尖晶石型 LiMn₂O₄ 的电化学性质

舒东¹.杨勇².夏熙³.林祖赓²

(1. 西江大学轻工业化学系,广东 肇庆 526061; 2. 厦门大学固体表面物理化学国家重点实验室,福建 厦门 361005; 3. 新疆大学应用化学研究所,新疆 乌鲁木齐 830046)

摘要:利用循环伏 安法(CV)、恒流充放电、电化学 阻抗谱(EIS)等电化学 手段研究了 溶胶凝胶法制备的 尖晶石型 LiMn₂O₄的电化学性质。结果表明用溶胶凝胶法制备的样品放电容量大,可逆性好,其中 550℃煅烧的样品电化学性能 最好;XRD 结果表明,样品经过充放电,尖晶石结构仍保留,但出现深度放电产物 Li₂Mn₂O₄。 关键词: 锂离子电池; 锂锰氧化物; 溶胶凝胶法; 循环伏安法; 交流阻抗法 中图分类号: TM912.9 文献标识码: A 文章编号: 1001-1579(2001) 05-0215-03

Electrochemical property of spinel LiMn₂O₄ prepared by sol-gel method

SHU Dong¹, YANG Yong², XIA Xi³, LIN Zu geng²

(1. Department of Chemistry, Xijiang University, Zhaoqing, Guangdong 526061, China;

2. State Key Laboratory f or Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China;
3. Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China)

Abstract: The electrochemical properties of spinel $\operatorname{LiM}_{n_2O_4}$ electrodes prepared by a sol-gel method were studied by cyclic voltammetry, constant current charge-discharge and electrochemical impedance spectrum (EIS) techniques. The experimental results showed that the electrochemical performance of the samples prepared by sol-gel method was better than that of the sample prepared by normal method. The electrochemical performance of the sample prepared by sol-gel method at 550 °C show ed the best electrochemical performance. After constant current charge-discharge the spinel structures in all samples were reserved and deeply discharging product Li₂Mn₂O₄ was detected from XRD results.

Key words: Li-ion battery; lithium manganese oxide; sol-gel method; cyclic voltammetry; electrochemical impedance spectrum

锂锰氧化物因其原材料成本低、资源丰富,用它作成的电极具有电压高、耐过充放性能好以及无毒性等显著优点,是极 具有发展前途的锂离子电池正极材料。一般的固体 LiM n₂O₄ 合成方法煅烧温度高,反应时间长,且合成的尖晶石型 LiM n₂O₄ 粒度较大。为改善电极材料的电化学性能,近年来人们采用了 一些新的合成方法,如溶胶凝胶法^[1],共沉淀法^[2],融盐浸渍 法^[3],Pechini 法^[4]等。而所谓的动态过程合成法^[5]还可以对材 料的粒径、孔径和形貌进行调控。我们利用溶胶凝胶法制备了 尖晶石型 LiMn₂O₄,并对其电化学性能进行了研究。

1 实验部分

用溶胶凝胶法合成系列尖晶石型 LiMn₂O₄, 合成方法见文献[6], 煅烧温度分别控制在 350℃, 550℃和 850℃, 样品分别用 S350, S550 和 S850 表示, 用普通方法制备的样品^[6]用 SPN 表

作者简介:

舒 东(1965-),男,四川人,西江大学副教授,主要从事电化学和电池的研究;

- 杨 勇(1963-),男,湖南人,厦门大学教授,主要从事电化学和电池的研究;
- 夏 熙(1931-),男,湖南人,新疆大学教授,主要从事电化学和电池的研究;

林祖赓(1934-), 男, 福建人, 厦门大学教授, 主要从事电化学和电池的研究。

基金项回2国家自然科学基金(29833090)。#1863E高技术成展计划(F15g 994rs 9250) rights reserved. http://www.cnki.net

示。电化 学测 试 时电 解池 采 用三 电极 结 构, 工 作电 极 为 LiMn₂O₄ 样品+ 乙炔黑+ PTFE(质量比为 8 1:1), 混匀后碾压 成型, 并与金属集流体压制成电极, 辅助电极与参比电极均采 用纯锂电极, 电解液为 1mol/L LiClO₄+ PC+ DME, 电池装配在 Mbraun 100 型氩气保护的手套箱内完成。 XRD 测试采用日本 Rigaku 公司生产的 D/MAX-RC 转靶 X 射线衍射仪。 所采用 的电化学仪器为美国 EG&G 公司生产的 M273 型恒电位仪, 德 国 Zahner 公司生产的 IM6型阻抗频谱分析仪。

