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Abstract

The magnetic properties of adsorbed metalloporphyrin molecules can be altered or tuned by the

substrate, additional axial ligands, or changes to the molecules’ macrocycle. These modifications

influence the electronic configuration of the fourfold-coordinated central metal ion that is responsible

for the metalloporphyrins’ magnetic properties. We report a substantial increase in the effective

spin moment obtained from sum-rule analysis of X-ray magnetic circular dichroism (XMCD) for an

iron metalloporphyrin molecule on Au(111) through its conversion from iron(II)-octaethylporphyrin

(FeOEP) to iron(II)-tetrabenzoporphyrin (FeTBP) in a surface-assisted ring-closure ligand reaction.

Density functional theory calculations with additional strong Coulomb correlation (DFT+U) show

that the on-surface reaction alters the conformation of the molecule, increasing its planarity and

the ion-surface distance. A spin-Hamiltonian fit of the magnetization as a function of field reveals a

substantial increase in the intra-atomic magnetic dipole term (Tz) and a decrease in the magnitude

of the easy-plane anisotropy upon ring closure. This consequence of the ring closure demonstrates

how new magnetic properties can be obtained from on-surface reactions, resulting here in significant

modifications to the magnetic anisotropy of the Fe ion, and sheds light onto the molecule-substrate

interaction in these systems.
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I. INTRODUCTION

Great attention has been devoted in recent years to the study of molecular magnets,

as their small size and chemical flexibility make them promising candidates for individual

building blocks in spintronics. In this quickly developing field, the spin of the electrons

is used in addition to their charge, for instance, in logic and storage devices. Molecules

with high spin,1–3 high magnetic anisotropy,4,5 and slow magnetic relaxation6,7 have been

identified and their deposition mechanisms,8,9 substrate-molecule10–13 and intramolecular

interactions14–16 are subject of active research.

Iron porphyrin molecules, presented here, are among these studied molecules. They are

metal-organic complexes consisting of a central Fe ion, responsible for the molecules’ magnetic

properties.17 They were shown to generally deposit on crystal substrates in a mostly flat

geometry and arrange themselves in well-ordered structures.18,19 Their molecular structure

favors at the same time the formation of stable heterostructures on surfaces and a strong

bonding to the central ion, which is coordinated to the molecular macrocycle through four

bonds with the nitrogen atoms, leaving two coordination sites available, above and below

the metal ion. The site below the metal ion is usually occupied by the surface, contributing

to the high stability of these compounds on surfaces, while the one above remains free

to be occupied by additional ligands. The different ligands that can be attached to this

free coordination site allow for a great number of possibilities in tuning the properties of

the complex.20–24 The addition of ligands is not the only cause of such variations, though,

as modification of the macrocyclic ligands of the porphyrin also promotes changes in the

properties of the central metal ion.25,26

An important property of magnetic systems is their magnetic anisotropy, given its sig-

nificance to the interaction with external magnetic fields and the magnetic relaxation of

these systems. As such, their manipulation is extremely interesting for the development of

spintronic devices. The manipulation of magnetic anisotropy in molecules, two-dimensional

supramolecular arrays at surfaces, and single atoms has been successfully achieved through

different methods, such as on-surface reactions,27 substrate coordination site selection,28,29

and direct manipulation with a scanning tunneling microscope (STM) tip.30,31 Oxygen ad-

sorption has been shown to even promote the switching of the magnetic anisotropy axis in

molecular arrays.32 The magnetic anisotropy can be obtained by modeling magnetization
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curves obtained for different directions of the magnetic field with a spin Hamiltonian and

comparing it to the experimentally obtained curves.

On-surface reactions are a promising way of modifying molecules and obtaining new

molecular arrangements, frequently difficult or impossible to obtain otherwise. These reactions

are usually irreversible,33,34 be it an intermolecular reaction that forms new covalently bound

macrostructures or intramolecular reactions resulting in new covalent bonds within the

molecules. This can be an advantage, but only when the reaction processes are understood

to the point one can control them to the required level of precision. These reactions often

change the conformation of a molecule or molecular array,35–38 leading to different electronic

and magnetic properties, and depend on several different aspects of the system environment.

