第1期 2006年1月 Vol.25 No.1 Jan. 2006

TiO₂纳米线阵列形成机理及其光致发光特性

左 娟,孙 岚,宗 晔,赖跃坤,聂茶庚,林昌健 (厦门大学固体表面物理化学国家重点实验室,福建厦门 361005)

摘要:采用电化学诱导 sol-gel 法制备了锐钛矿型 TiO₂纳米线阵列,初步研究了形成机理和不同沉积时间对其光致 发光强度的影响。结果表明:TiO₂的生长包括:在含有 Ti 前驱体的电解质溶液中电沉积钛的羟基氧化物和热处理过程 生成 TiO₂纳米线阵列两个步骤。电化学沉积时间为 60 min 的 TiO₂纳米线阵列光致发光强度最大,这可能是 TiO₂与多 孔氧化铝模板之间,以及 TiO₂纳米线的表面与内部之间的相互作用,使得表面氧空位浓度变化的结果。 关键词:无机非金属材料;TiO₂纳米线阵列;生长机理;光致发光特性

中图分类号: O649.4 文献标识码: A 文章编号:

文章编号:1001-2028 (2006) 01-0012-04

Formation Mechanism of Highly Ordered TiO₂ Nanowire Arrays and Its Photoluminescence Properties

ZUO Juan, SUN Lan, ZONG Ye, LAI Yue-kun, NIE Cha-geng, LIN Chang-jian

(State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, China)

Abstract: Highly ordered TiO_2 nanowire arrays were prepared by an electrochemically induced sol-gel method. Its formation mechanism and the effect of deposition time on the photoluminescence intensities were discussed. It is found that the growth of nanowires involves electrodeposition of titanium oxyhydroxide from aqueous solution containing a Ti precursor and subsequent heat treatment. And the sample deposited for 60 min exhibited a maximum of photoluminescence intensity. It may be resulted from the concentration of oxygen vacancies on the surface area of TiO_2 nanowire array, which changed with the interaction between AAO and TiO_2 , and surface area and inner area of TiO_2 nanowires.

Key words: inorganic non-metallic materials; TiO₂ nanowire arrays; preparation mechanism; photoluminescence properties

纳米尺度的 TiO₂,在精细陶瓷、环境涂料、屏蔽 紫外线、半导体材料、光催化材料、光电转换材料和 自洁杀菌玻璃、织品材料等方面的应用前景广阔,倍 受人们的关注,已经成为国际上的一个研究热点。众 所周知,TiO₂为氧空位型过渡金属氧化物,具有 n型 半导体的性质。TiO₂中化学计量组成的偏离已经被广 泛研究,且大部分研究表明,氧缺陷对 TiO₂体系的很 多有趣的物理和结构性质产生影响^[1]。高度取向的纳 米阵列结构,因其更大的比表面积和规整的排列结构, 而具有比无序的纳米材料更加优异的性能。目前,对 TiO₂纳米粉体和纳米膜的研究比较普遍,而有关 TiO₂ 纳米线阵列的报道,尤其是其性能的研究报道较少[2]。

在诸多制备 TiO₂纳米阵列材料的方法中,多孔氧 化铝模板法最为普遍。已经报道的在氧化铝模板中制 备 TiO₂纳米线的方法主要有 sol-gel 法^[3]、sol-gel 电泳 沉积法^[4]和电化学诱导 sol-gel 法^[5]等。其中电化学诱 导 sol-gel 法引进了电场的作用,可以克服一般 sol-gel 法由于毛细作用不能制备 TiO₂纳米线的难题,而且纳 米线的长度可以通过改变电沉积的时间加以控制。

笔者主要探讨利用电化学诱导 sol-gel 法,制备的 TiO₂ 纳米线阵列的形成机理及氧空位对 TiO₂ 纳米线 阵列的光致发光强度的影响。

收稿日期: 2005-07-12 通讯作者:林昌健

基金项目:国家自然科学基金资助项目(20021002, 20127302)

作者简介: 林昌健(1951—),男,福建福州人,教授,研究方向为纳米功能材料,腐蚀研究与防护。Tel:(0592)2189354; E-mail: cjlin@xmu.edu.cn; 左娟(1980—),湖南常德人,研究生,研究方向为电化学和纳米功能材料。E-mail: jzuo@yanan.xmu.edu.cn。

