

共价键连卟啉-富勒烯化合物的合成与表征

凡素华 杨森根^{*} 吴振奕 陈 昕 詹梦熊 (厦门大学化学系 厦门 361005)

关键词:卟啉;富勒烯;金属卟啉 中图分类号:O613.7;O614.24*1 文献标识码:A 文章编号:1001-4861(2006)07-1299-04

Synthesis and Characterization of Covalently Linked Porphyrin-fullerene Compounds

FAN Su-Hua YANG Sen-Gen^{*} WU Zhen-Yi CHEN Xin ZHAN Meng-Xiong (Department of Chemistry, Xiamen University, Xiamen, Fujian 361005)

Abstract: The covalently linked porphyrin-fullerene dyads were synthesized. The ligand 5-[4 -(4 -Phenoxybutoxy) phenyl]-N-(2-methyl)fulleropyrrolidine-10,15,20-tri-(p-methoxyphenyl)porphyrin (H_2P-C_{60}) was synthesized by 1,3 dipolar cycloaddition reaction with C_{60} , sarcosine and H_2P -CHO. The zinc porphyrin-fullerene was prepared by metalation of H_2P-C_{60} and zinc acetate. The compounds were characterized by meams of IR, UV-Vis, ESI-MS, elemental analysis, and ¹H NMR.

Key words: porphyrin; fullerene; metal porphyrin

0 引 言

给-受体(D-A)体系因具有优良的电荷转移和光 电转换等性能已成为化学、生物和材料等领域的研 究热点。卟啉类化合物由于其独特的大环共轭结构 和独特的性质,不仅是良好的电子给体,而且还是良 好的光敏剂,更重要的是卟啉在紫外可见光区有着 非常广泛的吸收,这非常有利于太阳能的有效利 用^[1]。由于 C₆₀具有独特的 电子结构、电子转移过 程中较小的重组能和遍布整个紫外可见区的电子吸 收光谱等特点,使其本身成为较好的电子受体^[23]。自 1994 年 Gust 等制备出第一个共价键连的卟啉-富勒 烯化合物被合成与研究^[2-5],此类化合物主要被用于 人工模拟生物体光合作用、光化学电池材料等。 通过对已有卟啉-富勒烯(D-A)化合物的光致电 荷/能量转移研究发现:卟啉和富勒烯之间的连接体 对化合物内部电荷/能量转移起着决定作用⁽⁴⁾,已合 成的卟啉-富勒烯化合物大都具有刚性的连接体,这 不利于分子构象的自动调整,因而很难调节分子内 电荷/能量转移的效率。如果我们能在卟啉和富勒烯 分子中安置一柔性连接体,分子将具有更多的空间 构象,这有利于分子选择优势构象,使得分子内部卟 啉和富勒烯之间具有更强的电荷/能量转移作用。另 外,由于锌离子(II)具有闭壳层的电子结构,与自由卟 啉配体形成的锌卟啉配合物于室温下,在溶液中发 荧光,并且热稳定性较强,所以合成锌卟啉-富勒烯 配合物,可进一步研究该类化合物的光学性能和光 电转换性能,以寻找在实际应用中更为合适的光电 转换材料。

收稿日期 2006-01-09。收修改稿日期 2006-04-24。

福建省自然科学基金项目(No.E0410001)厦门大学自选课题基金项目(No.0040-Y07008)。

*通讯联系人。E-mail sgyang@jingxian.xmu.edu.cn

第一作者:凡素华,女,27岁,硕士研究生;研究方向:光电功能配合物。

本文利用易得的原料、简易的装置,合成了以柔性连接体-CH₂CH₂CH₂-连接的共价键连卟啉-富 勒烯配体及其锌的配合物。

1 实验部分

1.1 仪器与试剂

测定红外光谱用 Nicolet 740 型傅里叶红外光 谱仪(KBr 压片法);元素分析用意大利 Carbo Erba-1110 型元素分析仪;采用 Finnigan LCQ 型质谱仪获 取质谱数据(大气压化学电离 APCI);电子吸收光谱 采用日本岛津 2501PC 型紫外-可见分光光度计测 定,'H NMR 在美国 Varian 公司 Unity 500 MHz 超 导核磁共振仪上测得 (以 CDCI₃ 为溶剂,TMS 为内 标)。

