TiQ / PVA杂化膜的渗透蒸发性能及结构表征

陈建华, 叶李艺, 张秀华, 刘庆林, 张秋根 (厦门大学 化学化工学院 化学工程与生物工程系, 福建 厦门 361005)

摘要: 通过纳米 TQ 粒子填充改性制备了新型 TQ / PVA杂化膜。红外光谱表明纳米 TQ 表面的羟基与聚乙烯醇 (PVA)链上的羟基存在较强的氢键作用。扫描电镜显示当 TQ 的质量分数低于 1.5% 时,在 PVA中分散均匀。 X 射线衍射显示纳米 TQ 的加入降低了膜的结晶度。通过对含水质量分数低于 20% 的水 /乙醇体系的脱水研究了 该杂化膜的渗透性能。考察了 TQ 粒子填充量、料液质量分数和温度与膜分离性能之间的关系。渗透通量 随着 TQ 水质量分数和温度的升高而增加,分离因子随着温度和水质量分数的升高而下降,在 TQ 质量分数为 1.5% 时分离因子达到最佳值。 40^{°C}下分离质量分数 85% 的乙醇水溶液,分离因子可达 1.590 渗透通量为 0.049 k^g/(m² ° h)。

关键词: TQ;聚乙烯醇; 渗透蒸发;杂化膜 中图分类号: TQ028 8 文献标识码: A 文章编号: 1005-9954(2007)11-0029-04

Permeation and characterization of TiO, / PVA hybrid membranes

CHEN Janhua, YE Liyi ZHANG Xiuhua, LIU Qing-lin, ZHANG Qiugen

(Department of Chemica] and Biochemical Engineering College of Chemistry & Chemical

Engineering Xiamen University Xiamen 361005 Fujan Province China)

A betract Novel nanometer sized TQ filled polyvinyl a cohol (PVA) membranes were prepared Fourier transform infrared (FTIR) indicates that there is a strong hydrogen bond interaction between PVA and TQ. Scanning electron microscope (SEM) shows that TQ particles are well distributed in the membrane matrix when TQ mass fraction is less than 1.5%. X-ray diffraction (XRD) reveals that the crystallinity of the hybrid membrane is lower than that of the PVA membrane. The permeation properties of themembrane was studied through the dehydration of water ethanol system of which watermass fraction is less than 20%, and the effects of TQ mass fraction, feed watermass fraction and temperature on the permeation properties of themembrane were investigated. The results show that the permeation flux J increases with increasing TQ mass fraction, feed water mass fraction and temperature. Meanwhile, the separation factor α decreases with increasing the feed water mass fraction and temperature. Separation factor arrives at an optimal value when TQ mass fraction is 1.5%. The separation factor and permeation flux reach 1.590 and 0.049 kg/(m² \circ h) respectively for the separation of mass fraction 85% ethanol/water solution at 40 °C.

Keywords TO, polyvinyl alcohol pervaporation hybrid membranes

渗透汽化 (PV)是膜分离最活跃的研究领域之 一。 PV对共沸、近沸点混合物、同分异构体以及热 敏性物质的分离具有特别的优势^[1-4]。膜分离过程 的关键是膜,对膜进行改性是使膜性能优化的常用 方法^[5-6]。其中填充改性方法以条件温和、简便易 行的突出特点而得到了较为广泛的应用^[7]。 PVA是含有大量羟基、广泛应用的膜材料。 PVA对水有较高的渗透选择性,但由于高度结晶 性, PVA膜的通量较小。通常通过以下方式来改良 PVA膜:①对 PVA膜进行交联^[8];②与其他高分子 材料共混^[9];③填充无机物,如 X^u等^[10]在 PVA膜 中加入纳米尺度的 SQ,提高了 PVA膜的热稳定性

基金项目:国家自然科学基金资助项目 (50573063);教育部新世纪优秀人才支持计划资助项目

作者简介:陈建华(1973-),博士研究生,主要从事杂化膜的制备及光催化研究;刘庆林(1965-)博士,教授,通讯联系人,电话:(0592) 2188283 E-mail 9111@ xmu edu cn

