2005年 12月

钛基表面纳米羟基磷灰石涂层的制备及其生物性能的初步研究

陈 菲¹,林昌健²(1.广东药学院 无机化学教研室,广东 广州 510006, 2 厦门大学固体表面物理化学国家重点实 验室 化学系,福建 厦门 361005)

摘要:目的 制备具有与自然骨类似表面性能的植体材料纳米羟基磷灰石 [Cau0 (PO4)6 (OH)2, HAp]涂层 微基复合材料。方法 电泳 沉积法 (EPD)。为改善涂层与基体之间的结合,对钛表面进行了粗糙化和氧化处理。结果 烧结前后,涂层成分没有发生变化,具有纳 米结构,表面均匀无裂缝。体外干细胞培养试验结果表明,细胞在材料表面和周围生长良好,繁殖速度比钛和常规尺寸的 HAp涂层 快。结论 纳米涂层具有均匀的纳米结构,表现出良好的生物相容性,有望用于设计骨科和齿科材料。

关键词:羟基磷灰石;纳米涂层;电泳沉积;间充质干细胞;体外细胞培养

中图分类号: R 914 文献标识码: A 文章编号: 1006-8783(2005) 06-0652-03

B iocompatibility of hydroxyapatite nanoparticle coated on titanium surface

CHEN Fe¹, LN Chang-jian² (1 Department of Inorganic Chemistry, Guangdong College of Pharmacy, Guangzhou 510006, China, 2 State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, China)

Abstract Objective To get a bone-substitute material by coating hydroxyapatite nanoparticle on titanium surface Methods T itanium surface was roughened and oxidized for improving the bonding strength between hydroxyapatite coating and titanium, then, hydroxyapatite nanoparticle were coated on titanium surface by electrophoretic deposition **Results** The nanostructure and component of the coated hydroxyapatite showed no change before and after heat treatment. The coating was uniform and showed no cracks M oreover, a preliminary study of the biactivity in vitro showed that mesenchymal stem cells exhibited higher cell proliferation potential on the hydroxyapatite nanoparticle/titanium coating than on the titanium or hydroxyapatite with normal particle size abne **Conclusions** Hydroxyapatite nanoparticles-coated titanium implant possesses good biocompatibility, suggesting that the implant could be used in orthopaedics and dental surgery.

Key words hydroxyapatie; nanoparticles; electrophonetic deposition; mesenchymalstem cells

羟基磷灰石 [Ca_{10} (PO₄)₆ (OH)₂, HA_P]纳米晶体 是自然骨的主要无机矿物质^[1]。近年来, 在医用金属 表面涂覆 HA_P涂层制备复合植入体是合成 HA_P材料 研究的热点^[2-3], 它兼有 HA_P的优良生物性能与金属 材料的力学性能。电泳沉积 (electrophoretic deposition EPD)是近年来用于制备金属基体表面 HA_P涂层的新 方法^[4-5]。它条件温和, 设备简单。但为了得到致密 的涂层, 并提高涂层与基体的结合力, 通常需要较高的 烧结温度 (> 1 000 ℃)。

本文在前期制备微米级 HAp涂层的工作基础 上^[6],以 EPD 法制备钛基表面的纳米 HAp涂层,以降 低涂层烧结温度及改善涂层与基体的结合。以体外间 充质干细胞 (mesenchymal stem cells M SCs)培养法^[7-9] 初步评价涂层的生物性能,并与空白钛板和常规尺寸 (微米级)的 HAp涂层进行比较。

- **基金项目:** 国家自然科学基金(20273055); 广东药学院科研 基金
- 作者简介:陈菲(1976-)女,博士,讲师,从事纳米复合生物 医学材料研究;通讯作者:林昌健(1954-),男,教 授,博士生导师,从事生物医学材料研究。

1 实验

11 纳米 HAp涂层的制备

用于电泳沉积的纳米 HAp 粉末由 Hayek和 Stadlman^[1]提出的沉淀法结合后处理制备,详细过程可 见本作者其他工作的报道^[6]。反应方程式为:

 $10Ca(NO_3)_2 + 6(NH_4)_2HPO_4 + 8NH_4OH = Ca_{10}$ (PO₄)₆(OH)₂+ 6H₂O + 20NH₄NO₃

用于比较的 μ_m 级 HA_p 粉末由溶胶 – 凝胶法制备^[10]。

将纯钛板切割为长形 (10 mm × 20 mm × 1 mm), 以金相砂纸打磨,露出新鲜表面。

将钛板浸入浓 $H_2 SO_4$ 和质量分数 30% 的 $H_2 O_2$ (1 :1, 体积比)的混合液中进行刻蚀, 使钛板表面粗糙化, 然后进行沉积。沉积前, 制备 HAp粉末在乙酸酐中的 悬浮液, 超声分散。以 EPD法制备两种 HAp涂层: 纳 米涂层(C)和微米涂层(C)。金属环形电极为对 电极, 沉积电压为 10 V(直流), 沉积时间为 1 min, 根 据前期实验确定烧结温度为 800 °C。以 XRD(Rigaku Rotaflex D/m ax-C)和 SEM (S 440)确定涂层成分和观

