Pt 单晶(210)、(310)和(510)阶梯晶面上 CO₂ 电催化还原的表面过程

范纯洁 樊友军 甄春花 郑庆炜 孙世刚*

(厦门大学 固体表面物理化学国家重点实验室 化学化工学院化学系, 厦门 361005)

摘要 研究 Pt 单晶 (210)、(310)和(510)三个阶梯晶面上 CO₂ 电催化还原的表面过程. 通过改 变处理条件获得单晶电极不同的表面结构. 研究结果指出, 当铂单晶电极表面保持其确定原子排 列结构时, 对CO₂还原的电催化活性随晶面上(110)台阶密度的降低而减小, 即Pt(210) > Pt(310) > Pt(510); 当三个电极表面发生氧的吸附导致原子排列结构重建时, 其电催化活性均有不同程度的 提高. 虽然其活性顺序未发生变化, 但(110)台阶位密度越大的表面其电催化活性增加的程度越 高. 研究指出 Pt 单晶电极的表面结构越开放, 其电催化活性也越高, 并且在外界条件诱导下更易 于转变为具有更高反应活性的表面结构. 而相对有序的表面结构则比较稳定. 研究结果从微观层 次获得 CO₂ 与 Pt 单晶电极表面相互作用的规律, 深化了对 CO₂ 电催化还原表面过程的认识.

关键词 Pt 单晶电极 阶梯晶面 CO2 电催化还原 表面过程

金属单晶面具有明确的原子排列结构、常被作 为理想的模型电催化剂,是在原子排列结构层次深 入研究电催化剂表面结构(表面组成、几何和电子结 构)与性能的内在联系、认识表面活性位或反应位的 本质及其作用规律的基础,在电催化研究中具有十 分重要的地位^[1]. CO₂ 是温室气体的主要成份, 其电 催化还原无论是在基础研究, 还是在循环利用碳资 源等方面均受到广泛关注^[2]. Pt 金属电催化剂能以较 低过电位还原 CO₂^[3,4]. 已有文献报道 CO₂在多晶 Pt 及三个 Pt 基础晶面上的电化学还原特性. 红外光谱 的研究结果指出, CO₂在 Pt 电极上还原主要生成吸附 态 CO^[3,5]. Nikolic 等人首次报道了 Pt 基础晶面对 CO₂ 还原的性能^[3],动力学研究结果给出其反应活性次序 为: Pt(111) < Pt(100) < Pt(110)^[5~8]. 阶梯晶面是由含 不同对称结构和尺度的平台和台阶组合而成,为研 究电催化表面活性位和表面过程提供了丰富的表面

结构构型. 以 Pt 阶梯晶面为电催化剂研究 CO₂ 还原 的报道则相对较少, 已有的工作大多集中在表面结 构效应方面, 侧重于比较不同晶面之间的反应活 性^[9,10].为了深入认识 CO₂ 电催化还原的表面过程, 在本文中我们研制了 Pt(210)、Pt(310) 和 Pt(510)三个 阶梯晶面电极, 通过使用不同冷却气氛及改变电化学 处理条件进一步获得不同的表面结构, 运用循环伏安 法研究了 CO₂ 的电催化还原反应, 从微观层次探讨了 CO₂ 与单晶电极表面的相互作用规律及表面过程.

1 实验部分

自行研制 Pt(210)、 Pt(310) 和 Pt(510) 单晶电极^[11]. 按照 Claviller 方法^[12],每次实验前 Pt 单晶电极均用 氢-氧焰进行回火和清洁处理,在不同气氛中冷却, 然后在一滴超纯水保护下转入电解池中.冷却气氛 分别选用 Ar + H₂(还原气氛,比例 4:1)和空气(氧化

