View metadata, citation and similar papers at core.ac.uk

brought to you by I CORE provided by Xiamen University Institutional Repository

2008年 11月

Acta Scientiae Circumstantiae

Nov, 2008

高爱国,陈皓文. 2008 锰细菌在加拿大海盆、楚科奇海沉积物中的分布 [].环境科学学报, 28(11): 2369-2374

Gao A G Chen HW 2008. Distribution of manganese bacteria in the sediment cores from the Canada Basin and the Chukchi Seq J. Acta Scientiae Circum stantiae 28 (11): 2369-2374

锰细菌在加拿大海盆、楚科奇海沉积物中的分布

高爱国123*,陈皓文3

1 厦门大学海洋与环境学院海洋学系,厦门 361005

2 近海海洋环境科学国家重点实验室,厦门 361005

3 国家海洋局第一海洋研究所,青岛 266061

收稿日期: 2007-11-30 修回日期: 2008-05-06 录用日期: 2008-08-18

摘要:用平板法分别在 4℃和 25℃时对北极加拿大海盆和楚科奇海 10个沉积物岩芯中的锰细菌进行培养,并测定 了检出率和含量,分析结果 表明, 4℃与 25℃温度下培养的锰细菌含量范围均为(一)~3 3×10⁸个 ^{g-1}, 锰细菌平均检出率分别为 77.78%、86.03%, 平均含量分别为 5.60×10⁶、7.91×10⁶个"^{g-1};该结果高于太平洋深海沉积物中的锰细菌含量,比北极阿拉斯加淡水湖湖水中的锰细菌含量高 1个数量级,比印 度洋海岭 Carlsberg R dBe区热水区海水样品中的锰细菌含量高 3个数量级,证实寒冷北极海同样广布锰细菌,对锰细菌在不同水深、经纬度以 及沉积物深度中的分布进行了讨论:结果表明、锰细菌检出率随沉积物深度的增加而增大,含量变化呈现浅层少、下层多之势;结度分布范围较 大. 并显出有扩大的趋势. 水深对沉积物中锰细菌也有一定影响. 尽管锰细菌对温度有较强的适应能力, 环境温度的升降对本研究区锰细菌具 有双重作用.

关键词: 锰细菌; 北极; 加拿大海盆; 楚科奇海; 沉积物岩芯

文章编号: 0253-2468(2008)11-2369-06 中图分类号, X171.5 文献标识码, A

Distribution of manganese bacteria in the sed iment cores from the Canada Basin and the Chukchi Sea

GAO A iguð ² ³ *. CHEN H aowerð

1 College of Oceanography and Environmental Science Xiamen University Xiamen 361005

- 2 State Key Laboratory of Marine Environmental Science X iam en University X iam en 361005
- 3 First Institute of Oceanography SOA Qingdao 266061

Received 30 November 2007; received in revised form 6 May 2008 accepted 18 August2008

Abstract The distribution of Marganese bacteria (MnB) in 10 sed in ent cores from the Canada Basin and the Chukchi Sea were analyzed by the methods of MPN and plate culture. The cores were sliced in 1 cm intervals from $0 \sim 10$ cm and at 2 cm intervals below 10 cm on board as subsamples. Retrievability of MnB cultivated in both 4°C and 25°C ranged from non detectable levels (ND) to 3.3×108 CFU g-1 of wet sample. The occurrence percentages and average numbers of MnB cultivated at 4 $^\circ$ and 25 $^\circ$ were 77 78%, 5. 60 \times 10 $^\circ$ CFU g⁻¹ wet samples and 86 03%, 7 91 \times 10 $^\circ$ CFU g-1 wet samples respectively. The contents of MnB in sediment cores were higher than those in sediment from the deep Pacific O cean or in water from A laska Lake sin ilar to the results reported in water from the Carlsberg Ridge in the Indian () cean. The result showed that a tendency of the MnB content increasing from low latitude to high latitude or from the shallower continental shelf to deeper basin in the south of 78 N From the surface to deeper sediment the content of MnB in sediment charged irregularly depending on the sedimentary environment. It seems that the variability of MnB content was larger at 25°C than at 4°C.

