第41卷 第7期	西安交通大学学报	Vol.41 7
2007年7月	JOURNAL OF XI AN JIAOTONG UNIVERSITY	Jul. 2007

细胞注射显微系统的空间精确定位方法

席文明^{1,2},钟辉^{1,2},郭阿全^{1,2},孙道恒^{1,2}

(1. 厦门大学机电工程系, 361005, 厦门; 2. 厦门大学萨本栋微机电中心, 361005, 厦门)

摘要:利用改进的激光三角测量法获得图像采集时丢失的高度信息,其相对误差小于 0.4%,将该 信息集成到伺服控制方程中就可以利用视觉信息来控制机械手在空间做三维运动.在图像空间控 制机械手运动时,利用光学流方法获得每个采样周期后注射针在图像空间的位置,就可以消除系统 存在的误差,使注射针沿预定的轨迹运动,完成细胞的注射.实验结果表明,利用该方法可以将轨迹 误差从(11,10)像素,减小为(0,2)像素,从而方便地控制机械手在三维空间做精确定位和运动. 关键词:细胞注射;光学流;激光三角测量;伺服控制

中图分类号: TP24 文献标识码: A 文章编号: 0253-987X(2007)07-0829-04

Space Precision Orientation Method for Cell Micro-Injection System

Xi Wenming^{1,2}, Zhong Hui^{1,2}, Guo Aquan^{1,2}, Sun Daoheng^{1,2} (1. Department of Mechanical Engineering, Xiamen University, Xiamen 361005, China;

2. Pen-Tung Sah MEMS Research Center, Xiamen University, Xiamen 361005, China)

Abstract: The laser trigonometry measurement method is improved to obtain the data of height of probe with a relative error less than 0.4%, which are integrated in the servoing equation to control micro-manipulator movement in three dimensional space. When micro-manipulator moves in image space, the modified sum of squared difference method is employed to track probe, thus the error of micro-manipulator movement is eliminated and probe moves along the expected track to realize the cell micro-injection. The experimental results show that this method enables to minish error from (11,10) pixels to (0,2) pixels to accurately control the micro-manipulator movement in three dimensional space.

Keywords: cell micro-injection; sum of squared difference; laser trigonometry measure; vision servoing control

将微量生物物质注射到细胞中的方法广泛应用 于生物学和遗传学中^[1],特别是在体外遗传注射和 DNA 克隆技术中^[2].在刚刚兴起的细胞生物力学研 究中^[3],需要将注射针或玻璃毛细管进行空间精确 定位,利用 CCD 将图像提取到计算机中进行处理, 但物体沿显微镜光轴方向的高度丢失,会直接影响 细胞注射的成功与否.对于该问题,文献[4]采用显 微镜聚焦和失焦方法来确定物体高度方向的信息, 认为当物体聚焦时它的图像是清晰的,具有大部分 的高频信息,这时对图像进行微分可以得到较大的 数值,而当物体失焦时,物体图像是模糊的,只存在 低频率信息,这时对图像进行微分只能得到较小的 数值.根据物体的景深可以得到物体的高度,但要不 断移动显微镜物镜.文献[5]利用双目视觉系统提取 物体的高度,然后利用立体眼镜在计算机屏幕上观 察物体图像的三维信息,但存在的缺点是系统复杂, 利用显微镜构成多个视觉系统会产生复杂的光路, 而且提取的物体高度只能用于观察,不能将物理高 度集成到细胞注射的伺服控制方程中去.

本文采用激光测量的方法来获得物体的高度^[6],让一点激光源通过一个柱面镜,将点激光变为 线激光,然后让线激光通过一光栅形成很细的激光

收稿日期: 2006-11-21. 作者简介: 席文明(1965~),男,副教授. 基金项目: 国家自然科学基金资助项目(50675184).

条纹,该条纹倾斜照射在物体上,当物体高度发生变 化时,倾斜的条纹会发生偏移,根据激光的倾斜角度 以及条纹的偏移量来获得物体的高度.将物体的高 度集成到伺服控制方程中^[7],并通过图像来控制机 械手在三维空间运动,利用图像信息控制机械手运 动,采用光学流的方法^[8],不断搜索注射针的位置, 从而消除系统误差,完成细胞注射.

