镧在菠菜叶绿体中的分布及其对光合作用的影响

晏文武 杨利民 王秋泉^{*}

(厦门大学化学化工学院化学系,现代分析科学教育部重点实验室,厦门 361005.*联系人, E-mail: qqwang@xmu.edu.cn)

摘要 在体研究了稀土元素镧(La)对菠菜叶绿体 Hill 反应活力、 Mg^{2+} -ATPase 和 Ca²⁺-ATPase 活性的影响,并用电感耦合等离子体质谱(ICP-MS)测定了叶绿体各亚细胞器中 La 的含量. 实验结果表明,低(15 mg·L⁻¹)、中(30 mg·L⁻¹)浓度的 La 对菠菜叶绿体 Hill 反应活力、 Mg^{2+} -ATPase 和 Ca²⁺-ATPase 活性有明显的促进作用,而高浓度时(60 mg·L⁻¹)则表现出显著的抑制作用; 叶绿体中大部分 La 位于光系统 (PS)中,占叶绿体中 La 总量的 90%左右. 利用排阻色谱-紫外/电感耦合等离子体质谱联用技术 (SE-HPLC-UV/ICP-MS)对 La 在 PS 中的存在点位进行了研究,发现 La 在 PS 中有两种不同的结合点位: La 不仅可以部分竞争取代 PS 中与叶绿素结合蛋白相结合的 Mg,而且还可能竞争结合到 PS 中 Ca 和 Mn 的结合点位上来影响光合作用效率.

关键词 镧 光合作用 叶绿体 光系统

到目前为止、许多国家通过实验室培养或田间 试验研究了稀土元素对农作物生长和产量的影响. 特别是在我国、稀土肥料已广泛应用于 300 多种田间 作物、使作物产量平均提高 5%~15%^[1]. 自 20 世纪 70 年代以来^[2~4],稀土元素对植物新陈代谢、农作物产 量和品质影响的基础生理学研究取得了较大进展. 大量试验证明、适量的稀土元素能促进植物的光合 作用,提高光合强度^[1,5],提高叶绿体含量及维管束 的密度^[6]. 沈博礼等^[7]的研究表明小麦经镧(La)处理 后, 叶绿体被膜上的 Mg²⁺-ATPase 含量增加, Hill 反 应加快, 质体醌(plastoquinone, PQ)穿梭加速. 魏幼璋 等^[8]发现, 经 20 和 100 mg·L⁻¹Nd(NO₃)₃处理, 玉米 叶绿体膜上的 Mg²⁺-ATPase 活力分别提高 4.4%和 6.4%. 虽然在稀土元素对植物光合作用的宏观效应 方面进行了较多的研究、但是它的生物化学机制仍 不清楚, 其中包括稀土元素在叶绿体内的分布及作 用点位,这一问题的研究是解明稀土元素对植物光 合作用影响机制的一条重要途径. 叶绿体是光合作 用的场所、其外部被两层脂质膜包裹、类囊体位于内 膜内侧. 高等植物的内囊体通常分为基粒片层和基 质片层、基质片层区富含光系统 (PS), 而基粒片 层区富含光系统 (PS)^[9,10]. 在高等植物内, 光合 作用是在 PS 和 PS 的协同作用下完成的.一些研 究者通过体内或体外实验对稀土元素在叶绿体中的 存在位置进行了一些研究. Karukstis 等^[11]认为稀土离 子和类囊体膜通过静电引力相互作用,因为在正常 生理 pH 条件下类囊体膜表面带负电荷^[12],可以同带 正电荷的金属离子相互吸引.Ono^[13]通过体外实验研 究发现 La 能竞争结合到放氧复合体(oxygen-evolving complex, OEC)中的功能 Ca²⁺结合点位上,从而对光 合作用产生影响.洪法水等^[14]通过紫外可见光谱 (UV-VIS),红外光谱(FT-IR)和扩展 X 射线吸收精细 结构谱(EXAFS)等方法的研究表明, La 可以和叶绿素 分子中的卟啉环相结合,取代叶绿素中的部分镁原 子,并测定 La-N 间的平均键长为 0.253 nm. 这与我 们利用 UV-VIS,电喷雾质谱(ESI-MS)等实验方法证 实的菠菜在 La(NO₃)₃胁迫下,能形成镧叶绿素 a 的结 论是近似的^[15].