吡咯(C.P.,使用前重蒸) *A*-甲氧基苯甲醛(C.P.),
4-羟基苯甲醛(C.P.) *C*_∞(武汉大学三维碳簇材料有限公司),肌氨酸(上海吉尔生化有限公司),无水碳酸钾(A.R.,使用前焙烧),中性氧化铝(200~300 目),使用前于 180 活化 2 h,硅胶(300~400 目),使用前于 105 活化 1 h,其他试剂均为分析纯试剂。

1.2 合 成

1.2.1 中间体的合成

中间体 5-(4-羟基苯基)-10,15,20-三-(4-甲氧基

苯基)卟啉(1)和 5-[4 -(4 -溴丁氧苯基)]-10 ,15 ,20-三-(4-甲氧基苯基)卟啉(2)的合成参照文献^[7]。

1 的合成 将 2.44 g (0.02 mmol) 4-羟基苯甲醛, 8.16 g (0.06 mmol) 4-甲氧基苯甲醛,加入 250 mL 丙 酸中,加热至沸,滴加新蒸吡咯 5.36 g(0.08 mmol), 回流 30 min。减压蒸出 2/3 体积的丙酸,加入等体积 的乙醇,静置过夜,抽滤,得紫蓝色结晶 4.1 g。中性 氧化铝(200~300 目)柱层析,氯仿淋洗收集第一色 带,再改用V_{氯仿} V_{乙醇}=10 1 的氯仿、乙醇混合溶剂淋 洗,收集第二色带。再经硅胶(300~400 目)柱层析-次,氯仿淋洗,收集第一色带,得紫蓝色固体(1) 1.39 g,产率 9.5%。

2 的合成:把 72 mg (0.1 mmol) 1、0.25 mL 1 A-二溴丁烷、180 mg 新灼烧的 K₂CO₃ 加到 15 mL DMF 中,避光,70 水浴反应 4 h。冷却,加入 25 mL 三氯 甲烷和 40 mL 水,分液,水洗有机层 3 次,减压蒸出 溶剂,得粗产品。中性氧化铝(200~300 目)柱层析,三 氯甲烷淋洗,收集第一色带,得紫红色固体(2) 59.9 mg,产率 70%。

5-[4-(4-醛基苯氧丁氧苯基)]-10,15,20-三-(4-甲氧基苯基)卟啉(H₂P-CHO)的合成:在氮气氛下,向 含有 85.5 mg (0.1 mmol) 5-[4-(4-溴丁氧苯基)]-10, 15,20-三-(4-甲氧基苯基)卟啉(2)、36.6 mg (0.3 mmol)

4-羟基苯甲醛的 30 mL DMF 溶液中加入新灼烧的 300 mg K₂CO₃ 85 油浴反应 4 h。待反应液冷却, 加入 25 mL 三氯甲烷和 40 mL 水,分液,水洗有机 层 3 次,减压蒸出溶剂,得粗产品。将粗产品溶于甲 苯,用硅胶(300~400 目)柱层析,V_{甲苯} V_{三氯甲烷}=8 1 混 合溶剂淋洗,收集第二色带,得紫红色固体 62.7 mg, 产率 70%。UV-Vis (CHCl₃): mx/nm 650,594,556, 519,422,275。ESI-MS 897(M+H⁺)。

1.2.2 配体(H₂P-C₀)的合成

在 N₂ 保护下,将 89.6 mg (0.1 mmol) H₂P-CHQ. 216 mg (0.3 mmol) C₆₀, 133.5 mg (1.5 mmol)肌氨酸溶 解在 200 mL 甲苯中,加热回流 12 h 后,冷却,过 滤,将反应液浓缩。用硅胶柱层析,甲苯洗脱,收集 第二色带,即为目标物。得 107 mg 固体,产率 65%。 ¹H NMR _H (CDCl₃ 500 MHz):- 2.83(2H,imino-H),2.56 (3H,pyrrolidine,N-CH₃) *A*.41 (1H,pyrrolidine-H) *A*.46, 3.68 (2H,pyrrolidine-H) *A*.00 (9H, -OCH₃) *A*.44(2H, CH₂O-) *A*.19 (2H, -OCH₂), 1.25~2.01 (4H, -CH₂CH₂-), 8.80(8H,pyrrole-H), *6*.84~8.24(20H,benzene-H)。UV-Vis(CHCl₃): mx/nm :651,594,556,519, *A*23,306,258。 ESI-MS :1 643.2(M⁺),720(C₆₀⁺)。

