•研究论文•

线性 BC_{2n}B (n=1~12)的结构特征和电子光谱的理论研究

张敬来**。 王连宾"吴文鹏"曹泽星。

("河南大学化学化工学院 开封 475001) (⁶厦门大学化学系 固体表面物理化学国家重点实验室 厦门 361005)

摘要 应用密度泛函理论,在 B3LYP/6-31G^{*}水平上优化得到了线性簇合物 BC_{2n}B ($n=1\sim12, D_{\infty h}$)的平衡几何构型,并 计算了它们的谐振动频率.在优化平衡几何构型下,通过 TD-B3LYP/cc-pvDZ 和 TD-B3LYP/cc-pvTZ 计算,分别得到了 $n=1\sim12$ 和 $n=1\sim7$ 的 X¹ $\Sigma_{s}^{*} \rightarrow 1^{1}\Sigma_{u}^{*}$ 电子跃迁的垂直激发能和对应的振子强度.在 B3LYP/6-311+G^{*}水平上计算得到 了簇合物 BC_{2n}B ($n=1\sim12, D_{\infty h}$)的电离能.基于计算结果,导出了 BC_{2n}B 体系 X¹ $\Sigma_{s}^{*} \rightarrow 1^{1}\Sigma_{u}^{*}$ 电子跃迁能以及第一电离能 与体系大小 n 的解析表达式.

关键词 线性簇合物 BC2nB; DFT 和 TD-DFT; 电子光谱; 电离能; 解析表达式

Theoretical Study on Structures and Electronic Spectra of Linear Chain Cluster $BC_{2n}B$ ($n=1\sim12$)

ZHANG, Jing-Lai^{*,a} WANG, Lian-Bin^a WU, Wen-Peng^a CAO, Ze-Xing^b (^a College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001) (^b State Key Laboratory for Physical Chemistry of Solid Surface, Department of Chemistry, Xiamen University, Xiamen 361005)

Abstract Using density functional theory, the geometries and the vibrational frequencies of linear chain $BC_{2n}B$ ($n=1\sim 12$, $D_{\infty h}$) have been investigated at the B3LYP/6-31G^{*} level. Time-dependent density functional theory (TD-DFT) has been used to calculate the vertical transition energies and oscillator strengths for $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ transitions of $BC_{2n}B$ with the cc-pvTZ and cc-pvDZ basis sets. At the B3LYP/6-311+G^{*} level, the single-point energies of the clusters have been calculated in order to determine the first ionization energies. On the basis of present calculations, the explicit expressions for the size dependence of the excitation energy, the first adiabatic ionization energies (*AIE*) and vertical ionization energies (*VIE*) in linear carbon chains were suggested.

Keywords linear cluster $BC_{2n}B$; DFT and TD-DFT; electronic spectra; ionization energy; analytic expression

由于线性碳链在星际化学中的重要地位以及与纳 米科学的密切关系^[1],使得对其结构特征和光谱性质的 研究成为人们感兴趣的领域.对微碳团簇,一般认为有 线性链状和环状两种结构,而线性链状的又可分为类似 聚烯 (cunulene)结构 (:C = C = C = C:)和类似聚炔 (polyacetylene)结构(·C≡C−C≡C−C≡C·)两种. 裸露的线性链状碳链具有较高的化学活性,极易与其它原子,如B,Al,P,As,Bi^[2],Ge^[3],以及过渡金属原子V,Cr,W,Fe和Ni^[4]等结合^[5],形成XC_n和XC_nX线性簇合物.研究表明,线性簇合物的很多性质如电子跃迁能、

^{*} E-mail: zhangjinglai@henu.edu.cn

Received April 12, 2004; revised June 22, 2004; accepted September 21, 2004.

厦门大学固体表面物理化学国家重点实验室开放课题基金、国家自然科学基金、河南省自然科学基金(Nos. 20173042, 20233020, 20021002, 0311011200)资助项目.