收稿日期: 2006-10-09; 接受日期: 2006-10-30

国家自然科学基金(批准号: 20673091, 20433060, 20373059)和 "973" 计划(批准号: 2002CB211804)资助项目

^{*} 联系人, E-mail: sgsun@xmu.edu.cn

气氛),两种气氛中冷却所得电极分别记为 Pt(hkl)-和 Pt(hkl)- .当单晶电极在氧化气氛中冷却时会产 生较多的表面缺陷位,这种表面结构的变化将明显 影响其电化学特性;而使用 Ar+H₂还原气氛冷却,则 可以获得原子排列结构明确的单晶表面^[13].以饱和 甘汞电极(SCE)作参比.电解质溶液由优级纯硫酸和 Milli-Q 超纯水配制.测量前通氮气除氧,并通入高 纯 CO₂至饱和.电化学循环伏安(CV)研究在 XDH-型恒电位仪(厦门大学化学系)上完成,通过自行研制 的计算机软件控制恒电位仪的各种状态,实现 CV 数 据采集和分析^[5].测量均在室温(20)进行.

2 结果与讨论

根据酸性溶液中氢的电化学吸脱附特性^[12,14], 以及固/气^[15]和固/液^[16]界面性质, Pt(210)、Pt (310)和 Pt (510) 三个阶梯晶面的结构构型可表示为:

 $Pt(210) = Pt(s)-[2(100)\times(110)]$ $Pt(310) = Pt(s)-[3(100)\times(110)]$

 $Pt(510) = Pt(s) - [5(100) \times (110)]$

即三个阶梯晶面都由不同宽度的(100)对称结构平台 和1个原子高的(110)对称结构阶梯组成:三个晶面上 (100)平台宽度分别为2,3和5个原子.显然3个晶面 的构型可为研究电催化表面活性位的结构和有序性 (长、短程或有序范围)提供深入的认识.

2.1 Pt 单晶电极在 0.5 mol/L H₂SO₄ 溶液中的 CV 特征

图 1 给出 0.5 mol/L H₂SO₄ 溶液中 Pt(210)、Pt(310) 和 Pt(510)的 CV 曲线. 氢的电化学吸脱附过程对 Pt 单 晶电极表面结构十分敏感,因此常作为探针反应表征 和检测 Pt 单晶电极表面结构及其变化^[17,18]. Pt(hkl)-和 Pt(hkl)- 上氢的脱附电流峰参数(峰电流 j_{P1}, j_{P2}, *j*_{P3})列于表 1 中. 根据文献[17,18], 位于-0.13 V 附近 的 j_{P1} 峰对应氢在(110)表面位的脱附过程, 0.0 V 左右 的 jp2 峰则归属于氢在短程有序(100)表面位上的脱附, 位于更高电位(~0.11 V)的 jp3 峰则为氢在长程有序(100) 表面位上的脱附. 当电位扫描上限(E_n)为0.75 V时, 比 较 Pt(hkl)- 和 Pt(hkl)- 的 CV 曲线, 氩氢冷却气氛使 三个电极表面更为有序. 相对 Pt(hkl)-, Pt(210)-, Pt(310)- 及 Pt(510)- 上 j_{P1}都不同程度地减小, j_{P2}则 分别减小了 4.22%, 40.49%, 55.27%, 但 Pt(510)-I 上 j_{P3} 却大幅度增加到 48.24 μA·cm⁻², 这些结果均指出电 极表面有序结构范围的增加.

图 1 Pt(hkl)在 0.5mol/L H₂SO₄ 溶液中的 CV 曲线 扫描速率: 50 mV · s⁻¹. 1, E_u =0.75 V, Pt(hkl)- ; 2, E_u = 0.75 V, Pt(hkl)- ; 3, E_u = 1.25 V, Pt(hkl)- ; 4, E_u =1.25 V, Pt(hkl)- . 插图为虚线框内部分 放大图