察涂层表面形貌。

12 体外细胞培养实验

以 4个月大新西兰白兔的长骨骨髓为骨髓干细胞 的来 源。利用 Ficoll-Paque Plus 试剂 (Am ersham Bisscience, Sweden)从骨髓中分离干细胞。在离心管 中加 5 mL Ficoll试剂,小心地把骨髓注入管中,使其在 Ficoll的表面铺开而并不与之混合。离心(1500 g 18 min)后,将上层溶液移走,转移所要的细胞层(中层) 到新的离心管中并小心的与 10 mL PBS 溶液混合(清 洗细胞)。再次离心(1000 g 10 min),移走上层液体。 重复清洗步骤 1次。将细胞悬浮在新鲜 DM EM 培养液 中,放入 CO₂培养箱(37 ℃,湿度 95%, CO₂体积分数 5%)。传代 5次后的 MSCs细胞被用于材料的体外细 胞培养实验。

进行体外细胞培养实验的样品有: C 、C 和刻 蚀后的钛板, 各取 3份, 经高温高压消毒后放入操作橱 中。以胰蛋白酶处理溶液使细胞脱壁, 混合均匀成细 胞悬液。以血细胞计数器, 手工进行细胞计数。离心 后, 将细胞重新悬浮于新鲜 DM EM 培养液中。将样品 放置在 6个培养井的培养板中 (每井 1个样品), 每个 培养井中加入 5×10⁴ 个细胞, 无样品培养井为对照。 在 CO₂培养箱内培养, 每天以光学显微镜观察细胞生 长, 2和 10 d后,进行扫描电镜观察。

以 XTT 试剂测量细胞的增殖情况。培养 4 d后, 小心转移试样到装有新鲜培养液的培养井中。将 XTT 试剂加入每个培养井中 (最终的 XTT 质量浓度为 0 3 mg/mL),继续培养 24 h。转移培养液到 96孔的培养 井中,每个井中 150 µL。每个样品取 3份平行试样,用 EL SA R eader(MAX 340)测量样品的分光光度吸收值。 测量的波长为 490 m,参比波长为 650 nm。根据吸收 值和细胞个数的标准曲线得到材料表面和材料周围的 细胞数。

2 结果与讨论

2 1 钛基表面纳米 HAp涂层的性能研究

纳米 HAp涂层的表面形貌如图 1所示。纳米涂 层表面均匀无裂缝,具有纳米结构。XRD 结果 (Fig 2)表明涂层成分为纯 HAp(JCPDS File No 9-432)。 纳米粉末具有很高的比表面积和表面能,因此本工作 采用湿化学法制备的纳米 HAp粉末来降低烧结温度。 结果表明,采用纳米粉末后,800 ℃下的烧结是可行的, HAp无分解,而且可避免钛基体机械性能的恶化,烧结 温度与常规温度 (> 1000 ℃)相比有显著降低。

A $\times 200$ B $\times 5000$

图 1 HAp纳米涂层的表面形貌

图 2 HAp纳米涂层的 XRD 谱图

Fig 2 XRD spectra of HAp nano coatings on Ti substrate verified by JCPDS File No 9-432

从涂层的截面形貌 (图 3)可以看到涂层本身已烧 结致密, 无大气孔, 涂层与基底之间结合很紧密。对于 抗压性能较好而抗拉抗剪性能很差的羟基磷灰石来 说, 如果对基体表面进行刻蚀处理, 转变为锯齿状凸起 的结构, 则可以减少拉应力受力的面积, 增加压应力受 力的面积, 从而将作用在基体表面上的剪应力转化为 压应力。另一方面 H₂SO₄和 H₂O₂ 的氧化使钛表面形 成 T O₂薄层, 它具有介于 HAp和钛之间的膨胀系数, 可作为过渡层, 减少热应力和裂纹的发生。

2 2 纳米 HAp涂层的细胞相容性

对培养井中材料周围的细胞的光学显微镜观察表 明,培养1d后,细胞可在材料周围贴壁生长,此后每 天细胞生长情况良好,一直保持正常的形态。10d后, 各培养井中均无发现脱落的死亡细胞,细胞仍保持原 来的形状 (图4),说明培养条件合适,各材料对细胞都 653 没有毒性,具生物相容性。