电离能以及电子结合能等都与体系的大小存在一定的 相关性,如HC_{2n}H ($n=1\sim13$)的电子吸收波长与 n 存在 一种近似的线性关系^[6], (NO), 和(CS₂), 分子簇的电离能 与n成反比例关系^[7,8],一个过剩电荷与(H₂O)_n簇形成的 水合电子的结合能与 n^{-1/3} 成线性关系^[9]. 线性多烯 $C_{2n}H_{2n+2}$ 的 $X^{1}A_{a} \rightarrow 1^{1}B_{u}$ 电子跃迁激发能与 n 存在如下函 数关系^[10]: $\Delta E = [1 + (1/2)(\sqrt{3n+6} - \sqrt{3n+3})]J$ (式中 J 是 Heisenberg 哈密顿的交换参数). Horný 等^[11,12]用密度 泛函理论(DFT)分别对HC_{2n+1}H, HC_{2n+1}H⁻ (n=4~11)和 $HC_{2n}H$, $HC_{2n}H^{-}$ (n=6~12)进行了理论研究, 得到了它 们的几何构型和电子结构以及电子亲合能. 在我们以前 的研究中, 曾对 HC_{2n}H (n=1~13)和 HC_{2n+1}H (n=2~ 12)簇合物进行了密度泛函理论研究,结果表明,HC2nH 的激发能与 n 成非线性关系; HC2n+1H 的激发能与 n 成 线性关系^[13,14].研究线性簇合物的性质与体系大小 n 的 解析关系,有助于认识较大体系的相关性质.

Pascoli 等^[15]应用 DFT 方法对 C_nB^+ ($n=9\sim15$)进行 了理论研究,发现 B 原子能够镶嵌到碳链中,形成环状 结构, B—C 键键长固定在 0.143 nm, C—C 单键键长一 般约 0.135 nm, C=C 叁键键长一般约 0.125 nm.

本文用 DFT 方法对 BC_{2n}B ($n=1\sim12$, $D_{\infty h}$)进行了 理论研究,得到了体系的稳定结构;用含时密度泛函理 论(TD-DFT)对 BC_{2n}B中的 X¹ $\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ 电子跃迁进行了 理论计算,以探讨线性簇合物 BC_{2n}B 的激发能与 *n* 的 关系;并且在 B3LYP/6-311+G^{*}水平上,计算了 BC_{2n}B ($n=1\sim8$)的第一电离能,获得了线性簇合物 BC_{2n}B 的 电离能与 *n* 的解析关系.

1 计算方法

BC_{2n}B ($n=1\sim12$, $D_{\infty h}$)线性簇合物的几何结构由 B3LYP/6-31G^{*}计算确定,解析的谐振动频率计算用于 确定线性结构的稳定性.为了考查基组对优化几何结构 的影响,对 $n=1\sim5$ 的簇合物优化时,还采用了6-311G^{*} 和 cc-pvDZ 基组.用含时密度泛函理论的 TD-B3LYP 方 法, cc-pvTZ 和 cc-pvDZ 基组计算优化构型下的垂直激 发能.先前的计算研究表明^[13,14,16],对单、叁键交替的共 轭体系,TD-B3LYP 计算可以给出可靠的激发能.体系 的第一垂直电离能(*VIE*)和第一绝热电离能(*AIE*)的计算, 分别采用公式

 $VIE = E(BC_{2n}B^{+}) - E(BC_{2n}B)$ (1)

$$AIE = [E(BC_{2n}B^{+}) + ZPE(BC_{2n}B^{+})] - [E(BC_{2n}B) + ZPE(BC_{2n}B)]$$
(2)

式(1)中 E 为在分子的优化平衡结构下的总能量; 式(2)

中 E 为在各自优化平衡结构下的总能量, ZPE 为零点振动能.在对各离子(开壳层体系,双重态)的(U)B3LYP计算中, \hat{S}^2 的期望值都小于0.765, 自旋污染都很小.所有计算采用 Gaussian 98 程序完成.

2 结果与讨论

2.1 平衡几何结构和谐振动频率

优化得到 BC2nB (n=1~12, D∞h)的平衡键长绘于图 1. 由该图可以看出,用 B3LYP/6-31G^{*}, B3LYP/ 6-311G^{*} 和B3LYP/cc-pvDZ计算获得的平衡键长差别不大,说明 DFT 方法优化这类体系的几何构型时, 基组对优化结果 的影响不大. 从该图还可以看到, BC2nB (n=1~12, D_{sh})簇合物具有明显的单、叁键交替的结构特征, C--C 单键键长一般约为 0.13 nm, C≡C 叁键键长一般约为 0.12 nm, B-C 单键键长一般约为 0.15 nm. 比较 B 原 子在链端形成的直链结构与 B 原子镶嵌到碳链中形成 的环状结构^[14]的键长,可以发现,直链结构的 C-C 单 键和 C≡C 键的键长较短, 而 B—C 键键长则较长. 对 于直链结构的 BC_{2n}B ($n=1\sim12$), 当 n>4 时, 在同一 分子中, 链端的 C≡C 键键长保持在 0.1236~0.1237 nm 之间, 其它的 C=C 键的键长从中间到两端依次减小, 而 C-C 单键的键长依次增加. 对于不同的直链结构的 BC2,B, 随着 n 的增加, B-C 键的键长逐渐减小. 比较 直链结构的 $BC_{2n}B$ 和 $HC_{2n}H^{[11]}$ 的键长可得, $BC_{2n}B$ 的 C≡C键长比HC_{2n}H的长, C一C单键键长比HC_{2n}H的短. 例如, BC₁₂B 两端的 C≡C 的键长为 0.1236 nm, C-C 的 键长为 0.1344 nm, 而 HC₁₂H 中两端的 C≡C 和 C-C 的 键长分别为 0.12245 nm 和 0.13621 nm.