Keywords manganese bacteria The Arctic Sea The Canada Basin The Chukchi Sea sediment core

1 引言 (In troduction)

锰是元素地球化学循环的一个活跃组分,它通 过氧化还原状态的改变,可在溶液 固体界面发生迁 移,同时通过对环境物理化学条件的影响以及吸附-解吸作用而影响其它元素的地球化学循环,是元素

地球化学中研究较多的一个元素.在海洋中,锰的 地球化学行为包括锰离子的氧化、还原、迁移、富 集、沉淀,乃至形成结核或结壳等成矿作用;它不仅 与物理、化学过程有关,且与生物过程也有关,包括 一些微生物参与的过程(Chapnick 1982 Emerson et a.] 1982 Sunda et a.], 1990 阎葆瑞等, 1992

Moffett et al, 1996 Francis et al 2001: 2002)、这些 能够参与锰地球化学行为的细菌被统称为锰细菌, 其大多指能氧化 Mn^{2+} 为 Mn^{4+} 的细菌; 锰细菌并不 是分类学上的概念, 而是具有能氧化锰这一属性的 细菌,隶属于不同的科、属(翁酥颖等,1985),人们 对大洋底部富含 Mn Fe Co等的多金属结核的不倦 探索,以及利用自大洋分离出来的锰细菌去开发富 集锰矿资源和治理环境锰污染的愿望,进一步激发 着对这类细菌的研究(Mandernack et al. 1995 胡 文宣等, 1999, Villalobos et al, 2003, Loy et al, 2005 Toner et al, 2005, 田美娟等, 2006). 目前, 人们已认识到锰细菌是环境中介导 Mn(Ⅱ)氧化作 用的最重要因子 (Johnston et al, 1988 Francis et al, 2001). 早在 1913年 Beijerinck就报道了对 锰细菌的研究.自 1966年 Ehrlich从海洋中分离出 锰细菌以来,相关研究不断出现,包括对太平洋、大 西洋、波罗的海、北极湖泊等环境中的锰细菌丰度、 作用、与生态关系、环境等方面(Rosson et al, 1982 史君贤等, 1996 1998), 对东地中海的研究 表明, 气候变化对深海细菌及底栖群落已产生影响 (Danovaro et al. 2001),深海生态系统对气候变化 响应较敏感,但北冰洋锰细菌的研究尚未见诸报 道.北冰洋虽处地球严寒区域,但据现有微生物资 料可知,那里的微生物活动仍较为活跃,甚至不亚 于中低纬度海区.在全球变暖过程中,作为对全球 变化敏感的北极地区,它正发生着明显的环境变 化.因而对北极海洋沉积物中的锰细菌含量及分布 状况进行估测、探讨锰细菌在元素地球化学循环及 全球变化中的作用就具有一定意义.本研究中就北 极加拿大海盆与楚科奇海沉积物的锰细菌作初步

探索,旨在促进相关研究的深入开展.

2 材料与方法 (Materials and methods)

21 样品的采集与保存

2003年7月~9月中国第2次北极科考期间在 "雪龙号"船上完成样品采集,共采集了10个岩芯 的沉积物样品.研究区概况、采样站位图、采样方法 等请参见文献(高爱国等,2008).

2.2 实验室分析

2004年 1月对所采集沉积物中的微生物样品, 先按培养要求逐步稀释至 ^{ZoBell}2216 E液体培养基 中,以确保锰细菌的生长,再选择合适的稀释度以 0.1^{mI}涂布到锰细菌培养基平板上,该培养基成分 见史君贤等 (1998)所述.接种好的平板分别于 4[℃] 和 25[℃]下培养 3周以上,期间定期观察菌落生成及 其色泽情况,最终以褐色菌落为锰细菌菌落,计算 其 CFU并按稀释度换算为单位沉积物 (湿重)的 CFU 即: 个 CFU^{。g1}(湿重)(简写为个^{。g1},下 同),并以此与所测沉积物的层位、水深、经纬度等 地理位置资料进行分析.

3 结果 (Results)

3.1 各岩芯中锰细菌检出率和含量状况

对 180个样品的分析结果表明, 4[°]C与 25[°]C温 度时培养的锰细菌含量范围均为(-)~3.3×10⁸ 个^{°g¹}.平均含量分别为 5.61×10⁶个^{°g¹}和 7.91× 10⁶个^{°g¹}, 样本总体的标准偏差分别为 2.93×10⁷、 3.24×10⁷, 检出率为 77.78%和 86.03%.