2 结果与讨论

图 1 所示为 S550 的循环伏安图, 其中 3. 8V 的还原峰和 4. 3V 的氧化峰分别代表第 1 个 Li⁺ 的嵌入脱出过程, 其嵌入脱出 反应为 2 μ M nO₂+ Li⁺ + e ===LiM n₂O₄。 2. 7 V 的还原峰和 3. 3V 的氧化峰分别代表第 2 个 Li⁺ 的嵌入脱出过程, 其嵌入脱 出反应为 LiM n₂O₄+ Li⁺ + e ===Li₂M n₂O₄。从图中可以看出, 第 1 个 Li⁺ 嵌入脱出时, 嵌入脱出峰发生分裂。Tarason 等^[7] 指 出这种电流峰的分裂现象 是尖晶石 结构 中阳离子 之间相互作 用的结果。尖晶石型 LiM n₂O₄ 为立方晶系, 当少量的锂离子进

入尖晶石八面体的位 置时,相邻 Li- Li 之 间相互作用很小,随 着更多的 Li⁺ 进入其 它的八面体位置,每 个嵌入的 Li⁺ 将受到 周围相邻4个 Li的相 互作用,它们之间的 相互作用导致嵌入能 量的分裂,在循环伏 安曲线中表现为2个

图 1 S550 样品电极的循环伏安图

Fig. 1 Cyclic voltammogram of S550 electrode

峰,在放电曲线上也出现2个平台。

在相同的实验条件下,我们还做了其它几个样品的循环伏 安曲线。循环伏安图上峰电位和峰电流的数据见表 1,高电位 的电流峰出现分裂时,取电流较大的电流峰。

表 1 LiM n₂O₄ 样品的循环伏安曲线参数

Table 1 Cyclic voltammetric parameters of LiMn₂O₄ electrodes

编号 No	E _{a1}	I _{al}	$E_{\rm c1}$	I _{c1} E	$E_{a1} - E_{a1}$	$_{c1} E_{a2}$	I _{a2}	E_{c2}	I _{c2} E	$E_{a2} - E_{a2}$
S350	4.35	7.40	3.78	4.21	0.57	3.32	4.55	2.55	5.31	0.77
S550	4.26	9.21	3.85	8.25	0.41	3.27	5.47	2.68	6.32	0. 59
S850	4.30	7.03	3.85	5.45	0.45	3.27	5.01	2.77	3.22	0.50
SPN	4.46	7.35	3.77	5.82	0.69	3.37	5.02	2.65	3.94	0.72

注: E_a/V 氧化电位(Oxidic potential), E_c/V 还原电位(Reductive potential), I_a/mA 氧化电流(Oxidic current), I_c/mA 还原电流(Reductive current)。

流都比较大,说明S550样品的充放电容量比较大。

从氧化还原电流峰位置来看,在高电位下(3.5~4.5V), S550 样品氧化峰电位较小(4.26V),还原峰电位较大(3.85V), 因而氧化还原峰电位差 $E_{al} = E_{cl}$ 比较小,说明第 1 个 Li^+ 嵌入 脱出时产生的电化学极化较小,电极可逆性较好,电极可逆性 变化的顺序由好到差依次为 S550,S850,S350,SPN。在低电位 下(2.4~3.5V),氧化还原峰电位差值 $E_{a2} = E_{c2}$ 从小到大依次 为 S850,S550,SPN,S350。锂离子电池工作时,一般只利用 $LiMn_2O_4$ 的第 1 个 Li^+ 的嵌入脱出,第 2 个 Li^+ 嵌入脱出时,导 致晶格发生严重的 Jahn = Teller 畸变,致使结构由立方晶系转 变为四方晶系,这个过程由于引起了结构的变化,因而会产生 较大的不可逆容量。从 S550的循环伏安图中也可以看出,因发 生第 2 个 Li^+ 的嵌入脱出,第 2 周期的电流峰有明显的下降。

图 2 所示是几种 尖晶石型 LiMn2O4 电极的放电容量随循 环次数的衰减情况。 从图 中 可 以看 出 S550 的初始放电容 量最高,循环稳定性 最好,其次是 S850, 再次是 S350。SPN 的初始容量比较高, 但循环时容量衰减比 较快。这个顺序和 氧化还原峰电位差

电容量和循环次数的关系 Fig. 2 The discharge capacity as a fune-

tion of cycle numbers

*E*_{al} = *E*_{cl}高电位下氧化还原的顺序基本一致,说明用凝胶溶胶 法制备样品的可逆性较普通方法合成样品的要好,而 550℃ 煅 烧的样品放电容量最高,可逆性最好。