计算得到的谐振动频率都是正值,不存在虚频,表 明优化得到的线性结构均是稳定结构.表 1 列出了 B3LYP/6-31G^{*}水平下计算得到的 BC_{2n}B ($n=1\sim12$, D_{och})的部分振动频率及对应的红外强度.由该表可以看 出,B—C 键的反对称弯曲振动频率(84,46,38,30,26, 21,17,14,11,9,8,6 cm⁻¹)都很小(小于 100 cm⁻¹),且 随着 n 的增加依次减小,说明这些线性簇合物分子是非 刚性的(floppy),这一特征与 SC_nS 类似^[17],这些频率所 对应的红外强度也随着 n 的增加而逐渐减小.而 B—C 键的反对称伸缩振动的频率和强度随 n 的增加呈现规律 性变化:当 $n=4\sim6$ 时,频率逐渐减小,强度逐渐增大, 当 $n=1\sim3$, $n=7\sim10$ 和 $n=11\sim12$ 时,也有同样规律 (n=3的强度例外).例如 $n=7\sim10$ 时,频率分别为 1197,1096,1014和948 cm⁻¹,强度分别为1352,1656, 1819和1832 km•mol⁻¹.

0.1553 0.1226 0.1561 0.1233 0.1563 0.1237 B──C═C──B	6-311G* 6-31G* cc-pvDZ
0.1539 0.1350 0.1 0.1549 0.1354 0.1 0.1551 0.1358 0.1 B-CEC-C	225 231 236 ≡C B
0.1534 0.1343 0.12 0.1544 0.1348 0.12 0.1545 0.1351 0.12 B-C=C-C	222 0.1227 229 0.1234 233 0.1238 C - C = C - B
0.1530 0.1341 0.1541 0.1345 0.1542 0.1349 B-C=C-C	0.1336 0.1225 0.1229 0.1341 0.1231 0.1235 0.1344 0.1236 0.1240 C──C☴C──C☴C──B
0.1528 0.1340 0.1539 0.1344 0.1540 0.1348 B—C≡C—C≡	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B - C = C - C =	C = C = C = C = C = C = C = C = B $C = C = C = C = C = C = B$ $C = C = C = C = C = C = C = C = B$
0.1536 0.1343 B — C = C — C =	c = 0.1336 = 0.1335 0.1237 = 0.1236 = 0.1234 = 0.1236 = 0.1236 c = c = c = c = c = c = c = c = c = b
$B \xrightarrow{0.1535}{} C \xrightarrow{0.1343}{} C C C C$	C = C = C = C = C = C = C = C = C = C =
0.1535 0.1343 B—C≡C—C≡	0.1336 0.1333 0.1333 0.1238 0.1238 0.1237 0.1234 0.1237 C──C☰C──C☰C──C☰C──C☰C──C☰C──C☰C──C☰C──
$B \xrightarrow{0.1534}{} C \equiv C \xrightarrow{0.1343}{} C \equiv$	
$B \xrightarrow{0.1534}{-} C = C \xrightarrow{0.1343}{-} C =$	$ \begin{array}{c} 0.1335 \\ \hline 0.1333 \\ \hline 0.1333 \\ \hline 0.1332 \\ \hline 0.1331 \\ \hline 0.1240 \\ \hline 0.1239 \\ \hline 0.1238 \\ \hline 0.1238 \\ \hline 0.1237 \\ \hline 0.1237 \\ \hline 0.1234 \\ \hline 0.1237 \\ \hline 0.1$
0.1533 B—C≡C—C≡	$ \begin{array}{c} 0.1335 \\ C \longrightarrow C$

图 1 BC_{2n}B (n=1~12)的优化几何构型(nm) **Figure 1** Optimized geometries of BC_{2n}B (n=1~12, bond lengths in nm)