It has been shown that different thermal conditions lead to alternative results on a surface,39

with intermolecular or intramolecular reactions being favored depending on the temperature

of the substrate. The molecule-substrate interaction is another important factor. Experiments

show that substrate atoms can act as components or catalysts of molecular reactions.40–42

In the case of porphyrins, while the reactions and molecular arrangements of the molecules

often do not depend on the central ion, the change caused by these factors and the substrate

interaction affect strongly its magnetic and electronic properties.43–46

The use of X-ray magnetic circular dichroism (XMCD) as a probe for the magnetic

properties of molecular systems is well established, but some care is still necessary when

drawing conclusions from these experiments. Even though the element specificity of X-ray

absorption (XA) is particularly efficient in isolating the properties of single elements of

the molecule from other components, the individual contribution of the different molecular

orbitals associated with that element and high degree of angle-dependent variation of the

recorded signal demand careful analysis of the data. An important consequence of this affects

the determination of the spin moment (mS) of the system through the application of the sum

rules.47,48 What is obtained from XMCD is an effective spin moment (meff
S ), which includes

the angle-dependent intra-atomic magnetic dipole term (Tz). This term represents the spatial

distribution of the spin density, usually increasing as the symmetry of the system is reduced.

As such, it can become very significant in low-symmetry molecular systems.49

Understanding how the electronic, magnetic, and conformational properties of these

molecules change is fundamental to the design of effective spintronic devices. In this work,

a thermally induced intramolecular reaction of a metalloporphyrin molecule is studied by
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X-ray absorption spectroscopy (XAS) and DFT+U calculations. In this reaction, described

before in STM studies,34,50 iron octaethylporphyrin (FeOEP) undergoes a dehydrogenation

reaction in which ethyl groups form benzene rings, resulting in the iron tetrabenzoporphyrin

(FeTBP) molecule, as shown schematically in Figure 1a. Significant changes are observed

in the magnetic properties of the molecules resulting from this reaction, with striking

modifications to the magnetic anisotropy of the Fe ion. The magnetic moments obtained

from the experiment and the spin-Hamiltonian fit of the magnetization as a function of field

are combined with density functional theory calculations to describe the magnetic state of

the molecules.

II. METHODS

XAS and XMCD measurements. The XAS and XMCD measurements were taken at

BESSY II, the Berlin Electron Storage Ring for Synchrotron Radiation, at the UE46 PGM-1

beamline. The beamline has a 1010 ph/s flux and the spot size was kept at 1 mm2 in order

to have a less focused beam to help avoid radiation damage to the molecules. The energy

resolution was set to 160 meV. The signal was obtained by total electron yield and the

data was normalized with the signal from a freshly evaporated Au grid placed upstream

from the experiment. The measurements were taken at low temperatures of 4.5 K, unless

stated otherwise. The pressure in the magnet chamber was in the order of 2·10−10 mbar,

and the pressure in the preparation chamber was in the order of 1·10−9 mbar. The XMCD

measurements were taken with a field of 6 T in the direction of radiation incidence. The

degree of circular polarization of the light was 85%. The molecules were synthesized as

a dipyridine complex, FeOEP(Py)2. Samples were prepared under ultra-high vacuum by

subliming the molecules from a Knudsen cell heated to a temperature of 500 K after 5 hours

of degassing at 470 K to ensure the loss of the pyridine ligands. The molecules were deposited

on a Au(111) substrate, cleaned beforehand by sputtering and annealing cycles, at room

temperature to a submonolayer coverage of 0.9 ML. The coverage was checked with a quartz

microbalance and crosschecked with intensity calibration of the iron, nitrogen, and carbon

X-ray absorption edges normalized to the pre-edges.

DFT calculations. The density functional theory (DFT) calculations were performed

at the generalized gradient approximation (GGA) level, employing for the GGA exchange-
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correlation functional the parametrization of Perdew-Burke-Ernzerhof.51 The calculations

were carried out with the planewave-based Vienna ab-initio simulation package (VASP).52

In addition, van der Waals dispersion interactions were taken into account through the

Grimme D2 corrections.53 The strong Coulomb correlations existing in the transition-metal

3d-orbitals of the central metal ion were accounted for through on-site Hubbard U and

exchange interactions J in the GGA+U approach.54 Based on our previous experience,11,55,56

we have chosen the U and J parameters as 4.0 and 1.0 eV, respectively. The projector

augmented-wave (PAW) pseudopotentials57 were used with a kinetic energy cutoff of 450 eV.

