率,较低的代谢率又使其胎仔数低于非沙漠种。 我们的结果表明两地种群平均胎仔数无差异 (表 2), 但沙地环境中胎仔数少于 4 个的比例 明显大于平原环境(小胎仔数各月分布无规 律)。对于沙地环境的黑线仓鼠,小胎仔数的比 例较高,很可能也与环境温度对该种的限制压 力有关,怀孕雌体在适应高温干旱条件的过程 中,以减少繁殖输出调节个体适应能力,提高母 体和幼体的存活率。张知彬等[11]根据文献对 我国啮齿类繁殖参数在地理纬度上的变异进行 比较,认为高纬度严酷环境地区的种群生殖强 度(平均胎仔数)有增大的趋势,这是为了补偿 较短的繁殖期和幼体较低的存活率。本研究两 个黑线仓鼠种群的平均胎仔数相近,目沙地种 群的主要栖息地是固定沙地和农田,环境中可 利用食物资源并未成为限制因素(另文报道), 沙地种群是以小胎仔数、高成活率适应相对恶 劣的生存环境,这与澳洲食植性啮齿类的低生 殖率受食物条件限制也不同[12],即环境条件的 严酷性表现方式存在差异。所以,深入开展两 地种群生物能学和讲化生态学方面的研究,将 进一步阐明不同地理种群的生存适应机制。

参考文献

- [1] 张洁.北京地区黑线仓鼠年龄鉴定及种群年龄组成的研究. 兽类学报, 1985 5(2):141~149.
- [2] 张洁.北京大兴地区黑线仓鼠种群繁殖生态研究. 兽类 学报, 1986, 6(1):45~56.
- [3] 董维惠, 侯希贤, 林小泉等. 黑线仓鼠种群数量动态预测研究. 生态学报, 1993, 13(4): 300~305.
- [4] 卢浩泉,李玉春,张学栋. 黑线仓鼠种群年龄组成及其数量季节消长的研究. 兽类学报, 1987, 7(1): 28~34.
- [5] 董维惠,侯希贤,周延林等.内蒙古中西部草原主要害
 鼠数量动态预测.中国草地,1997(3):44~48.
- [6] 侯希贤,董维惠,周延林等.鄂尔多斯沙地草场鼠类组成及动态初步研究.草地学报,1998,6(2):99~104.
- [7] 张洁, 钟文勤. 布氏田鼠种群繁殖的研究. 动物学报, 1979, **25**(3): 250~259.
- [8] 严志堂, 钟明明. 田野小家鼠种群特征研究. 兽类学报, 1985, 5(3): 201~210.
- [9] Delong, K. T. Population ecobgy of feral house mice. Ecology, 1967, 48: 611~634.
- [10] McNab, B. K. Food habits, energetics, and the population biology of mammals. Ame. Natur., 1980, 116: 106~ 124.
- [11] 张知彬,朱靖,杨荷芳.中国啮齿类繁殖参数的地理变 异.动物学报,1991,3(1):36~46.
- [12] Yom-Tov, Y. The reproductive rates of Australian rodents. Oecologia, 1985, 66: 250 ~ 255.

铁核结构对马脾铁蛋白释放铁动力学的影响*

黄河清^{①②} 林庆梅^③ 肖志群^① 陈 晶^① 曾 骥^① 童 丽^① (①厦门大学生物学系; ②厦门大学固体表面物理化学国家重点实验室; ③厦门大学环境科学研究中心 厦门 361005)

摘要: 建立 H⁺参与马脾铁蛋白释放铁的动力学方程。H⁺ 以 1/2 级反应方式参与铁蛋白释放铁核表层的铁。在酸性介质(pH 6 5) 中, 铁蛋白释放铁的总平均速率(332 Fe³⁺/HSF°min)比在碱性介质(pH 8.0)中释放铁的总平均速率(73 Fe³⁺/HSF°min)高 4.6 倍。铁蛋白的铁核结构和外加的磷酸盐均能影响该蛋白释放铁的速率,但并不改变其反应级数。

关键词:马脾铁蛋白;反应级数;铁核结构;动力学方程;磷酸盐

中图分类号:Q617 文献标识码:A 文章编号:0250-3263(2001)01-18-05

^{*}国家自然科学基金(No. 49876027),教育部高等学校骨干教师资助计划及固体表面物理化学国家重点实验室基金资助项目; 第一作者介绍 黄河清, 男, 43, 教授; 研究方向; 蛋白质工程; E-mail; hqhuang @jingxian. xmu. edu. cn;

^{?1994-2014} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.