为了进一步深入了解稀土元素对植物光合作用 的影响机制,本研究用含不同量 La 的培养液对模型 植物菠菜进行培养,提取分离了菠菜叶绿体的各亚 细胞器,用电感耦合等离子体质谱(ICP-MS)测定了 其中 La 含量,得到 La 在叶绿体各亚细胞器中的分布 信息,并用排阻色谱-紫外/电感耦合等离子体质谱联 用技术(SE-HPLC-UV/ICP-MS)初步确定 La 在 PS 中 的结合点位.另一方面对不同浓度的 La 对菠菜叶绿 体 Hill 反应活力、Mg²⁺-ATPase 和 Ca²⁺-ATPase 活 性的影响进行了研究,尝试解释稀土元素促进或抑 制植物光合作用的机制.

- 1 材料和方法
- 1.1 菠菜的培养

选择饱满一致的菠菜种子,浸种24h后,放在垫 有浸湿滤纸的培养皿中,上盖两层湿纱布,于暗处催

芽. 两天后挑选发芽一致的种子移栽到以海绵为基 质的塑料盆中、将它们分成4组、分别加入下列4种 培养液: (1) 不含磷酸盐的 Kloop 培养液(对照组); (2) 不含磷酸盐, 含有 15 mg·L⁻¹ La 的 Kloop 培养液; (3) 不含磷酸盐, 含有 30 mg·L⁻¹ La 的 Kloop 培养液; (4) 不含磷酸盐, 含有 60 mg·L⁻¹ La 的 Kloop 培养 液. 氧化镧(纯度 > 99.999%)从中国科学院长春应用 化学研究所获得, 以 La(NO3)3 的方式加入, 通过低 $(15 \text{ mg} \cdot \text{L}^{-1})$ 、中(30 mg · L⁻¹)和高(60 mg · L⁻¹)三个浓 度梯度对菠菜进行培养. 实验所用的 Kloop 培养液组 成为: 1000 mg·L⁻¹ Ca(NO₃)₂, 250 mg·L⁻¹ MgSO₄· 7H₂O, 120 mg \cdot L⁻¹ KCl, 9.36 mg \cdot L⁻¹ Fe - EDAT, 2.86 $mg \cdot L^{-1}$ H₃BO₃, 0.22 $mg \cdot L^{-1}$ ZnCl₂, 0.08 $mg \cdot L^{-1}$ $CuSO_4 \cdot 5H_2O$, 0.08 mg · L⁻¹ MnCl₂ 和 0.02 mg · L⁻¹ H₂MoO₄. 磷酸盐以叶面喷施方式施用以防止与培养 液中 La 离子形成沉淀. 培养实验在室外的玻璃房中 进行、培养温度白天 25~28 、晚上 20~23 、每天光 照 12 h, 持续培养 40 d, 每周更换一次培养液, pH 值 控制在 5.5~6.5 之间.

1.2 完整叶绿体、类囊体膜和 PS 的提取

(1) 叶绿体的提取. 叶绿体提取依据叶济宇 等^[16]的实验方法进行. 取少量叶绿体用 80%的丙酮 水溶液提取其中的叶绿素(Chl),参照 Arnon^[17]的方 法测定叶绿素含量.

(2) 类囊体膜的提取. 类囊体膜的提取依照 Andreasson 等^[18]的方法进行. 将(1)得到的完整叶绿 体悬浮于 5 mmol·L⁻¹ MgCl₂ 溶液中 1 min, 使叶绿体 被膜在低渗介质下胀破, 再以 2000×g 离心 5 min, 上 清液中含叶绿体被膜(CMB), 所得沉淀为类囊体. 将 之悬浮于悬浮液中, 低温保存备用.