1.2.3 锌配合物的合成

将 Zn(Ac)₂·2H₂O 的甲醇饱和溶液加到 32.9 mg (0.02 mmol) H₂P-C₆₀ 的三氯甲烷溶液中,加热回流 1 h。冷却反应液至室温,加入蒸馏水,分液,有机层用 水洗 3 次,减压蒸出溶剂,得粗产品。将粗产品溶于 甲苯中,硅胶柱层析,甲苯洗脱得紫色固体 31 mg, 产率 90%。¹H NMR _H (CDCI₃ 500 MHz),2.52(3H,pyrrolidine,N-CH₃),4.35(1H,pyrrolidine-H),4.42,3.60(2H, pyrrolidine-H) *A*.01 (9H,-OCH₃) *A*.39 (2H,CH₂O-) *A*.12 (2H,-OCH₂),1.30~2.10(4H,-CH₂CH₂-) *8*.85 (8H, pyrrole-H) *6*.90~8.31(20H, benzene-H)。UV-Vis (CHCI₃) : m_x/nm 597,554,517 *A*25,306,257。ESI-MS:1706.6 (M⁺),720(C_{n0}⁺)。

2 结果与讨论

2.1 红外光谱

由表 1 数据 ,与 H₂P-CHO 相比较 ,H₂P-C₆₀ 的红 外光谱 ,1 686 cm¹醛基的伸缩振动峰消失 ,在 526 cm¹处出现了一强吸收峰 ,此峰为 C₆₀ 骨架振动的 特征吸收峰^{18]}。与 H₂P-C₆₀比较 ZnP-C₆₀ 的红外光谱 , 3 318 cm⁻¹、965 cm⁻¹处的卟啉环内氮氢伸缩振动和 弯曲振动峰消失 ,而在 996 cm⁻¹出现了强的锌-氮键 吸收峰,这是由于卟啉孔穴中 N-H 键上的氢原子被 锌离子取代,生成了 Zn-N 键,所以自由碱卟啉的 N-H 键振动谱带全部消失,表明已生成了相应的锌卟 啉配合物^[9,10]。

表 1 H₂P-CHO ,H₂P-C₆₀ ZnP-C₆₀部分红外光谱数据

Table 1	IR spectral	data of	H ₂ P-CHO,	$H_2P\text{-}C_{60},$
	ZnP-C.			(cm^{-1})

	2111 060		(0)
H₂P-CHO	H_2P-C_{60}	ZnP-C∞	Band attribution
3 318m	3 318m		(N-H)
3 068w	3 067w	3 062w	[C-H(aryl)]
3 031w	3 033w	3 033w	[C-H(aryl)]
2 922s	2 922s	2 922s	(C-H)
2 850m	2 851m	2 852m	(C-H)
	2 776w	2 775w	[C-H(N-CH₃)]
2 735w			[C-H(aldehyde)]
1 686s			(C=O)
1 602s	1 604s	1 604s	[C=C(bezenel)]
1 508s	1 507s	1 508s	[C=C(bezenel)]
1 468m	1 463m	1 461m	[C=N(pyrrole)]
1 248s	1 245s	1 245s	(C-O-C)
990w	982w	996vs	(P)
966vs	965vs		(N-H)
804vs	800vs	796vs	(P)
	526s	526s	(C ₆₀)

2.2 电子吸收光谱

从图 2 可知,自由碱卟啉 H₂P-CHO H₂P-C₆₀中 均出现 4 个 Q 带和 1 个 Soret 带,当金属锌进入卟 啉环内形成配合物后,由于分子对称性增加 Q 带吸 收峰的个数减少,Soret 带发生移动,这是自由碱卟

H₂P-C₆₀ (b), ZnP-C₆₀ (c)

