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ABSTRACT 

Tuberculosis (TB) is a multi-organ infection caused by rod-shaped acid-fast Mycobacterium 

tuberculosis. The World Health Organization (WHO) ranks TB among the top 10 fatal 

infections and the leading the cause of death from a single infection. In 2017, TB was 

responsible for an estimated 1.3 million deaths among both the HIV negative and positive 

populations worldwide (WHO, 2018). Approximately 23% (roughly 1.7 billion) of the world’s 

population is estimated to have latent TB with a high risk of reverting to active TB infection. 

In 2017, an estimated 558,000 people developed drug resistant TB worldwide with 82% of the 

cases being multi-drug resistant TB (WHO, 2018). South Africa is ranked among the 30 high 

TB burdened countries with a TB incidence of 322,000 cases in 2017 accounting for 3% of the 

world’s TB cases. TB is curable and is clinically managed through a combination of intensive 

and continuation phases of first-line drugs (isoniazid, rifampicin, ethambutol, and 

pyrazinamide). Second-line drugs which include fluoroquinolones, injectable aminoglycoside 

and injectable polypeptides are used in cases of first line drug resistance.  The third-line drugs 

include amoxicillin, clofazimine, linezolid and imipenem. These have variable but unproven 

efficacy to TB and are the last resort in cases of total drug resistance (Jilani et al., 2019). TB 

drug resistance to first-line drugs especially isoniazid in M. tuberculosis has been attributed to 

single nucleotide polymorphisms (SNPs) in the catalase peroxidase enzyme (katG), a protein 

important in the activation of the pro-drug isoniazid.  The SNPs especially at position 315 of 

the katG enzyme are believed to reduce the sensitivity of the M. tuberculosis to isoniazid while 

still maintaining the enzyme’s catalytic activity - a mechanism not completely understood. 

KatG protein is important for protecting the bacteria from hydro peroxides and hydroxyl 

radicals present in an aerobic environment. This study focused on understanding the 

mechanism of isoniazid drug resistance in M. tuberculosis as a result of high confidence 

mutations in the katG through modelling the enzyme with its respective variants, performing 
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MD simulations to explore the protein behaviour, calculating the dynamic residue network 

analysis (DRN) of the variants in respect to the wild type katG and finally performing alanine 

scanning. From the MD simulations, it was observed that the high confidence mutations i.e. 

S140R, S140N, G279D, G285D, S315T, S315I, S315R, S315N, G316D, S457I and G593D 

were not only reducing the backbone flexibility of the protein but also reducing the protein’s 

conformational variation and space. All the variant protein structures were observed to be more 

compact compared to the wild type. Residue fluctuation results indicated reduced residue 

flexibility across all variants in the loop region (position 26-110) responsible for katG 

dimerization. In addition, mutation S315T is believed to reduce the size of the active site access 

channel in the protein. From the DRN data, residues in the interface region between the N and 

C-terminal domains were observed to gain importance in the variants irrespective of the 

mutation location indicating an allosteric effect of the mutations on the interface region. 

Alanine scanning results established that residue Leucine at position 48 was not only important 

in the protein communication but also a destabilizing residue across all the variants. The study 

not only demonstrated change in the protein behaviour but also showed allosteric effect of the 

mutations in the katG protein. 
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CHAPTER ONE  

LITERATURE REVIEW 
 

1.1 INTRODUCTION  

Tuberculosis (TB) is an infectious disease caused by bacteria called Mycobacterium 

tuberculosis. The infection is one of the leading causes of deaths worldwide and the leading 

cause from a single infectious agent (WHO, 2018). TB is transmitted through the air when a 

person with active TB infection in their lungs coughs or sneezes and the other inhales the 

aerosols that contain the M. tuberculosis. TB mainly affects the lungs however it is also known 

to damage other body organs like the spleen and the spine (WHO, 2018). Symptoms of active 

lung TB infection include; coughing with sputum and blood, malaise, loss of body weight, 

fever and general body weakness (Churchyard et al., 2017).  

