北冰洋: 生物生产力的"沙漠"?

陈 敏^① 黄奕普^① 郭劳动^② 蔡平河^① 杨伟锋^① 刘广山^① 邱雨生^① (①厦门大学海洋系, 厦门 361005; ②International Arctic Research Center, University of Alaska, Fairbanks, AK 99775, USA. E-mail: mchen@jingxian.xmu.edu.cn)

摘要 利用¹⁴C 吸收法、³H 吸收法、²³⁴Th/²³⁸U 不平衡法和 ²¹⁰Pb_{ex} 测年法分别测定了北冰洋的初级生产 力、细菌生产力、颗粒有机碳输出通量及沉积物有机碳埋藏速率.结果表明,北冰洋水柱积分生产力介 于 3.8~197.1 mmol C/m²·d,高于早期的报道值,其中楚克奇陆架区初级生产力水平高于深海盆 地.积分细菌生产力与初级生产力的比值大于 0.5,表明在北冰洋寒冷的水体中细菌活动并未受到明显 限制.由²³⁴Th/²³⁸U 不平衡获得的 ²³⁴Th 亏损程度、溶解态与颗粒态 ²³⁴Th 停留时间、颗粒有机碳的输出 通量均证实,北冰洋深海盆地仍存在一定的颗粒清除、迁出作用.夏季期间楚克奇陆架沉积物有机碳埋 藏速率为 25~35 mmol C/m²·d,占水柱初级生产力的 59%~82%,表明有机碳的输送与埋藏是非常高效 的.上述证据均表明,至少在夏季期间,北冰洋并非生物生产力极其贫瘠的海洋"沙漠",它存在相对 活跃的海洋碳循环过程,重新评估北冰洋在全球碳循环中的作用显得更为重要.

关键词 北冰洋 初级生产力 细菌生产力 POC输出通量 有机碳埋藏速率 同位素示踪

自 English^[1]的开创性工作以来,尽管相关的研究工作并不很多,但已存在一种传统的观点,即由于 常年冰覆盖、温度极低及光合作用时间短等因素,北 冰洋是极端贫瘠的海域之一,其生物生产力极低,由 此导致颗粒物的输出、营养盐的循环等生物地球化学 过程均极不活跃^[2,3].鉴于北冰洋为全球 CO₂ 的一个 重要"汇"区^[4,5]及其在全球碳循环、大洋环流乃至 全球气候变化中所扮演的重要角色,准确评估北冰 洋的初级生产力、颗粒有机碳通量以及颗粒有机物的 再循环就显得尤为重要.

在 1999 年 7~9 月中国首次进行的北极科学考察 中,采用¹⁴C 吸收法、³H 吸收法分别测定了北冰洋的 初级生产力与细菌生产力,并通过²³⁴Th/²³⁸U 不平衡 法及²¹⁰Pb 过剩法(即²¹⁰Pb 与 ²²⁶Ra 放射性比活度之差) 定量确定了北冰洋水柱颗粒有机碳的输出通量及沉 积物有机碳埋藏速率.综合生物及地球化学证据表 明,至少在夏季期间,北冰洋并非生物生产力极其贫 瘠的海洋"沙漠",其生物泵的运转效率仍相当有效, 北冰洋在全球海洋碳循环乃至全球气候变化中起着 重要作用.

1 样品采集与方法

进行初级生产力、细菌生产力、²³⁴Th/²³⁸U不平 衡与沉积物²¹⁰Pb研究的站位如图1所示.所采用的 测定方法见表1.在初级生产力研究的10个站中,5 个站根据光强衰减程度(分别为表面光强的100%,

www.scichina.com

50%, 10%和 1%)采集了不同水层的样品, 其余站位 仅采集表层水样. 对于仅测定表层水样的站位, 根据 其他站位表层生产力与积分生产力的拟合关系求出 其积分生产力数值. 每小时光合作用的速率利用 *K*_h 系数^[6]转化为每天光合作用速率. 细菌生产力的研究 在楚克奇陆架(C8)、加拿大海盆(C34)各设置一个采 样站位, 分别采集相当于表面光强 100%, 50%和 1% 层次的水样. 水柱积分初级生产力、细菌生产力根据 梯形积分获得.