1 注射针高度的获取

1.1 高度的测量原理

如图 1 所示,假设线性激光投影到平台的 A 点,如果有一注射针与该线激光相交,则原来投影到 A 点的光线就会投影到 B 点,即

$$h = stg \tag{1}$$

式(1)中的s可以由安装在显微镜上的 CCD 获得, 如果已知 ,则 h就可以通过式(1)得到.

1.2 测量系统的标定

在测量过程中, 是固定的,设 $K_1 = tg = 常数,$ 则式(1)变为

$$h = s K_1 \tag{2}$$

假设 s 在 CCD 中所成的像为 s,由于 CCD 是 线性成像,所以 s 与 s 的比值也为常数,设该常数为 *K*2,则

$$s = s K_2 \tag{3}$$

由式(2)和式(3)得

$$K = h/s \tag{4}$$

式中: $K = K_1 K_2$ 为常数. K的标定方法为将线激光 投影到三自由度平台上,记录对应激光线的初始位 置,然后将平台沿高度方向移动 h距离,这时在图像 中初始激光线产生偏移,假设偏移距离为 s,利用式 (4)即可以标定出 K.下面,利用 K值计算注射针的 高度,方法是检测出相应激光线的偏移距离,然后用 K乘偏移距离就可以得到注射针的高度. 利用此方法同样可以对水平面上的 x、y 方向 进行标定,由于在 2 个方向上 CCD 像素数目不同, 所以要分别进行标定.标定方法是在平台上分别画 一水平线和垂直线,平台在 2 个方向分别移动 / 距 离,在图像空间计算水平线和垂直线的移动距离 *l*, *l*和 *l* 之比即为水平方向和垂直方向的标定结果,并 分别用 K_s和 K_v表示.

2 机械手伺服控制方程的建立

图 2 为摄像机的成像模型, *C* 为视觉空间坐标 系, *T* 为任务坐标系. 设 *P* 在 *C* 中的坐标为 $C_P(x_{CP}, y_{CP}, z_{CP})$, 在 *T* 中的坐标为 $T_P(x_P, y_P, z_P)$, 它在像平面上的坐标为 $p(x_P, y_P)$. 设显微镜的 放大倍数为 *m*,则

$$x_P = (m/d_x) x_{CP}$$
 (5)

$$y_{P} = (m/d_{y}) y_{CP}$$
 (6)

式中: d_x 、 d_y 表示像平面在x、y方向的像素点.

f:CCD 焦距; *p*(*x_P*, *y_P*): *P* 点在像平面上的坐标; *C_P*(*x_{CP}*, *y_{CP}*, *z_{CP}*): *P* 点的视觉空间坐标; *T_P*(*x_{TP}*, *y_{TP}*, *z_{TP}*): *P* 点的任务空间坐标
 图 2 揭像机成像模型

假设摄像机坐标经历了平移运动 $V_c = [x_c \ y_c]^T$ 后得到

$$\begin{array}{c} \dot{x}_{CP} = - \dot{x}_{C} \\ \dot{y}_{CP} = - \dot{y}_{C} \\ \dot{z}_{CP} = - \dot{z}_{C} \end{array}$$

$$(7)$$

将式(5)、式(6)的导数代入式(7)得到

$$\dot{x}_{P} = - (m/d_{x}) \dot{x}_{C} \dot{y}_{P} = - (m/d_{y}) \dot{y}_{C} \dot{z}_{CP} = - \dot{z}_{C}$$
(8)

式(8)的矩阵形式为

$$\mathbf{X} = \mathbf{J}_{\mathbf{V}} \mathbf{V} \tag{9}$$

$$\dot{\mathbf{X}} = [\dot{x}_{P} \quad \dot{y}_{P} \quad \dot{z}_{CP}]^{\mathrm{T}}; \mathbf{V} = [\dot{x}_{C} \quad \dot{y}_{C} \quad \dot{z}_{C}]^{\mathrm{T}}$$
$$\mathbf{J}_{\mathrm{V}} = \begin{bmatrix} -m/d_{x} \\ & -m/d_{y} \\ & & -1 \end{bmatrix}$$
(10)

式中:Jv 为视觉雅可比矩阵.