Fusion Γ between our equations (in the intersection of the D_{2n}						
Species –	Vibrational frequency/cm ⁻¹					
	$\pi_{ m u}$	σ_{u}				
BC_2B	84 (27)	980(945)				
BC ₄ B	46 (24)	859(984)2146(931)				
BC_6B	38 (22)128(10)	771(835)1353(754)2236(1441)				
BC ₈ B	30 (18)80(13)	1150(1295)2120(1174)2274(1229)				
$BC_{10}B$	26 (12)61(18)	614(371)1018(1571)1486(452)2178(2422)2272(849)				
BC ₁₂ B	21 (7)52(22)	547(220)926(1598)1326(945)2104(1224)2219(3092)2262(58)				
$BC_{14}B$	17(4)48(23)	853(1447) 1197(1352)1544(289)2145(3097)2216(1828)2270(562)				
BC ₁₆ B	14 (3)45(22)	792(1193)1096(1656)1425(682)2092(1163)2173(4710)2210(16)2278(840)				
$BC_{18}B$	11(2)42(20)	737(916)1014(1819)1315(1036)1574(195)2124(4098)2162(1862)2233(1313)2278(712)				
BC ₂₀ B	9 (2)69(12)	687(675)948(1832)1220(1345)1484(505)2084(1206)				
		2129(5132)2172(753)2253(2021)2274(213)				
BC ₂₂ B	8 (1)61(14)	642(486)892(1712)1140(1599)1393(801.0)1592(135)2101(6636)				
		2122(18)2202(2118)2256(1653)2274(254)				
BC ₂₄ B	6 (1)56(17)	600(350)842(1513)1071(1784)1309(1067)1522(380)2076(2957)				
		2086(3479)2149(1630)2224(3089)2249(290)2278(646)				

表 1 BC_{2n}B 的部分计算频率(cm⁻¹)和红外强度(km•mol⁻¹)^a Table 1 Selected calculated frequencies (in cm⁻¹) and IR intensities (in km•mol⁻¹) for BC_{2n}B

^a The bold data indicating B—C antisymmetric bending mode, italic data indicating B—C antisymmetric stretching mode.

2.2 $X^{1}\Sigma_{g}^{+} \rightarrow l^{1}\Sigma_{u}^{+}$ 电子跃迁

表 2 给出了 TD-B3LYP/cc-pvTZ 和 TD-B3LYP/ cc-pvDZ 计算获得的 $X^{1}\Sigma_{g}^{+} \rightarrow l^{1}\Sigma_{u}^{+}$ 的电子跃迁能和强度 f. 值得注意的是, 当 n 为奇数时, 线性簇合物 BC2nB 具 有… $(\pi_u)^4(\sigma_u)^2(\sigma_g)^2(\pi_g)^0$ …电子组态,最高占据轨道为 σ_g 轨道,而不是π轨道,最低空轨道为πg轨道;当n为偶数 时, 具有… $(\pi_{2})^{4}(\sigma_{u})^{2}(\sigma_{2})^{2}(\pi_{u})^{0}$ …电子组态, 最高占据轨道 也为σg轨道,最低空轨道却为πu轨道.从表2可以看到, 所有的 $X^{l}\Sigma_{g}^{+} \rightarrow l^{l}\Sigma_{u}^{+}$ 跃迁都来自于 $\pi_{u} \rightarrow \pi_{g}$ (*n* 为奇数时) 或 $\pi_g \rightarrow \pi_u$ (*n* 为偶数时)的电子激发.这些 $\pi \rightarrow \pi^*$ 的电子激 发将产生三个电子态 Σ_{u}^{+} , Σ_{u}^{-} 和 Δ_{u} . 根据电偶极跃迁的 光谱选律, 只有 $X^{l}\Sigma_{g}^{+} \rightarrow l^{l}\Sigma_{u}^{+}$ 的跃迁是允许的. 计算结 果也表明, 只有 $X'\Sigma_{a}^{+} \rightarrow l'\Sigma_{u}^{+}$ 的跃迁具有较大的谐振子 强度, 其它跃迁的振子强度都为 0. 对于 BC2nB 的电子 跃迁,从预测的吸收光谱波长可以看出,随着 n 的增大, 波长逐渐增大,表明 $X^{l}\Sigma_{g}^{+} \rightarrow l^{l}\Sigma_{u}^{+}$ 的跃迁能越来越小, 因此随着 n 的增大电子跃迁将会越来越容易进行.