^{?1994-2014} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

和选择性。

纳米 TQ 的应用很广,目前主要应用在传感器 材料、催化剂载体、光催化剂、水处理、防紫外线添加 剂等领域^[11-12]。将纳米 TQ 粒子分散于聚合物中 可制成纳米复合材料,性能优异。制备纳米复合材 料是获得高性能复合材料的重要方法之一^[13]。由 于纳米 TQ 粒子表面具有大量的一OH可与 PVA 高分子链上一 OH形成氢键或脱水形成 T+ O-C 化学键,有希望极大地改善 PVA膜的性能。基于以 上原因,本文利用填充的方法制备了 TQ / PVA杂化 膜,对其结构进行表征,并对渗透蒸发性能进行研究。

1 实验部分

1.1 材料

PVA聚合度为 1 750 ±50 国药集团化学试剂 有限公司;纳米 TQ,自制,粒径在 40 ^m左右。

1.2 杂化膜的制备和表征

将一定量的 PVA和去离子水加入到三口烧瓶 中,在 90 ℃水浴中搅拌 5 h至 PVA完全溶解,得 到质量分数 6%的 PVA水溶液。称取一定量的纳米 TQ倒入烧杯中,加入一定量的去离子水,在超声 波中超声 6 b然后倒入 6%的 PVA水溶液,剧烈搅 拌 24 h后静置脱泡。将铸膜液在玻璃板上流延成 膜,在室温中干燥 24 b 80 ℃下热处理 24 h得到厚 度为 30 μm左右的杂化膜。分别采用 FT- IQ40 SX 型傅立叶变换红外光谱仪 (美国尼高力仪器公司), 多晶粉末 X射线衍射仪 Panalytical XPert(荷兰, Panalytica分析仪器公司)和 LEO1530扫描电镜(德 国里奥电镜有限公司)对杂化膜的化学和物理结构 进行分析。

1.3 溶胀实验

将干膜称取质量后,记为 W。放在乙醇 /水混合 液中恒温浸泡一定时间后,取出用滤纸快速擦干表 面液体,称量后重新放入混合液中浸泡,再称量,直 至质量变化不大,取质量相近 3次的平均值,得湿膜 质量,记为 W。膜的溶胀度 DS通过下式计算:

$$DS = (W_s - W_d) / W_d$$
(1)

1.4 渗透蒸发实验

本实验采用德国 SULZER CHEMTECH公司的 PERVAP2201型的渗透蒸发装置,有效渗透面积为 70.88 ^{αn²},透过侧压力为 4×100 ^{Pa} 表征渗透汽 化的 2个基本参数是渗透通量 J和分离因子 α。

J—透过液的质量 / 时间 × 膜的有效面积) (2)

乙醇的质量比

- 2 实验结果与讨论
- 2.1 填充膜的表征

含不同 TQ 质量分数的 PVA膜的红外谱图见 图 1:杂化膜在 3 310 ^{cm⁻¹}处有强的羟基振动吸收 峰, 且随着纳米 TQ 的加入有增强现象, 加入量在 质量分数 1. 5%时达到最大, 然后随着 TQ 的加入 又有减弱的现象, 但与 PVA膜相比有增强且向低波 数偏移的现象。其原因是 TQ 的表面含有大量的 羟基与 PVA的羟基生成了氢键, 加强了羟基振动吸 收峰的强度。但是当 TQ 的加入量超过 1. 5%时, 由于纳米 TQ 出现团聚现象, 使膜中羟基的数量相 对减少, 因而吸收峰又有减弱的趋势。从上图中可 看出在 1 090 ^{cm⁻¹}处的吸收峰有类似的变化情况, 原因是 PVA链上的羟基与 TQ 的表面羟基发生化 学反应产生的 T+- O- C键增强了 C- O键在1090 ^{cm⁻¹}处的吸收强度。

图 1 不同 TO₂ 质量分数的 TO₂ /PVA杂化膜的红外光谱图 Fg₁ FTR \$Pectra of TO₂ /PVA membraneswith different TO₂ mass fractions