表 1为 4℃和 25℃下培养时各岩芯锰细菌检出

The first of the second
Taple1 Occurrence bencentages and contents of MuB from the sedment cores

	岩林海		4°C	2			2:	5°C	
站位		样品数	最大值 / (个 ^{。g-1})	平均值 / (个 ° ^{g-1})	检出率	样品数	最大值 / (个 ^{。g-1})	平均值 / (个 ^{。g_1})	检出率
R6	12	10	1. 00×10 ⁶	1. 06×10^{5}	50. 00%	10	2.00×10 ⁶	$2 96 \times 10^{5}$	60 00 %
C19	22	16	3. 00×10^7	2. 12× 10 ⁶	62. 50%	16	1. 60×10^{8}	1.09×10^{7}	75 00%
S11	28	19	1. 00×10^{6}	7. 47 $ imes$ 10 ⁴	73. 68%	18	1. 00×10^{6}	$8 04 \times 10^4$	83 33%
S16	28	19	1. 00×10^{8}	5.78×10 ⁶	94. 74%	19	1. 30×10^{8}	8 11×10 ⁶	100 0%
S26	26	18	1. 50×10^{7}	1. 57 $ imes$ 10 ⁶	88. 89%	18	4. 00×10^{7}	$4 89 \times 10^{6}$	100 0%
P11	38	21	3. 30×10^8	2. 70×10^7	90. 48%	21	3. 30×10^{8}	$2 70 \times 10^{7}$	90 48%
M ₁	36	20	1. 15×10 ⁷	1. 40× 10 ⁶	90. 00%	20	1. 15× 10 ⁷	$2 \ 32 \times 10^{6}$	95 00 %
P24	28	19	1. 61×10 ⁷	1. 48×10 ⁶	94. 74%	19	1. 61×10^{7}	1 52×10 ⁶	89 47%
B77	22	14	1. 71×10^{5}	3. 01×10^{4}	35. 71%	14	1. 60×10^7	1 17× 10 ⁶	42 86%
B80	38	24	9. 00×10 ⁷	8.82×10 ⁶	70. 83%	24	9. 20× 10 ⁷	1.41×10^{7}	95 83%
小计		180		4.83×10 ⁶	75. 16 ⁰ / ₀	179		7. 03×10 ⁶	83 20%

注: 25℃条件下缺 \$11站 3~4㎜层样,下同; 4℃ 时最小值均为 (一) (未检出, 下同) 25℃时 \$16. \$26最小值分别为 1.58×104个 竖和

2.60×10²个^{g-1},其余均为(-).

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

率和含量状况. 4[°]C培养条件下各岩芯锰细菌的检 出率范围为 35.71% ~94.74%,各岩芯平均检出率 为 75.16%;平均含量范围为 3.01×10⁴ ~2.70× 10^7 个^{。g⁻¹},最低值出现在 ^{By}7站(9层未检出)次 低为 ^B80站(7层)最高值见于 P11站.25[°]C培养条 件下各岩芯锰细菌的检出率范围为 42.86% ~ 100%,各岩芯平均检出率为 83.20%;平均含量范 围为 8.04×10⁴ ~2.70×10⁷个^{。g⁻¹},最低值出现在 S11站,最高值出现于 P11站,与 4[°]C培养时同. 3.2 各层位中锰细菌检出结果

岩芯各层位中锰细菌检出率和含量状况见表 2 各层位中锰细菌的出现机率和含量呈不均匀分 布,对温度的响应也不一致.结果表明,温度的适当 提高可促使锰细菌含量提升,但在部分测点上温度 提高可减少锰细菌的检出率;这也许意味着尽管从 总体看 2种温度培养时检出率基本一致,但一些锰 细菌,尤其是嗜冷菌会因不适应温度的提高而死去.

表 2	加拿大海盆与楚科奇海沉积物层位间锰细菌检出率与含量	

Table ₂	Occurrence percentages a	nd contents	ofMnB	from	different	depths in	the	sediment	cores
--------------------	--------------------------	-------------	-------	------	-----------	-----------	-----	----------	-------