当 E_u 升高至1.25 V,由于氧的吸脱附导致电极表 面结构被扰乱,而使氢的吸脱附特征发生明显变化. Pt(210)-,Pt(310)-和Pt(510)-电极上 $j_{P,2}$ 分别减小 了 6.48%,4.12%和 3.55%;Pt(210)-,Pt(310)-, Pt(510)-电极上 $j_{P,1}$ 分别增加了 37.78%,21.82%, 19.23%,而 $j_{P,2}$ 峰电流分别减小了 7.04%,38.15%, 53.69%,可见氧的吸脱附使三个电极表面结构发生 了不同程度的变化,都呈现出有序结构范围减小的 趋势.且Pt(210)-电极在-0.005 V处给出峰电流为 38.76 μ A·cm⁻²的第三个氧化峰^[19,20],它的出现进一 步表明在高电位下氧的吸脱附导致电极表面结构发 生变化. 在此条件下, Pt(hkl)- 与 Pt(hkl)- 均向相对 无序的表面结构转变, 但 Pt(hkl)- 的改变程度显然 要比 Pt(hkl)- 小得多, 即氩氢气氛更有利于获得稳 定的电极表面结构.

由以上结果可知,通过不同的处理方法可以获 得不同的表面结构,这种表面结构的差异将直接影 响其对 CO₂还原的电催化性能.

2.2 CO₂电催化还原过程的 CV 结果

2.2.1 基本特征

图 2 给出 Pt(210)- 电极上 CO₂还原及其产物氧化的 CV 曲线. 首先在-0.20 V 极化 20 min 还原溶液中的 CO₂, 然后开始电位扫描.

对比图 2 中曲线 1 和 4, 可知 CO₂ 在电极表面还 原生成的表面物种(r-CO₂), 即吸附态 CO(CO_{ad})^[3,5], 占据 Pt 单晶电极表面位抑制了氢在电极上的吸脱附 过程. 当 E_u 提高至 0.75 V(曲线 2),分别在 0.51, 0.55 V 出现 r-CO₂ 的两个氧化电流峰,峰电流分别为 101.05,93.92 μ A·cm⁻². 对氧化峰进行积分得到 Pt(210)-I 上 r-CO₂ 的氧化电量($Q_{r-CO_2}^{OX}$)为 201.6 μ A·cm⁻²,其相应覆盖度(θ_{r-CO_2})为 0.434.

扫描速率: 50 mV s^{-1} . 1, CO_2 还原后在 $-0.20 \cong 0.20 \text{ V}$ 扫描得到的 CV 曲线; 2, CO_2 还原吸附产物 (r- CO_2) 的氧化电流峰; 3, r- CO_2 氧化后记 录的 CV 曲线; 4, 0.5 mol/L H₂SO₄中单晶电极上氢吸脱附特征的曲线

2.2.2 不同结构 Pt(hkl)电极上 CO₂ 电催化还原过 程的 CV 研究

图 3 给出 Pt(210)、Pt(310)和 Pt(510)电极上 CO₂ 还原及其产物氧化的正向 CV 曲线, 其电化学还原参 数列于表 2 中.

图 3 Pt(210), Pt(310), Pt(510)电极上 CO₂ 还原的 CV 曲线 扫描速率: 50 mV s⁻¹. 1, *E*_u = 0.75 V, Pt(hkl)- ; 2, *E*_u = 0.75 V, Pt(hkl)-; 3, *E*_u = 1.25 V, Pt(hkl)-I; 4, *E*_u = 1.25V, Pt(hkl)-