1.2 BACKGROUND  

1.2.1 Global and national TB burden   

In almost every country, there is a documented case of TB and nearly one-third of the world’s 

population has been infected by TB (Singh et al., 2018). Recent estimates put the total number 

of people infected with TB at 1.7 billion with a small proportion of them (5-10%) expected to 

develop tuberculosis disease. This proportion is expectedly higher among people living with 

Human Immune deficiency Virus (HIV) (Ismail et al., 2018). As per the WHO, two-thirds of 

the world’s TB incidence is contributed by India, sub-Saharan Africa, China, Indonesia, 

Pakistan and Philippines (Figure 1.1). A susceptible TB infection is the type of infection that 

is sensitive to available TB therapies whereas a resistant TB infection can be resistant to either 

first line, second line or sometimes third line TB drugs. More than 47% of the global burden 

of resistant TB is accounted for by three countries i.e. Russia, China and India. The highest 

prevalence was found to be in Russia at 27% among new patients and 63% among patients 
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previously on TB treatment. A similar TB survey in China revealed that multidrug resistant TB 

(MDR-TB) prevalence was at 5.7% and 25.6% among new cases and previously treated cases 

respectively while data from India showed a prevalence of 2.84% and 11.64% among new and 

previously treated patients respectively (Ismail et al., 2018).   

  

Figure 1.1: World map of the estimated global TB incidence distribution as per 2017 

(Adapted from the WHO global TB report 2018).  

On a national level, the incidence of TB in South Africa is among the highest in the world with 

up to 450,000 individuals diagnosed in 2015 alone (Glaziou et al., 2009). In 2015, TB was also 

the leading cause of death in South Africa accounting for 8.4% of the natural deaths that year 

(Kweza et al., 2018). The mortality rates could be explained by the low access to TB treatment. 

A study in 2016 estimated that only 72.8% of the people diagnosed with TB were started on 

treatment (Skinner et al., 2016). Among the key drivers for the TB burden in South Africa is 

poor access to health facilities, poor health seeking habits and poor living conditions (Hartel et 

al., 2018). The TB burden is disproportionately higher among people living with HIV with 
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63% of the reported TB cases being HIV positive (Robertson et al., 2018). TB is also 

significantly higher among the black population with more than 91% of the TB patients being 

black (Oni et al., 2015). Other vulnerable populations include health workers, miners, 

incarcerated populations, pregnant women, children < 5 years of age, and people with diabetes 

(Oni et al., 2015). In 2017, there was a 2.1% prevalence among inmates and people living in 

enclosed spaces, 2760 per 100,000 among people with diabetics and the prevalence among 

gold miners was at 3000-7000 per 100,000 (South African National AIDS Council., 2019).  

One key barrier to ending the TB epidemic in South Africa is the emerging drug resistance to 

the commonly used first-line TB drugs. A recent survey reported that 2.1% (n=5423) of the 

new TB cases and 25.6% of previously treated cases had MDR-TB with up to 4.9% of the drug 

resistance cases being XDR-TB (Extensively Drug Resistant TB: further explained under 

section 1.2.5) (Sharp et al., 2018). Rifampicin resistance testing is at almost 80% coverage with 

the use of Gene-Xpert machines and although this helps in screening MDR cases, isoniazid 

mono-resistance is often left undiagnosed, which often impacts patient management. This is 

evident in the fact that currently, only 14% of Gene-Xpert negative cases are followed up for 

further drug resistance testing (Cox et al., 2017, Ismail et al 2018).  

The economic burden of TB is heavy on resource-limited countries like South Africa. In 2017 

alone, the estimated public expenditure for the TB program was approximately $415 million, 

of which $310 million was used for direct service delivery. This figure was projected to shoot 

up to $332 million by 2020 (Bozzani et al., 2018). These numbers raise a serious concern and 

urgency to find novel ways of managing and preventing TB infection.  

1.2.2 Etiology of TB  

Historically, TB has been documented as far back as the 17th Century. The etiology of TB was 

mysterious until 1882 when the Mycobacterium tuberculosis was discovered by Dr. Robert 
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Koch (Barberis et al., 2017). As mentioned before, TB is caused by M. tuberculosis; a weakly 

gram positive, non-motile, aerobic and acid‐fast bacillus (Barberis et al., 2017). The disease is 

highly contagious and spreads when infected individuals eject aerosolized droplets containing 

the bacteria into the surrounding, for example by coughing or sneezing and a new host inhales 

the bacteria containing aerosols. The probability of spread is contingent on the infectivity of 

the source case (i.e. how diseased the source individual is), the level of exposure (i.e. closeness, 

air circulation, and the length of exposure) as well as susceptibility of the person who is in 

close proximity to an infected case.  