Effect Structure of Iron Core on Kinetics of Iron Release from Horse Spleen Ferritin

HUANG He-Qing^{\square}^{\square} LIN Qing-Mei³ XIAO Zhi-Qun^{\square} CHEN Jing^{\square} ZENG Ji^{\square} TONG Li^{\square}

(① Department of Biology; ② State Key Laboratory for Physical Chemistry of Solid Surfaces; ③ Research Center of Environment Science, Xiamen University Xiamen 361005, China)

Abstract: A Kinetic equation of iron release with H^+ existing was established from horse spleen ferritin. H^+ as a form of half-order reaction took part in the reaction that the ferritin released it on the surface of iron core. Average rate of iron release (332 Fe³⁺/HSF °min) in the acid-medium (pH 6.5) was higher 4.6 times than that (73 Fe³⁺/HSF °min) in basic-medium (pH 8.0). The structure of iron core from horse spleen ferritin and the extra phosphate had an effect upon the rate of iron release, but the reaction order was not changed. **Key words:** Horse spleen ferritin; Reaction order; Structure of iron core; Kinetic equation;

Key words: Horse spleen territin; Reaction order; Structure of iron core; Kinetic equation; Phosphate

哺乳动物的脾脏细胞内含有一种能高效储存铁离子的蛋白质,称为铁蛋白(ferritin),每分子铁蛋白所储存的铁量可高达数千铁离子和数百磷酸盐分子^[1,2]。铁蛋白的分子结构由铁核(iron core)和蛋白壳(protein shell)组成,铁核位于蛋白壳中心^[1,3~5]。早期的研究认为,铁蛋白铁核结构中的磷铁组成是非均匀的,可被区分为铁核表层及铁核内层^[6]。而近期的研究又进一步指出了铁蛋白铁核表层的高磷铁比结构可能与蛋白所表达的生理功能有一定的联*系*^[7]。

虽然对铁蛋白释放铁的动力学研究已经有 了大量详细地报道,但所获得研究结果却表明, 铁蛋白释放铁的动力学曲线均无法用常规的零 级、一级或二级等反应动力学公式来阐明释放 铁的规律^[89]。此外,Watt^[10]和Huang^[11]分别 报道了铁蛋白能高效储存体外的磷酸盐于蛋白 壳中,但有关磷酸盐的作用仍然缺乏了解^{12]}。

本文选用马脾铁蛋白(horse spleen ferritin, HSF)为研究材料,制备不同铁核结构且 用于分析 HSF 释放铁的动力学规律,为今后深 入探讨铁蛋白的新生理功能提供了有价值的理 论研究依据P4 China Academic Journal Electronic Pu

1 材料与方法

1.1 材 料 HSF蛋白浓度为100 mg/ml并用 Sephadex G-25 层析柱(2 cm×12 cm)纯化。 纯化后的HSF 经聚丙烯酰胺凝胶电泳纯度验 证呈单条带。

1.2 方 法

1.2.1 元素分析和不同铁核结构的 HSF 制备 HSF 总铁量用分光光度法测定。磷含量选用 常规的 Cooper 方法测定。HSF 蛋白浓度选用 改良的 Lowry 方法测定。制备不同铁核结构 的 HSF 操作步骤如下:1)用 0.05 mol/L NaOH 调节 HSF 所需的 pH 值,并稳定2小时; 2)把不同 pH 值的样品分别加入1.2 cm×6.0 cm Sephadex G-25 层析柱并用相对应 pH 值的 Tris-HCl 缓冲剂洗脱 HSF 已释放的游离铁和 磷酸盐。上述实验步骤均用高灵敏度的酸度计 监测。不同铁核结构 HSF 总的铁量、磷量和磷 铁比如表1所示。

1.2.2 不同铁核结构的 HSF 释放铁速率测定 1) 定量分析不同铁核结构 HSF 的总铁量;2) 根据实验所要释放的铁量,定量加入 Na2S2O4 和 q.a. 联吡啶分别用于铁还原和释放;3) 用分 光光度法(520 nm)测定 HSF 释放铁的速率^{12]}。

1.2.3 外加磷酸盐对HSF释放铁速率的影响 根据不同铁核结构 HSF 的总铁量,用 20 mmol/L Na₂HPO₄ 配制成反应体系中总磷量与 HSF 总铁量,比值范围在 0.00~1.20 之间。 HSF 释放铁的速率和反应级数测定按作者的 方法进行^[12]。