Three layers of Au were considered to mimic the Au(111) substrate; this corresponds to a total

of 300 Au atoms in the applied periodic simulation cell with dimensions 28.85×24.98×28.7 Å
3
.

The on-surface optimizations of molecular geometries were performed by keeping the lowest

atomic layers in their bulk unit cells position fixed and completely relaxing all other atomic

positions. The reciprocal space was sampled using 2 × 2 × 1 Monkhorst-Pack k-points.58

The single-molecule geometries were optimized using the GGA+U method and the Γ point

for the k-mesh. Lastly, we mention that the relativistic spin-orbit interaction has not been

included in the present calculations, to keep the computational effort manageable.

III. RESULTS AND DISCUSSION

FeOEP molecules were deposited on a Au(111) surface with a coverage of 0.9 monolayers

(ML). The ring-closure reaction was activated by annealing the sample to a temperature

of 600 K. Nitrogen K edge spectra (Figure 1b) display a clear difference in the electronic

structure of the molecules before and after the annealing process, evidencing the transition

from FeOEP to FeTBP, as discussed by Heinrich et al.34 While the first major peak at

398.8 eV seems to be fairly independent of the molecule’s transition, the second peak is

shifted to lower energies, and its overall intensity is diminished. The reduction in the signal

intensity, also visible in the spectra for 54.7◦ incidence as shown in Figure S1 of the supporting

information, indicates a charge transfer to the nitrogen atoms of the molecule.

The XAS of the Fe L2,3 edge for two grazing incidence geometries, taken at 4.5 K, is

presented in Figure 2. The electronic structure of the Fe center of the molecules is seen in

this figure to be significantly changed by the annealing process, most notably by an energetic

contraction of the Fe L3 edges on the FeTBP for different incidence angles. The peak energies
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Figure 1: Top view of the DFT-optimized structures of FeOEP and FeTBP (a). Nitrogen K

edge XA of FeOEP and FeTBP on Au(111) taken at room temperature and grazing

incidence of the X-rays (b) displaying the difference in the line shape of the two molecules,

characteristic of the ring-closure reaction.

are closer together in FeTBP, with the lower energy features shifting towards higher energies

and the higher energy ones displaying a redshift with respect to FeOEP. This points to

a direct contraction of the energy levels of the Fe ion due to ligand field reduction after

ring closure. A small contraction of the energies of the states above the Fermi energy is

indeed verified in the density of states (DOS) calculations to be presented shortly. The DOS

results are also foreshadowed by the double-peak structure of the L3 edge in the FeTBP

molecule, and the triple-peak structure found in the FeOEP, particularly for the vertical

polarization measurements. Analysis of the integrated intensity shows that there is an 8%

decrease upon ring closure for 20◦ angle of incidence of horizontally polarized X-rays, while

the integrated intensity for vertically polarized X-rays with the same incidence angle is

increased by 2%. The charge density distribution is thus 10% more anisotropic after ring

closure. For vertically polarized X-rays, the Fe in-plane orbitals are primarily probed at all

incidence angles, while for horizontal polarization at grazing incidence the majority of the

signal is from out-of-plane orbitals. Due to the small increase in the integrated intensity
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Figure 2: XA spectra of the Fe L2,3 edges of FeOEP (a) and FeTBP (b) on Au(111) under

20◦ angle of incidence for horizontal and vertical linearly polarized X-rays and T = 4.5 K.

for vertical polarization, the differences in the spectral shape for the different molecules

under this polarization are attributed to charge reorganization between different in-plane

orbitals and energy level shifts. This and the stronger decrease in the integrated intensity for

horizontal polarization points to a very small charge transfer from the out-of-plane orbitals

of the Fe ion to its surroundings in FeOEP/Au, and to an increased overlap of its wave

functions with the substrate. Interestingly, changes can be observed in the FeOEP spectra

at higher temperatures even before the reaction takes place. Figure S4 of the supporting

information shows the spectra of the OEP molecule at room temperature, where line shapes

reminiscent of the FeTBP spectra are observed. These line shapes are only preserved for

lower temperatures once the ring-closure reaction has taken place. Further investigation is

required to fully understand this behavior.