尼 位 /			4°C				25°C	2	
en en	样品数	最小值 / (个 ^{g-1})	最大值 / (个 ^{g-1})	平均值 / (个 ^{g-1})	检出率	最小值 / (个 ^{g-1})	最大值 / (个 ^{·g-1})	平均值 / (个 ^{g-1})	检出率
0~1	8	3 00×102	2. 00×10^{6}	2.84×10 ⁵	100. 0%	8 80×10 ³	1. 40× 10 ⁷	1 80× 10 ⁶	100. 0%
1~2	10	(-)	1. 00×10^{6}	1. 45× 10 ⁵	80. 00%	(-)	1. 08×10 ⁶	273×10^{5}	90. 00%
2~3	10	(-)	3. 00×10^{6}	4. 46× 10 ⁵	60. 00%	(-)	3. 00× 10 ⁷	3 50× 10 ⁶	80. 00%
3~4	10 *	(-)	1. 00×10^{6}	1. 33× 10 ⁵	60. 00%	(-)	8. 00×10 ⁶	1 14× 10 ⁶	66. 67%
4~5	10	(-)	1. 50×10^{7}	1. 67× 10 ⁶	60. 00%	(-)	3. 40× 10 ⁷	4 58×10 ⁶	70. 00%
5~6	10	(-)	3. 00×10^7	4. 07×10 ⁶	70. 00%	(-)	1. 60× 10 ⁸	$2 01 \times 10^{7}$	80. 00%
6~7	10	(-)	9. 40×10 ⁶	1. 04×10^{6}	70. 00%	(-)	9. 40× 10 ⁶	1 23×10 ⁶	80. 00 ⁰ / ₀
7~8	10	(-)	3. 30×10 ⁸	3. 35×10^{7}	90. 00%	(-)	3. 30× 10 ⁸	$3 68 \times 10^7$	90. 00%
8~9	10	(-)	3. 20×10^{6}	4. 20× 10 ⁵	80. 00%	(-)	3. 20× 10 ⁶	$4 33 \times 10^{5}$	90. 00%
9~10	10	(-)	1. 00×10^{7}	1. 03×10 ⁶	80. 00%	(-)	1. 00× 10 ⁷	1 06×10 ⁶	90. 00%
10~12	10	(-)	1. 61×10^{7}	2. 13× 10 ⁶	70. 00%	(-)	3. 00× 10 ⁷	5 13×10 ⁶	90. 00%
12~14	9	(-)	7. 80 $ imes$ 10 ⁷	9.41×10 ⁶	77. 78 ⁰ / ₀	(-)	7. 80× 10 ⁷	9 43×10 ⁶	77. 78%
14~16	9	(-)	1. 15×10^{7}	1. 44×10^{6}	77. 78%	(-)	1. 60× 10 ⁷	3 30× 10 ⁶	88. 89%
16~18	9	(-)	5. 70×10 ⁶	8. 18×10 ⁵	66. 67%	(-)	5. 70× 10 ⁶	9 65×10 ⁵	77. 78%
18~20	9	1 00×10 ³	2. 00×10^{6}	5. 04× 10 ⁵	100. 0%	$4 \ 00 \times 10^{3}$	2. 00× 10 ⁶	5 43× 10 ⁶	100. 0^{0}_{0}
20~22	7	(-)	1. 00×10^{8}	1. 49×10 ⁷	85. 71%	(-)	1. 30× 10 ⁸	$2 03 \times 10^7$	85. 71%
22~24	7	(-)	9. 00×10 ⁷	1. 30× 10 ⁷	85. 71%	4 60×10 ³	9. 20× 10 ⁷	1.47×10^{7}	100. 0^{0}_{0}
24~26	6	(-)	3. 70×10 ⁷	6. 29×10 ⁶	66. 67%	(-)	3. 20× 10 ⁷	$5 62 \times 10^{6}$	66. 67%
26~28	5	(-)	1. 32×10 ⁵	7. 30× 10 ⁴	80. 00%	$2 90 \times 10^{4}$	9. 10× 10 ⁶	1 90×10 ⁶	100. 0%
28~30	3	1.72×10^{3}	1. 67×10^{6}	8. 91×10 ⁵	100. 0%	1.72×10^{3}	7. 00× 10 ⁶	2 89×10 ⁶	100. 0^{0}_{0}
30~32	2	3 00×10 ³	1. 40×10^{8}	7. 00× 10 ⁷	100. 0%	8 30×104	1. 40× 10 ⁸	7. 00×10 ⁷	100. 0%
32~34	2	1 20×10 ⁶	4. 00×10 ⁶	2. 60× 10 ⁶	100. 0%	1 20×10 ⁶	2. 40× 10 ⁷	1.26×10^{7}	100. 0%
34~36	2	3 10×10 ³	6.00×10 ⁷	3. 00× 10 ⁷	100. 0%	6 60×10 ³	6. 00× 10 ⁷	$3 \ 00 \times 10^7$	100. 0%
36~38	2	$3\ 20{ imes}10^4$	1. 04×10^{7}	5. 22× 10 ⁶	100. 0%	5 80×10 ⁴	1. 04×10^7	5 23×10 ⁶	100. 0%
层平均				8. 33×10 ⁶	81. 68%			1.08×10^{7}	88. 48%

* 25^{°C}时样品数为 9个.

