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THEORETICAL EXPRESSION AND MONTE CARLO
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Abstract: A propagator method w as used to calculate diffusion attenuation of the NMR signal under
general nonlinear field gradients. Theoretical expressions of the attenuation factor were obtained for
free and restricted diffusion betw een two plates. Monte Carlo simulation w as performed and the re-
sults were compared with the theory. It shows that the theoretical method is appropriate for the free
diffusion, as well as the restricted diffusion under the short gradient pulse approximation. Monte
Carlo simulation provides an alternate way to quantify the effects of inhomogeneous field gradients
used in MRI and NMR.
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INTRODUCTION

The use of magnetic field gradients is an integral part of M RI and has become indispens-
able for some new high-resolution NM R experiments in recent years. It is, however, not of-
ten realized that typical gradient experiments are designed based on a near-perfect perfor-
mance of the gradients, i.e. minimal residual gradients after switching and perfect gradient
linearity over the sampld " . In diffusion-weighted imaging (DWI) . for example, several

factors including background and imaging gradients , and spatial gradient field distortions,
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lead to considerable deviations between the designed and the actually applied diffusion-
weighting or spatial encoding. The precision and accuracy of experimentally measured trans-
lation diffusion coefficients are limited by the linearity of the gradient pulses over the sam ple
volume! . The inhomogeneous broadening due to background gradients causes the angular
frequency deviation from the resonance frequency[ I, Although the effect of residual gradi-
ents has been studied in some detaild ¥, consequences of gradient non-linearity have not been
fully appreciated. It is clear that the study of diffusion in arbitrary inhomogeneous field is
important for a host of current applications ” .

In practice, the gradient may be nonlinear due to different experimental conditions.
Even when the applied fields are homogeneous, the difference in susceptibility of the con-
stituent materials gives rise to a microscopically inhomogeneous field ®” . For example the
susceptibility contrast between pore space and grains in rocks or between tissue and fluid in
biological samples poses serious problems in NM R imaging and relaxation. The non-linearity
leads to a systematic deviation of the experimental data from the Stejskal-Tanner equation! ? .
However, except the simplest nonlinear gradient, parabolic field, little theoretical work has

been carried out on signal decay under nonlinear gradients ®

. Inthiswork, diffusion atten-
uation under general nonlinear gradient fields was studied by the propagator formalism we re-
ported recently '” and Monte Catlo simulation. The results would be useful for correcting

the systematic deviation due to the inhomogeneous fields.

1 NONLINEAR MAGNETIC FIELD

Assuming that a general nonlinear magnetic field, B (z ) is along the Z axis, the mag-
netic field can be unfolded by a Taylor expanslon
B(z) = Z " (1)
=0
where z is the position coordinate in the Z direction, 7 is the order and B" (0) is the coeffi-
cient of the Taylor series. The gradient function can then be described as follow s:

()

g = dB(zydz = D) B_l), )
n=1
The phase shift due to gradient after t' time is given
t/ ! !
?(z, t/):JO[ij(Z/)Vj]B(Z e, 3)
j

where p; and 7;are the coherence order and the gy romagnetic ratio of the j -th type spins re-
spectively . Substituting Eq. (1) into Eq. (3), we obtain the phase difference of the spins at

coordinates z and z' :
! ! ! .t/ " — n ! 14
¢zt~ 9z i) = JO[Ep,u ) —Bn(?>(z n oy de @)
J n=0 .

Let (Az)= z'—z, the z" term in Eq. (4) can be obtain from a Taylor expansion:

"= g +Z nlz

(n—m)!m )
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In the case of @ > (L), where a is the length of the sample along the Z axis, the higher
order terms, (Az)™ (m = 2), can be neglected.

Substituting Eqgs. (2) and (5) into Eq. (4), we have:

) © m nrt1
b N N (CDI@AD) "
Pzt )— Pz, t) JO[ZPI(I)YI][;) (m+1)1 1de

;
%Jo [ Zp;(t,,) Y g (z) L) e’ 6)
J

where g” (z) represents the m order derivative of g(z) .
Using the method of the propagator " and the gradient pulse sequences shown in Fig.
I, we obtain the diffusion attenuation factor E (2 z ) for free diffusion:
E(ANz)=exp[— DY’ g (z) §(A— ¥3)], D
where D is diffusion coefficient, Ois the duration of the gradient pulse, and Ais the time in-
terval between the two gradient pulses. The total attenuation of the signal over the whole

sample can be obtained as follows:

E(A) = ﬂoexp{—ng%z) §(A— ¥3))dz 8)
k

In the case of k -order nonlinear magnetic field, B(z) = Zg,-zi + By, the following ex-
—1

i=

pression can be got easily from Eq. (7):
k
E(N z)=exp[— DYV (Ligz™ ' §(A— §3)]. 9)
i=1

When k = 2, the attenuation factor after the first gradient pulse is £( & z) = exp

[— DY*(gi+ 2g2z)" 8/3] . which is the same as the result derived from the modified