The ml- and spin-resolved DOS for free FeOEP and FeTBP have been computed using

the DFT+U approach, adopting the generalized gradient approximation (GGA) for the

exchange-correlation functional (see Methods). The calculated magnetic moments on the

central Fe atoms are 1.96 and 2.09µB, respectively, for single molecule FeOEP and FeTBP.
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The total spin of both molecular species is thus S ∼ 1. However, due to the differences in the

ring structures, a significant difference is observed in the ordering of the 3d orbital energies

(see Figure 3a and b). FeOEP is computed to have an electronic configuration as (dxy)
2,

(dz2)
2, (dxz)

1, (dyz)
1, (dx2−y2)

0, while for FeTBP it is (dxy)
2, (dz2)

1, {(dxz), (dyz)}3, (dx2−y2)
0.

These differences between the electronic structures of FeTBP and FeOEP are mainly due to

the strained, non-planar macrocyclic structure of FeOEP caused by the eight ethyl groups

attached to the porphyrin ring, whereas FeTBP has a planar ring structure (see Figure 1a

for a top view of the structure). This difference in the ring structure is reflected in the

ml-resolved DOS for the central metal atom as well.

Considering next the molecules adsorbed on a Au(111) substrate, we observed a substantial

change in the electronic structure of FeOEP when deposited on the Au substrate, even though

we find that the molecule-substrate interactions are very weak in nature and mainly driven

by non-bonded electrostatic interactions like the Van der Waals interaction. The distance

between the Fe atom and the Au top layer is calculated as 2.53 Å. This value is obtained

when D2-type53 dispersion interactions are taken into account. Without incorporating these

dispersion interactions, the geometrical optimizations gave a much larger, unphysical distance

(i.e. ∼ 5.0 Å) between the molecule and the Au substrate. The optimized shorter distances

give consequently a weak overlap of the charge densities of molecule and substrate and lead

to a re-hybridization of the electronic states of FeOEP with respect to the free molecule,

resulting in an altered electronic configuration on the Au(111) substrate (Figure 3c). However,

there is little change in the structure parameters of FeOEP when deposited on the substrate.

The major changes between the free molecule and FeOEP/Au(111) are observed in the dz2

orbital occupation and hybridization, see Figure 3c. In the free molecule the dz2 orbital

is completely occupied, however, due to interaction with the substrate, the dz2 DOS peak

changes to a broad featureless DOS structure extending over 4 eV. This reveals that the iron

ion in FeOEP interacts with the Au substrate mainly through its dz2 orbital.

We observed a quite similar behavior for the dz2 orbital of FeTBP as well, when grafted on

top of the Au(111) substrate. Additionally, one can observe a slight change in the unoccupied

DOS peaks for the out-of-plane (dyz and dxz) orbitals, see Figure 3d. We further note an

interesting feature, namely that the interaction through the dz2 orbital of the molecule with

the substrate is larger in FeOEP/Au(111) than in FeTBP/Au(111), as can be seen from the

larger energy broadening of the dz2-orbital DOS of FeOEP upon adsorption on Au(111), as
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Figure 3: DFT+U -calculated 3d-orbital DOS plots for single-molecule FeOEP (a) and

FeTBP (b), and for molecules adsorbed on Au(111), FeOEP/Au (c), and FeTBP/Au (d).

Positive and negative orbital DOS is for majority and minority spin, respectively.

compared to FeTBP. This can be related to the computed equilibrium distance between the

Fe atom and the top Au layer, which is 2.88 Å for FeTBP/Au, larger than that of FeOEP/Au.

Thus, there is a possibility for electron transfer between the FeOEP and the substrate. As

mentioned above, in gas-phase FeOEP the dz2 orbital is completely filled and the broadened

peak around the Fermi level for FeOEP/Au indicates strong interactions with the metallic

Au substrate. Such electron transfer is not observed in the case of FeTBP/Au(111), where

the dz2 orbital is already half-filled in the free molecule. The on-surface ring-closure from

FeOEP to FeTBP leads thus to a change of the local DOS of mainly the dz2-orbitals for

minority spins which changes from a metallic DOS for FeOEP/Au to a non-metallic DOS

for FeTBP/Au. The intensity of the out-of-plane dπ(dxz, dyz) orbitals reduces somewhat

as these are influenced by the on-surface chemical reaction. The formation of the benzene

rings on the FeTBP leads to a larger π-system on the ligands of the molecule, promoting

greater interaction between them and the dπ orbitals of the iron ion. The electron density

reorganization that results from these changes can be seen in the partial DOS of one of the

C atoms of the terminal ethylene groups, shown in the supporting information (Figure S3).
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The reduction in the intensity of these orbitals in the DOS can be then attributed to an

increased interaction between them and the extended π-system of the ligands. Hybridization

is also likely with the nitrogen atom, leading to the characteristic changes to the N K edge,

seen in Figure 1b. This leads to a change of the average Fe–N distance from 1.995 to 2.013 Å

from FeOEP to FeTBP, respectively.