- 图 3 HAp纳米涂层的截面形貌(×2000)
- Fig 3 Cross-section morphology of HAp nano coating (×2000)

图 4 培养 10 d后材料周围的细胞 (×50)

纳米 HAp涂层

Fig 4 Cells growing around the materials (\times 50) after cultured for 10 days

表 1 培养 4 d后以 XTT试剂测量得到的细胞数

SEM 可用于观察细胞在材料表面的吸附,形貌等。 以纳米 HAp涂层表面的细胞为例,10 d后,细胞大量 增殖,基本覆盖了材料表面,形成了细胞层 (图 5)。

表 1列出了在材料表面和周围生长的细胞数量。 可以看到, 4 d后, 与无样品的培养井相比, 放有材料的 培养井中细胞数量都增多了, 细胞增殖了约两个数量 级, 表明材料对细胞无毒。而且生物材料不仅促进了 材料表面的细胞增殖, 也促进了材料周围的细胞增殖。 在纳米 HAp涂层的表面细胞数量最多, 增殖速度最 快, 说明纳米 HAp涂层的生物活性最高; 而在纯钛表 面细胞数量最少, 增殖速度最慢, 生物活性相对较低。

图 5 10 d后 HAp纳米涂层表面的细胞形貌 (×2000) Fig 5 Cells on HAp nano coating surface after cultured for 10 days

Table 1	The proliferation of MS	个		
	原始细胞数	材料周围的细胞数	材料表面的细胞数	细胞总数
付比空白井 (无样品)		-	_	1. 48×10^{6}
T 板		$1 6 \times 10^{6}$	$1 65 \times 10^{6}$	3. 25×10^6
微米 HAp涂层	5×10^{4}	$1 8 \times 10^{6}$	1. 8×10^{6}	3. 6×10^{6}

 2.0×10^{6}

自然骨是一种纳米 HAp晶体和有机基质组成的 复合材料^[11],因此植骨材料的表面性能对细胞的附着 起着重要的作用。对这种随着陶瓷颗粒尺寸减少,细 胞吸附增强的现象,一种可能的解释是纳米材料具有 更大的可与细胞接触的比表面积。而且纳米陶瓷会促 进血清蛋白的作用,从而可增强成骨细胞的吸附作 用^[12]。本实验的结果也证明了 M SCs可以很好的吸附 在纳米 HAp涂层表面,并在其周围正常生长,增殖速 度大于在常规尺寸的 HAp涂层表面。另一方面,以湿 法制备的 HAp粉末在形貌和晶体结构方面都更接近 于自然磷灰石。HAp纳米涂层有可能有助于 M SCs的 骨分化,促进材料和骨组织的融合。因此,随着纳米材 料的出现,就有可能设计和合成具有类似自然骨的力 学性能、表面形貌、晶体结构及化学成分的骨科与齿科 654

材料,使得人工生物材料具有优异的生物相容性和生 物活性及优良的力学性能。

 2.1×10^{6}

4. 1×10^{6}

3 结论

发展了电泳沉积法 (EPD)成功地在钛基表面制 备纳米羟基磷灰石涂层。

纳米羟基磷灰石 EPD 沉积涂层显著降低了烧 结温度, 对钛进行一定的表面氧化和化学刻蚀处理后, 改善了涂层与金属间的结合。

骨髓干细胞的体外培养结果表明,电泳沉积法制备的纳米 HAp涂层在表面形貌、晶体结构及化学组分上均更接近于自然磷灰石,具有良好的生物性能。

(下转第 660页)

机制^[5]。从对 R iger-peppas方程的拟合结果分析以及 m 接近 0 45表明,该缓释片属于混合控释机制,且以 扩散为主。

表 4 缓释片累积百分释放度数据

Tab 4 The results of the accumulated release test (n=6)

释放度 /%

	*** =	t /h						
机亏	0.5	1	2	4	6	8	10	
	030923	20.13	29.65	39 90	61. 58	74.04	84 59	92 16
	030924	18.09	26.99	36 91	58.68	75.36	84 48	90 90
	030925	18.45	27.94	38 12	60. 00	70. 75	79 13	87.59
	$\widehat{\mathbf{x}}$	18.89	28. 19	38 31	60. 09	73. 39	82 73	90 22
	RSD 1%	5 77	4.79	3 92	2 42	3. 23	3 77	2 61

表 5 拟合方程参数 (y = ax + b)