当 E_u =0.75V 时, Pt(310)- 和 Pt(510)- 分别在 0.56, 0.52V 给出峰电流为 208.42, 211.37 μ A·cm⁻²的 电流峰. 当将冷却气氛改变为空气后, r-CO₂ 的氧化 峰(曲线 2)发生了明显变化. Pt(210)- 在 0.47, 0.55 V 出现两个氧化峰,峰电流分别为 124.27, 83.83 μ A·cm⁻²; Pt(310)- 上 0.55 V 处的电流峰减小为 84.55 μ A·cm⁻²,且在 0.46 V 给出峰电流为 74.43 μ A·cm⁻²的氧化峰; Pt(510)- 上 0.52 V 处的氧化峰 正移至 0.55 V,峰电流为 128.23 μ A·cm⁻². 由三个晶 面的构型可知 Pt(210)、Pt(310)和 Pt(510)所含(110)、 (100)表面位的比例分别为 1:1, 1:2 和 1:4, 即各晶面 上(110)位的密度分别为 50.0%, 33.33%, 20.0%. 从 r-CO2氧化的CV特征可以分辨, 0.47 V的电流峰对应 吸附在(110)位 r-CO₂的氧化,峰电流随表面(110)位密 度的降低而迅速减小; 而 0.55 V 处的电流峰可归属 于吸附在(100)位 r-CO₂ 的氧化, 峰电流较为稳定. 上 述结果表明,阶梯晶面的电催化特性为该面所含各 种结构表面位的电催化特性的组合,但这种组合并 不是简单的叠加, 而是不同表面位的协同作用. Pt(hkl)- 及 Pt(hkl)- 上 r-CO₂的 $Q_{r-CO_2}^{OX}$ 及 θ_{r-CO_2} 列于 表 2 中,随晶面上(110)台阶位密度降低, $Q_{r-CO_{1}}^{OX}$ 及 θ_{r-CO_2} 随之减小, 即电极对 CO₂ 的还原活性也随之降 低,但 Pt(hkl)- 对 CO₂的还原活性明显高于 Pt(hkl)-. Pt(hkl)- 是更为有序的表面结构, 而结构更为开 放的(110)表面位对于 CO2 电催化还原具有更高的活 性^[6]. 当表面结构趋向于更为有序时, (110)位所占比 例则相对降低,因而对 CO2 电催化还原的活性降低. 从实验数据可看出随晶面上(110)台阶位密度降低, 这种影响的程度逐渐降低.

由图 1 中氢的特征吸脱曲线知道,氧的吸脱附导 致电极表面结构重建,这种表面结构的变化对 CO_2 的 还原将产生怎样的影响呢?为了更加深入认识这一 反应的表面过程,我们对 Pt 单晶电极进行 H_2-O_2 火焰 处理,在不同气氛冷却后,将 E_u 提高至 1.25 V 对 Pt(hkl)电极在 0.5 mol/L H_2SO_4 溶液中首先进行 CV 扫 描处理,然后在-0.20 V 还原 20 min 后,于-0.20~0.75 V 区间记录 CO_2 还原的 CV 曲线.

相对 E_u =0.75 V, 经过高电位扫描后, Pt(210)- 仅 在 0.56 V 处出现峰电流为 111.83 μ A·cm⁻² 的氧化峰; Pt(310)- 上原 0.56 V 处的氧化峰电流增加为 251.83 μ A·cm⁻²; Pt(510)- 上 0.52 V 处的氧化峰正移至 0.54 V, 峰电流为 256.99 μ A·cm⁻². Pt(210)- 上 0.47 V 处 的氧化峰正移至 0.52 V, 且基本变为一个肩 峰, 峰电流则降低为 91.22 μ A·cm⁻²; 而 0.55 V 处的 氧化峰电流增加至 132.90 μ A·cm⁻²; Pt(310)- 仅在 0.55 V 给出峰电流为 203.20 μA·cm⁻² 的氧化峰; Pt(510)- 上 0.55 V 处的氧化峰电流增加为 176.42 μA·cm⁻², 峰形变得更为尖锐.