Spin-density plots with the same isosurface value of 0.01µB/Å
3

indicate that the electronic

interactions associated with the unpaired orbitals occur through the central metal atom

and the Au substrate atoms underneath (see Figure 4). Note that the existence of a spin

density on the non-magnetic atom underneath a magnetic center not necessarily indicates

the formation of chemical bonds, especially when the interaction is mainly governed by

the van-der-Waals dispersion and electrostatic interactions, but there can be a slight spin

polarization of Au orbitals and charge transfer (see, e.g. Reference 59). A stronger spin

polarization and chemical bonding between Au surface atoms and an iron phthalocyanine

molecule has previously been obtained with calculations based on the local spin density

approximation (LSDA), which, however, predicted a shorter molecule-substrate distance.60

The here-obtained 0.02µB magnetic moment on the Au atom underneath indicates fractional

charge transfer to the central Fe atom of the FeOEP from the substrate (see Table 1). The

shape of the spin density on the Fe atom for FeOEP/Au (Figure 4a) reflects the information

from the calculated DOS, that the out-of-plane dπ orbitals are responsible for the magnetic

properties while the dz2 orbital makes a bond with the substrate. This is also seen in the

computed electronic populations in the d-orbitals for FeOEP/Au, presented in Table S1 of

the supporting information.

TABLE 1: Structural and Magnetic Properties of FeOEP/Au(111) and FeTBP/Au(111),

Calculated with the DFT+U Method (at GGA-D2 Level). Given are the optimized Fe–Au

atomic distances and spin moments.

GGA-D2 optimized properties FeOEP/Au(111) FeTBP/Au(111)

Fe–Au distance 2.67 Å 2.96 Å

spin moments (µB) on Fe 2.17 (3d) 2.01 (3d)

spin moments (µB) on attached Au 0.02 (total) 0.004 (total)

The spin interaction of the two molecules with the substrate is seen to be tilted in Figure 4.
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(b)

(a)

Figure 4: DFT+U -calculated spin densities for (a) FeOEP/Au(111) and (b)

FeTBP/Au(111). The red and green spin density isosurface with isovalue of 0.01µB/Å
3

indicate majority and minority spins.

This is caused by a displacement of the molecule on the surface, such that the Fe center

does not sit on top of a Au atom. Although both molecules exhibit a displacement, the two

positions are not exactly the same. In combination with the greater distance between Fe

center and substrate (see Table 1), this promotes less interaction between Fe and the substrate

and a reduction of the spin moments of both the Fe ion and the Au atoms underneath the

molecules for the FeTBP. The asymmetric distortion of the dz2 orbital seen in Figure 4b

appears to also lead to more interaction and possibly hybridization with the dπ orbitals of

the Fe, which would explain the greater affinity between these orbitals in Figure 3d.

Figure 5 shows the circular polarization XA and XMCD spectra of FeOEP and FeTBP

for 20◦ and 90◦ angles of radiation incidence and external magnetic field directions. As seen

in Figure 5c, the XMCD of FeOEP/Au for normal incidence is zero, which shows that the

in-plane orbitals of the FeOEP molecule do not contribute to the magnetic moment, while

the out-of-plane orbitals do, generating a clear XMCD signal under grazing incidence. For

FeTBP/Au there is a small XMCD signal under normal incidence, and a significant increase
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Figure 5: XA spectra of FeOEP and FeTBP on Au(111) under grazing (a) and normal (b)

incidence of the circularly polarized X-rays, taken at an external field of 6 T and

temperature of 4.5 K, as well as the corresponding XMCD spectra (c).

under grazing incidence. These results and qualitative analysis of the angle dependence

support the DFT+U results that in FeOEP/Au there are no half-filled in-plane orbitals,

confirming that the magnetic signal obtained from this molecule under grazing incidence is

due to out-of-plane orbitals.