在加拿大深海盆地(C34 站)进行了²³⁴Th/²³⁸U不平 衡的研究.采集了0,10,25,50,75,100和200m深度的

表 1 初级生产力, 细菌生产力, ~~ In, ~~ Ra 和 ~~ Pb 的测定力法						
测定项目	使用方法	样品数量		培养或富集 方法与时间	 测试仪器	
	¹⁴ C 吸收法	100 mL	5µCi NaH¹⁴CO₃	甲板培养约6小时	Tri-Carb 4640 型液体闪烁 计数仪	
细菌生产力	³ H 吸收法	20 mL	0.1mCi ³ H-胸腺嘧啶核苷 试剂	甲板培养约4小时	Tri-Carb 4640 型液体闪烁 计数仪	
溶解态、颗粒态 ²³⁴ Th	^{234m} Pa 的β 射线	20 L	²³² U- ²²⁸ Th 平衡溶液	Fe(OH)₃共沉淀	BH1216 低本底α/β 计数仪	
沉积物 ²²⁶ Ra	241.9, 295.2, 351.9, 609.3 keVγ射线	10 g	-	-	Canberra GX3020 HPGe γ 能谱仪	
沉积物 ²¹⁰ Pb	46.5 keV γ 射线	10 g	-	-	Canberra GX3020 HPGe γ 能谱仪	

表 1 初级生产力, 细菌生产力, ²³⁴Th, ²²⁶Ra 和 ²¹⁰Pb 的测定方法

大体积水样,分别测定其中颗粒态²³⁴Th,溶解态 ²³⁴Th 和 POC 的含量.²³⁸U 放射性比度由 U-S 关系方 程²³⁸U (dpm/dm³) = 0.07081 S^[7]获得.

进行沉积物有机碳埋藏速率研究的站位设于楚 克奇海陆架区西部(C8),水深 60 m. 沉积物样品用 QNC-2-2 型不锈钢箱式采样器采集,上船后用内径 为 4 cm 的塑料管采集岩芯,并立即将两端密封,冷 冻带回实验室进行 ²²⁶Ra, ²¹⁰Pb 含水量和总有机物含 量的测定,详见杨伟锋文¹⁾. 有关样品采集、培养及 核素测定的方法列于表 1, 具体步骤参见文献[8,9].

2 结果与讨论

2.1 初级生产力水平

北冰洋水柱积分生产力水平介于 3.8~197.1 mmol C/m² · d 之间,平均为 38.2 mmol C/m² · d,其中楚克 奇陆架区平均值为 42.5 mmol C/m² · d,加拿大海盆为 3.8 mmol C/m² · d.这些数值与已报道的部分结果^[10~13] 相吻合,但均高于 English^[1]测定的结果(表 2).如果假 定每年藻类的生长时间是 120 d 的话,即可计算出研究 海域初级生产力平均为 55 g C/m²・a, 比 English^[1]的 估计值至少高一个数量级.

积分初级生产力的空间变化较大,其中楚克奇 陆架区初级生产力水平比深海盆地来得高.事实上, 相对于世界其他海域而言,所测得的楚克奇陆架区 初级生产力也是非常高的,已接近于中低纬度沿岸 区的生产力水平.

必须指出的是,本研究并未测定海冰中冰藻的初级生产力.已有研究表明,北冰洋冰藻生物生产力占水体初级生产力的份额可从1%变化至180%^[11,14].若考虑此项贡献,则北冰洋初级生产力的水平理应更高.显然,近期在北冰洋各海域测得的初级生产力均高于 20 世纪 60~70 年代的测值,早期基于少数数据得到的北冰洋是生物生产力的沙漠的传统观点需要予以修正.北冰洋并非生物生产力的"沙漠".