由 Pt(hkl)- 及 Pt(hkl)- 上 r-CO₂ 的 $Q_{r-CO_2}^{OX}$ 及 θ_{r-CO_2} (表 2)数据可知,无论采取何种冷却气氛处理电 极,当电极经过 1.25 V 扫描处理后,三个电极的反应 活性均得到不同程度的提高,且依然表现出随电极 表面中(110)台阶位密度降低,对 CO₂ 还原的电催化 活性也随之降低的趋势,即 Pt(210)>Pt(310)>Pt(510), 并且 Pt(hkl)-II 反应活性均高于相同条件下 Pt(hkl)- ... 对 E_u 为 1.25 和 0.75 V 的两种 CV 处理电极上获得的 $Q_{r-CO_2}^{OX}$ 进行差减,可得到由于表面结构改变电极对 CO₂ 还原性能差异的比较:

$$\frac{\Delta Q}{Q} = \frac{Q_{\text{r-CO}_2(1.25 \text{ V})}^{\text{OX}} - Q_{\text{r-CO}_2(0.75 \text{ V})}^{\text{OX}}}{Q_{\text{r-CO}_2(0.75 \text{ V})}^{\text{OX}}},$$

计算结果如表 2 所示. 对于 Pt(hkl)- 和 Pt(hkl)-, $\frac{\Delta Q}{Q}$ 都给出以下相同的变化规律, 即 $\frac{\Delta Q}{Q}$ (210) > $\frac{\Delta Q}{Q}$ (310) > $\frac{\Delta Q}{Q}$ (510), 但对同一电极来说, 显然 Pt(hkl)- 上 $\frac{\Delta Q}{Q}$ 要大于 Pt(hkl)- . Pt(210), Pt(310)和 Pt(510)电极表面随(100)晶面平台宽度增加, (110)台 阶密度随之降低, 表面有序结构范围也随之增大. 当 电极表面由于氧吸附而引起表面结构发生变化时, 结构最为平整的 Pt(510)电极上 $\frac{\Delta Q}{Q}$ 值最小, 即电催 化活性的增加程度最少. Pt(210)电极具有最高的(110) 台阶位密度(50.0%), 其表面结构在三者中最为开放, 在外界条件(如氧吸附等)的诱导下易于转变为具有更 高反应活性的表面结构. 采取氩氢气氛冷却所得电 极相对于空气冷却所得电极具有更为有序的晶面结 构, 在相同外界条件的诱导下相对比较稳定.

	空气冷却				氩氢气氛冷却							
Pt(hkl)	$j_{\mathrm{P},1}/\mu\mathrm{A}\cdot\mathrm{cm}^{-2}$		$j_{\rm P,2}/\mu {\rm A} \cdot {\rm cm}^{-2}$		$j_{\mathrm{P},1}/\mu A \cdot \mathrm{cm}^{-2}$		$j_{\rm P,2}/\mu {\rm A} \cdot {\rm cm}^{-2}$		$j_{\mathrm{P},3}/\mu\mathrm{A}\cdot\mathrm{cm}^{-2}$			
	E_u =0.75 V	E_u =1.25 V	E_u =0.75 V	E_u =1.25 V	E_u =0.75 V	E_u =1.25 V	E_u =0.75 V	E_u =1.25 V	E_u =0.75 V	E_u =1.25 V		
Pt(210)	60.91	83.92	75.61	70.29	55.80	60.49	72.42	67.73				
Pt(310)	49.44	60.23	146.2	90.43			87.01	83.42				
Pt(510)	33.39	39.81	162.0	75.03			72.46	69.89	48.24	34.49		