尖晶石型 LiMn₂O₄ 电极在高电位下放电时出现两个平台, 前面提到这是由于 Li-Li 相互作用引起的,平台电位值见表 2。 表 2 几种尖晶石型 LiMn₂O₄ 电极的放电平台电位值

Table 2 Potential plateaus of discharge stage of L1M n ₂ U ₄ electron	plateaus of discharge stage of LiMn ₂ O ₄ el	lectrode
--	--	----------

样 品 Sample	S 350	S550	S850	SPN
平台电压/ V	3.95	4.3	4.3	4. 25
Pot <i>e</i> ntial plateau	3.6	3.95	3.75	3.8

从表 2 所示结果中可以看出, 第 1 个平台电位值的顺序为 S550≈ S850> SPN> S350, 第 2 个平台电位值的顺序为 S550> SPN> S850> S350, 可以看出 S550 放电电位比较高, 说明放电 时产生的电化学极化比较小。S350 放电平台电位比较低, 说明 放电时产生较大的电化学极化。

电极经 10 次充放电循环后,将电极置于放电态,取出后用 滤纸吸干电解液,做 XRD 测试,结果见图 3。图中出现

石结构仍有保留,同时出现深度放电产物 $Li_2 M n_2 O_4$,虽然放电控制在浅度放电区,但因电化学极化的产生,放电时在一些局

部区域,电极可能进 部区域,电极可能进 第 2 个 Li^+ 嵌入 $LiMn_2O_4$ 电极,形成 $LiMn_2O_4$ 电极,形成 - Teller 效应,由于 Jahn - Teller 效应,由立方 晶系的变化使得充 生成的 $Li_2Mn_2O_4$ 不 能 完 全 转 化 为 LMn_2O_4 而部分保留 在放电后的电极中出 现Li_2Mn_2O_4相。

Fig. 4 Electrochemical impedance speetrum of $\text{Li}_x \text{Mn}_2\text{O}_4$ electrode of S550 at different x

直线,其等效电路可以看作是一个含 Warburg 扩散阻抗的简单 的等效电路。随着充电的进行, $x \$ 从 1 依次到 0.75、0.5、0.25、 0,这时出现了 2 个半圆,其中前一个半圆可能对应于电荷传递 阻抗和电极双电层电容组成的并联电路,而后一个半圆则和电 极表面形成的复合吸附层有关,图中 x = 0的为充电到 λ – M nO₂ 时的阻抗谱,在充电过程中,第1 个半圆半径略有增加, 说明电化学阻抗略有增加。第2 个半圆半径增加较多,说明锂 锰氧化物表面吸附层随充电逐渐变厚,吸附电阻逐渐增加。 参考文献:

- Bach S, Pereira-Ramos J P, Baffier N, et al. Birnessite manganese dioxide synthesized via a sol-gel process: a new rechargeable cathodic material for lithium batteries [J]. Electrochimica Acta, 1991, 36 (10):1 595-1 603.
- [2] Huang H T, Bruce P G. A 4V lithium manganese oxide cathode for rocking ion cells[J]. J Electrochem Soc, 1994, 141 (9): L106.
- [3] Xia Y, Yoshio M. Studies on Li-Mn-O spinel system (obtained from meltimpregnation method) as a cathode for 4V lithium batteries Part II. Optimum spinel from-MnOOH[J]. J Power Sources, 1995, 57: 125.
- [4] Liu W, Farrington G C. Synthesis and electrochemical studies of spinel phase LiMn₂O₄ cathode materials prepared by the Pechini process[J]. J Electrochem Soc, 1996, 143(3): 879-884.
- [5] Fauteux D G. Massucco A, Shi J. Flexible synthesis of mixed metal oxides illustrated for and LiCoO₂[J]. J Applied Electrochem, 1997, 27: 543-549.
- [6] SHU Dong(舒东), YANG Yong(杨勇), XIA Xi(夏熙), et al. 尖晶 石型 LiMn₂O₄ 的低温制备[J]. Chinese Journal of Applied Chemistry (应用化学), 2000, 17(6): 633.

收稿日期: 2001-02-15

欢迎订阅 2002 年的《电池》杂志 欢迎订阅 2002 年的《电池》杂志 欢迎订阅 2002 年的《电池》杂志

订阅《电池》杂志

你可以跨月、跨季、跨年、跨世纪!

订阅《电池》杂志

你可以写信、打电话、发传真、发电子邮件!

无论何时何地,《电池》都将满足您对电池新知识的渴望与追求!

Tel: 0731– 5141901 Fax: 0731– 5171922 E-mail: dianchi@cs. hn. cn

欢迎订阅 2002 年的《电池》杂志 欢迎订阅 2002 年的《电池》杂志 欢迎订阅 2002 年的《电池》杂志