图 2为含不同 TQ 质量分数的杂化膜的 XRD 谱图,从图中可看出,杂化膜的结晶度均小于 PVA 膜。在填充量小于 1.5%时,随着 TQ 的加入,杂化 膜的结晶度逐渐减小;在填充量为 1.5%时达到最 低点,然后随着纳米 TQ 的加入,结晶度又增大。 原因是加入的 TQ 表面的羟基与 PVA的羟基相互 作用,干扰了 PVA分子链之间的结合力和它们的排 列方式,使它们的排列无序度增大,从而降低了结晶 度。同时由于纳米 TQ 的粒径较小,表面积较大。 当加入量超过 1.5%会产生团聚现象,使结晶度又 稍微有点上升,同时在 26°处有 TQ 的晶体峰出现 可证明纳米 TQ 颗粒存在团聚现象,在膜内分布不

图 2 不同 TO₂质量分数的 TO₂ / PVA杂化膜的 XRD谱图 F F 2 XRD curves of TiQ / PVA membranes with different TiQ mass fractions

图 3为含 TQ 质量分数为 1.5%和 2 0%时杂 化膜的 SEM图。当 TQ 质量分数为 1.5%时,TQ 粒子均匀地分布在 PVA中,但当 TQ 质量分数为 2 0%时,TQ 颗粒团聚比较严重,有机相与无机相 出现分离的现象。

图 3 含 T^{IO}2质量分数为 1.5%和 2 0%时的 SEM图 (×10 000) Fig 3 SEM image of T^O2 / PVA hybrid membranes with T^O2 mass fraction 1 5% and 2 0% (×10 000)

2.2 杂化膜的溶胀性能

图 4为含不同 TQ 质量分数的杂化膜在 85% 的乙醇溶液中 (若无特别说明,以下料液质量分数 相同)50 ℃时的溶胀情况。随着 TQ 质量分数的 增加,膜的溶胀度先降低后又增加,在质量分数为 1. 5%时达到最低值。其原因是 TQ 的表面含有大量的羟基与 FVA链上的羟基生成氢键以及化学键, 有效地抑制了膜的溶胀。但是,当填充量超过1. 5% 后,溶胀度又有所上升,其原因可能是加入的 TQ 因过量而部分团聚。

图 4 TO₂ 质量分数对膜在水 乙醇溶液中溶胀度的影响 F 译 4 Effects of TO₂ mass fraction on the degree of swelling of the membranes in aqueous ethanol solution

23 杂化膜的渗透汽化性能

231 二氧化钛的质量分数对渗透汽化性能的影响 由图 5可看出,对不同进料质量分数,随着 TQ 填充量的增加,分离因子都先增加后下降,在 1.5% 处达到最大值,而通量则一直增加。

Fig. 5 Effects of TO₂ mass fraction on the PV performance of themembranes

出现这种情况的原因是:纳米 TQ 的表面含有 大量的羟基,具有很好的亲水性,有利于水分子的吸 附、扩散和透过,因而杂化膜的分离因子比 PVA膜 的分离因子高,且在填充量为 1.5%时达到最大值, 超过 1.5%时由于纳米颗粒在膜中开始出现聚集现 象,使乙醇更易从聚集的 TQ 团粒和 PVA链所形 成的较大的空间内通过,结果使分离因子开始下降。 另外,在纳米 TQ 质量分数较少时, PVA分子中的 羟基与纳米 TQ 的相互作用使 PVA分子内羟基与 羟基的相互作用减弱, PVA分子链间的距离拉大, 膜的通量随之增加。同时由于纳米 TQ 的加入干 扰了 PVA链的排列方式。使之更趋无无序,从而降 低了膜的结晶度,增加了无定型区,其结果是通量随 着纳米颗粒填充量的增加而增加。

2.3.2 料液质量分数对渗透汽化性能的影响

从图 6可以看出,在进料温度为 50 ℃下,随着 料液乙醇质量分数的升高,通量降低,但选择性却升 高。这是因为随着水质量分数降低,溶解在膜中的 水量变少,因而膜中可供分子通过的空间变小,其结 果是:一方面通量降低;另一方面对分子体积较大的 乙醇分子的扩散通过更不利,因而分离因子升高。