3.3 沉积物不同层位间锰细菌的检出率与含量

从表 2中可看出 2种培养温度中得出的锰细菌 含量的垂直分布趋势. 4℃培养时未检出样品 40个, 各层的检出率范围为 60.00% ~100%,各层平均为 81.68%;未检出样均不出现于表层或底层,表、底层 检出率均为 100%,有 7个层位的检出率为 100%, 占所有层位数的 29. 2%. 锰细菌含量最高值 (3. 30 ×10⁸个^{。g1})、次高值 (1. 40×10⁸个^{。g1})分别出现 于 P11站 7~8 ^{cm}层和 30~33 ^{cm}层. 各层锰细菌平 均含量范围为 7. 30×10⁴~7. 00×10⁷个^{。g1}. 若将 所有层位以 8层为一段分为上、中、下 3段, 可得出 0~8 ^{cm}, 8~22 ^{cm}, 22~38 ^{cm} 3段的锰细菌平均检出

2371

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

率分别为 73.08%、79.45%和 86.21%,平均含量分 别为 5.28×10⁶、3.42×10⁶和 1.20×10⁷个^{。g1}.这 表明,尽管一些次表层的检出率很低,但总的趋势 是锰细菌的检出率随沉积物深度增加呈增高之势, 而锰细菌含量则显上段高、中段偏低,下段最高 之势.

25[°]C培养时未检出样品 25个, 各层位检出率范 围为 66 67% ~100%, 各层平均为 88. 48%, 在 24 个层位中有 15个层位未检出. 锰细菌检出率最低的 层位是 3~4 [°], 全检出的层位出现于 0~1 [°], 18~ 20 [°], 22~24 [°], 26~38 [°], 14 [°], 18~ 20 [°], 22~24 [°], 26~38 [°], 18 [°], 18 [°], 20 [°], 22~24 [°], 26~38 [°], 18 [°], 18 [°], 20 [°], 21 [°], 18 [°], 20 [°], 22 [°], 24 [°], 26 [°], 38 [°], 18 [°], 20 [°], 21 [°], 18 [°], 20 [°], 22 [°], 24 [°], 26 [°], 38 [°], 18 [°], 20 [°], 21 [°], 18 [°], 20 [°], 21 [°], 18 [°], 20 [°], 22 [°], 24 [°], 26 [°], 26 [°], 21 [°], 18 [°], 20 [°], 21 [°], 18 [°], 21 [°], 21 [°], 21 [°], 18 [°], 21 [°]

综上所述, 锰细菌检出率随沉积物深度的增加 而提高, 而锰细菌含量在层位间的分布大体上呈现 出下层高、上层次高、中层偏低之势. 这可能受早期 成岩过程中沉积物氧化还原体系的垂直分带制约, 取决于体系中有机质及各种电子供体与受体的含 量、氧化还原电位的变化等因素, 其机理有待进一 步的研究. 培养温度的差异并未对其含量的层位分 布趋势有明显作用, 只是温度的提高, 增加了锰细 菌含量.

4 讨论 (Discussion)

4.1 与其它海区比较

史君贤等 (1998) 在太平洋铁锰结核区海洋沉积物中进行的锰细菌调查结果表明,在远离大陆的

太平洋深海底部沉积物中锰细菌含量范围为未检 出~3900个^{。g1},比该处沉积物上覆水中的未检出 ~ $160^{\circ} m L^{-1}$ 高 25倍,但比本研究中所获得的结 果明显要低. Johnston(1988)对北极阿拉斯加 Toolik 湖,及 Chapnick等 (1982)对 Oneida湖水中的 锰细 菌调查结果表明,2个湖湖水中锰氧化菌在 10⁴~ 10⁵ CFU mL¹.而 Femandes等 (2006)对印度洋海岭 Carlsberg R idge区热水区附近采得的海水样品分 析,结果表明, 锰细菌含量范围为未检出~3.21× 10³ CFU mL⁻¹, 略低于 J^{ohnston}(1998)等的观察值; 造成这种差异的原因可能主要与物质供给的影响 和较大的静水压力有关,由史君贤等(1998)的研究 结果以及微生物生态研究经验可知:在沉积物中锰 细菌的含量一般要比水体中的高.相比之下,考虑 水深及物质供应条件等差异,本研究所获得的锰细 菌范围为(-) ~3 30×10⁷个 g^1 应是较为客观的. 以上结果也表明,研究区沉积物中锰细菌含量不低 干中、低纬度海区.

4.2 沉积物所在纬度、经度对锰细菌检出率及含量的影响

将研究区按纬度划为 4个纬度区, 即 66°~70° N 70°~74°N 74°~78°N和> 78°N4个区, 分别比 较锰细菌 2指标状况 (表 3).在 4°C和 25°C条件下 培养时, 锰细菌的检出率和含量基本上呈随纬度增 高而增高、然后变化趋缓. 纬度高于 78°N后又降 低, 这可能与水深增加有关. 显然纬度增高、温度降 低这 2个因素由于受巨厚水体的缓冲, 没有对锰细 菌分布产生多少负面影响. 在这里主要表现为生存 环境的稳定性与物质供应的可利用性及巨大的静 水压力的影响. 这表明, 锰细菌在纬度上的分布区 间可能相当广泛, 而温度的提高可能有助于它们中 部分成员分布范围的缓慢扩大化, 这暗示气温的变 暖对当地原有遗传保护性强的物种的影响是一个 渐进而深刻的过程.