表1 不同 E_u,氢在阶梯晶面上脱附电流峰参数

	空气冷却					氩氢气氛冷却					
Pt(hkl)	$Q_{ m r-CO_2}^{ m ox}$	$\theta_{\text{r-CO}_2}$	$Q_{ m r-CO_2}^{ m ox}$	$ heta_{ ext{r-CO}_2}$	$\Delta O^{a)}$	$Q_{ m r-CO_2}^{ m ox}$	$\theta_{\text{r-CO2}}$	$Q_{ m r-CO_2}^{ m ox}$	$\theta_{\text{r-CO2}}$	$\Delta O^{a)}$	
	$(E_u=0.75 \text{ V})$	$(E_u=0.75 \text{ V})$	$(E_u=1.25 \text{ V})$	$(E_u=1.25 \text{ V})$	$\frac{-2}{0}$ /%	$(E_u=0.75 \text{ V})$	$(E_u=0.75 \text{ V})$	$(E_u=1.25 \text{ V})$	$(E_u=1.25 \text{ V})$	$\frac{\Delta g}{Q}$ /%	
	$/\mu A \cdot cm^{-2}$	$/\mu A \cdot cm^{-2}$	$/\mu A \cdot cm^{-2}$	$/\mu A \cdot cm^{-2}$	Q	$/\mu A \cdot cm^{-2}$	/µA·cm ²	$/\mu A \cdot cm^{-2}$	/µA · cm ²	Q	
Pt(210)	241.2	0.531	279.7	0.544	15.96	201.6	0.434	212.0	0.445	5.16	
Pt(310)	202.6	0.388	230.2	0.394	13.62	179.7	0.382	185.2	0.385	3.06	
Pt(510)	166.8	0.349	172.5	0.360	3.42	160.9	0.348	163.1	0.356	1.37	
$\Delta Q = Q^{0X}$ and $-Q^{0X}$ and $-Q^{0X}$											

表 2 CO₂ 在阶梯晶面上电化学还原的参数

a) $\frac{\Delta Q}{Q} = \frac{Q_{r-CO_2(1.25 \text{ V})}^{OX} - Q_{r-CO_2(0.75 \text{ V})}^{OX}}{Q_{r-CO_2(0.75 \text{ V})}^{OX}}$

3 结论

本文研究 CO₂ 在不同结构的 Pt(210), Pt(310), Pt(510)电极上还原的表面过程. 同一 Pt 单晶电极的 四种不同结构通过不同的处理方法(改变冷却气氛及 扫描电位上限)获得. 电化学循环伏安结果指出, 电 极的不同表面结构对 CO₂ 的电催化还原有着非常重 要的影响. 相同处理条件下的 Pt(hkl)电极上 $Q_{r-CO_2}^{OX}$ 及 θ_{r-CO_2} 均随晶面上(110)台阶位密度降低而减小, 即对 CO₂ 的还原活性随之降低. 研究得到如下的反应活性 顺序: Pt(210) > Pt(310) > Pt(510), 且 Pt(hkl)- 对 CO₂ 的还原活性高于 Pt(hkl)- . 当 Pt 单晶电极经过 高电位(1.25 V)扫描处理后, 相对于 E_u 为 0.75 V 的电 位扫描处理, 三个电极的反应活性均得到不同程度 提高. 两种情况下 CO₂吸附态产物氧化电量 $Q_{r-CO_1}^{OX}$ 的

相对变化规律给出 $\frac{\Delta Q}{Q}$ (210) > $\frac{\Delta Q}{Q}$ (310) > $\frac{\Delta Q}{Q}$

(510), 且 Pt(hkl)- 上的 $\frac{\Delta Q}{Q}$ 值均大于 Pt(hkl)- ,均

指出结构越开放的 Pt 单晶电极其电催化活性越高, 并 且在外界条件诱导下更易于转变为具有更高反应活性 的表面结构, 而相对有序的表面结构则比较稳定.