1 实验

1.1 电化学诱导的 sol-gel 合成

选 99.99%的铝片,采用两步氧化法制备多孔氧化 铝模板(Anodic Aluminium Oxide, AAO)^[8]。电解液 为 4%H₂C₂O₄ • 2H₂O(20℃、40 V、5 h),制得平均 孔径为 60 nm 的 AAO。然后采用电化学诱导 sol-gel 法对多孔氧化铝模板进行电沉积。首先将钛粉溶解在 30%的过氧化氢和浓氨水溶液中,得到黄色溶胶,加 热除去多余的过氧化氢和浓氨水。加入 4 mol/L 的硫 酸,得红色凝胶,然后加入约 145 m mol/L 的 KNO₃。 以射频溅射法在 AAO 模板的一侧溅射一层金膜(RF 100 W, 5min),以此为工作电极,饱和甘汞电极为参 比电极,铂电极为辅助电极,恒电位沉积氧化钛,沉 积时间分别为 30,45,60,90 min,得到不同长度的 TiO₂纳米线阵列。样品分别在 300,450℃下空气气氛 中煅烧,获得所需的 TiO₂纳米线阵列。

1.2 TiO₂纳米线阵列的表征和光致发光谱

在 0.5 mol/L NaOH 溶液中溶去氧化铝模板,所得 样品真空喷金进行 SEM (LEO 1530型)形貌观察。 将沉积 TiO₂纳米线的样品在 0.5 mol/L NaOH 溶液中 浸泡 24 h,使 AAO 充分溶解,经超声清洗后进行 TEM (JEM—100CXII 型)表征。热重和差热分析在 STA 409EP 上进行。拉曼谱的测定在 Renishaw R1000 型拉

(a) 平均孔径 60 nm 的 AAO 模板

(b) 溶去 AAO 后的 60 nm 直径的 TiO₂ 纳米线 图 1 TiO₂ 纳米线的 SEM 或 TEM 照片 Fig.1 SEM or TEM images of TiO₂ nanowire

曼谱仪上测量。光致发光谱在 Hitachi F—4500 型荧光 光谱仪上测定。

2 结果和讨论

2.1 TiO₂纳米线的形貌及形成机理

图 1(a)为两步氧化法制备的多孔氧化铝模板 (AAO),多孔氧化铝模板的正面分布着大小均匀, 平均孔洞直径为 60 nm 的排列紧密的蜂窝状晶胞。图 1(b)和图 1(c)分别为TiO₂纳米线的SEM 和TEM 照片, 可以看到纳米线的取向性极好,直径大致与模板直径 (图 1a)一致,线径分布均匀,形成结构良好的TiO₂ 纳米线阵列。

TiO₂纳米线的形成过程大致可由下述的化学方程 式表示:

Ti 粉溶解在 H₂O₂ 和浓氨水溶液中^[6]:

$$\mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{OH}^{-} \rightarrow \mathrm{HO}_{2}^{-} + \mathrm{H}_{2}\mathrm{O}$$
 (1)

$$\mathrm{Ti} + 2\mathrm{HO}_{2}^{-} \rightarrow \mathrm{TiO}^{2+} + 4\mathrm{OH}^{-}$$
 (2)

形成凝胶[6]:

$$\operatorname{TiO}^{2+} + 2\operatorname{OH}^{-} + x\operatorname{H}_2\operatorname{O} \to \operatorname{TiO}(\operatorname{OH})_2 \cdot x\operatorname{H}_2\operatorname{O} \quad (3)$$

 $\operatorname{TiO(OH)}_2 \cdot xH_2O + H_2SO_4 \rightarrow \operatorname{TiOSO}_4 + (2+x)H_2O$ (4)

(c)单根 TiO2 纳米线(60nm)TEM 照片

电沉积过程中发生的阴极反应需要生成反应(6) 发生所需的 OH⁻,使得 AAO 模板的孔洞中 pH 值增 加。这样有两种可能性,一是 NO₃⁻的加入,按反应(5) 进行,另一是 H₂O 的水解(2H₂O+2e⁻→2OH⁻+H₂)。 为了弄清造成 AAO 孔洞中 pH 值升高的原因,考察了 AAO 在加入和不加 KNO₃ 溶液中的循环伏安行为,如 图 2 所示。可以看到,加入 KNO₃ 的溶液在-0.79 V 出现一电化学还原新峰,而不加 KNO₃ 的溶液无还原 峰,可见还原峰的出现一定与 KNO₃ 的加入密切相关, 这说明发生了反应(5)并非水解反应。

图 2 AAO 在含有 KNO₃和不含有 KNO₃溶液中的循环伏安行为 Fig.2 Cylic voltammogram for the AAO electrode in the electrolyte solution with KNO₃ and without KNO₃

这与 Natarajan 等人在 ITO 上沉积 TiO₂ 膜报道的结果 一致^[6]。

烧结过程:

由上述的反应方程可以看出,在AAO模板中TiO₂的形成过程与一般的 sol-gel 形成机理不同。一般的 sol-gel 过程由于浸润的 AAO 模板孔壁带负电荷,毛 细作用进入孔洞内的阳离子吸附在孔壁表面,故从孔 壁开始先形成纳米管再形成纳米线。而电化学诱导 sol-gel 法由于 AAO 模板一侧 Au 基底上发生反应(5)的阴极电化学反应,继而发生反应(6)。所以这种方 法是由 Au 基底沿着孔洞逐步向上生长,直接生成纳 米线,因而可以通过控制沉积的时间来控制纳米线的 长短。

$$NO_3^- + 6H_2O + 8e \rightarrow NH_3 + 9OH^-$$
(5)

$$\operatorname{TiO}_{2}^{+} + \operatorname{OH}^{-} \rightarrow \operatorname{TiO(OH)}_{2}$$
 (6)

图 3 中的曲线分别为空白 AAO 模板和含有 TiO(OH)₂ • *x*H₂O 的 AAO 的热重(TG)和差热分析 (DTA)图。图 3(a)显示 100℃左右有一明显的峰值,应 该为 AAO 模板吸附的游离水峰。多孔型的氧化铝膜 由三种类型的氧化物组成:外层是 AlO(OH)和γ-Al₂O 的混合物,而内层是无定形 Al₂O₃。图中 259℃的肩峰 为 AAO 的结构水 2AlO(OH)→Al₂O₃+H₂O。不明显的 峰型说明了 AAO 模板中 AlO(OH)的含量相对较小, 这与 Trillat 等人的结果是一致的^[8]。

图 3 (a) AAO 模板和(b) AAO/ TiO(OH)₂ 热重和差热分析谱图

与 AAO 模板的 TG-DTA 图相比, 含有 TiO(OH)₂• *x*H₂O的AAO (图 3b)在 275℃和 365℃ 出现了新的吸热峰,这必然与 TiO(OH)₂• *x*H₂O 有 关。275℃的吸热峰对应于反应(7),为 TiO(OH)₂脱

$$\text{TiO(OH)}_2 \rightarrow \text{TiO}_2 + \text{H}_2\text{O}$$
 (7)

去一个水分子的过程。另外一个在 365℃的吸收峰应 是 TiO₂的结晶过程。为了进一步证实上述结论,将在 300℃和 450℃温度下煅烧的样品进行拉曼光谱的测 试(图 4)。可以看到 300℃煅烧的样品显示一个非晶 体物质的谱图,而 450℃煅烧的 Raman 谱峰位置与纯 的锐钛矿型纳米 TiO₂ 谱峰位置极其相似,峰位大约分

Fig.3 Thermogravimetric(TG) and differential thermal analysis(DTA) of (a) AAO and (b) AAO/TiO(OH)₂ 反的 TG-DTA 图相比,含有 别在 152 cm⁻¹ (E_g), 200 cm⁻¹ (E_g), 399.5 cm⁻¹ (B_{1g}), 的 AAO (图 3b) 在 275 °C和 365 °C 512 cm⁻¹ (A_{1g} 和 B_{1g}),和 644 cm⁻¹ (E_g)。

2.2 沉积时间对光致发光谱的影响

图 5 为空白 AAO 模板和不同沉积时间样品的光 致发光谱。可以看出,氧化铝模板本身只能产生很微 弱的光致发光现象。Du 等人已报道^[7],F⁺中心(单离 子氧空位)是造成 AAO 光致发光的原因。TiO₂/AAO 在 435 nm 左右有一很强的发射谱峰,这与 AAO 的光 致发光谱不一样,因此可以推断这个强的发射峰源于 氧化铝模板中的 TiO₂纳米线。

Fig.5 Photoluminescence spectra of samples at different deposition times 本体 TiO₂的发光已有报道,在低温下可由杂质或 束缚态发光,而在室温下无任何发光现象。Serpone

2006年

等人^[10]报道了锐钛矿型 TiO₂ 胶体纳米颗粒在室温下 的光致发光现象,得到了小于禁带宽度的浅施主能级, 并认为这必然起源于颗粒的晶体或/和表面缺陷。推测 这种缺陷最可能是在晶体或表面不同能级的氧空位。 氧空位越多,光致发光强度越大。Lei 等人^[4]报道了用 sol-gel 法制备的 TiO₂ 纳米线阵列的光致发光现象,将 其高斯分解后得到的峰归属为自束缚态激子、氧空位 和表面态发光,发现随着浸润时间的不同,由在 TiO₆ 自束缚态激子产生的光致发光强度并没发生变化。而 另两个归属为表面态氧空位发光的谱峰则随着浸润时间 的改变而改变,从而使整个发光谱峰随着浸润时间 的改变而改变。