The results of the sum-rule analysis47,48 of the XMCD spectra are displayed in Table 2

for FeOEP/Au(111) and FeTBP/Au(111), assuming a 3d6 electronic configuration for both

molecules. Here, meff
S (α) includes the Tz term contribution, except for the magic angle

(35.3◦), when it cancels out. The application of the sum rules provides values of 0.69(4)

and 1.31(5)µB for the effective spin moment of FeOEP/Au and FeTBP/Au, respectively,

under magic angle (35.3◦) X-ray incidence and external field directions. These values are

small when compared to the theoretical results because they are obtained from spectra taken
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at 6 T and 4.5 K, far from magnetic saturation for either molecule, particularly for FeOEP,

as will be shown in the following discussion of the magnetization curves. Additionally, the

moments obtained from the sum rules will always be underestimated due to the limit of the

sum-rules’ applicability to lighter transition metal ions,61 which introduces an intrinsic error

to the sum-rule results for the magnetic moments of Fe. The errors in Table 2 only account

for the noise of the spectra, and are therefore not representative of the real errors of the

measurements.

TABLE 2: Results of the sum-rule analysis for the orbital and effective spin moment of

FeOEP and FeTBP under three angles of incidence of the X-rays at 4.5 K and 6 T. The

values have not been corrected for saturation.

FeOEP FeTBP

α mL(α)/µB meff
S (α)/µB mL(α)/µB meff

S (α)/µB

90◦ 0.03± 0.02 −0.05± 0.07 0.07± 0.03 0.31± 0.07

35.3◦ 0.11± 0.02 0.69± 0.04 0.50± 0.02 1.31± 0.05

20◦ 0.18± 0.04 0.88± 0.05 0.70± 0.03 1.60± 0.06

The XMCD signal as a function of external magnetic field is displayed in Figure 6 for

both molecules at grazing and normal incidence and field directions. The integrated values of

the Fe L3 edge (705 to 715 eV) XMCD signal, displayed as circles and diamonds, were taken

from 0.2 to 6 T at a temperature of 4.5 K. To fit the lines, we used the following simplified

spin Hamiltonian,

H = µBgB · S +DS2
z , (1)

where only the Zeeman and the uniaxial anisotropy energy terms are considered. The first

term represents the Zeeman energy (µB is Bohr’s magneton, g is the g-factor, B is the external

field vector and S is the spin vector), while the second one describes the uniaxial anisotropy

energy (D is the zero-field-splitting parameter and Sz the spin component perpendicular

to the plane of the molecule). Possible Kondo screening of the Fe moment, as suggested

for FeTBP/Au(111) by an STM study,34 as well as a contribution of the orbital magnetic

moment to the Zeeman energy is approximately taken into account by treating g as a free fit

parameter.
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Figure 6: Experimental magnetization curves at 4.5 K of FeOEP and FeTBP (circles and

diamonds, respectively) on Au(111) and corresponding spin-Hamiltonian fits (lines).

The moment obtained from this spin Hamiltonian is further modified by the intra-

atomic magnetic dipole term (Tz). We need to consider the effective spin moment (meff
S =

mS−7Tz(cos2 α−2 sin2 α), if the sample magnetization is in the same direction as the x-rays)

for the signal obtained from the XMCD to be properly fitted. The influence of the (Tz) term

will depend on the angle between the X-rays and the surface, α, and can be ignored for the

magic angle of incidence, when meff
S = mS. Since the orbital moments obtained from the

sum-rule analysis are larger for in-plane magnetization than for out-of-plane (Table 2), we

restricted the fit to positive values of D, i.e., easy-plane anisotropy. With the spin calculated

by DFT+U , S = 1, a meaningful fit of the experimental results can be obtained. It is shown

in Figure 6 as solid lines. For the fit, S = 1 was fixed, and an upper limit for g was applied

as g = 2.5, estimated from the sum-rule result for the orbital moment.