(3) PS 的提取. PS 的提取依照 Berthold 等^[19] 的方法进行. 类囊体经 20%的 Triton X-100 增溶, Triton X-100 与类囊体中叶绿素质量比控制在 25:1, 离心沉淀后,所得沉淀为 PS ,于-80 保存备用. 上清液中富含 PS ,这里称之为膜变性蛋白(MDP), 将之收集起来并分析其中 La 含量.

1.3 叶绿体 Hill 反应活力、Mg²⁺-ATPase 和 Ca²⁺-ATPase 活性的测定

叶绿体 Hill 反应活力的测定依据叶济宇等^[16]的 方法进行. 叶绿体 Mg^{2+} -ATPase 和 Ca^{2+} -ATPase 活性 测定依据黄卓辉等^[16]的方法, 用甲醇激活法测定.

1.4 叶绿体各亚细胞器中 La 含量的测定

将一定量提取得到的叶绿体各亚细胞器分别移入 25 mL 小烧杯中, 加入 5 mL 浓 HNO₃ 并盖上表面 皿, 室温下预消 6 h, 然后加入 1 mL HCIO₄, 在电热 板上低温加热, 消解至溶液呈无色或淡黄色, 将酸蒸 发至近干, 最后用 2%的 HNO₃ 溶解残渣, 并定容至 10 mL 容量瓶中. 用 ICP-MS 测定其中 La 含量, ICP-MS 工作参数列于表 1.

衣 I ICP-MS	上TF参数
射频功率	1350 W
采样深度	6.3 mm
载气流速	$1.2 \text{ L} \cdot \text{min}^{-1}$
等离子体气体流速	$16 \text{ L} \cdot \text{min}^{-1}$
辅助气体流速	$1.0 \text{ L} \cdot \text{min}^{-1}$
雾化器	微型同心雾化器
采样锥直径	1.0 mm
分离锥直径	0.4 mm
分辨率	0.7~0.8 u
采样参数	
模式	全定量
积分时间	300 ms
重复测定次数	3
HPLC-ICP-MS 联用时采样参数	
模式	时间分辨
积分时间	100 ms
采样时间	2400 s

1.5 SE-HPLC-UV/ICP-MS 联用技术分析 La 在 PS 蛋白中的结合点位

(1) PS 蛋白的提取和处理. 方法 1: 用含 1% 十二烷基硫酸钠(SDS)的 62.5 mmol·L⁻¹ Tris-HCl(pH 6.8)增溶 PS , SDS: Chl = 30: 1(质量分数), 增溶时 间为 60 min, 然后以 3000×g离心 5 min, 弃去不溶物, 取其富含 PS 蛋白组分的上清液过 0.45 μ m 膜后进 行排阻色谱分离及在线 UV/ICP-MS 测定.

方法 2: 按方法 1 增溶 PS ,得到富含 PS 蛋白 组分的上清液,再用-20 丙酮沉淀上清液中 PS 蛋 白,以除去 PS 蛋白中的叶绿素.将所得蛋白沉淀 溶于少许 30 mmol·L⁻¹ Tris-HCl(pH 8.0)中,过 0.45 μ m 的膜后进行排阻色谱分离及在线 UV/ICP-MS 测 定.

(2) PS 蛋白组分的排阻色谱分离.使用
 Shimadzu LC10ADvp 高效液相色谱仪进行分离,其
 中包括 Shimadzu LC10ADvp 泵, Shimadzu SCL 10Avp 系统控制器, Shimadzu-SPD-M10Avp 二极管阵

列检测器, Rheodyne 7725i 进样阀(美国, 20 μ L 或 100 μ L 进样环)和 CLASS-VP 5.0 色谱工作站. 排阻色谱 柱为 Shim-pack DIO-300(Shimadzu, 7.9 mm id × 500 mm, 固定相粒径 5 μ m). 流动相为 30 mmol·L⁻¹ Tris-HCl(pH 8.0); 流速为 0.75 mL·min⁻¹. 使用前用 0.45 μ m 的膜过滤并超声脱气. 用配备了微型同心雾 化器的 HP-4500 电感耦合等离子体质谱(Yokohama, Japan)对色谱柱流出液中的 La, Mg, Mn 和 Ca 进行在 线检测.