图 6 乙醇质量分数对通量和分离因子的影响

Effects of feed ethanolmass fraction on flux and separation factor Fig 6

2.3.3 料液温度对渗透汽化性能的影响

由图 7可看出:通量随着温度的上升而增加,但 选择性却下降。这是因为随着温度的升高,一方面 聚合物链的活动性增大,自由体积增大,分子透过的 空间变大,乙醇分子变得更易于通过,其结果是通量 提高的同时选择性却下降了。另一方面,随着温度 的提高,待分离混合物分子的运动加快,分子扩散通 过膜的速率增大。最后,随着温度的升高,料液侧的 蒸汽压升高,渗透物透过膜的推动力增大,扩散系数 增加。这些因素共同作用的结果是通量提高的同时 选择性却下降了。

图 7 温度对通量和分离因子的影响

Fig 7 Effects of feed temperature on flux and separation factor

结论 3

外光谱、扫描电镜和 X射线衍射对杂化膜进行表 征。PVA链上的羟基与 TQ 表面上的羟基存在着 强的氢键作用,同时有 Ti-O-C键的生成。 TQ, 的质量分数不大于 1.5%时在膜中均匀分布。纳米 TQ的加入有效地降低了膜的结晶度和溶胀度。 在渗透蒸发分离乙醇 水溶液时, 纳米 TQ 的填充 量为 1.5% 时表现出良好的分离性能。

参考文献:

- UragamiT KatayamaT MiyataT et al Dehydration of [1] an ethanol/water azeotrope by novel organic inorganic hybrid membranes based on quaternized chitosan and tet rae thoxysilane J. Biomacromolecules 2004 5(4): 1 567-1 574
- Jonquieres A Clement R Lochon P et al Industrial state. [2] of the art of pervaporation and vapour permeation in the western countries J. J Mem br Sc, i 2002 206(1-2). 87-117.
- Upadhyay D J Bhat N V. Separation of azeotropic mixture [3] using modified PVA membrane J. J Membr Sci 2005 255. 18 ⊢ 186
- Huai Min Guan Tai Shung Chung Zhen Huang Poly [4] (viny] a cohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture J. J Membr Sc,i 2006 268 113-122
- Zhen Huang HuaiMin Guan Wee Lee Tan et al Per [5] vaporation study of aqueous ethanol solution through zeo]ite_incorporated multilayer poly(viny) alcohol) mem_ branes Effect of zeolites J. J Membr Sci 2006 276 (1-2): 260-271.
- Sang Yong Nan, Young Moo Lee Pervaporation and pro-[6] perties of chitosanpoly(acrylicacid) complex membranes [J. JMembr Sc,i 1997 135(2): 161–171.
- Peng He, An Chi Zhao Nanom eter composite technology [7] and application in polymer modification J. Polymer Bulletin 2001, 1(1): 74-81
- Vinita Dubey Lokesh Kumar Pandey Chhaya Saxena [8] Pervaporative separation of ethanol/water azeotrope using a novel chitosan impregnated bacterial cellulose membrane and chipsan_poly(viny] alcohol) blends J. J Membr Sci 2005 251(1-2): 131-136
- Jen Ming Yang Wen Yu Su Te Lang Leu et al Evalua. [9] tion of chipsan/PVA blended hydrogelmembranes J. J Membr Sci 2004 236(1-2): 39-51.
- Dong Mei Xu Ke Da Zhang Zhi Hong Fang et al PVA [10] pervaporation membranes modified by nanometer sized SO₂[J. Science & Technology in Chemical Industry 2003 11(2): 25-27
- Li Ling Liao, Ji Ping Liu New inorganic antibacterial [11] agents [J. Modern Chemical Industry 2001, 21 (7); 62 - 64
- Yan FengZhang YuWei WuRuiTao Current develop [12] ment of preparation and application of nano_titania powder [J. Journa] of Functiona] Materials 2000 31(4): 354-356
- Komameni Nanocompositos J. JMater Chen, 1992 [13]

采用填充法制备了 TQ / PVA杂化膜 采用红 994-2014 China Academic Journal Electronic Pu L 2(12) 1 219-1 230 ublishing House. All rights reserved. http://www.cnki.net