The effective spin moment is zero under normal incidence and magnetization direction

if the value for Tz approaches its maximal negative value, Tz = −mS/14 in this case, with

mS being the spin moment. The model used to fit the experimental magnetization curves

is: XMCDfit = a|m| cos(θ− α)(1 + 7/(2mS)Tz(1− 3 cos(θ + α)/ cos(θ− α))), where a is the

scaling to the experimental signal. In this generalized equation, θ is the angle of the sample

magnetization to the surface, and |m| cos(θ − α) is the projection of the magnetization in

the direction of the measurement. (1− 3 cos(θ + α)/ cos(θ − α))/4 is the angle dependence

of the Tz term. The Tz term is, thus, obtained from the fit. The magnetization is obtained

from the spin-Hamiltonian equation. The scaling factor a to the experimental data was

15



fitted independently for FeOEP and FeTBP, but using the same scaling for normal- and

grazing-incidence data.

The higher curvature of the magnetization curves of FeTBP/Au indicates that this system

is closer to magnetic saturation than FeOEP/Au. From the fit one obtains that the FeOEP

molecule on Au has a strong in-plane magnetic anisotropy (D = 1.72 meV) parallel to the

plane of the molecule, while FeTBP/Au has a weaker anisotropy (D = 0.39 meV) in the

same direction. In principle, relativistic calculations (including the spin-orbit interaction)

could shed further light on the origin of the magnetic anisotropy, however, as mentioned

before, they are out of the scope of the current work. For both molecules, g assumes the

set limit of 2.5. From these fits, we thus do not see evidence for a Kondo screening of the

Fe magnetic moment, which had been suggested by the STM study of Reference 34. On

the other hand the presence of Kondo screening can also not be ruled out from the present

XMCD data. Due to the number of free parameters used to describe the magnetization

curves, the fits do not allow a definite statement about the absence or presence of Kondo

screening. The fit furthermore reveals that the Tz term, which has a very low value of

−0.03µB in FeOEP, increases by about four times to −0.11µB after ring closure. The fit

of the magnetization curves reconciles the values obtained from the DFT+U calculations

for the magnetic moments of the two molecules and what is observed in the XMCD results.

The strong in-plane anisotropy of the FeOEP molecules almost quenches the magnetic signal

observed in the XMCD for FeOEP/Au under normal incidence for lower fields, such as the

maximum one measured in our experiments (6 T). The change in the intra-atomic magnetic

dipole term is responsible for the increase in magnetic signal observed in grazing incidence

after ring closure, when theory predicts no significant difference in the magnetic moment

between the two molecules. The smaller XMCD signal in FeOEP/Au is, therefore, not a

result of a smaller moment on this molecule, but of the different Tz and anisotropy terms.

While the higher Tz term in FeTBP/Au should result in a decrease of the magnetic signal

observed under normal incidence, this is balanced by the change in anisotropy. In FeTBP/Au,

as can be seen in the spin density plots presented in Figure 4, the molecular conformation

is much more planar than in FeOEP/Au. The flexibility of the ethyl groups of the OEP

molecule allows for a conformation that distorts the molecular plane and brings the Fe center

out of the plane of the molecule, closer to the substrate. This in turn enables a higher degree

of interaction with the substrate and promotes the charge reorganization in the orbitals of the
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OEP molecule in a more significant way than in TBP, as described in the DOS discussion.

With the parameters obtained from the fit of the magnetization curves, one can also

estimate the saturation value expected for the magnetic moments at high field. The values

obtained from the sum rules discussed previously can be adjusted by the estimated saturation

factor obtained from the spin-Hamiltonian fit, yielding 1.1(3)µB and 1.4(3)µB under magic

angle (35.3◦) incidence and external field directions for the spin moment of the FeOEP and

FeTBP, respectively, in magnetic saturation. In addition to the experimental error of this

result, which accounts for the bending and noise of the L2,3 edge spectra, there is an intrinsic

error of about 20% in the magnetic moment value obtained from the sum-rule analysis due

to the limit of its applicability to lighter transition metals.61 This error is mainly due to

the spectral overlap of the L2 and L3 edges for these ions. Considering these two main

sources of error, the values obtained are in agreement with an S = 1 system, as predicted by

DFT+U , and indicate that this is the most likely spin state for the two molecules. A second

possibility, with S = 3/2, would require much higher values for the effective spin moment,

and a third one, with S = 1/2, does not result in a meaningful fit of the magnetization curves

with the spin-Hamiltonian model described previously. A last possibility would require an

intermediary spin state, similar to the system described by Stepanow et al.62 While this

cannot be ruled out entirely just from the XMCD results, it is a very special scenario that is

not supported by our DFT+U results. Inelastic excitations observed at about ±7 meV in

tunneling spectroscopy on FeOEP/Au(111)34 suggest a much higher anisotropy (D = ±7 meV

for S = 1). As shown in Figure S8 in the supporting information, such a high value of D is

not consistent with our experimental data and S = 1, since then the moments obtained from

the sum-rule analysis and extrapolated to magnetic saturation would not match S = 3/2.