The development of TB requires both infection by M. tuberculosis and a weakened immune 

system. Studies have shown that not every individual exposed to TB develops the infection 

(Chai et al., 2018). The immune system is capable of clearing the body of the infection most 

of the time with only 5%‐10% of exposures resulting in a primary infection (Petruccioli et al., 

2016). In addition, many of the cases of TB infection do not become diseased, the majority of 

patients infected with M. tuberculosis exist with no clinical, bacteriologic or radiographic 

evidence of active TB and this is what is commonly referred to as latent TB infection (LTB). 

If conditions allow, previously latent infection may progress to active TB. People living with 

HIV, expectant mothers, injection drug users, cigarette smokers and all immuno-compromised 

individuals are at a higher risk of TB reactivation and primary TB progression (Holt et al., 

2016). Another group at risk of TB reactivation is people from TB endemic countries, a study 

in the UK showed that reactivation among immigrants six years after moving to the UK 

accounted for 60% of the cases in the UK (Public Health England, 2016).  

Both clinical and research evidence has demonstrated that TB primarily affects the lungs 

(pulmonary TB), but is also capable to infecting several other sites in the body including lymph 

nodes, spleen, urinary system, bones and the central nervous system (CNS).  
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1.2.3 TB diagnosis  

Over the years, a number of diagnostic methods have been put forward as a means to both 

screen and confirm TB infection. It should be noted that some methods are more sensitive and 

specific than others and therefore that should always be taken into consideration when selecting 

a diagnostic method. Some of the most common methods include; the Ziehl-Neelsen technique 

(ZN) that involves microscopically examining sputum stained slides. This method regardless 

of the low sensitivity, it is relatively affordable for developing countries, highly specific and 

can be done under field conditions (Ahmed et al., 2019) hence making it the most commonly 

used method especially in resource limited settings.  

Whereas cultures are considered the gold standard in TB diagnosis, culture results take too long 

with an average turnaround time of up to one week (Ogwang et al., 2009). Another hindrance 

to TB cultures is the expenses associated with the test and in fact, TB cultures are not done 

outside reference labs and research institutions in some African countries (Agrawal et al., 

2016).  

Chest X-ray is another TB diagnostic method which focuses on radiographic changes in the 

lungs associated with positive and negative Ziehl-Neelsen stained smears. In one study, 

calcification, hilar adenopathy, incomplete destruction and bronchiectasis were found to be 

associated with positive Ziehl-Neelsen stained smears in TB infected persons (Ebrahimzadeh 

et al., 2014).  

Currently, newer techniques that are either molecular or immunology based are being utilized 

in a number of countries. One such test is the TB LAM test, which is an immunology-based 

rapid assay that utilizes urine samples (Broger et al., 2019). Research has shown that the TB 

LAM test is highly insensitive, meaning it would not make an effective screening test, however, 

given its applicability as a low-cost point of care urine-based tool, TB LAM has been said to 
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be innovative for limited resource settings (Lawn et al., 2017). In a study done in South Africa, 

TB LAM correctly identified only 39% of the positive TB cases while correctly identifying 

98.9% of the TB negative cases. Based on the results, Lawn et al., (2017) argued that TB LAM 

would be useful as a tool for identifying poor prognosis outcomes rather than a diagnostic tool.  

Over the past few years, molecular diagnostic methods like the Gene-Xpert have been 

developed to better diagnose TB. In the Gene-Expert method, the M. tuberculosis genetic 

material is isolated from the sputum sample through sonication and amplified by polymerase 

chain reaction (PCR). In addition to identifying the bacteria, it tests for rifampicin drug 

resistance. The DNA amplification test has gained popularity for its high sensitivity, batch 

running of samples and ability to measure rifampicin resistance. By 2017, there were 314 Gene-

Xpert machines in 207 microscopy centers and about 8 million assays conducted in South 

Africa. It is also important to note that South Africa accounts for at least 50% of the Global 

consumption of Gene-Xpert cartridges.   