从图 5 可知,随着沉积时间的增加,谱峰的强度 逐渐增加。当沉积时间达到 60 min 时,强度达到最大 值,随后强度减小。随着沉积时间的改变而变化的光 致发光强度可能是源于沉积过程中 TiO₂与 AAO 之间 以及 TiO₂纳米线的表面与内部之间的相互作用,使得 表面态氧空位浓度发生变化所致。

据 Du^[9]报道,AAO 在空气气氛中的烧结过程, 一方面使制备过程未被完全氧化的铝与空气中的氧形 成新的氧化铝时,可能生成大量的氧空位,同时当新 的多孔氧化铝膜形成速度大于 O₂ 在多孔氧化铝中的 扩散速度时,O₂与未完全氧化的铝的反应主要由AAO 本身提供。因此在 AAO 烧结过程中本身已生成大量 的 F⁺中心。在实验中,AAO/TiO₂ 在烧结过程一方面 TiO(OH)₂ 的降解水使氧不足,另一方面,在 AAO 模 板孔壁表面的单离子氧空位逐渐被 TiO₂ 的-Ti-O-结构中的 O²⁻占据,因而随时间的增加 TiO₂纳米线中 氧空位浓度大大增加,这可能是导致光致发光强度增 强的主要原因。 另一方面,随着沉积时间的进一步增加,一些 TiO₂纳米线表面的氧空位逐渐被靠近表面的纳米线内 部的 O²⁻所取代,表面氧空位浓度降低,从而导致光 致发光强度变小。这两个原因的综合结果使得光致发 光强度随着沉积时间的改变而改变。

3 结论

采用电化学诱导 sol-gel 法成功制备了锐钛矿型的 TiO₂纳米线阵列,同时探讨了 TiO₂纳米线阵列的形成 和生长机理。考察了不同沉积时间对光致发光强度的 影响,发现沉积 60 min 的峰强度值最大,该现象可能 是由于在沉积过程 TiO₂与 AAO 之间以及 TiO₂纳米线 的表面与内部之间的相互作用,使 TiO₂纳米线中氧空 位浓度大大增加,导致光致发光强度的增强。

参考文献:

- Merle P, Pascual J, Camassel, *et al.* Uniaxial-stress dependence of the first-order Raman spectrum of rutile. I. Experiments [J]. Phys Rev B, 1980, 21: 1617.
- [2] Shahed U M, Khan Tamanna Sultana Photoresponse of n-TiO₂ thin film and nanowire electrode [J]. Sol Energ Mat Sol C, 2003, 76: 211.
- [3] Lei Y, Zhang L D, Meng G W, et al. Preparation and photoluminescence of highly ordered TiO₂ nanowire arrays [J]. Appl Phys Lett, 2001, 78: 1125.
- [4] Lin Y, Wu G S, Yuan X Y, et al. Fabrication, characterization and Raman study of TiO₂ nanowire arrays prepared by anodic oxidative hydrolysis of TiCl₃ [J]. J Phys Condens Matter, 2003, 15: 2917.
- [5] Zheng M, Dong S X. Electrochemically induced sol-gel preparation of single-crystalline TiO₂ nanowires [J]. Nano Lett, 2002, 2: 717.
- [6] Natarajan C, Nogami G. Cathodic electrodeposition of nanocrystalline titanium dioxide thin films [J]. J Electrochem Soc, 1996, 143: 1547.
- [7] Du Y, Cai W L, Mo C M, et al. Preparation and photoluminescence of alumina membranes with ordered pore arrays [J]. Appl Phys Lett, 1999, 74: 2951.
- [8] Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO₂ particles: size quantization versus direct transitions in this indirect semiconductor [J]. J Phys Chem, 1995, 99: 16646.

(编辑:朱盈权)

- 下期要目
- 碲化铅薄膜特性研究
- •胶体自组装生长 ZnO 光子晶体
- •Ta₂O₅和 Nb₂O₅掺杂对 TiO₂压敏陶瓷电性能的影响
- •铁/碳纳米管催化剂 CVD 法制备碳纳米管
- ITO 玻璃衬底上 PLZT 铁电薄膜的制备与性能
- PLT 晶种层对 PLZT 薄膜介电性能的影响
- •TiO₂纳米粉体的烧结行为及其性能的研究

- 各向异性导电胶粘剂膜的研究进展
- •金纳米粒子 LB 单层膜的制备及其 I-V 特性
- •应用苯并环丁烯材料进行圆片级硅-硅气密键合
- SMT 元件与基板间隙对无铅焊点可靠性的影响
- •无铅钎料成分开发研究现状
- •Bi₂O₃过量对熔盐法制备Bi₄Ti₃O₁₂粉体的影响
- CaTiO3 对 BZN-CaTiO3 系统介电性能的影响