通过式(10),可以写出点在像平面上的速度和 点在任务空间的速度映射关系

$$\dot{\mathbf{X}} = \mathbf{J}_{\mathbf{V}}\mathbf{U} \tag{11}$$

$$J = \begin{bmatrix} \dot{x}_{TP} & \dot{y}_{TP} & \dot{z}_{TP} \end{bmatrix}^{\mathrm{T}}$$

式中:U 是点在任务空间的速度.由式(11)可写出的 离散伺服控制方程为

为了优化式(12)中的参数,建立以下的能量函数

$$E(k + 1) = [X(k + 1) - X_D(k + 1)]^T W_e \cdot [X(k + 1) - X_D(k + 1)] + U^T(k) W_{in}U(k)$$
(13)

式中: $X_D(k+1)$ 是点的像目标位置; W_e 、 W_{in} 为系统 误差权重矩阵和控制输入的权重矩阵. 求式(13)的 最小值可得到以下的方程

$$U(k) = - (tJ_{V}^{T}W_{e}tJ_{V} + W_{in})^{-1}tJ_{V}^{T}W_{e} \cdot [X(k) - X_{D}(k+1)]$$
(14)

在像平面控制机械手空间运动时,图像空间并 没有高度方向的信息,因此需要用激光三角测量法 来获得注射针的高度,并代入式(14)的 X(k)中,然 后将注射针目标高度代入式(14)的 $X_n(k+1)$ 中.

3 特征点跟踪

在基于图像的视觉跟踪中,系统并不需要精确标定,只需要在图像空间减小特征点位置与目标位置之间的误差,当该误差为0时,完成视觉跟踪.由于该方法在每个采样周期都需要确定特征点的运动位置,因此需要通过调整特征点的运动方向,来消除系统对特征点运动产生的误差.本文采用光学流的方法,通过跟踪运动的特征点实时位置,完成控制视觉的跟踪.

特征点在图像平面的运动轨迹称为光学流,光 学流能够给出被跟踪物体的空间排列和速度变化. SSD(Sum of Squared Difference)方法是一种改进 的光学流方法,该方法适合点的特征跟踪.一般来 说,图像序列的灰度可以用 2 个空间位置变量和一 个时间变量表示,即 I(x, y, t).假设被跟踪的特征 形状是不变的,在图像 A 中,用 $P_A(x_A, y_A)$ 表示,当 该点运动后,在图像 B 中,用 $P_B(x_A + dx, y_A + dy)$ 表示.假设在短的采样时间内 dx、dy 足够小,图像 特征的灰度不变,则通过使 SSD 获得的灰度差

$$e(P_A, P_B) = \prod_{m, n \in N} I_A(x_A + m, y_A + n) -$$

 $I_B (x_A + m + dx, y_A + n + dy)]^2$ (15)

最小化,就可以求得特征点在图像 *B* 中的位置.式 中: $e(P_A, P_B)$ 是 SSD 的估计量,当它达到最小值 时,特征点在图像 *B* 中的位置就被确定; $m,n \in A$ 和 *B* 图像中对应的像素点坐标; *N* 是限制搜索区域 的变量; I_A 和 I_B 是特征点在 *A* 和 *B* 图像中的灰度 函数.

4 实验数据处理与分析

如胞注射实验系统如图 3 所示,由下列设备组 成:微生物操作机械手(MP-285,三自由度,美国 Sutter 公司生产,精度为 40 nm);纳米运动平台 (M-112. 1DG,三自由度,德国 PI 公司生产,精度为 20 nm);显微镜(体视 K-700Z,中国麦克奥迪公司 生产);CCD(UC-930CL,美国 Uniq 公司生产);图 像捕捉卡(METORII,加拿大 Matrox 公司生产); 线性激光系统(激光器、柱面镜和光栅).在图 3 所示 的系统上将完成注射针距平台高度的测量,测量前 首先对系统进行标定,得到 $K = 0.822 \ \mu m/$ 像素, K_s = 1. 572 $\mu m/$ 像素, $K_v = 1.317 \ \mu m/$ 像素.

表1是物体实际参数与线激光测量的数据比较 和误差分析,测量过程中出现的这些误差主要是由 程序对条纹边界的识别产生.由于边界灰度是渐变 而不是跃变的,因此确定边界的位置就会产生误差.