1.2.4 TB treatment  

The first TB registered clinical management approaches were sunlight exposure, adequate 

nutrition and isolation of the infected persons to prevent transmission of the infection to the 

healthy individuals (Sotgiu et al., 2015). With advances in the medical treatment and a better 

understanding of TB, the surgical management method was discovered and set as the standard 

around 1927 (Sakula, 1983). The discovery of the TB etiological agent by Robert Koch in 1882 

paved way for use of natural and chemical compounds targeting the mycobacteria for clinical 

management of TB (Goldsworthy and McFarlane 2002). A number of chemical compounds 

have since then been used over the years for clinical management of the infection and some of 

these include; streptomycin and para-aminosal-icylic acid (PAS) which presented bactericidal 

activity against TB in both humans and animals (Sotgiu et al., 2015). Mono-therapy of TB 

however, presented resistance challenges over time and as a result, combination therapy 
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involving prescription of at least two drugs was adopted in 1952 based on the combination of 

streptomycin, PAS and isoniazid (Crofton, 1960, Crofton, 1969). Advances in TB management 

have been made since then with the discovery and use of rifampicin, isoniazid, ethambutol and 

pyrazinamide. Factors like effective drug combination and duration of medication are 

important determinants of eradication, prevention of relapse in infected individuals and also 

preventing development of drug resistant strains of TB.  

Currently, TB drugs are divided into five key groups (Table 1.1) (WHO, 2018) i.e. Group one 

which are used as the first-line therapy include; isoniazid, rifampicin, ethambutol, 

pyrazinamide and rifabutin. Group two consists of the injectable agents such as 

aminoglycosides (kanamycin, amikacin and streptomycin) as well as peptide-based 

capreomycin. Group two drugs are used in combination with group three fluoroquinolone drugs 

(ofloxacin, levofloxacin, moxifloxacin and gatifloxacin.). Group four drugs consist of p-

aminosalicylic acid, cycloserine, terizidone, ethionamide (ETH) and prothionamide, which are 

second line oral bacteriostatic drugs. Finally, there is group five whose efficacy is still unclear 

and is used only if the other four drug groups cannot be used (Zumla et al., 2013). Rifampicin, 

kanamycin and amikacin work by interfering with RNA synthesis and in the process inhibit the 

synthesis of host bacterial proteins. Capreomycin, clarithromycin, streptomycin and 

clofazimine have a similar mode of action that involves binding to the protein ribosomal 

subunits and in the process inhibiting translation (Zumla et al., 2013). 

Generally, TB drugs have four major mechanisms of action i.e. inhibition of RNA synthesis, 

inhibition of protein synthesis, inhibition of cell wall biosynthesis and interference with the 

synthesis of cell membranes (Shi et al., 2007). 
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Table 1.1: Drugs used to treat the various forms of tuberculosis in their respective groups 

(Zumla et al., 2013). 

TB drug group TB drug 
Group one: First-line oral agents  Isoniazid 

Rifampicin 

Ethambutol 

Pyrazinamide 

Group two: Injectable agents  Kanamycin 
Amikacin 

Capreomycin 

Streptomycin 

Group three: Fluoroquinolones  Levofloxacin 

Moxifloxacin 

Gatifloxacin 

Group four: Oral bacteriostatic second-line agents  Para-amino salicylic acid 
Cycloserine 

Terizidone 

Ethionamide 

Prothionamide 

Group five: Agents with unclear efficacy  Clofazimine 
Linezolid 

Amoxicillin 

  

Linezolid disrupts bacterial growth by inhibiting the initiation process of protein synthesis 

whereas levofloxacin, moxifloxacin, and gatifloxacin work by inhibiting the DNA gyrase and 

topoisomerase IV which are responsible for separation of DNA that has been replicated 

(doubled) prior to bacterial cell division (Shi et al., 2007).  Cycloserine and terizidone have a 

similar mode of action that involves inhibiting cell wall synthesis by competitively inhibiting 

two enzymes; l-alanine racemase and D-alanine ligase (Shi et al., 2007).  Finally, isoniazid acts 

by inhibiting cell wall biosynthesis, a process that is catalysed by catalase-peroxidase (katG) 

which facilitates formation of activated isonicotinyl-NAD adduct that binds to InhA (enoyl-

acyl carrier protein reductase) and inhibits the biosynthesis of mycolic acids. Mycolic acids are 

key components of the mycobacterial cell wall (Shi et al., 2007).  
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Currently, management of TB is done in two phases with varying durations of drug exposure 

depending on the susceptibility of the isolated TB strain. The initial stage in TB clinical 

management is the bactericidal phase that involves killing of the mycobacteria with high 

replication rate hence repairing and regenerating the pulmonary system. Drug adherence at this 

stage ensures non-infectivity of patients and reduces the chances of resistance (Sotgiu et al., 

