2005年第24卷第2期

悬臂梁式微机械隧道陀螺的结构设计与性能分析*

李文望¹,孙道恒² (1.厦门理工学院 机械系,福建 厦门 361005; 2.厦门大学 机电工程系,福建 厦门 361005)

摘 要:介绍了电子隧道效应在微机械陀螺仪中的应用,根据电子隧道效应的特点与要求提出了隧道陀螺仪的结构方案,利用 ANSYS进行系统模态分析、静电-结构的耦合场分析及系统的性能分析。讨论了系统的机械灵敏度及隧道电流与隧道电极间隙的关系。
 关键词:微机械;隧道陀螺仪;电子隧道效应;耦合场分析
 中图分类号: TP212 文献标识码: A 文章编号: 1000 - 9787(2005)02 - 0048 - 03

Structural design and performance analysis on cantilever beam micromachined tunneling gyroscope

 $L IW en-wang^{1}$, SUN Dao-heng²

(1. Dept of Mech, Xiamen Institute of Technology, Xiamen 361005, China;
2. Dept of Mech and Elec Engin, Xiamen University, Xiamen 361005, China)

Abstract Application of electron tunneling effect in micromachined gyroscope is described According to the prerequisite and characteristic of tunneling effect, a scheme of gyroscope structure is presented Modal analysis and electrostatic-structure coupling analysis and performance analysis are described by using ANSYS software Mechanical sensitivity and relation between the tunneling current and the distance of electrode are discussed **Key words**: micromachine; tunneling gyroscope; electron tunneling effect; coupled-field analysis

0 引 言

速率陀螺已经广泛应用于航空航天、舰船、汽车、机器 人等的自主导航,甚至虚拟现实的摄像系统中。微机械技 术使得陀螺仪的微型化、集成化成为现实,微机械陀螺仪比 传统陀螺仪具有更加广泛的、潜在的应用前景。然而,微机 械陀螺仪的测量精度及灵敏度、漂移等仍然是制约其走向 实用化的关键因素。由于陀螺仪检测角速度的特殊性,尺 寸的减小严重地降低了其工作灵敏度,从而影响了陀螺的 测量精度。

微机械振动陀螺利用单晶或多晶硅制成的振动质量, 被机座带动旋转时产生哥氏惯性力,带动质量块往复运动。 振动的幅度与机座的旋转角速度成正比,从而感测机座的 角速度。目前,敏感信号的检测主要用平板电容器来进行, 惯性质量带动检测电容的动极板往复运动,极板间距发生 变化,通过检测电容的变化提取角速度信号,但是,由于哥 氏力很微弱,敏感电容器极板间距变化非常微小,相对电容 变化 C/C约为 10⁻⁷~10⁻⁸,要检测到如此微小的变化显 然相当困难。采取更为有效的测量方法,从而获得尺寸微 小、精度高、灵敏度高的微机械陀螺是各国研究者希望解决 的问题^[1]。

1 隧道陀螺的结构与工作原理

1.1 结 构

悬臂梁式微机械隧道陀螺的信号敏感方式采用了电子 隧道效应原理,其结构如图 1和图 2所示。

Fig 1 Structural diagram of tunneling gyroscope

收稿日期: 2004 - 08 - 27

^{*}基金项目:福建省自然科学基金资助项目(A0110003);福建省教育厅 B类科研项目(JB03283)

Fig 2 Gyroscope plan

1.2 工作原理

在两对驱动电极上分别加上直流偏置交变电压,使悬 臂梁沿着 y方向产生谐振,当整个系统沿着 x方向有输入 角速度 时,受到哥氏力的作用,使得悬臂梁沿着 z方向振 动,引起隧道电极间距的变化,改变隧道电流的大小,从而 通过测量隧道电流的变化来检测输入角速度 的大小。

1.3 电子隧道效应^[2,3]

室温下,如果两电极的势垒小于某一特定值,势垒宽度的大小引起 2种效应:

(1)一个电极是尖端,它的几何形状可使电场达到一 个很大的值,导致电子可以从尖端被发射出去,即场致发射;

(2)两电极间距离很小,其间势垒很小,以致于电子可 以通过隧道效应由一个电极到达另一个电极,隧道电流的 大小和隧道两电极间的距离成逆指数关系,即

 $I \quad V \exp(-\sqrt{z})$,

式中 为隧道有效势垒高度; V为偏置电压, = 0. 1025 m⁻¹ eV^{-1/2}。对于 =1 eV的典型势垒高度,隧道电 极间距 z每减小 0. 23 m,隧道电流增加一个数量级,电子 隧道电流对位移的变化有极高的灵敏度。

2 隧道陀螺的结构设计和动力学分析

根据隧道陀螺仪的工作原理和电子隧道效应的特性, 确定隧道陀螺仪的结构参数需要满足以下几方面的要求: (1)驱动模态的固有频率与敏感模态的固有频率匹配,2 个模态的固有频率相差越小越好;(2)由于电子隧道效应 只能在隧道电极之间的间距为 1 mn 左右才发生,而且,对 极距的变化极其敏感,要求隧道电极之间的间距变化的最 大值控制在 4 mn;(3)隧道陀螺仪的工艺是采用硅表面微 机械加工技术,根据此工艺的特点来设计梁的厚度;(4) 驱动模态和敏感模态要隔离机械耦合。根据上述的要求 选择(1),(2)组悬臂梁的结构参数如表 1 所示,采用 AN-SYS有限元分析软件进行结构的模态分析,其各阶的固有 频率如表 2 所示。