2 结果与讨论

 La 对菠菜叶绿体 Hill 反应活力、Mg²⁺-ATPase 和 Ca²⁺-ATPase 活性的影响

通过 Hill 反应可测定叶绿体的放氧反应活力, 叶 绿体膜上 ATP 合成酶在光照下能催化光合磷酸化的 最末一步反应, 合成 ADP和 P_i为 ATP, 叶绿体激活处 理可出现需镁(Mg²⁺-ATPase)和需钙(Ca²⁺-ATPase)两 种 ATP酶活性. 经含不同浓度 La 的 Kloop 培养液培 养的菠菜叶绿体的 Hill 反应活力、Mg²⁺-ATPase 和 Ca²⁺-ATPase 活性如表 2 所示. 结果表明, 低、中浓度 (15, 30 mg·L⁻¹)的 La 对叶绿体 Hill 反应活力、 Mg²⁺-ATPase 和 Ca²⁺-ATPase 活性有明显的促进作用, 低浓度培养效果最佳, Hill 反应活力、Mg²⁺-ATPase

表 2	La 对菠菜叶绿体希尔	『反应活力、	Mg ²⁺ -ATPase
	$T = C ^{2+} + T = C$	· · · · · · · · · · · · · · · · · · ·	4

活力			相对值/%			
а	b	с	а	b	c	
450.0	726.0	577.4	100	100	100	
565.2	936.8	735.1	125.6	130.0	127.3	
518.8	818.6	653.7	115.3	113.6	113.2	
292.5	573.8	405.7	65.0	79.6	70.2	

a: 希尔反应活力 (µmol(O₂)·mg⁻¹ (Chl)·h⁻¹); b: Mg²⁺-ATPase 活性(µmol (P_i)·mg⁻¹ (Chl)·h⁻¹); c: Ca²⁺-ATPase 活性 (µmol(P_i)·mg⁻¹ (Chl)·h⁻¹); : 对照组; : 15 mg·L⁻¹ La 培养组; : 30 mg·L⁻¹ La 培养组; : 60 mg·L⁻¹ La 培养组 和 Ca²⁺-ATPase 活性分别比对照组提高 25.6%, 30%和 27.3%; 中浓度 La 培养组分别比对照组提高 15.3%, 13.6%和 13.2%; 高浓度 La (60 mg·L⁻¹)则表现出显 著抑制作用, Hill 反应活力、Mg²⁺-ATPase 和 Ca²⁺-ATPase 活性分别比对照组降低 35%, 21.4%和 29.7%.

稀土元素对植物的影响可能与微量元素相似, 低浓度时促进植物生长,浓度过高时则对植物产生 毒害. 许多重金属元素如铜、锌、镍和锰等, 在低浓 度下都充当光合作用器官生长的微量营养元素、然 而当这些重金属离子的浓度过高时将对植物产生严 重毒害. 这些毒害对植物的生理影响是多方面的, 具 体影响与植物种类, 重金属的性质和浓度, 以及植物 生长的环境相关. 其毒害机制主要包括: 酶抑制^[20], PS 反应中心的抑制^[21]、光合抑制^[22]、使质体蓝素 功能受阻^[23]以及干扰植物对营养元素的吸收等。在 高浓度时稀土元素对光合作用的抑制机制可能类似 干重金属元素,然而必须注意的是根据软硬酸碱理 论,稀土元素属于硬酸^[24],更易与蛋白或酶中O或N 配位原子结合.因此导致稀土元素和重金属元素对 植物光合作用影响机制有一定的差异,稀土元素的 生物化学行为可能与同为硬酸且离子半径相近的碱 土金属元素如 Mg 和 Ca 等更为相近.