	表 3	北极加拿大氵	每盆与楚科奇	海沉	积物锰细	菌检出率利	和含量在纬度区	间的比较	ξ*
Table 3	Com	parjson of MnB	content a long	the	atitud ina	gradjentjn	the Chukchi Se	a and the	Canad

结度				4°C			25℃	
(N)	站号	样品数	最大值 / (个 ^{。g-1})	平均值 / (个 ^{。g-1})	检出率	 最大值 / (个 ^{。g−1})	平均值 / (个 ^{。g-1})	检出率
$66^{\circ} \sim 70^{\circ}$	R06	10	1. 00× 10 ⁶	1. 06× 10 ⁵	50. 00%	2. 00×10 ⁶	2. 96× 10 ⁵	60 00%
$70^{\circ} \sim 74^{\circ}$	C19 S11, S16, S26	72 **	1. 00×10^{8}	$2 41 \times 10^{6}$	80. 56 ¹ / ₀	1. 60×10^8	5.89×10 ⁶	90 14%
$74^{\circ} \sim 78^{\circ}$	M1, P11, P24	60	3. 30× 10 ⁸	$1.04 imes10^7$	91. 67 ¹ / ₀	3. 30×10^{8}	1. 07×10^{7}	91 67%
$>$ 78 $^{\circ}$	B77, B80	38	9. 00×10^{7}	$5 58 imes 10^6$	57. 89‰	9. 20×10 ⁷	9. 31×10 ⁶	76 32%

*最小值均为(−); * *25℃时样品数为 71个.

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

将研究区按经度划为 5个区间, 各经度区间锰 细菌的分布见表 4.在 2种培养温度时锰细菌的检 出率和含量基本上随经度呈不规则变化,东西差异 不明显.

表 4 不同经度区间柱状沉积物中锰细菌含量指标*

Table 4 Comparison of MnB content along the long judinal gradient in the Chukchi Sea and the Canada Basin

经度		_		4°C			25℃	
(W)	站号	样品数	最大值 / (个 ^{。g-1})	平均值 / (个 ^{。g-1})	检出率	最大值 / (个 ^{。g-1})	平均值 / (个 ^{。g-1})	检出率
$145^{\circ} \sim 150^{\circ}$	B77, B80	38	9. 00× 10 ⁷	$5\ 58 \times 10^{6}$	57. 89%	9. 20×10 ⁷	9. 31× 10 ⁶	76 32%
$150^{\circ} \sim 155^{\circ}$	S26	18	1. 50× 10 ⁷	$1.57 imes 10^6$	88. 89%	4. 00×10 ⁷	4.89×10 ⁶	100 00%
$155^{\circ} \sim 160^{\circ}$	P24, S11, S16	57 **	1. 00×10^{8}	$2 \hspace{.1in} 45 \hspace{1in} \times \hspace{1in} 10^6$	87. 72 ⁰ / ₀	1. 30×10 ⁸	3. 29× 10 ⁶	89 29 ⁰ / ₀
$160^{\circ} \sim 165^{\circ}$	C19	16	3. 00×10^{7}	$2 \ 12 \times 10^{6}$	62. 50%	1. 60×10 ⁸	1. 09×10^{7}	75 00%
$165^{\circ} \sim 170^{\circ}$	M1, P11, R06	51	3. 30× 10 ⁸	1. 17× 10 ⁷	82. 35 ⁰ / ₀	3. 30×10 ⁸	1. 21× 10 ⁷	86 27%

注: *除 25℃时 150°~155°W最小值为 260个。^{g-1}外,其余均为(一), * * 25℃时样品数为 56个.

4.3 水深对沉积物锰细菌检出率及含量的影响

按取样站位的不同水深范围比较锰细菌分布 (表 5),2种培养温度下检出率均显示随着水深度 的增加而呈低→高→更高→趋低的变化,而含量则 随水深加大呈跳跃式变化.较深水环境下,沉积物 中锰细菌能具有较高的检出率和数量.这可能是由 于较深的水下环境使沉积物中锰细菌有了一定的 适应性,但离陆距离的增加又会在物质供应上对其 生存产生制约,相关研究尚待深入.