2.2 细菌生产力水平

北冰洋两个站位积分细菌生产力水平分别为 5.7 (C8 站)和 2.0 mmol C/m²・d (C34 站), 楚克奇陆架区

য় শি	采样时间 初级生产力(PP) (日/月/年) /mmol C・m ⁻² ・d ⁻¹		细菌生产力(BP)	DD /DD	文献
			/mmol C \cdot m ⁻² \cdot d ⁻¹	BF/FF	
楚克奇海-马卡诺夫海盆-北	26/07/1004-26/08/1004	0.75(北冰洋由央海分)-2225(楼古奇海)	1~12.7 (陆架、陆坡)	0.35.1.50	r111
极点-南森海盆	20/07/1994~20/08/1994	0.73 (北小件小人)4盖)~222.5 (起死司14)	1.3~5.8 (中央海盆)	0.33~1.50	[11]
楚克奇海(70°N)	07/1974	82.5	-	-	[12]
北冰洋(80°~87°N)	18/07/1958~04/09/1958	0.4~0.5	-	-	[1]
加拿大海盆东部海域	07/1967~07/1970	64°N: 37.5; 75°N: 25.0	-	-	[13]
		8.5~40.5 (平均为 28.0, 陆架)			
楚克奇海东南部海域	08/1993	3.8~79.2 (平均为 32.8, 陆坡)	0.4~3.6	0.07~2.01	[10]
		3.9~10.0 (平均为 6.2, 加拿大海盆)			
白令海、楚克奇海	08-09/1992	-	25~37.5	_	[15]
楚克奇陆架、加拿大海盆	14/07/1999~23/08/1999	3.8~197.1	2.0~5.7	0.52~0.63	本研究

	表 2	北冰洋的初级生产力和细菌生产	۳大
--	-----	----------------	----

1)杨伟锋,陈敏,刘广山,等. 楚克奇海陆架区沉积物中核素的分布及其对沉积环境的示踪. 自然科学进展(待发表)

708

www.scichina.com

(C8)积分细菌生产力高于加拿大海盆(C34). 所得结 果与 Wheeler 等人^[11]和 Cota 等人^[10]的结果相吻合(表 2), 但低于 Steward 等人^[15]报道的数值.

研究站位积分细菌生产力与积分初级生产力的 比值分别为 0.63 (C8 站)和 0.52 (C34 站),如此高的比 值表明在北冰洋寒冷的水体中细菌活动并未受到明 显抑制.相反, 微生物活动在碳循环中的重要作用不 可忽视.

2.3 ²³⁴Th/²³⁸U不平衡及其颗粒动力学意义

(i)²³⁴Th/²³⁸U)_{A.R.}¹⁾(A.R.代表放射性活度比)的 垂直分布.²³⁴Th/²³⁸U)_{A.R.}的垂直分布(图 2)显示,真光 层中²³⁴Th 相对于母体²³⁸U 处于亏损状态,而在真光 层以深水体二者则达到了久期平衡,呈现出大洋水 的典型分布特征.北冰洋²³⁴Th-²³⁸U 不平衡的存在表 明该海域具有一定强度的颗粒清除、迁出作用,与以 往有些研究认为北冰洋颗粒动力学作用极其微弱(即 水柱中²³⁴Th-²³⁸U 达到久期平衡)^[3]形成鲜明对比.

(ii)溶解态、颗粒态²³⁴Th 停留时间. 根据水 体中²³⁴Th 相对于²³⁸U 的亏损程度,利用稳态不可逆 清除模型即可计算出溶解态、颗粒态²³⁴Th 停留时间, 具体方法详见文献[16]. 研究站位真光层水体中溶解 态²³⁴Th(DTh)相对于颗粒物清除作用的平均停留时

www.scichina.com

间(τ_d)为 99 d, 颗粒态 ²³⁴Th(PTh)相对于颗粒物迁出 作用的平均停留时间(τ_p)为 30 d(表 3). 值得注意的是, 北冰洋颗粒态 ²³⁴Th 的停留时间也很短. 假设如 Bacon等人^[3]指出的那样, 北冰洋深海盆 ²³⁴Th 与 ²³⁸U 达到久期平衡, 则颗粒态 ²³⁴Th 的停留时间应大于 150 d. 然而实际情况并非如此, 加拿大深海盆地在 研究季节期间同样存在颗粒物的输出过程, 也即具 有明显的沉降通量(见下文).