Bloch’ s equation[ Tt also agrees with the results reported by Bendel ”. In the case of a

parabolic magnetic field with g = 0 and the minimd value at the center of the sample, Eq. (9) pre-
dicts the same curve & Fig. (6) in Ref.[ 11] . In the next section, we will discuss gradient fields with
minimal field at the edge of the sample. In this case, the “edge enhancement effect” is very obvious.
Now cnsider the restricted diffusion between two parallel reflecting plates separated by a distance a =

2R . In the case of & > 3, the probability equation[ s,

2_2
Z Dt
P(29 Z/y t) - 1+2n:]exp(_ n(2R )2

where the p(z, z', t)is the probability of a particle starting from z and moving to z "in time

(n7rz/)>

R (10)

)cos (%)COS(

interval . The attenuation factor is then deduced to be:
!

27 o 2 2
JO [1+ 2> exp(— LEDL >cos<’§§§ Yeos(EE)] cos[ YXB (z' ) — B (z )] dz’
n=1

2 2R
Etz) = 2R SR :
nm nmz nmz '
Jo [1+ 2;exp(— W)Cos(ﬁ)cos( 2R )] dz

an
Although it is difficult to get a general analytical solution of Eq. (11), numerical solu-

tion,is available.., The method provided herein is simpler to that in Ref.[ 5] . It is worth men-
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tion that, unlike Eq. (9), in Eq. (11) doenot need to be expanded by Taylor ex pansion.
Therefore, Eq. (11) does not require the condition of @ ~>Az . It means that Eq. (11) is
still valid when the displacement of particle Az reaches the order of magnitude of the sam ple

size a . In the following section, Eq. (11) will be used to correct the boundary effect.

2 MONTE CARLO SIMULATION AND DISCUSSION

Brow nian-dynamics computer simulation is a simple way to investigate how the deviation
of a magnetic field from a perfectly constant gradient influences the attenuation of the sig-
nal'” . If the model of diffusion simulation is correct, the simulated results should be reason-
able (for a given field-gradient profile) and suffer only from statistical uncertainty. There-
fore, computer simulation was used to study the effect of nonlinear magnetic field.

The diffusion of a particle is represented as a sequence of small random displacements.
Since the magnetic gradient is applied along the Z direction in the pulse sequence (Fig. 1),
only the displacements of the particles along the Z direction need to be considered. We have

904 180y

o] 1

+——— A —p

g 3P
Grad

Fig.1 PGSE pulse sequence

z(t+A)=z(t)+ Az, (12)
where z (£ ) is the position of the particle at time ¢, z (¢ + A7), is the position of the parti-
cles at time ¢ + A¢, and Az is the random displacement of the particle in the time interval
A¢. Since the walking of particles obeys the stochastic properties of Brow nian particles, the

random walk displacement Az is given by :

Az = J2DAtecos(B), (13)
where B is the angle betw een the z axis and the walking direction of the inspected particle, €
is a random number. The random numbers are totally uncorrelated, i.e., their distribution

satisfies the free path distribution and their self —correlated coefficient is zero:
—e/ A

pery=re 7" (14

where A is the average free path which can be set as J 2DA¢ . Our simulation results show ed
that the sampling of free path distribution is better than that one of Gauss distribution w hich
is usually used in the simulation of self —diffusion. We have

e =—1In(er). (15

Both &jand B are distributed uniformly and can be produced by com puter random function di-
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rectly ( €1 is limited to the range of 0 and 1, and [ is limited to the range of 0 and2m ). To
get reasonable simulation results, 450 000 particles were used and the random walk step was
set to 100. The random function was produced by visual ¢

Firstly, the simplest nonlinear magnetic field, parabolic magnetic field, was simulated.

The result was compared with the theoretical one. Let

gmax g max 2 gmax 3
B(z) = %42 cpiz T Bo (16)

the gradient is given by:
gmdx
2R

where gmax = 27g/ O is the maximum gradient, and R is one half the length of the sam ple

g(Z):gmax (Z_R) X (17)

along the Z axis. The gradient value at z = R is gmax . In our simulation, the length of the
sample along the Z axis is set to 0.015 m. In such case, free diffusion can be assumed even if
the diffusion time reaches the order of seconds. ¢ = Ygma O 27 is introduced to scale the
gradient intensity for convenience.

Figure 2 shows the signal attenuation E (z, &) versus z for the free diffusion. The sim-
ulated results shown in Fig. 2(a) agree well with theoretical ones except when z —>0 or z —>
2R . In the latter case, the simulated values are larger than the theoretical ones. The obvi-

[ 13 .
| . The main reason may

ous derivation at the edge is called the “edge enhancement effect”!
be due to the effect of boundary, which cannot be neglected when z is close to the boundary
of the sample along the field gradient direction. For & > 8, Eq. (11) was used to correct
the “edge enhancement effect”. The corrected results near the boundary shown in Fig. 2(b)
are improved and are more consistent with the theoretical values.