表 5 北极加拿大海盆与楚科奇海沉积物锰细菌在不同水深区间的比较*

Table 5 Comparison of MnB content among different water depth in the Chukchi Sea and the Canada Basin

水深				4°C		25°C			
/m	站号	样品数	最大值 /	平均值 /	检出家	最大值 /	平均值 /	检出家	
			$(\uparrow \circ g^{-1})$	(↑ ° ^{g−1})	1204	(个 ° ^{g-1})	$(\uparrow \circ g^{-1})$	11211	
41 ~ 55	C19 R06 S11	45 **	3.00×10^{7}	$8 09 \times 10^5$	64. 44%	1. 60×10 ⁸	4. 07 $ imes$ 10 ⁶	75 00%	
175 ~ 561	P11	21	3. 30×10^8	$2 70 \times 10^7$	90. 48%	3. 30×10 ⁸	2. 70× 10 ⁷	90 48%	
$1456 \sim 2200$	M1 P24	39	1. 61×10 ⁷	$1~44 imes 10^6$	92. 31 ⁰ / ₀	1. 61×10^{7}	1. 93×10 ⁶	92 31%	
3000 ~ 3850	S16 S26 B77, B80	75	1. 00× 10 ⁸	$4~67 \times 10^{6}$	74. 67%	1. 30×10 ⁸	7. 94× 10 ⁶	86 67%	

注: *最小值均为(一), * *25℃时样品数为 44个.

4.4 环境温度对锰细菌检出率及含量的影响

初步的温度试验结果显示, 锰细菌对温度有一 定的适应能力, 不管其出现机率或者是含量均如 此.本研究及其它研究结果显示, 在锰细菌的生长 温度范围内, 温度的提高大多可提升锰细菌的检出 率和含量, 这意味着环境温度是影响锰细菌在北冰 洋沉积物中分布的重要因子. 温度的持续提高可能 激发原本受压抑的部分中温锰细菌的复苏且增强 其活力, 也可能提高部分嗜冷锰细菌对增温的逐步 适应, 从而提高或加速锰的氧化迁移速率; 但是, 同 时也会加速对仅适于低温的锰细菌的死亡.

本研究启示我们,温度对北冰洋锰细菌的影响 是正反两方面的,暗示气候的全球变暖无疑已对土 著的锰细菌产生了一定的影响,尽管它们有较强的 适应能力,但温度变化产生的生态影响是长期的、 严重的,而且这种后果对环境及人类社会的影响也 是难以预料的,十分令人担忧.

5 结论 (Conclusion)

1 在北冰洋海底沉积物中不仅有锰细菌的存 在而且还具有较高的丰度,表明它们能生存于寒冷 深水之下的沉积物中,进一步证实了锰细菌较宽泛 的适应性.

2)在研究区所测定的沉积物样品中,在2种培养温度下 锰细菌检出率为 81.91%,含量范围为 (一)~3.30×10⁸个^{。g1},平均含量在 6.76×10⁶ 个^{。g1}左右.

3 在锰细菌的生长温度范围内,温度的提高大 多可提升锰细菌的检出率和含量,这意味着环境温 度是影响锰细菌在北冰洋沉积物中分布的重要 因子.

2373

?1994-2016 China Academic Journal Electronic Publishing House: All Fights reserved. http://www.cnkr.net

28卷

提高的趋势,这可能与早期成岩过程中沉积物氧化 还原体系的垂直分带有关.

5)在一定水深范围内,随着水深的增大,锰细 菌的检出率和含量均有相应的增加,表现出一定的 适应力;但若上覆水体太深,又会影响到营养物质 的供应及细菌耐高压特性.

6) 锰细菌在纬度上的变化表明,其分布范围较 大,而且有扩大的趋势.

责任作者简介: 高爱国(1959-), 男, 博士, 研究员, 主要从 事生物地球化学等研究.