2.2 叶绿体各亚细胞器中 La 含量

经含不同浓度 La 的 Kloop 培养液培养的菠菜叶 绿体各亚细胞器中 La 含量如表 3 所示, 叶绿体中大 部分 La 分布于 PS 中, 约占叶绿体中 La 总量的 90%. 这与 Wang 等^[25]的结论不同,可能是由于所研究的 植物种类以及生长环境不同所致. 在叶绿体被膜上 和富含 PS 的膜变性蛋白(MDP)中只含有少量 La, 分别占叶绿体中 La 总量的 3.9%~5.3%和 4.7%~14.6%. 这些结果表明, 在叶绿体中稀土元素可能主要通过 和 PS 相互作用而影响植物的光合作用. 经含不同 浓度 La 的 Kloop 培养液培养的菠菜 PS 中的 La 含

表 3 含不同 La 浓度的 Kloop 培养液培养的菠菜叶绿体各亚细胞器中 La 含量(μg·g⁻¹)^{a)}

		叶绿体各部分中 La 含量			相对含量 ^{b)}			
叶绿体	25.4	282.3	298.1	420.2	100	100	100	100
叶绿体被膜	1.0	11.0	15.8	20.2	4.0	3.9	5.3	4.8
类囊体	24.4	271.4	282.2	400.0	96.0	96.1	94.7	95.2
富含 PS 的膜变性蛋白	1.2	14.4	13.5	14.6	4.6	5.1	4.5	3.5
光系统	23.2	255.0	265.4	373.0	91.3	90.3	89.0	88.8

a) 含 1 g 叶绿素的叶绿体各亚细胞器中 La 含量; b) 叶绿体各亚细胞器中 La 含量占叶绿体中 La 总量的百分数; ~ 同表 2

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

量高低顺序为: < \approx < , 而且低、中浓度 La 培 养时 PS 中的 La 含量在同一水平, 当 La 浓度从 15 mg·L⁻¹上升到 30 mg·L⁻¹时 PS 中 La 含量没有明显 增加. 但是高浓度 La (60 mg·L⁻¹)培养时 PS 中 La 含量明显提高, PS 中高含量 La 的存在可能是致使

组菠菜叶绿体 Hill 反应活力、Mg²⁺-ATPase 和 Ca²⁺-ATPase 活性受抑制的主要原因.

2.3 PS 中 La 结合点位的确定

PS 蛋白经 SDS 增溶后、进行排阻色谱分离、 在线 UV 和 ICP-MS 检测(紫外检测波长为 254 nm; ICP-MS 检测同位素 ¹³⁹La, ²⁴Mg, ⁴³Ca, ⁵⁵Mn). PS 蛋 白组分的排阻色谱图如图 1 所示. PS 是由多个蛋白 亚基组成的色素蛋白复合物,包括反应中心 D1, D2 蛋白, 核心天线 CP47 和 CP43, 外周天线(light harvesting complex , LHC)以及分子量为 33, 24, 17 kD 的外周多肽等^[26]. 我们采用 Laemmli 系统^[27] 对所得 PS 蛋白的 SDS 聚丙烯酰胺凝胶电泳 (SDS-PAGE)的分析结果与文献[26]是一致的. 但是 PS 蛋白经 SDS-PAGE 分离,固定,显色后,蛋白上 结合的金属元素在低 pH 值条件下将解离, 因而很难 得到金属结合蛋白的信息.虽然排阻色谱的分辨率 不及电泳、但是它温和的分离条件使得金属结合蛋 白相对稳定、经UV/ICP-MS检测可以得到La与蛋白 的结合信息. 经 ICP-MS 在线检测 ¹³⁹La 而得到的色 " 谱图(图 1(b)) 中呈现出二个峰(1 和 2), 分别对应于 PS

