顶端优势的

表 2 TFIBA 和 IBA 对水稻和莴苣幼苗种子根侧根原基发生的影响

Table 2 The effects of TFIBA and IBA on the initiation of LRP $\,$

in	rice	and	lett uce	$\sec d$	ings

	浓度/ μmol• L-1 ·	侧根原基密度/ 个• cm ⁻¹	
	水浸/FmorL	水稻	莴苣
TFIBA	0	10. 51 ± 1. 97	0.48±0.06
	0.001	7. 24±1. 29	_
	0. 01	7. 01 ± 0.84	-
	0. 1	6.04 ± 0.20	0.34 ± 0.05
	1.0	2.25 ± 0.35	0.34 ± 0.11
	10	1.91 ± 0.25	0.30 ± 0.06
IBA	100	-	0.26 ± 0.07
	0	10. 51 ± 1.97	0.48 ± 0.06
	0.001	15.50 ± 2.25	-
	0. 01	18.32 ± 4.02	-
	0. 1	17. 04 ± 3.69	0.52 ± 0.06
	1.0	12. 25 ± 3.09	1.36 ± 0.31
	2. 5	-	5.01 ± 1.07
	10. 0	-	10.30 ± 1.32

同莴苣相比, 水稻种子根对 TFIBA 更敏感, 如仅用 $10.0~\mu \text{mol}^{\bullet} \text{L}^{-1}$ 的 TFIBA 处理水稻种子根后, 其种子根的长度比未做处理的增加 2.02~倍。而用 $100.0~\mu \text{mol}^{\bullet} \text{L}^{-1}$ 的 TFIBA 处理莴苣后, 其种子根的长度仅比对照增加 63.7%。

江玲和周燮^[3]发现 IBA 促进莴苣种子根侧根原基的发生,同时也提高其内源生长素的含量。已知内源生长素和细胞分裂素的比值调控根的顶端优势,而 IBA 的氟代化合物 TFIBA 在显著增强根的顶端优势的同时,是否影响根中的生长素和细胞分裂素的含量与比值,尚待用免疫学或者其他方法进一步查明。在作物的化控实践中,有时需要增强根的顶端优势,但迄今为止,这方面的化学调控尚不理想,这是因为 IBA 等大多数生理活性物质都是解除根顶端优势的,而 TFIBA 化合物可能会有助于解决这一问题。

参考文献

- 1 Filler R. Fluorine-containing chiral compounds of biomedical interest. In: Ramachandran PV (ed). Asymmetric Fluore-Organic Chemistry: Synthesis, Applications, and Future Directions. ACS Symposium Series, 2000, No 746. 1~ 20
- 2 Katayama M, Kato K, Kimoto H et al. (S)-(±)-4,4,4-trifluore-3-(in dole-3-) butyric acid, a novel fluorinated plant growth. Experientia, 1995, 51: 721~724
- 3 江 玲, 周 燮. 外源生长素和细胞分裂素对莴苣幼苗侧根原基 发生和内源激素含量的影响. 南京 农业大学学报, 2000, **23**(1): 19~23
- 主元明亚作用。IFIBA 和IBA 对依的J贝编ル旁的 4 Kordan HA. Endogenous development of adventitious root primordia in lettuce hypocotyls. Ann Bot., 1985, 55; 267~268 in lettuce hypocotyls. Ann Bot., 1985, 55; 267~268 http://www.cnki.net