表 3 真光层中溶解态、颗粒态²³⁴Th 停留时间及颗粒有机 碳输出通量

站位	层次 区域/m	τ _d /d	$\tau_{\rm p}/{\rm d}$	ΣPTh /dpm · m ⁻² · d ⁻¹	POC/PTh (µmol C/ dpm)	POC 输出 通量 /mmol C・ m ⁻² ・d ⁻¹
C34	0~100	99 ± 6	30 ± 4	823.5 ± 95.4	1.2 ± 0.1	1.0 ± 0.1

(iii)颗粒有机碳输出通量.由²³⁴Th/²³⁸U不平 衡程度可计算出各界面颗粒态²³⁴Th 的输出通量,结 合输出界面处实测的 POC 与颗粒态²³⁴Th (PTh)比值, 即可计算出该界面颗粒有机碳的输出通量,具体见 文献[16,17].计算表明,北冰洋真光层(100 m)POC 输出通量为(1.0±0.1) mmol C/m²·d (表 3),与 Moran 等人^[18,19]的结果相吻合.北冰洋 POC 输出通量虽然 低于已报道的部分中低纬度海域的相应值^[20],但高 于由沉积物捕集器于格陵兰海盆与 Fram 海峡获得的 通量(约 0.1 mmol C/m²·d)^[21].

2.4 楚克奇陆架有机碳埋藏速率

沉积物质量累积速率的计算见杨伟锋文¹⁾,结合 实测的表层沉积物有机质含量,可计算得楚克奇陆 架 C8站位有机物质的埋藏速率为 75.4 g C/m² · a. 假 定有机质与有机碳的重量比为 2^[22],则该站位有机碳 的埋藏速率为 37.7 g C/m² · a. 由于楚克奇海位于寒冷 的高纬区域,每年有 8~9个月海水均结冰形成冰柱,倘 若该期间有机碳的埋藏速率可忽略,由此可进一步估 算出夏季冰融期间(3~4 个月)沉积物有机碳的埋藏速 率为 25~35 mmol C/m² · d. 由 2.1 节可知,夏季楚克奇 海陆架区初级生产力平均值为 42.5 mmol C/m² · d,因 此,浮游植物光合作用合成的有机碳有高达 59%~ 82%被输送、埋藏于沉积物中,证实楚克奇海陆架是 一个高效的有机碳"汇"区.

¹⁾ 见 708 页脚注

3 结语

根据上述初级生产力、细菌生产力、²³⁴Th/²³⁸U 不平衡以及沉积物有机碳埋藏速率四方面的证据, 传统所认为的北冰洋是生物生产力的"沙漠"这一观 点显然需要予以修正.本研究结果表明,不仅在大陆 架区域,而且在深海盆地,夏季期间北冰洋的生物活 动仍相当活跃,颗粒物及其有机物质的清除、迁出以 及埋藏作用同样较以往认识的来得强烈.尽管其颗 粒动力学性质可能不如某些中、低纬度海域来得活跃, 但它并非生物生产力极其贫瘠的海洋"沙漠".相反, 它存在相对活跃的海洋碳循环过程.因此,北冰洋在 全球碳循环中具有相当重要的地位,值得更深入的 研究.

致谢 本研究沉积物样品的采集得到高爱国博士、程振波 副研究员、陈荣华研究员、李秀珠研究员以及"雪龙"号 全体船员和相关单位出海人员的大力协助,在此一并表示 衷心感谢.本工作受中国首次北极科学考察基金和国家自 然科学基金(批准号:40076024)资助.