蛋白 A 和 B(图 1(a)), 这表明 La 在 PS 中至少有 两种不同的结合点位. PS 蛋白 A 的吸收光谱(图 2(a))在664,436,468 nm 有吸收峰,分别属于叶绿素 a 和 b 的特征吸收峰, 因此 PS 蛋白 A 含有叶绿素结 合蛋白. 图 1(b)和(c)表明 La 与 Mg 共存于 PS 蛋 白 A 中, 而且具有相同的保留时间, 这表明 PS 蛋 白 A 中 La 和 Mg 有相同的结合点位. 因为 PS 中的 Mg 主要位于与蛋白结合的叶绿素中, 所以 La 可能 取代了与 PS 蛋白 A 中与蛋白结合的叶绿素中的部 分 Mg. 为了作进一步验证, 先将 PS 蛋白中的叶绿 素用丙酮除去,再进行排阻色谱分离.结果如图 3 所 示. 经丙酮处理后, PS 蛋白 A 仍能检测到(图 3(a)), 但其紫外可见吸收光谱中叶绿素 a/b 的特征吸收峰消 失(图 2(b)), 与此同时, PS 蛋白 A 中 La 和 Mg 的色谱峰 也均消失(图 3(b)和(c)). 这些结果进一步证明, PS 蛋白 A中La和Mg与叶绿素密切相关,La取代了叶绿素中的 部分 Mg 原子, 这与我们的前期工作的结论相一

图 1 PS 蛋白的 SE-HPLC-UV/ICP-MS 分离检测 (a) PS 蛋白 UV(254 nm)检测图; (b) La ICP-MS 图; (c) Mg ICP-MS 图; (d) Ca, Mn ICP-MS 图; A: PS 蛋白 A; B: PS 蛋白 B; 1: 对应于 蛋白 A 中的 La; 2: 对应于蛋白 B 中的 La

致^[15].

另一方面, PS 蛋白 B 中 La 的结合方式不同于 在 PS 蛋白 A 中. 虽然从 PS 蛋白 B 的吸收光谱(图 2(c))中也可观察到强度较弱的叶绿素 a/b 的特征吸收 峰, 说明 PS 蛋白 B 中亦含少量的叶绿素 a/b; 然而 在 PS 蛋白 B 中检测不到 Mg(图 1(c)), 且经丙酮处 理后, PS 蛋白 B 中检测不到 Mg(图 1(c)), 且经丙酮处 理后, PS 蛋白 B 中的 La 峰并不消失, 只是紫外吸收 强度减弱(图 3(a)). 将 Mn 和 Ca 的色谱图(图 1(d))与 La 的色谱图(图 1(b))进行比较,发现 Mn 和 Ca 的色 谱峰具有相同的保留时间有很大部分重叠,这表明 PS 蛋白 B 中 La 与 PS 中无机辅助因子 Ca, Mn 可能具 有相近的结合点位. 在光合作用的光反应过程中, 水 的氧化是由放氧复合体(OEC)完成的, OEC 由 33, 23, 16 kD 的三条多肽与 Mn, Cl 和 Ca 结合组成. Mn 是光 系统 水分解酶系统必不可少的组成成分,含锰的

图 2 PS 蛋白 A 和 B 的紫外可见吸收光谱 (a) 未经丙酮处理的蛋白 A; (b) 丙酮处理过的蛋白 A; (c)未经丙酮处 理的蛋白 B; (d) 丙酮处理过的蛋白 B

OEC 经过氧化势逐渐加强的 5 种状态($S_0 \rightarrow S_4$)的循环 形成分子氧. PS 内每个 OEC 中还含一个正常光合 放氧 所必需的 $Ca^{2+[28,29]}$. EXAFS^[30,31], FTIR^[32]和 EPR^[33]研究结果表明 PS 中 Ca 和 Mn 可能以羧基作 为桥键,形成一个多金属中心. 因此 La 可能竞争结 合到 PS 中 Mn 和 Ca 的结合点位上从而影响植物的 光合作用.