表 3 列出了 BC_{2n}B ($n=1\sim12$, D_{oh})的 HOMO- π 能级, LUMO 能级及其能隙e的值. 分析表 3 中的数据可以得 出,体系的 HOMO- π 能级随着 n 的增大而逐渐升高,而 LUMO 能级则逐渐降低,因此其能级差随着 n 的增大而 逐渐减小,并且变化的趋势越来越小,说明随着 BC_{2n}B 链的增长,发生 $\pi\rightarrow\pi^*$ 跃迁所需的能量将越来越小. 图 2 是体系的 HOMO- π 能级, LUMO 能级及其能隙e与 n 的 关系图. 因为激发态 ' Σ_u^+ 都是电子从 HOMO- π 到 LUMO 跃迁引起的,体系的 HOMO- π 与 LUMO 的能隙应与 X' $\Sigma_g^+ \rightarrow 1'\Sigma_u^+$ 跃迁能递减的趋势密切相关. 从图 2 可以 看出,能隙随着 n 的增大而逐渐减小,且逐渐趋于平缓, 说明随着 *n* 的增大,体系的共轭程度增强,导致前线轨 道的能隙减小.由此可以推断电子从 HOMO-π到 LUMO 的电子跃迁会越来越容易,跃迁所需吸收光子 的波长将增大,可以推测当 *n* 很大时,将趋于一个极限 值.

图 3 是体系跃迁能与体系大小 n 的关系图, 为了考 查跃迁能与 n 的依赖关系, 计算表 2 中在 TD-B3LYP/cc-pvTZ 水平上得到的相邻跃迁能间的差值, 结果为: 29.88, 28.19, 27.59, 26.98, 26.28, 25.65 nm, 呈现 递减的趋势, 表明体系跃迁能与 n 的关系是非线性的. 图 3 中 λ_0 是用 cc-pvDZ 基组计算得到的数据作出的, λ_1 是用 cc-pvTZ 基组计算得到的数据作出的; 入,是通过用 cc-pvTZ 基组计算得到的数据拟合出的.为了更好地说 明这种非线性关系, 在图 3 中还画出了由 cc-pvTZ 基组 得到的前两个波长数据作出的直线₂.根据 Li 等^[10]应 用价键理论,处理线性共轭体系 C2nH2n+2,得到的激发 能ΔE 与 n 的关系式,结合 BC_{2n}B 具有两组共轭的 π 电子 体系的具体情况,用我们先前处理HC2nH和HC2n+1H体 系的相似方法^[13,14], 拟合表 2 中在 TD-B3LYP/cc-pvTZ 水平上得到的波长数据,得到 BC2nB 共轭体系的电子吸 收波长λ与体系大小 n 的关系式为:

$$\lambda = \frac{1240.6}{2 + \sqrt{3n+6} - \sqrt{3n+3}} \left(A - B/C^n \right)$$
(3)

式中 A=3.41321, B=3.07317, C=1.01548. 拟合误差和 相关系数分别为 0.01196 nm 和 1, 表明该公式具有较高 的精度.

nStateTransition λ^a f^a λ^b f^b 1 $X^1 \Sigma_g^+ \rightarrow l^1 \Sigma_u^+$ $1 \pi_u \rightarrow 1 \pi_g$ 188.200.9398186.530.904	9
1 $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ $1\pi_{u} \rightarrow 1\pi_{g}$ 188.20 0.9398 186.53 0.904	19
•	
2 $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ $1\pi_{g}\rightarrow 2\pi_{u}$ 218.08 1.9767 215.55 1.945	0
3 $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ $2\pi_{u} \rightarrow 2\pi_{g}$ 246.27 2.9968 243.45 2.966	0
4 $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ $2\pi_{g} \rightarrow 3\pi_{u}$ 273.86 3.9544 270.93 3.915	6
5 $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ $3\pi_{u} \rightarrow 3\pi_{g}$ 300.84 4.8286 297.87 4.780)4
$6 X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+} 3\pi_{g} \rightarrow 4\pi_{u} 327.12 5.6268 324.13 5.568$	32
7 $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ $4\pi_{u} \rightarrow 4\pi_{g}$ 352.77 6.3736 349.77 6.303	7
8 $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ $4\pi_{g} \rightarrow 5\pi_{u}$ 374.59 6.982	2
9 $X^{1}\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ $5\pi_{u} \rightarrow 5\pi_{g}$ 398.37 7.599	17
$10 X1\Sigma+g \rightarrow 11\Sigma+u 5\pig \rightarrow 6\piu 421.39 8.187$	8'8
11 $X^{1}\Sigma_{g}^{+} \rightarrow I^{1}\Sigma_{u}^{+}$ $6\pi_{u} \rightarrow 6\pi_{g}$ 443.41 8.740)1
$12 \qquad X^{1}\Sigma_{g}^{*} \rightarrow 1^{1}\Sigma_{u}^{*} \qquad \qquad 6\pi_{g} \rightarrow 7\pi_{u} \qquad \qquad \qquad 464.76 \qquad \qquad 9.280$	19

表 2 BC_{2n}B 的垂直跃迁能(nm)和振子强度 able 2 Vertical transition energies (in nm) and oscillator strengths (f) of BC_{2n}

^{*a*} By B3LYP/cc-pvTZ. ^{*b*} By B3LYP/cc-pvDZ.