参考文献

- English T S. Some biological oceanographic observations in the central north Polar Sea, Drift Station Alpha, 1957~1958. In: Arctic Inst of North America Scientific Report, No15. 1961. 1~80
- 2 Platt T, Subba Rao D V. Primary production of marine microphytes. In: Cooper J P, ed. Photosynthesis and Productivity in Different Environments. Cambridge: Cambridge Univ Press, 1975. 249~280
- 3 Bacon M P, Huh C A, Moore R M. Vertical profiles of some natural radionuclides over the Alpha Ridge, Arctic Ocean. Earth Planetary Science Letters, 1989, 95: 15~22
- Walsh J. Arctic carbon sinks: Present and future. Global Biogeochem Cycles, 1989, 3: 393-411
- 5 Smith W O Jr. Primary productivity and new production in the Northeast Water Polynya (Greenland) during summer 1992. J Geophys Res, 1995, 100(C3): 4357~4370
- 6 Sorokin Y I. Radioisotopic methods in hydrobiology. New York: Springer, 1999. 1~321
- 7 Chen J H, Edwards R L, Wasserburg G J. ²³⁸U, ²³⁴U and ²³²Th in seawater. Earth Planet Sci Lett, 1986, 80: 241~251
- 8 陈敏,黄奕普,邱雨生.天然海水中²³⁸U、²³⁴Th 的富集、纯化 与测定.同位素,1997,10(4):199~204

710

- 9 Cai Pinghe, Huang Yipu, Chen Min, et al. New production based on ²²⁸Ra-derived nutrient budgets and thorium-estimated POC export at an intercalibration station in the South China Sea. Deep-Sea Research, 2002, 49(1): 53~66
- 10 Cota G F, Pomeroy L R, Harrison W G, et al. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar Ecol Prog Ser, 1996, 135: 247~258
- 11 Wheeler P A, Gosselin M, Sherr E, et al. Active cycling of organic carbon in the central Arctic Ocean. Nature, 1996, 380: 697~699
- 12 Hameedi M J. Aspects of water column primary productivity in the Chukchi Sea during summer. Mar Biol, 1978, 48: 37~46
- 13 Grainger E H. A marine ecology study in Frobisher Bay, Arctic Canada. In: Billingsly L W, Cameron T W M, eds. Energy flow its biological dimensions. A summary of the IBP in Canada, 1964~1974. Canadian Committee for the IBP R Soc Can, 1975. 261~266
- 14 Wheeler P A, Watkins J M, Hansing R L. Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: Implication for the sources of dissolved organic carbon. Deep-Sea Res II, 1997, 44(8): 1571~1592
- 15 Steward G F, Smith D C, Azam F. Abundance and production of bacterium and viruses in the Bering Sea and Chukchi Seas. Mar Ecol Prog Ser, 1996, 131: 287~300
- 16 陈敏,黄奕普,陈飞舟,等.真光层的颗粒动力学Ⅱ.南沙海域 上层水体中²³⁴Th的清除.见:南沙群岛海域的同位素海洋化学. 北京:海洋出版社,1996.123~133
- 17 黄奕普,陈敏,陈飞舟,等.真光层的颗粒动力学Ⅲ.南沙海域 冬季真光层层化结构及输出生产力的研究.见:南沙群岛海域 的同位素海洋化学.北京:海洋出版社,1996.134~144
- 18 Moran S B, Ellis K M, Smith J N. ²³⁴Th/²³⁸U disequilibrium in the central Arctic Ocean: Implication for particulate organic carbon export. Deep-Sea Res II, 1997, 44(8): 1593~1606
- 19 Moran S B, Smith J N.²³⁴Th as a tracer of scavenging and particle export in the Beaufort Sea. Cont Shelf Res, 2000, 20: 153~167
- 20 Buesseler K O. The decoupling of production and particulate export in the surface ocean. Global Biogeochem Cycles, 1998, 12(2): 297~310
- 21 Hargrave B T, Bodungen B, Stoffyn-Egli P, et al. Seasonal variability in particle sedimentation under permanent ice cover in the Arctic Ocean. Cont Shelf Res, 1994, 14: 279~293
- 22 Buffle J. Complexation reactions in Aquatic Systems. An Analytical Approach. New York: Ellis Horwood, 1990. 1~629 (2001-10-23 收稿, 2002-01-23 收修改稿)

www.scichina.com