Tab 5 The release pattern of sustained-release tablets

释药机制	a	b	r
零级方程	7.49	22 25	0. 9776
一级方程	0 22	4 54	0. 9969
Higuchi方程	29 82	1 81	0. 9975
R iger-peppas方程	0 53	1 44	0. 9984

4 讨论

4 1 缓释制剂可按预定设计期间内向人体提供适宜的血药浓度,并保持此种血药浓度达较长时间,从而可避免普通制剂频繁给药所出现的"峰""谷"现象,减少服用次数并可获得良好的治疗效果,使药物的安全性、有效性和适应性有所提高,显示出较普通制剂所无法

(上接第 654页)

参考文献:

- [1] Narasara ju TSB, Phebe DE, Review. Som e physico-chemical aspects of hydroxylapatite [J]. JM aterials Science, 1996 31 1
- [2] JiH, M arquis PM. Effect of heat treatment on the microstructure of plasma-sprayed hydroxyapatite coating [J]. B im aterials, 1993, 14: 64
- [3] Jansen JA, Wolke JCG, Waerden van der et al Application of magnetron sputtering for producing ceramic coating on implant materials [J]. Clin Oral Implant Res 1993 (4): 28.
- [4] Srithar TM, Mudali UK, Subbaiyan M. Preparation and charaeterization of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel [J]. Corrosion Science, 2003, 45 237.
- [5]WeiM, Ruys J. Swain MV, et al. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals [J]. JM ater Sci MaterMed, 1999, 10–401
- [6] Chen F, W ang ZC, L in CJ Preparation and characterization of nano-size hydroxyapatite particles and hydroxyapatite/chitosan

相比的优越性。本实验将钩藤总碱制成缓释片,可减 少用药次数和用药量,方便了患者。通过对钩藤总碱 缓释片进行体外累积溶出速率测定得知,该缓释片体 外释放速度适宜,1h释放量为20%~40%;4h为 50%~70%;10h为80%~100%。对于其在体内的释 药特性尚待进一步研究。

4 2 EC为颗粒状水不溶性高分子辅料,不易粉碎, 本实验采用少量乙醇将主药与 EC溶解加入其他辅料 制粒的方法,颗粒可以很快地干燥,弥补了溶剂法有机 溶剂不易除尽的缺点,并缩短了生产周期,工艺简单, 操作简便,所以很有推广价值。

4 3 EC 为不溶于水的缓释性载体, EC 内部存在孔径 极细的错综复杂的孔道, 药物经孔道缓慢向体液扩散 释出。其释药速率符合 H guchi方程: $Q = kt^{1/2}$ 。

参考文献:

- [1]朱毅,黄燮南,刘国雄. 异钩藤碱对豚鼠心肌特性的影响
 [J]. 中国中药杂志, 1995, 20(2): 112
- [2]杨福桢,侯鹏,何光杰,等. 溶剂法制备固体分散体的工艺研究[J]. 沈阳药科大学学报, 2000, 17(增刊): 267.
- [3]张霖泽,王兰勤, Navn i HS 口服控释制剂的质量评价 [J]. 中国药学杂志, 1995, 30(6): 366
- [4]国家药典委员会. 中华人民共和国药典 (二部) [Z]. 北京: 化 学工业出版社, 2000 附录 77.
- [5] Rigter PL, Peppas NA. A simple equation for description of solute release . Fickian and anom abus release from swellable devices
 [J]. J Controll Rel 1987, 37: 234

(收稿日期: 2005-06-16,修回日期: 2005-07-27)

n ano-composite for use in biomedicalmaterials [J]. Materials Letters 2002, 57 858

- [7] Keller R. Stem cells on the way to restorative edicine [J]. Immuno bgy Letters 2002, 83 1
- [8]W ang M L, Nesti L J, Tuli R, et al. Titanium particles suppress expression of osteoblastic phenotype in human mesenchym al stem cells [J]. J Orthopaedic Research 2002, 20: 1175
- [9] Campoccia D, Arciola CR, Cervellati M, et al In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrate with different roughness [J]. Biomaterials 2003, 24 587.
- [10] Jillavenkatesa A, Condrate SR RA. Sol-gel processing of hydroxyapatite [J]. JM ater Sci 1998 33: 4111.
- [11]Kaplan FS, HayesWC, Keaven TM, et al. Orthopaedic Basic Science, American Academy of Orthopaedic Surgeons [M]. Columbus OH, 1994 127.
- [12]Webster T.J. Siegel TW, Bizios R Osteoblast adhesion on nanophase ceramics [J]. Biomaterials 1999, 20 1221. (收稿日期: 2005-07-01;修回日期: 2005-10-10)