2 结 果

2.1 不同 pH 对 HSF 直接释放铁速率的影响 表 1 的结果表明,不同 pH 介质中的 H⁺和 OH⁻均能使 HSF 直接释放(无需额外加入 Fe^{3+} 还原剂及 Fe^{2+} 螯合剂的条件下)出铁核中 对弱酸或弱碱不稳定的铁组分。从表 1 可看 出,在弱酸性介质中(pH 7.0~5.0), HSF 直接 释放铁的平均速率为 566 Fe^{3+} /pH。在弱碱性 介质中(pH 9.0~7.0), HSF 直接释放铁的平 均速率为 308 Fe^{3+} /pH, 两者速率比约为 2 ·1。

$_{\rm pH}$	5.0	6. 0	7. 0	8. 0	9. 0
Pi/HSF	286	308	340	230	170
$\mathrm{Fe}^{3+}/\mathrm{HSF}$	1 181	1 701	2 316	1 817	1 700
Fe ³⁺ /Pi	4.1	5.5	6.8	7.9	10. 0

图1结果表示,在不同 pH 反应介质条件 下,HSF 释放铁的全过程。从图 1结果可看 出,在弱酸性(pH 6.5)介质中,HSF 释放铁的 全过程所需要的反应时间仅为 7.5 分钟,而在

弱碱性(pH 8.0)介质中, HSF 释放铁的全过程 所需的时间却要23分钟,两者反应时间的比值 为1:3。此外,图1结果表明,当反应介质的 pH 值分别为 6.5 和 8.0 时, HSF 释放铁的总 平均速率分别为 332 Fe³⁺/HSF。min 和 73 Fe^{3+}/HSF °min,前者释放铁的速率比后者释放 铁的速率快 4.6 倍。可见,反应介质中 H^+ 加 快 HSF 释放铁的速率, 而 OH^- 却减缓 HSF 释 放铁的速率,这一现象与早期 Funk^[13] 曾报道 在不同的 pH 介质中, HSF 释放铁的结果及规 律很相似。然而,如把图1结果分别代入零级、 一级或二级的反应动力学方程,其结果均无法 获得一条以用纵座标表示释放铁的速率和横座 标表示反应时间的直线。因而可知,虽然在不 同弱酸和弱碱介质中, HSF 释放铁的速率不 同,但它释放铁的动力学全过程仍然呈复杂混 合级反应。这一现象说明了 HSF 释放铁过程 中呈混合级的现象与释放铁的速率高低无关。

2.2 不同铁核结构对 HSF 释放铁核表层铁的 影响 Na₂S₂O₄ 是一种具有双电子供体的强还 原剂,它以 1/2 级快速方式参与铁蛋白释放铁 的反应,其铁核中 Fe²⁺离子形成量与 Na₂S₂O₄ 消耗量成对应的正比关系¹⁹。因而可推导如 下动力学方程:

 $[HSF(Fe_n^{2+})_{max} - HSF(Fe_m^{2+})_t]^{1/2} =$

$$K(T_{\max} - T_t) \qquad [1]$$

[HSF(Fe²⁺)_{max}] 表示 HSF 释放铁全过程总铁 量。 T_{max} 是指 HSF 释放铁全过程所需的反应 时间。 T_t 表示 HSF 释放一定铁量 ($m Fe^{2+}$)所 需的反应时间。[HSF(Fe²⁺)_t] 表示在一定的 反应时间内 HSF 释放铁的含量。K 表示 HSF

图 2 ($C_{\text{max}} - C_t$)^{1/2}对时间作图

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.

释放铁的速率常数。

多次实验结果已肯定,当不同铁核结构的 HSF 分别释放占各自原铁核总铁量 20%的铁 时,其释放铁的速率明显不同。在酸性介质中, HSF 释放铁的速率明显高于在碱性介质。如 把结果分别代入方程[1],即可得出图 2 结果。 从图 2 结果可看出,HSF 释放铁核表层的铁 时,其释放铁速率[(*C*max - *C*₁)^{1/2}]与反应时间 成对应的线性关系,均未出现转折点和反应级 数的转换。可见,铁蛋白释放铁核中部分铁时, 其动力学过程呈一定的规律性。但是,HSF 释 放铁的速率高低仍然与铁核结构和铁核中的 pH 有关(其 pH 值与反应介质的 pH 相同)。