啉形成相应配合物的光谱特征^[11]。H₂P-CHO 在 275 nm 处的紫外吸收峰可归属为醛基部分的 - ⁻ 跃 迁 ,与 C₆₀形成卟啉-富勒烯化合物后该谱带消失 ,而 在 306 nm 258 nm 处出现了紫外吸收峰 ,这 2 个收 峰为 C₆₀ 在紫外区的特征吸收带^[12]。

2.3 核磁共振、质谱和元素分析

由图 3 及合成部分的核磁数据可知, 卟啉环穴 中 N-H 键上氢原子的化学位移为- 2.83,生成锌配合 物后,由于卟啉孔穴 N-H 键上的氢原子被锌离子取 代,所以在- 2.83 处的峰消失,这表明自由碱卟啉已 与金属离子配位,生成了金属卟啉配合物^[13],其他氢 配位前后位移变化不大。

由合成部分的质谱数据和表 2 的元素分析值表

Т

明 新合成化合物的实验值与理论值基本吻合。表明 所合成的为目标产物。

Fig.3 ¹H NMR spectra of H₂P-C₆₀

	表 2	H ₂ P-C	HO ,H	₂ P-C ₆₀	,ZnP-	C₀ 元素	分析结果	
able 2	Eler	nental	analys	is data	of H	P-CHO,	H_2P-C_{60}	ZnP-C _∞

Compaunda	Molecular formula —	Elemental analytical values (Calcd.) / %			
Compounds		С	Н	Ν	
H₂P-CHO	$C_{58}H_{48}N_4O_6$	77.88(77.68)	5.66(5.36)	6.48(6.25)	
H_2P-C_{60}	$C_{120}H_{53}N_5O_5$	88.01(87.64)	3.01(3.23)	4.36(4.26)	
$ZnP-C_{\omega}$	$ZnC_{120}H_{51}N_5O_5$	82.05(84.41)	3.11(2.99)	4.35(4.10)	

3 结 论

本文以简单的原料、简易的方法合成了以柔性 连接体-CH₂CH₂CH₂CH₂-连接的卟啉-富勒烯化合物, 该类化合物分子中既含有给电子体卟啉或金属卟 啉,又含有得电子体富勒烯(C_∞)。关于其光学和光电 性能正在研究中。

参考文献:

- Dolphin D. The Potphyrins, Ed. New York: Academic Press, 1978.Vols.1~6
- [2] Luo C, Guldi D M, Imahori H, et al. J. Am. Chem. Soc., 2000, 122:6535~6551
- [3] D Souza F, Deviprased G R , El-Khouly M E, et al. J. Am. Chem. Soc., 2001,123:5277~5284
- [4] Meijer M D, Van Klink G P M, Van Koten G. Coord. Chem. Rev., 2002,230:141~163
- [5] Fungo F, Otero L A, Sereno L, et al. Dyes and Pigments, 2001, 50:163~170

- [6] Imahori H, Hagiwara K, Aoki M, et al. J. Am. Chem. Soc., 1996,118:11771~11782
- [7] HUANG Su-Qiu(黄素秋), ZHANG Ke-Ling(张克凌), CHEN Min-Dong(陈敏东). Youji Huaxue(Chinese Journal of Organic Chemistry), 1989,9:321~324
- [8] Cox D M, Behal S, Disko M, et al. J. Am. Chem. Soc., 1991, 113:2940~2944
- [9] SHI Tong-Shun(师同顺), LIU Wei(柳 巍), WANG Yin-Jie (王银杰), et al. Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chin. Univ.), 1998,19:1794~1798
- [10]Oshio H, Ama T, Watanabe T. Spectrochimica Acta, 1984,40: 863~870
- [11]LIU Wei(柳 巍), TAO Jian-Zhong(陶建中), SHI Tong-Shun(师同顺). Yingyong Huaxue(Chinese Journal of Applied Chemistry), 2001,18:228~230
- [12]Da Ros T, Prato M, Guldi D M, et al. Chem. A Eur. J., 2001,7: 816~827
- [13]WEN Ke(文 珂), LI Zhao-Hui(李朝辉), CAO Xi-Zhang(曹 锡章). Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chin. Univ.), 1993,14:147~149