3 结论

(1) 低、中浓度的 La (15~30 mg·L⁻¹)能明显促进 Hill 反应,提高 Mg²⁺-ATPase 和 Ca²⁺-ATPase 活性,而高浓度 La (60 mg·L⁻¹)对上述反应则表现出明显的抑制作用.

(2) 叶绿体中的 La 大部分位于 PS 中,约占叶 绿体 La 总量的 90%. Kloop 培养液中 La 的含量由 15 提高到 30 mg·L⁻¹时, PS 中的 La 含量维持在同一水 平上;高浓度 La 培养时 PS 中的 La 含量显著提高,

图 3 经丙酮处理过的 PS 蛋白的 SE-HPLC-UV/ICP-MS 分离检测

(a) PS 蛋白 UV/254 nm 检测图; (b) La ICP-MS 图; (c) Mg ICP-MS 图; (d) Ca, Mn ICP-MS 图

PS 中高含量 La 的存在可能是致使 Hill 反应活力、 Mg²⁺-ATPase 和 Ca²⁺-ATPase 活性降低的主要原因.

(3) SE-HPLC-UV/ICP-MS 研究结果表明 La 不仅 可以部分取代 PS 中叶绿素结合蛋白中与叶绿素相 结合的 Mg,而且还可能竞争结合到 PS 中 Ca 和 Mn 的结合点位上来影响植物的光合作用效率.

致谢 感谢厦门大学生命科学学院李裕红博士在本研究过 程中给予的帮助.本工作为国家重点基础研究发展规划前 期预研项目(批准号: 2003CCA00500)、国家自然科学基金 (批准号: 20175019)和教育部博士点基金(批准号: 20020384003)资助项目.

参考文献

- 1 熊炳昆.稀土农林研究与应用.北京:冶金工业出版社,2000. 126~128
- 2 Leonard R T, Nagahashi G, Thomson W W. Effect of lanthanum on ion absorption in corn roots. Plant Physiol, 1975, 55: 542 ~ 546

- 3 Ogurusu T, Wakabayashi S, Shigekawa M. Functional characterization of lanthanide binding sites in the sarcoplasmic reticulum Ca²⁺-ATPase: do lanthanide ions bind to the calcium transport site? Biochem, 1991, 30: 9966 ~ 9973
- 4 Squier T C, Bigelow D J, Fernandez-belder F J, et al. Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase. J Biol Chem, 1990, 265(23): 13713 ~ 13720
- 5 崔文化,赵玉荣.稀土不同拌种剂量对玉米生理指标和产量的 影响.稀土,1994,15(1):34~37
- 6 高梁,夏荣基.施用稀土的小麦显微结构研究.稀土,1988,4: 26~28
- 7 沈博礼,戴新宾.稀土对小麦叶绿体光化学反应的效应.稀土, 1994, 15(2): 71~73
- 8 魏幼璋,周晓波, Mohamed O M. 稀土元素钕提高油菜产量机 理初析. 植物营养与肥料学报, 1999, 5(2): 186~188
- 9 Anderson B, Anderson J M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta, 1980, 593: 427 ~ 440
- Anderson J M. Consequences of spatial separation of photosystem
 1 and 2 in thylakoid membranes of higher plant chloroplasts.
 FEBS Lett, 1981, 124: 1 ~ 10
- 11 Karukstis K K, Kao M Y, Savin D A, et al. Spectral studies of lanthanide interaction with membrane surfaces. J Phys Chem, 1995, 99: 4339 ~ 4346
- 12 Nakatani H Y, Barber J, Forrester J A. Surface charges on chloroplast membranes as studied by particle electrophoresis. Biochim Biophys Acta, 1978, 504: 215 ~ 225
- 13 Ono T. Effect of lanthanide substitution at Ca²⁺-site on the properties of the oxygen evolving center of photosystem . J Inorg Biochem, 2000, 82: 85 ~ 91
- 14 洪法水,魏正贵,赵贵文. 镧元素与菠菜叶绿体内叶绿素的作用关系. 中国科学, C 辑, 2001, 31(5): 392~400
- 15 Wang Q Q, Lai Y, Yang L M, et al. preliminary study of existing species of lanthanum in the spinach leaves after being cultivated with a culture solution containing lanthanum. Anal Sci, 2001, 17: 789 ~ 791
- 16 中国科学院上海植物生理研究所,上海市植物生理学会编.现 代植物生理学实验指南.北京:科学出版社,1999
- 17 Arnon D L. Copper enzymes in isolated chloroplasts: polyphenol oxidase in *Beta vulgaris*. Plant Physiol, 1949, 24: 1 ~ 15
- 18 Andreasson E, Svenson P, Weibull C, et al. Separation and characterization of stroma and grana membranes-evidence for heterogeneity in antenna size of both photosystem and photosystem . Biochim Biophys Acta, 1988, 936: 339 ~ 350
- 19 Berthold D A, Babcock G T, Yocum C A. A highly resolved oxygen-evolving photosystem preparation from spinach thylakoid membranes. FEBS Lett, 1981, 134: 231 ~ 234