从表 1与表 2可以看出:第 1组的 f₁与 f₂相等,但其隧 道尖处横向效应很大,不宜采用。随着梁的宽度 b₁的增 大, f₁ - f₂的值逐渐减小,横向效应也会逐渐减小,但同时也 会使梁的纵向变形受到牵制。另外,如果梁的截面积增大, 在受到同样大小的载荷作用下,其绝对变形减小。所以,选 择第 6组参数进行进一步分析。其各阶模态振型如图 3所 示。

表 1 悬臂梁的结构参数 (µm)

Tab 1 Structural parameter of cantilever beam(µm)

组别	l_1	l_2	b_1	b_2	h_1	h_2
1	100	200	2	2	2	2
2	100	200	4	2	2	2
3	100	200	6	2	2	2
4	100	200	8	2	2	2
5	100	200	10	2	2	2
6	100	200	12	2	2	2
7	100	200	14	2	2	2
8	100	200	16	2	2	2
9	100	200	18	3	3	3
10	100	200	14	3	3	3
11	100	200	24	4	4	4
12	100	200	30	5	5	5

表 2 各阶固有频率

Tab 2 Each step natural frequency

组别	f_1	f_2	f_3	f_4	f_5	<i>f</i> ₁ - <i>f</i> ₂
	(Hz)	(Hz)	$(\times 10^5 \text{Hz})$	$(x10^{5} Hz)$	$(\times 10^5 \text{Hz})$	(Hz)
1	30 666	30 666	1. 93	1. 93	5.44	0
2	39 671	56518	2.04	2.76	5.35	16847
3	45 029	64 354	2.12	3. 54	5. 26	19 325
4	48 661	66731	2.17	3. 94	5. 18	18070
5	51 295	67 662	2. 22	4. 12	5. 11	16367
6	53 300	68 0 27	2. 25	4. 20	5.04	14727
7	54 876	68 2 3 5	2. 29	4. 24	4.99	13 359
8	56 1 52	68 352	2.32	4. 26	4.95	12 200
9	79719	101 690	3. 38	6. 27	7.54	21971
10	75 579	100 770	3. 30	6.09	7.70	25 191
11	105 920	135 060	4.51	8. 32	10. 00	29 140
12	131 950	16818	5. 63	10. 36	12.40	36230

选择第一阶振型作为敏感模态振型,第二阶振型作为 驱动模态振型。

- 3 隧道陀螺的性能分析
- 3.1 隧道电流变化量与硅尖位移的关系

当无角速度输入时,隧道电极间距 z与隧道电流 Imp 关系由下式给出

$$I_{\rm tun} = \frac{V_{\rm tun}}{R_0} \exp\left(-z\sqrt{1}\right) , \qquad (1)$$

式中 R_0 为一个常数,可认为是隧道结外延至 z = 0时的 电阻,通常 R_0 100 k 。

当隧道电极间距缩小 z时,电流的变化量可近似为

$$I = \frac{V_{\rm hub}}{R_0} z \sqrt{z} = k z.$$
 (2)

即,近似认为当隧道电极间距的变化很小时,隧道电流 的变化量与隧道电极间距的变化量成正比。

本系统的隧道电极和硅尖采用镀金,其势垒高度 = 0.5 eV, $t_{un} = 0.1 V, R_0 = 100 k$,所以,隧道电流的变化量为 $I = 7.25 \times 10^{-7} z.$ (3)

3.2 机械灵敏度

当 =0 01时,利用 ANSYS进行分析,隧道尖处梁的 振幅与输入角速度 的关系如图 4所示。其机械灵敏度 为:S =0 1097 nm /(rad \cdot s⁻¹) =0 0019 nm /((9 \cdot s⁻¹), 当输入角速度为 1(9/s时,根据式 (3),可得隧道电流的 变化量为 1.38 ×10⁻⁸A。

持稳定的振动,不必考虑动态响应的调节时间。而检测方向的振动与输入角速度有关,而且,是随机的,所以,在这个方向上对激励的响应调节时间就很重要。阶跃响应调节时间与阻尼比 的关系如图 5所示,阶跃响应的调节时间随着阻尼的增大而减小,当阻尼比 达到 0 01以上时,调节时间变化不大。

采用电子隧道效应作为微机械陀螺的敏感方式,大大 提高了陀螺仪的灵敏度。通过计算机仿真,分析各种参数 对隧道陀螺仪性能的影响,从而选择和改进陀螺仪的结构 参数,缩短设计周期。

参考文献:

- [1] 孙道恒. 一种微机械隧道陀螺仪原型方案初探 [J]. 微纳米科
 学与技术, 2000, 5(1): 106 108.
- [2] 史建伟,陈德英.隧道加速度计的发展概况 [J]. 电子器件, 1999, (9): 188 - 193.
- [3] 陈德英,茅盘松,史建伟.扭摆式微硅隧道加速度传感器[J]. 电子器件,2001,(12):285-294.

作者简介:

李文望(1966-),男,福建永春人,硕士,副教授,从事 MEMS, CAD/CAM等方面的教学与科研。