2015). The second stage is the continuation phase that is characterized by the elimination of 

the semi-dormant mycobacteria whose reduction in titers in the body and elimination is crucial 

in preventing drug resistance and relapse of the infection (Kumar & Kon, 2017).   

As per the world health organization guidelines on TB management, treatment of newly 

diagnosed cases with drug-susceptible TB involves a two months intensive phase of a first line 

four-drug regimen comprised of rifampicin, isoniazid, pyrazinamide and ethambutol followed 

by a four to seven-months continuation phase consisting of rifampicin and isoniazid (Dheda & 

Sharma, 2019). It is important to note that the duration of treatment of the infected individuals 

is dependent on the type of TB infection. For example, patients with meningitis TB have a 

treatment duration of nine to twelve months (Nahid et al., 2016) whilst individuals with HIV 

co-infection not receiving antiretroviral treatment, are treated for a duration of seven months 

(Nahid et al., 2016).   

The first line drugs have a range of side effects which are known to contribute to poor 

adherence to TB treatment and hence development of resistance overtime. Some of the side 

effects include; gastrointestinal symptoms and thrombocytopenia in rifampicin use, hepatitis 

and peripheral neuropathy in isoniazid use, gastrointestinal disturbances, and gout among 

others in pyrazinamide use (Kumar & Kon, 2017).   

Treatment of drug resistant TB is also dependent on the type of drug to which the M. 

tuberculosis strain has developed resistance. Isoniazid resistant TB (Hr-TB) refers to the M. 
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tuberculosis strains that are resistant to isoniazid but susceptible to rifampicin. Individuals with 

confirmed Hr-TB are treated with rifampicin, ethambutol, pyrazinamide and levofloxacin for 

duration of six months. Rifampicin resistant TB (RR-TB) are M. tuberculosis strains that are 

resistant to rifampicin and as a result, the patients are enrolled to the multi-drug resistant TB 

(MDR-TB) regimen. According to the WHO, the latent TB infection is treated with isoniazid 

(INH) for six to nine months ("Updated TB guidelines raise upper age limit for treating latent 

disease", 2016). Like the first line drugs, second line TB regimen has a range of adverse effects 

including ototoxicity and hepatotoxicity (Liu et al., 2018) and these adverse effects together 

with pill burden especially in patients with other comorbidities play an important role in poor 

drug adherence and drug resistance development as they discourage patients from taking the 

medication.  

1.2.5 TB drug resistance  

TB drug resistance as the name suggests is resistance of M. tuberculosis to TB drugs. TB drug 

resistance classification is based on the number of TB drugs that a particular strain of M. 

tuberculosis is resistant to, these classifications include; Mono-resistant TB, Poly-drug 

resistance TB, Multi-drug resistant TB (MDR-TB) and Extensively Drug Resistant TB (XDR-

TB). Mono-resistant TB is resistant to only one first-line drug while Poly-resistant TB is 

resistant to more than one first-line drug other than both isoniazid and rifampicin. Multi-drug 

resistant TB is resistant to at least both isoniazid and rifampicin. Further resistance to second-

line drugs i.e. fluoroquinolones and at least one second-line injectable in addition to multi-drug 

resistance is called Extensive drug resistance (WHO, 2019).  MDR-TB incidence is the highest 

(87%) in comparison to non-resistant TB (84%) among the 20 countries with the highest TB 

burden (WHO, 2018). Development of resistance to both Isoniazid and Rifampicin, the two 

most effective drugs against TB poses the greatest threat to the WHO global strategy of ending 

the TB epidemic by 2035 (WHO, 2018). 
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1.2.5.1 Multi drug resistant TB  

Multidrug resistant tuberculosis (MDR-TB) is defined as resistance to at least rifampicin and 

isoniazid (WHO 2018). As of 2017, 3.5% of the newly TB tested cases globally and 18% of 

the previously tested TB cases had MDR/Rifampicin Resistant TB (WHO 2018). Research has 

shown that mutations in specific regions in drug target genes (Table 1.2) are the cause of MDR-

TB, such mutations reduce sensitivity of M. tuberculosis to anti-tuberculosis therapy (Velayati, 

et al., 2009). 