表3 BC_{2n}B (*n*=1~12) 的 HOMO-π, LUMO 能级和能隙ε(单位: a.u.)

Table 3 The energy levels of HOMO- π , LUMO and ε for BC_{2n}B ($n=1\sim12$) (in a.u.)

n	ΗΟΜΟ-π	LUMO	ε
1	-0.35739	-0.14744	0.20995
2	-0.32108	-0.15014	0.17094
3	-0.29923	-0.15188	0.14735
4	-0.28448	-0.15328	0.13120
5	-0.27373	-0.15416	0.11957
6	-0.26557	-0.15476	0.11081
7	-0.25904	-0.15529	0.10375
8	-0.25376	-0.15565	0.09811
9	-0.24949	-0.15583	0.09366
10	-0.24585	-0.15600	0.08985
11	-0.24278	-0.15609	0.08669
12	-0.24006	-0.15621	0.08385

图 2 BC_{2n}B ($n=1\sim12$)的 HOMO- π , LUMO 能级和能隙 ε Figure 2 The energy levels of HOMO- π , LUMO and ε of BC_{2n}B ($n=1\sim12$)

图 3 BC_{2n}B 的 X¹ $\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ 电子跃迁的波长与 *n* 的关系曲线 **Figure 3** Plots of the wavelengths of the electronic transition X¹ $\Sigma_{g}^{+} \rightarrow 1^{1}\Sigma_{u}^{+}$ of BC_{2n}B vs. *n*

2.3 电离能

线性簇合物 BC_{2n}B ($n=1\sim12$, $D_{\infty h}$)的第一垂直电离 能(*VIE*)和 BC_{2n}B ($n=1\sim8$)的绝热电离能(*AIE*)的计算结 果列于表 4, *VIE* 和 *AIE* 与 n 的关系绘于图 4. 计算表明, 在 B3LYP/6-31G^{*}水平上, BC_{2n}B⁺ ($n=9\sim12$)不是稳定 结构,因此表4 仅给出了 $n=1\sim8$ 的绝热电离能. 从表4 数据可以看出,体系的 *VIE* 和 *AIE* 都随着 n 的增大而逐 渐降低. 比较表 4 中体系的 *VIE* 和 *AIE* 可以得到,体系 的 *VIE* 值比 *AIE* 值略大,从图 4 可以看到它们的差值有 明显的增大趋势. 为了考查电离能与 n 的依赖关系,计 算表 4 中相邻绝热电离能间的差,结果为: -0.01746, -0.01481, -0.01082, -0.00831, -0.00636, -0.00507, -0.00328 a.u.,呈现递增趋势,因此,可以得出体系的 第一电离能与体系大小 n 的关系是非线性的,这一关系 由图 4 也可明显看出. 拟合表 4 中的 *AIE* 数据,得到了 体系的 *AIE* 与体系大小 n 的表达式:

$$AIE = A + Be^{-Cn} \tag{4}$$

式中 *A*=0.25973, *B*=0.10311, *C*=0.26294, 拟合误差和 相关系数分别为 0.00000 a.u.和 0.99975. 当 *n*→∞时, *AIE*→0.25973 a.u. (7.068 eV), 所以可以预测, 体系的第 一绝热电离能小于 7.068 eV.

用同样的方法拟合表 4 中的 VIE 数据, 得到体系的 VIE 与体系大小 n 的表达式与式(4)具有相同形式, 式中 A=0.26368, B=0.09665, C=0.22728, 拟合误差和相关 系数分别为 0.00000 a.u.和 0.99954. 当 n→∞时, VIE→0.26368 a.u. (7.175 eV), 所以可以预测, 体系的第 一垂直电离能小于 7.175 eV.

由拟合结果可以看出,当 n 无限大时,即体系足够 长时,体系的绝热电离能和垂直电离能的差值为 0.107 eV.