2.3 不同铁核结构对铁蛋白释放铁速率的影 响 当不同铁核结构的 HSF 分别释放占原铁 核总铁量 10%和 20%的铁时,并把所获得速率 分别代入方程[1],即可求出 HSF 释放铁的速 率常数(*K*)。如用纵座标表示速率常数(*K*)和 以横座标表示 pH 作图时,即获得图 3 结果。 从表 1 结果可看出,随着反应介质递增,铁核中的磷铁比也随之递增。因而,从图 3 结果进一步分析可知,随着整体铁核结构中的铁磷比值 递增,HSF 释放铁的速率常数(*K*)逐渐降低,K 值递减率和铁核中的 pH 值增加量的变化趋势 呈对应线性关系。

图 3 不同 pH影响 HSF 释放铁的速度常数

2.4 建立 H^+ 参与 HSF 释放铁动力学方程 根据 Harrison 提出铁蛋白释放铁的动力学模 型¹¹ 和图 1~3 的结果,可认为当加入等量 Na₂S₂O₄ 和 α ' α -联吡啶时,不同铁核结构的 HSF 释放相同铁量的过程,可遵循如下反应:

$$HSF(Fe_n^{3+}) + n [H^+] \xrightarrow{k_1}_{Na_2S_2O_4} HSF(Fe_{n-m}^{3+}, Fe_m^{2+}) + 1/2nH_2O \xrightarrow{k_2}_{\alpha' \alpha - \text{dipyridyl}} HSF(Fe_{n-m}^{3+}) + mFe^{2+} - \alpha' \alpha - \text{dipyridyl} [1]$$

根据题意和方程[1],即可得出H⁺参与HSF释 放铁动力学方程:

$$\frac{\mathrm{d}\{\mathrm{HSF}(\mathrm{Fe}_{n-m}^{3+}, \mathrm{Fe}_{m}^{2+})\}}{\mathrm{d}t} = k_{3}\{\mathrm{HSF}(\mathrm{Fe}_{n}^{3+})\}[\mathrm{H}^{+}]^{n}$$
[2]

 k_3 表示不同铁核结构的 HSF 释放铁的速率常数。n表示H⁺参与 HSF 释放铁动力学反应级数。{HSF (Fe³⁺_n)}表示 HSF 蛋白浓度。但当 HSF 参与释放铁反应时,只有 HSF 铁核中的铁浓度不断地减少, HSF 蛋白壳的浓度始终不变,因而可认为{HSF (Fe³⁺_n)}为常数,

$$N = \frac{\mathrm{pH}_2}{\mathrm{pH}_1} \lg \frac{k_{\mathrm{pH}_2}}{k_{\mathrm{pH}_1}}$$
 [3]

 k_{3} {HSF (Fe_n³⁺)}可用 k 表示。根据结果和条件,对方程[2]进行积分、简化后,可得动力学方程[3],方程[3]中所列出的 $k_{pH_{1}}$ 和 $k_{pH_{2}}$ 分别表示相对应 pH 的 HSF 释放铁的速度常数。把图 3 结果代入方程[3],可获得 N = 1/2,则表明 H⁺以 1/2 级的方式参与HSF 释放铁核表层的铁。

2.5 磷酸盐对 H⁺参与 HSF 释放铁的反应级 数的影响 实验结果表明,外加磷酸盐能强烈 地抑制 HSF 释放铁的速率,其抑制强度在酸性 区明显高于碱性区。然而,尽管外加磷酸盐能 强烈抑制 HSF 释放铁的速率,但并不能转化 HSF 释放铁的反应级数,其机理仍有待于进一 步研究。

3 讨 论

早期的研究已表明,铁蛋白释放铁的动力 学性质均呈复杂化,其原因与铁蛋白的复杂铁 结构有关^[13]。然而,从图1~3结果分析得出, 虽然不同铁核结构、外加磷酸盐能直接影响 HSF 释放铁的速率,但并不能改变反应级数。