- 20 Stobart A K, Griffiths W T, Ameen-Bukhari I, et al. The effect of Cd²⁺ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant, 1985, 63: 293 ~ 298
- 21 Barón M, Arellano J B, Gorge J L. Copper and photosystem , a controversial relationship. Physiol Plant, 1995, 94: 174 ~ 180
- 22 Vavilin D V, Polynov V A, Matorin D N, et al. Sublethal concentrations of copper stimulate photosystem photoinhibition in Chlorella pyrenoidosa. Plant Physiol, 1995, 146: 609 ~ 614
- 23 Kimimura M, Katoh S. Studies on electron transport associated with photosystem Functional site of plastocyanin, inhibitory effects of HgCl₂ on electron transport and plastocyanin in chloroplasts. Biochim Biophys Acta, 1972, 283: 279 ~ 292
- 24 Wang Q Q, Huang B L, Tsunoda Kin-ichi, et al. Extracted species of rare earth elements using bis(1,1,3,3-tetramethylbutyl) phosphinic acid as an extractant and their effective mutual separation by high-performance extraction chromatography. Bull Chem Soc Jpn , 1999, 72: 2693 ~ 2697
- 25 Wang X P, Shan X Q, Zhang S Z, et al. Distribution of rare earth elements among chloroplasts components of hyperaccumulator *Dicranopteris dichltoma*. Anal Bioanal Chem, 2003, 376: 913 ~ 917
- 26 Shao L, Konka V, Leblanc R M. Surface chemistry studies of photosystem . J Colloid Interface Sci, 1999, 215: 92 ~ 98
- 27 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680 ~ 685
- 28 Debus R J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta, 1992, 1102: 269 ~ 352
- 29 Renger G. Mechanistic and structural aspects of photosynthetic water oxidation. Physiol Plant, 1997, 100: 828 ~ 841
- 30 Cinco R M, Robblee J H, Rompel A, et al. Strontium EXAFS reveals the proximity of calcium to the manganese cluster of oxygen-evolving Photosystem . J Phys Chem B, 1998, 102: 8248 ~ 8256
- Latimer M J, DeRose V J, Mukerji I, et al. Evidence for the proximity of calcium to the manganese cluster of photosystem : Determination by X-ray absorption spectroscopy. Biochem, 1995, 34: 10898 ~ 10909
- 32 Noguchi T, Ono T, Inoue Y. Direct detection of a carboxylate bridge between Mn and Ca²⁺ in the photosynthetic oxygen-evolving center by means of Fourier transform infrared spectroscopy. Biochim Biophys Acta, 1995, 1228: 189 ~ 200
- 33 Booth P J, Rutherford A W, Boussac A. Location of the calcium binding site in photosystem : a Mn^{2+} substitution study. Biochim Biophys Acta, 1996, 1277: 127 ~ 134

(2004-12-29 收稿, 2005-02-23 收修改稿)