图 4 BC_{2n}B (*n*=1~12) 体系的电离能 **Figure 4** Ionization energies of BC_{2n}B (*n*=1~12) species

<i>n</i> —	$\mathrm{BC}_{2n}\mathrm{B}^+$			BC _{2n} B		410	WE
	E^{a}	E^b	ZPE	E^b	ZPE	AIE	VIE
1	-125.29277	-125.29406	0.0092	-125.63338	0.0098	0.33872	0.34061
	$(0.75680)^c$	(0.75650)					
2	-201.49082	-201.49465	0.0202	-201.81651	0.0208	0.32126	0.32569
	(0.75684)	(0.75676)					
3	-277.68476	-277.69006	0.0303	-277.99691	0.0307	0.30645	0.31215
	(0.75799)	(0.75800)					
4	-353.87506	-353.88132	0.0411	-354.17705	0.0412	0.29563	0 20100
	(0.75887)	(0.75930)					0.30199
5	-430.06280	-430.06985	0.0518	-430.35717	0.0518	0.28732	0 20427
3	(0.76025)	(0.76059)					0.29437
6	-506.24855	-506.25624	0.0628	-506.53700	0.0626	0.28096	0 28845
	(0.76188)	(0.76189)					0.20045
7	-582.43318	-582.44139	0.0739	-582.71688	0.0735	0.27589	0 28370
,	(0.76336)	(0.76319)					0.28570
0	-658.61682	-658.62525	0.0848	-658.89666	0.0836	0.27261	0 27984
0	(0.76446)	(0.76449)					0.27904
9	-734.79970		0.0032	-735.07636	0.0956		0 27666
)	(0.76248)		0.0752				0.27000
10	-810.98193		0 1025	-811.25587	0.1056		0 27304
10	(0.76282)		0.1055				0.27394
11	-887.16267		0.1157		0.1177		0 27166
11	(0.76327)		0.1157	007.43433			0.27100
12	-963.34529		0.1254		0.1273		0 26906
	(0.76386)			-903.01433			0.20900

表4 BC_{2n}B ($n=1\sim12$)的电离能(a.u.) Table 4 The ionization energies of BC_{2n}B ($n=1\sim12$) (in a.u.)

^aB3LYP/6-311+G^{*} energy at BC_{2n}B geometry. ^b Energy at B3LYP/6-311+G^{*}//B3LYP/6-31G^{*} level. ^c 括号内数据为 Ŝ².

3 结论

应用 DFT 和 TD-DFT 方法, 计算了线性碳链簇合物 BC_{2n}B ($n=1\sim12$, $D_{\infty h}$)的平衡几何构型和振动频率. 计 算结果表明, BC_{2n}B 具有类似聚炔(polyacetylene)结构的 单、叁键交替的结构特征, 且都是稳定的. TD-B3LYP/ cc-pvTZ 和 TD-B3LYP/cc-pvDZ 的计算结果显示 BC_{2n}B 体系的跃迁能与体系的大小 n 的关系是非线性的, 基于 计算的跃迁能, 建立了 BC_{2n}B 体系 X¹Σ⁺_g → 1¹Σ⁺_u 电子跃 迁能与 n 的解析表达式. 应用这一关系式, 可以预测这 类簇合物体系的 X¹Σ⁺_g → 1¹Σ⁺_u 既迁能. 根据体系电离能 的计算结果, 可以得出体系的电离能与体系大小 n 的关 系也是非线性的, 通过对计算结果的拟合, 建立了体系 电离能与 n 的解析表达式. 应用这一关系式可以预测, 这类簇合物当体系足够长时, 其垂直电离能将收敛到 0.26368 a.u. (7.175 eV); 绝热电离能将收敛到 0.25973 a.u. (7.068 eV).

References

- Robertson, N.; McGowan, C. A. Chem. Soc. Rev. 2003, 32, 96.
- Huang, R.-B.; Wang, C.-R.; Liu, Z.-Y.; Zheng, L.-S.; Qi,
 F.; Sheng, L.-S.; Yu, S.-Q.; Zheng, Y. W. Z. Phys. D 1995,
 33, 49.
- 3 Leleyter, M. Z. Phys. D 1991, 20, 81.
- 4 Leleyter, M. Z. Phys. D 1991, 20, 85.
- 5 Burnin, A.; BelBruno, J. J. J. Phys. Chem. A 2003, 107, 9547.
- 6 Vuitton, V.; Scemama, A.; Gazeau, M. C.; Chaquin, P.; Benilan, Y. Adv. Space Res. 2001, 27, 283.
- 7 Linn, S. H.; Ono, Y.; Ng, C. Y. J. Chem. Phys. 1981, 74,

3342.