Table 1.2: TB Resistance conferring genes (Ando et al., 2014, Cohen et al., 2019).  

Group TB Drug  TB gene 
First line drugs Isoniazid katG, InhA,ahpC, kasA, NDH and 

oxyA  
 Ethambutol embCAB operon 
 Pyrazinamide pncA 
 Rifampicin rpoB  
   
Injectable gents Kanamycin, Amikacin rrs (rRNA gene)  
 Capreomycin rrs (rRNA gene)  
   
Fluoroquinolones Levofloxacin, moxifloxacin gyrA,  
 gatifloxacin gryB  
   
Oral bacteriostatic Ethionamide ethA 
 Prothionamide ethR, inhA 
 Cycloserine Ald 
 Para-amino salicylic acid folC, dfrA, thyA, thyX, ribD 
 Terizidone Alr, ddl, cycA 
   
Agents with unclear 
efficacy  

Clofazimine pepQ 

 Linezolid Rrl, rplC 
 Imipenem crfA 

These mutations can be single nucleotide polymorphisms, insertions and deletions (Zhang, 

2017). Abuse of TB drugs through non-adherence can cause the M. tuberculosis population in 

the host to mutate for survival and to increase in mutation frequency which results in resistant 

M. tuberculosis (Ando et al., 2014). Mutations that cause resistance to rifampicin and isoniazid 
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are well characterised while mutations leading to second line drug resistance are less 

understood and hence resistance to second line drugs is harder to predict using sequencing. 

Rifampicin kills M. tuberculosis by inhibiting RNA-polymerase. This action prevents RNA 

synthesis by physically blocking elongation, and thus preventing the synthesis of host bacterial 

proteins. Resistance to rifampicin is caused by mutations in the rpoB gene coding for RNA 

polymerase β subunit. When the β subunit structure changes, rifampicin cannot properly bind 

to RNA polymerase and hence becomes ineffective (Ando et al., 2014). In 96% of the M. 

tuberculosis isolates with resistance, mutations occurring in an 81bp spanning codons 507–533 

of the rpoB gene lead to rifampicin resistance and are called the rifampicin resistance-

determining region (Trauner et al., 2017).   

Mutations in the katG gene or in the InhA gene are the main causes of isoniazid resistance 

although there are other gene mutations like ahpC, kasA and NDH responsible for a minority 

of the cases (Argyrou et al., 2006, Ando et al., 2014).   

1.2.6 Isoniazid drug and its mode of action   

Isoniazid (isonicotinic acid hydrazide) is a simple chemical compound composed of a pyridine 

ring and a hydrazide group that are important for the anti-mycobacterial activity against M. 

tuberculosis (Suarez et al., 2009). The drug is prepared through a reaction between 4-

cyanopyridine and hydrazine hydrate in an aqueous alkaline environment at a temperature of 

100°C. Isoniazid’s molecular formula is C6H7N3O, with a molecular weight of 137.14 g/mol, 

melting point of 171.4°C and LogP of −0.64 (Fernandes et al., 2017). The drug is commonly 

used in combination therapy as a first-line drug in the prevention and treatment of TB. Isoniazid 

can be administered through both the oral and intravenous route and is widely distributed in 

the body with a 61% approximated volume of distribution in body fluids and tissues (Weber et 

al, 1979). 
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Isoniazid together with rifampicin have long been known to be the key M. tuberculosis 

management drugs (Timmins et al., 2004) with isoniazid acting through inhibition of formation 

of the mycobacterial cell wall. Isoniazid is a pro-drug activated by the catalase peroxidase 

enzyme encoded by the katG gene in M. tuberculosis. Isoniazid activation leads to the 

formation of oxygen reactive species such as superoxide, hydrogen peroxide, peroxynitrite and 

the isonicotinoyl radical (Timmins et al., 2004). The isonicotinic acyl radical produced, 

naturally couples with NADH to form the nicotinoyl-NAD adduct (Figure 1.2). The formed 

abduct binds tightly to the enoyl-acyl carrier protein reductase inhA, blocking the action of 

fatty acid synthase. This process inhibits the synthesis of mycolic acids required for the 

synthesis of the M. tuberculosis cell wall (Timmins et al., 2004).   