IV. CONCLUSIONS

The results have shown that the exploitation of intramolecular reactions on surfaces is

a viable path to obtaining new molecules with suitable magnetic properties for their use

in spintronics. Such reactions, although occurring at the periphery of the molecule, result

in a significant change of the properties of the central metal ion. Additionally, a better

understanding of the interactions between substrate and molecule is obtained from this study,

a crucial step in the development of technologically suitable molecular magnets. The reaction
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studied induces a conformational change in the molecule, causing not only a symmetry

change in the molecular structure that induces a reduction of the ligand field splitting, but

also bringing the metal center away from the substrate, further modifying it. The magnetic

anisotropy of the iron ion is reduced by the ring closure reaction, contributing to a substantial

increase in the effective magnetic spin moment obtained experimentally from XMCD under

in-plane field direction. The different characteristics of the Tz term before and after the

ring-closure reaction and the significant changes this causes to the effective spin moment of

these systems illustrate how important the correct interpretation of the XMCD spectra and

the treatment of the Tz-term contribution to these moments are.
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[20] Wäckerlin, C.; Chylarecka, D.; Kleibert, A.; Müller, K.; Iacovita, C.; Nolting, F.; Jung, T. A.;

Ballav, N. Controlling Spins in Adsorbed Molecules by a Chemical Switch. Nat. Commun.

2010, 1, 61.

20



[21] Miguel, J.; Hermanns, C. F.; Bernien, M.; Krüger, A.; Kuch, W. Reversible Manipulation of the

Magnetic Coupling of Single Molecular Spins in Fe-Porphyrins to a Ferromagnetic Substrate.

J. Phys. Chem. Lett. 2011, 2, 1455–1459.
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[49] Šipr, O.; Minár, J.; Ebert, H. On the Importance of the Magnetic Dipole Term TZ in Analyzing

X-Ray Magnetic Circular Dichroism Spectra of Clusters. Europhys. Lett. 2009, 87, 67007.

[50] van Vörden, D.; Lange, M.; Schmuck, M.; Schaffert, J.; Cottin, M. C.; Bobisch, C. A.; Möller, R.
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[57] Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979.

[58] Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B

1976, 13, 5188–5192.

[59] Girovsky, J.; Nowakowski, J.; Ali, M. E.; Baljozovic, M.; Rossmann, H. R.; Nijs, T.; Aeby, E. A.;

Nowakowska, S.; Siewert, D.; Srivastava, G. et al. Long-range ferrimagnetic order in a two-

dimensional supramolecular Kondo lattice. Nat. Commun. 2017, 8, 15388.

[60] Minamitani, E.; Tsukahara, N.; Matsunaka, D.; Kim, Y.; Takagi, N.; Kawai, M. Symmetry-

Driven Novel Kondo Effect in a Molecule. Phys. Rev. Lett. 2012, 109 .

[61] Piamonteze, C.; Miedema, P.; de Groot, F. M. F. Accuracy of the Spin Sum Rule in XMCD

for the Transition-Metal L Edges From Manganese to Copper. Phys. Rev. B 2009, 80, 184410.

[62] Stepanow, S.; Miedema, P. S.; Mugarza, A.; Ceballos, G.; Moras, P.; Cezar, J. C.; Carbone, C.;

de Groot, F. M. F.; Gambardella, P. Mixed-Valence Behavior and Strong Correlation Effects

of Metal Phthalocyanines Adsorbed on Metals. Phys. Rev. B 2011, 83, 220401.

24


	Modifying the Magnetic Anisotropy of an Iron Porphyrin Molecule by an On-Surface Ring-Closure Reaction
	Abstract
	Introduction
	Methods
	Results and Discussion
	Conclusions
	Acknowledgments
	
	List of References