- 8 Ono, Y.; Linn, S. H.; Prest, H. F.; Gress, M. E.; Ng, C. Y. J. Chem. Phys. 1981, 73, 2523.
- 9 Barnett, R. N.; Landman, U.; Cleveland, C. L.; Jortner, J. Chem. Phys. Lett. 1988, 145, 382.
- 10 Li, X. Z.; Paldus, J. Int. J. Quantum Chem. 1999, 74, 177.
- Horný, L.; Nicholas, D. K.; Petraco, N. D. K.; Schaefer III,
 H. F. J. Am. Chem. Soc. 2002, 124(20), 5861.
- 12 Horný, L.; Petraco, N. D. K.; Schaefer III, H. F. J. Am. *Chem. Soc.* **2002**, *124*(49), 14716.
- Zhang, C.-J.; Cao, Z.-X.; Wu, H.-S.; Xu, X.; Zhang, Q.-E. *Acta Phys.-Chim. Sin.* 2002, 18(7), 585 (in Chinese). (张聪杰,曹泽星,武海顺,徐昕,张乾二,物理化学学 报, 2002, 18(7), 585.)
- 14 Zhang, C.-J.; Cao, Z.-X.; Wu, H.-S.; Zhang, Q.-E. Int. J. Quantum Chem. 2004, 98, 299.
- 15 Pascoli, G.; Lavendy, H. Eur. Phys. J. D 2002, 19, 339.
- 16 Cao, Z.-X.; Zhang, Q.-E. Chem. Eur. J. 2004, 10, 1920.
- 17 Kim, K. H.; Lee, B.; Lee, S. Chem. Phys. Lett. 1998, 297, 65.

(A0404125 CHENG, B.)

 $\nu^{-1}/(10^5\,{\rm mol}^{-1}\!\cdot\!{\rm L}\!\cdot\!{\rm s})$

-20

Vol 63 2005

Thermokinetic Study on the Inhibition Against Arginase Catalyzed Reaction by NaF

Π

XIE, Xiu-Yin*; WANG, Zhi-Yong; WANG, Cun-Xin Acta Chimica Sinica 2005, 63(2), 121

Adsorption Kinetics of C12-2-Ex-C12•2BI at the Water-Air Interface Studied by Maximum Bubble Pressure Technique

· λ.

800

 $[S_0]^{-1}/(mol^{-1} \cdot L)$

300

nase by NaF was studied by thermokinetic method, and the inhibitory effect was determined to be a reversible non-competitive inhibition. The inhibition rate depends only on pH value of solution, while substrate L-arginine and exogenous Mn²⁺ ion have no remarkable influence on it. The graphic is Lineweaver-Burk double reciprocal plot of arginase catalyzed reaction at different concentrations of inhibitor.

The inhibition against bovine liver argi-

Since the molecules with short spacer chains were easy to pre-aggregate as compared with those with long spacers, the concentration of mono molecules of the latter in the bulk was higher than that of the former, which promoted the diffusion of the former molecules to the surface in a short time and decreased the γ_t more quickly. However, in the long time as the surface was nearly completely covered, the γ_m of surfactant with long spacer was high because this kind of molecules occupied large surface areas resulting in

JIANG, Rong; ZHAO, Jian-Xi*; YOU, Yi Acta Chimica Sinica 2005, 63(2), 126

Theoretical Study on Structures and Electronic Spectra of Linear Chain Cluster BC_{2n}B (n=1~12)

0.34

Density functional theory has been used to study the vertical transition wavelengths (λ) for the $X^{1}\Sigma^{+}_{+} \rightarrow 1^{1}\Sigma^{+}_{+}$ transition and the first adiabatic ionization energies (AIE) and vertical ionization energies (VIE) in linear chains $BC_{2n}B$. It has been found that all the λ -n, AIE-n and VIE-n dependence relationships are nonlinear as the number of carbon atoms increases. The explicit expressions for the size dependences of λ , AIE and VIE in linear chains are suggested.

ZHANG, Jing-Lai*; WANG, Lian-Bin; WU, Wen-Peng; CAO, Ze-Xing Acta Chimica Sinica 2005, 63(2), 131

Study on a Novel Pentaerythritol-based Carbosilane Liquid Crystalline Den drimer of the Third Generation

TANG, Xin-De; ZHANG, Qi-Zhen*; LI, Ai-Xiang; FAN, Xing-He; CHEN, Xiao-Fang; ZHOU, Qi-Feng Acta Chimica Sinica 2005, 63(2), 138

A novel pentaerythritol-based carbosilane liquid crystalline dendrimer PCSi-3G-NO2 was synthesized. PCSi-3G-NO2 is cholesteryl and smectic E liquid crystal, different from the corresponding mesogenic unit $M-NO_2$ which shows nematic phase.

© 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net