这一现象说明了 HSF 所呈现的复杂动力学规?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnl

律可能与复杂的铁核表层结构无关,却与蛋白 壳构象及调节能力有关。因而,迫使不同铁核 结构的铁蛋白以不同的速率和相同的反应级数 释放铁核表层的铁^[14,15]。

根据 Harrison 提出 HSF 释放铁的模型结 构分析可知^[1], Na₂S₂O₄只能通过浓度扩散方 式穿过铁蛋白的蛋白壳隧道进入铁核中,并以 1/2级的方式参与铁蛋白铁的还原和释放。从 表观现象分析可知,H⁺的作用是迫使 HSF 释 放一定的铁量、构建不同的铁核结构及引起释 放铁速率差异。但实际上,释放铁的速率差异 的起因很可能与 H⁺ 直接作用于蛋白壳的物质 交换隧道有关,从而使HSF 适当地调节了隧道 宽度,加速了 Na2S2O4 的扩散速率,产生了 Na2S2O4的扩散速率与H⁺浓度成对应正比关 系及与OH⁻浓度成反比关系的结果,并引起了 铁核中的 Fe³⁺ 被还原速率递增,最终达到释放 铁速率与 H^+ 浓度成对应的正比关系。因此可 认为, H^+ 和 Na₂S₂O₄一样均也以 1/2 级的方式 参与铁蛋白释放铁的全过程。铁蛋白蛋白壳的 自身调节能力对限制释放速率起着关键的作 用,并受环境因素强烈地制约,铁核表层的复杂 磷铁结构对释放铁及储存其它过渡重金属离子 起着辅助性作用[16]。

- 参考文献
- [1] Harrison, P. M., T. G. Hoy, I. G. Macara *et al*. Ferritin iron uptake and release. *Biochem. J.*, 1974, 143: 445 ~ 451.
- [2] Chasteen, N. D., P. M. Harrison. Mineralization in ferritin, An efficient means of iron storage. *Journal of Structural Biology*, 1999, **126**: 182~194.
- [3] Meldrum, F. C., B. R. Heywood, S. Mann. Magnetoferritin: *In vitro* Synthesis of a novel magnetic protein. *Scienæ*, 1992, **257**: 522~523.
- [4] Yang X. K., Y. Chen-Barrett, P. Arosio et al. Reaction

paths of iron oxidation hydrolysis in horse spleen and recombinant human ferritins. *B iochemistry*, 1999, **37**: 9–743 \sim 9–750.

- [5] Harrison, P. M., P. Arosio. Ferritins: Molecular properties iron storage function and cellular regulation. *Biochem. Biophys. Acta*, 1996, **1 275**: 161 ~ 203.
- [6] 黄河清, R. K. Watt, G. D. Watt *et al*. 马脾铁蛋白铁核 表层特性. 厦门大学学报(自然科学版), 1993, **32**: 628 ~633.
- [7] Johson, J. L., M. Cannon, R. K. Watt *et al.* Forming the phosphate layer in reconstituted horse spleen ferritin and the role of phosphate in promoting core surface redox reactions. *Biochemistry*, 1999, **38**: 6 706 ~ 6 713.
- [8] Richards, T. D., K. R. Pitts, G. D. Watt. A kinetic study of iron release from *Azotobacter vinelandii* bacterial ferritin. *Journal of Inorganic Biochemistry*, 1996, 61: 1 ~13.
- [9] 黄河清,张凤章,林庆梅等.马脾铁蛋白释放铁的反应
 级数和速率相数的转换.动物学报,1999,45(2):170~
 177.
- [10] Watt, G. D., R. B. Frankel, D. Jacobs *et al.* Fe²⁺ and phosphate interaction in bacterial ferritin from *Azotobacter vinel andii*. *Biochemistry*, 1993, **31**: 745 ~ 758.
- [11] Huang H. Q., R. K. Watt, G. D. Watt et al. Role of phosphate in Fe²⁺ binding to horse spleen ferritin. Biochemistry, 1993, 32: 1 681~1 687.
- [12] Huang, H. Q., Q. M. Lin, B. Kong et al. Role of phosphate and kinetic characteristics of complete iron release from native pig spleen ferritin-Fe. Journal of Protein Chemistry, 1999, 18: 497 ~ 504.
- [13] Funk, F., J. P. Lenders, R. R. Crichton *et al.* Reductive mobilization to apo and holo mammalian ferritin. *Eur. J. Biochem.*, 1985, 152: 167~172.
- [14] 黄河清,张凤章,许良树.猪脾和马脾铁蛋白理化特性的比较.动物学报,1997,43(2):170~177.
- [15] 黄河清,林庆梅,张凤章等.猪脾铁蛋白电子隧道特性 及释放铁途径的研究.中国生物化学与分子生物学报, 1999, 13:10~14.
- [16] 林庆梅,乔玉欢,黄河清.铁蛋白反应器储存有毒金属 离子的初步研究.厦门大学学报(自然科学版),1999, 38:871~876.