图 3 细胞注射系统

表 1 2 种参数的测量数据比较和误差分析

测量顺序 -	测量值∕µm		绝对误差	相对误差
	实际	激光	∕µm	/ %
1	3 877. 44	3 885. 00	7.56	0.2
2	3 172.96	3 178 79	5. 83	0.2
3	2 705.04	2 694 11	- 10. 94	- 0.4

图 4 是利用伺服控制方程式(14)以及 SSD 方法,控制机械手在三维空间运动的折线轨迹,在用 SSD 方法跟踪注射针前,首先对式(14)中的误差矩 阵进行标定

 $W_{e} = \begin{bmatrix} -0.004\ 079 & 0.000\ 395 & 0.000\ 064 \\ -0.000\ 204 & -0.001\ 415 & 0.001\ 043 \\ 0 & 0 & -1.102\ 881 \end{bmatrix}$

标定上述误差矩阵时

图 4 中的实线是注射针顶端的理想轨迹, 虚线 是注射针实际轨迹, 点划线是标定误差矩阵后, 利用 SSD 方法产生的注射针顶端轨迹. 从图中可以看 出,注射针顶端实际轨迹在 x 方向的最大误差为 11 像素, 在 y 方向的最大误差为 10 像素, 而用 SSD 方 法跟踪的注射针顶端轨迹在 x 方向的误差为 0 像 素, 在 y 方向的误差为 2 像素, SSD 方法的轨迹几 乎和理想轨迹重合. 根据分析, 在 z 方向轨迹产生的 2 个像素误差, 主要是由激光三角法测量 z 方向高 度时所产生的误差造成的.

图 4 理想、实际与 SSD 方法轨迹的比较

5 结 论

在机械手细胞显微注射中,安装在显微镜上的 CCD 在提取图像时因为丢失了高度信息,因此直接 影响到细胞注射能否成功,更严重的是会损坏设备. 本文采用一种简单的线激光三角测量法,不仅完成 了注射针顶端的高度测量,而且根据实际的细胞注 射系统,利用一种简单的标定方法避免了线激光倾 角的繁琐测量,因此提高了测量精度.文中将该高度 集成到伺服控制方程中,并用 SSD 方法在图像空间 控制机械手来完成空间运动.实验数据表明,采用本 文的测量方法和伺服控制方程,可以完成机械手的 细胞自动显微注射.

参考文献:

- Zhang Xiaojing, Zapp S, Quate C F, et al. Ultrasonic microinjection characterized by integrated micro-optical force encoder[C] A Solid-State Sensor, Actuator and Microsystems Workshop. Hilton Head Island, USA: The Institution of Engineering and Technology, 2004: 6-10.
- [2] Sun Yun, Nelson B J. Microrobotic cell injection[C] Proceedings of the 2001 IEEE International Conference on Robotics & Automation. Piscataway, USA: IEEE Press, 2001:620-625.
- [3] Bao G, Suresh S. Cell and molecular mechanics of biological materials[J]. Nature, 2003, 12(11):715-725.
- [4] Stephen J R, Vikramaditya B, Nelson B J. Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies [J]. IEEE Transactions on Electronics Packaging Manufacturing, 2000, 23(2): 123-131.
- [5] Kim D H, Kim K, Kim K Y, et al. Dexterous teleoperation for micro parts handling based on haptic/visual interface[C] International Symposium on Micromechatronics and Human Science. Piscataway, USA: IEEE Press, 2001: 211-217.
- [6] Buerkle A, Fatikow S. Laser measuring system for a flexible microrobot-based micromanipulation station
 [C] Proceedings of the 2000 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE Press, 2000: 799-804.
- [7] 席文明,姚斌,王磊.基于实体模型的虚拟微装配视觉 伺服研究[J].机械工程学报,2005,41(3):59-63.
 Xi Wenming, Yao Bin, Wang Lei. Study of visual servoing for virtual microassembly based on solid model
 [J]. Chinese Journal of Mechanical Engineering, 2005, 41(3):59-63.
- [8] 席文明,姚斌.微装配与微操作[M].北京:国防工业 出版社,2006:88-90.

(编辑 管咏梅)