Secondly, we consider the NM R signal attenuation under the cosine— function magnetic
field. The cosine field is of particular interest as it is taken as a crude model of microscopic
inhomogeneous field originated from large difference in susceptibility near pore boundaries.
Additionally, it is also a simple example of the field where the gradient at the walls vanishes.

For a cosine field:

B(z)= B U— cos( ))/2+ Bo, (18)
the magnetic gradient is:
B1TC .
gz)= AR Sm(ZR) (19

where R and B are constant. The attenuation factor can be written as:

2 Bim R

E(A z) =ex *DY[4R51n Zg(A* ¥3)(s (20)

In this case ¢ = Ygmax 027 = YB1 ¥ 8R.

The simulated results are in good accord with the theoretical results in the whole z range
(Fig. 2(c)) within the margin of the statistical error of Monte Carlo simulation. When z —
Oorz —>2R, themotion of the particles doesn’ t affect the NM R signal intensity due to the

vanishing of field gradient. Therefore, the cosine filed has not “edge enhancement effect” .
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Fig.2 Signal attenuation E(z, A) versus z for free diffu- Fig.3 Signal attenuation E{z, A) versus z for the re-

sion, D=2.0x10"°m%/s. (a) The gradient field is a
parabolic magnetic field, ¢ =3 000, ¢ =0.015 m, &=
0.055s, and A=2.0s. (b) The same as (a) with correc-
tion of the restricted effect near the edge. (c) The gradient
field is a cosine magnetic field, ¢ = 5000, a = 0.015 m,
8=0.2s, and A=1.5s.

stricted diffusion under parabolic magnetic field gradient
with ¢=8 000, a=5.2X10""m, §=1.0%10"%, and
A=0.05s. (a) D=2.0x10"°m%/s; (b) D=5.0x
10" ""m%/s; and (c) D=1.0X 10" "m?/s.
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Now we discuss the signal attenuation of restricted diffusion betw een two plates. When
the pulse width O(see Fig. 1) is close to zero ( 6>0), the theoretical and simulated results
with different diffusion rates were shown in Fig. 3. When D=2.0X 10 °

of the decaying curve shown in Fig. 3(a) is quite different from those of the free diffusion

m’/s, the shape

curves under the same gradient field (Fig. 2(a) and (b)). The maximum signal intensity
doesn’ t occur near the walls where the gradient is the smallest due to the deviation of phase
from the Gauss distribution caused by the boundary effect. These results showed that small
diffusion rate decreases the boundary effect and makes the shape of the decaying curve more
similar to those of free diffusion curves.

Similar analyses may provide information about the length scales of restricted diffusion,
the character of self-diffusion, and the distribution of the magnetic field gradient. The infor-
mation is useful for oil industry where porous materials are widely used in oil transportation.
The different pore sizes, the heterogeneous pore distribution and the complicated pore con-
nectivity make it difficult to determine by conventional techniques the characteristic pore—

length scales that control fluid transport properties[M] .

Exploiting the spatial variation of
magnetic field inside the pore through NMR diffusion experiments the primary pore-length
scales can be deduced easily! ™V .

We also studied the precision of Monte Carlo simulation briefly. In general, increasing
the number of particle and/or simulation step improves the precision of the simulation re-
sults, but it increases computational time in the meaning time. Therefore, it is necessary to
find a balance between the precision and cost. Tables 1 and 2 listed the variation of root-

mean-square deviation of the simulated results from the theoretical ones against the amount of

simulation.
Table 1 Root-mean-square deviation ¢ of the simulated results from the
theoretical ones against the number of simulated partice vV
N (X 10°) 0.3 0.6 1.5 3.0 6.0 12 30 45
6 (X 1072) 5.6 3.8 2.6 1.9 1.3 0.96 0.72 0.50

Table 2 Root-meansquare deviation o of the simulated results from the theoretical ones

against the number of simulation step K with the simulated particle number 4. 5X 10°

K 50 100 200 400 1 000 2 000 4000 6 000

6 (X 1072 1.8 1.5 1.5 1.6 1.6 1.5 1.6 1.6

Table 1 demonstrates that the deviation decreases with the increasing of the particle
number. The selection of particle number depends on the precision required and the computa-
tional time affordable. When the particle number is 450 000, the deviation is smaller than
2%. Table 2 shows that the deviations hardly change when the step number exceeds 100,

which wasused in our, smulations.
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CONCLUSION

In this paper, a propagator method was used to describe the diffusion attenuation factor

of NMR signal under general nonlinear field gradients. For the simplest nonlinear parabolic

gradient field, the theoretical result agrees with the previous report. The results of Monte

Carlo simulation under several gradient fields are consistent with the theoretical predictions

for the free and restricted diffusion betw een two plates when A > 8. The effect of cosine

field gradient is different from that of parabolic field gradient. The method discussed herein

provides an easier way to quantify the effects of inhomogeneous field gradients used in M RI
and NMR.
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