R eferences

- Chapnick S.D. Moore W.S. Nealson K.H. 1982 Microbially mediated manganese oxidation in a freshwater lake [J]. Limnology and O ceanography 27 1004-1014
- Danovaio R Dell'Anno A Fabiano M et al 2001 Deep sea ecosystem response to climate changes the eastern Mediterranean case study [J. Trends in Ecology & Evolution 16(9); 505-510
- Ehrlich H I, 1966 Reactions with manganese by bacteria from marine ferrom anganese nodules [J]. Developments in Industrial Microbiology 7 279-286
- Emerson Ş Kalhom Ş Jacobs L et al. 1982 Environmental oxidation rate of manganese (II): bacterial catalysis[J]. Geochinica et Cosnochinica Acta 46(6): 1073–1079
- Femandes SQ Krishnan KP Khedekar VD et al 2006 Manganese oxidation by bacterial isolates from the Indian Ridge System [R]. Arnual Report (2005-2006), Goa National Institute of Oceanography India 38-39
- Francis CA, Tebo BM, 2002 Enzymatic Manganese(II) Oxidation by Metabolically Domant Spores of Diverse Bacillus Species [J]. Applied and Environmental Microbiology 68(2): 874-880
- Franc is CA Co EM Tebo BM 2001. Enzyma tic manganese (II) oxidation by a marine α -proteo bacterium [J]. Applied and Environmenta IM icrobio (key 67 (9): 4024–4029
- Gao A G Chen H W, Lin X Z 2008. Study on Sulphate Reducing Bacteria in core sediment from the Canada Basin and Chukchi Sea [J]. Acta Scientiae Circumstantiae, 28(5): 1014–1020 (in Chinese)
- HuWX ZhouHY, GuLX 1999 New evidence of ferrom anganese nodules formating by microbes in deep sea [J. Science in China (Series D) 29(4): 362-367 (in Chinese)
- Johnston C G, Kipphut G W, 1988, Microbial V mediated Mn (II) oxidation in an olgotrophic Arctic Lake [J]. Applied and Environmental Microbio (1997) 54 (6): 1440-1445
- Loy A Beisker W, Meier H 2005 Diversity of Bacteria Growing in Natural Mineral Water after Bottling [J]. Applied and Environmental Microbio (88, 71(7): 3624-3632
- Mandemack K W, Post J Tebo B M 1995. Manganese mineral formation by bacterial spores of the marine Bacillus strain SG-1:

Evidence for the direct exidation of Mn(II) to Mn(IV) [J]. Geochim ica et Cosmochim ica A cta 59(21), 4393–4408

- Moffett JW, Ho J 1996. Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway J. Geochimica et Cosmochimica Acta 60(18): 3415-3424
- Rosson R A Nealson K H 1982 Manganese binding and oxidation by spores of marine bacillus [J]. Journal of Bacterio kgy 151 1027-1034
- Shi J X Chen Z Y Yang X F et al 1998 A study on bacterial abundance and its mineralization in iron manganese nodule area of The Eastern Pacific Ocean J. Oceanologia et Limnologia Sinica 29(5): 458-466 (in Chinese)
- Shi J X Chen Z Y 1996 Transference of manganese bacteria to the metallic ions of iron manganese [J. Acta Oceano logica Sinica 18 (4): 85-89 (in Chinese)
- SundaW G Huntsman S A 1990 D iel cycles in m icrobial manganese oxidation and manganese redox speciation in coastal waters of the Bahama Islands J. Limnology and Oceanography 35 (2): 325-338
- Tian M J Shao Z Z 2006 Isolation and Characterization of Manganese resistant bacteria from deep sea sedimenta J. Journal of X jamen University (Natural Science), 45(St): 272-276 (in Chinese)
- Toner B Fakia S Villalobos M et al. 2005 Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofiting J, Applied and Environmental Microbiology 71 (3): 1300-1310.
- Villa lobos M Toner B Bargar J et al 2003 Characterization of the manganese oxide produced by pseudomonas putida strain MnB1 []. Geoch in ica et Cosmoch in ica A cta 67(14), 2649–2662
- Weng SY, QiBJ, Shi JL, et al. 1985. Environmental Microbiology [M]. Beijing Science Press 69—81 (in Chinese)
- Yan B R, Zhang S, Hu D H, 1992. Genetic relation between microbial activity and the formation of polymetallic concretions in the central pacific ocean [J. A cta Geologia Sinice 66(2): 123-134 (in Chinese)

中文参考文献

- 高爱国,陈皓文,林学政. 2008 加拿大海盆与楚科奇海柱状沉积 物中硫酸盐还原菌分布状况[].环境科学学报,28(5):1014-1020
- 胡文宣,周怀阳,顾连兴. 1999 深海铁锰结核微生物成因新证据 [¹],中国科学(^D辑),29(4):362-367
- 史君贤,陈忠元,1996 锰细菌对锰铁金属离子的转移作用 [],海洋 学报,18(4):85-89
- 史君贤,陈忠元,杨秀芳. 1998 东太平洋铁锰结核区微生物的丰度 及其成矿作用研究[.].海洋与湖沼,29(5),458-466
- 田美娟,邵宗泽. 2006.深海抗锰细菌的分离鉴定[J]. 厦门大学学报,45(S1):272-276
- 翁酥颖, 戚蓓静, 史家樑, 等. 1985. 环境微生物学 [^M], 北京: 科学出版社, 69-81
- 阎葆瑞,张胜胡大春. 1992 太平洋中部微生物与多金属结合的生成关系[].地质学报,66(2):123-134