参考文献

- Magnussen O M. Ordered anion adlayers on metal electrode surfaces. Chem Rev, 2002, 102: 679–725
- 2 Sullivan B P, Krist K, Guard H E. Electrochemical and Electrocatalytic Reactions of Carbon Dioxide. Amsterdam: Elsevier, 1993. 19-67, 145-216
- 3 Nikolic B Z, Huang H, Gervasio D, Lin A, Fierro C, Adzic R R, Yeager E. Electroreduction of carbon dioxide on platinum single crystal electrodes: electrochemical and *in situ* FTIR studies. J Electroanal Chem, 1990, 295: 415–423
- 4 Marcos M L, González-Velasco J, Vara J M, Giordano M C, Arvia A J. Kinetics of CO₂ electroadsorption on electrodispersed platinum electrodes in acid solutions. J Electroanal Chem, 1990, 281: 257–272
- 5 Sun S G, Zhou Z Y. Surface processes and kinetics of CO₂ reduction on Pt(100) electrodes of different surface structure in sulfuric acid solutions. Phys Chem Chem Phys, 2001, 3: 3277–3283

- 6 Rodes A, Pastor E, Iwasita T. Structural effect on CO₂ reduction at Pt single-crystal electrodes Part 1. The Pt(110) surface. J Electroanal Chem, 1994, 369: 183–191
- 7 Rodes A, Pastor E, Iwasita T. Structural effect on CO₂ reduction at Pt single-crystal electrodes Part 2. Pt(111) and vicinal surfaces in the [011] zone. J Electroanal Chem, 1994, 373: 167–175
- 8 Rodes A, Pastor E, Iwasita T. Structural effect on CO₂ reduction at Pt single-crystal electrodes Part 3. Pt(100) and related surfaces. J Electroanal Chem, 1994, 377: 215—225
- 9 Hoshi N, Kawatani S, Kudo M, Hori Y. Significant enhancement of the electrochemical reduction of CO2 at the kink sites on Pt(S)-[n(110)×(100)] and Pt(S)-[n(100)×(110)]. J Electroanal Chem, 1999, 467: 67–73
- 10 Hoshi N, Sato E, Hori Y. Electrochemical reduction of carbon dioxide on kinked stepped surfaces of platinum inside the stereographic triangle. J Electroanal Chem, 2003, 540: 105–110
- 11 Sun S G, Chen A C, Huang T S, Li J B, Tian Z W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions. J Electroanal Chem, 1992, 340: 213–226
- 12 Claviller J, Faure R, Guinet G, Durand R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the 111 and 110 planes. J Electroanal Chem, 1980, 107: 205–209
- 13 Fan Y J, Zhou Z Y, Zhen C H, Fan C J, Sun S G. Kinetics of dissociative adsorption of ethylene glycol on Pt(100) electrode surface in sulfuric acid solutions. Electrochimica Acta, 2004, 49: 4659– 4666
- 14 Sun S G, Claviller J. Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces. J Electroanal Chem, 1987, 236: 95– 112
- 15 Lang B, Joyner R W, Somorjai G A. Low energy electron diffraction studies of high index crystal surfaces of platinum. Surface Sci, 1972, 30: 440—453
- 16 Hamelin A, Vitanov T, Sevastyanov E, Popovet A. The electrochemical double layer on sp metal single crystals: The current status of data. J Electroanal Chem, 1983, 145: 225–264
- 17 Clavilier J, Armand D. Electrochemical induction of changes in the distribution of the hydrogen adsorption states on Pt(100) and Pt(111) surfaces in contact with sulphuric acid solution. J Electroanal Chem, 1986, 199: 187-200
- 18 Armand D, Clavilier J. Quantitative analysis of the distribution of the hydrogen adsorption states at platinum surfaces: Part II. Application to Pt (110), stepped and polyoriented platinum surfaces in sulphuric acid medium. J Electroanal Chem, 1987, 233: 251— 265
- 19 Scortichini C L, Reilley C N. Surface characterization of Pt electrodes using under potential deposition of H and Cu: Part Surface structural dependence of a non-equilibrium state of hydrogen adsorption. J Electroanal Chem, 1983, 152: 255–260
- 20 Gomez R, Claviller J. Electrochemical behavior of platinum surfaces containing(110) sites and the problem of the third oxidation peak. J Electroanal Chem, 1993, 354: 189–208