                                                      

Figure 1.2: Schematic diagram showing isoniazid reaction in the katG to form the 

nicotinoyl radical (Adapted from Unissa et al., 2018). 

Most clinical isolates with isoniazid resistance have presented with mutations in katG gene, 

resulting in elimination of or reduced peroxidase activity due to either isoniazid inactivation, 

or to a decreased affinity of the M. tuberculosis to isoniazid (Huard et al. 2003). Research 

shows that majority of the time in isoniazid resistance, there are either simple base pair changes 

or small deletions in the katG gene (Huard et al., 2003; Jena et al., 2015).   

1.2.7 KatG (catalase peroxidase) enzyme  

 Catalase peroxidase (katG) protein is a homodimer with subunits of about 80kDa. The katG 

identical subunits are believed to be as a result of a gene duplication event and they consist of 
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an N-terminal domain and a C-terminal domain each consisting of ∼40 kDa (Bertrand et al., 

2004). The N-terminal domain of the katG protein contains a heme binding motif which acts 

as the active site of the enzyme, whereas the C-terminal domain lacks this heme group and is 

believed to confer structural stability to the enzyme as shown in Figure 1.3.   

 

Figure 1.3: KatG (PDB ID: 2CCA) protein structure showing the N-terminal (cyan) and 

C-terminal (red) domains. N terminal domains contain the heme group (yellow) as viewed in 

PyMOL.  

Although the katG enzyme has catalase activity, it is not homologous to catalases but rather 

has high sequence similarity to cytochrome c-peroxidase from yeast (Ccp) and ascorbate 

peroxidase (APX) and as a result, the katG enzyme is classified under the Class I of the 

superfamily of plant, fungal, and bacterial peroxidases (Welinder, 1992). The catalase function 

of the enzyme serves to protect the M. tuberculosis from hydro-peroxides and hydroxyl radicals 

present in the aerobic environment which are toxic to the M. tuberculosis (Bertrand et al., 
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2004). The peroxidase activity of the enzyme leads to activation of the first-line pro-drug 

isoniazid that is used in the treatment and management of TB. 

The activation the TB first line drug isoniazid leads to the inhibition of mycobacteria cell wall 

synthesis and hence inhibition of the bacteria multiplication (Bertrand et al., 2004). Studies 

have shown that the active binding site for the isoniazid in the catalase peroxidase protein is a 

round the δ meso heme edge (Carpena et al., 2002) involving the residues Arginine, Histidine, 

Tryptophan, Tyrosine and Methionine.  

1.2.8 KatG enzyme and M. tuberculosis isoniazid drug resistance   

Isoniazid, being a pro enzyme, requires activation by a catalase peroxidase enzyme encoded 

from the katG gene in mycobacteria under aerobic conditions. As a result, mutations occurring 

in the katG gene that affect activity or encoding of catalase peroxidase enzyme hinder the anti-

mycobacterial activity of the drug hence making the M. tuberculosis non-susceptible to 

isoniazid (Singh et al., 2018). Identification of the katG crystal structure (Bertrand et al., 2004) 

provided insight on the mode of action for catalase peroxidase and the structural similarities of 

the katG active site with the mono-functional Class I peroxidases such as cytochrome c 

peroxidase (CcP) (Edwards et al., 1987) which is also known to activate isoniazid (Pierattelli 

et al., 2004). Literature shows that the active site of the M. tuberculosis catalase peroxidases is 

made up of the heme-group surrounded by Arg-104, Trp-107, and His-108 residues on the 

distal side and His-270, Trp-321, and Asp-381 residues on the proximal side as shown in Figure 

1.4. A three residue adduct between Trp, Tyr and Met was also observed to be conserved in all 

the catalase peroxidases (Bertrand et al., 2004).   
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Figure 1.4: M. tuberculosis katG (PDB ID: 2CCA) active site residues. The active site 

consists of His-270, Trp-321, and Asp-381 residues on the proximal end and Arg-104, Trp-

107, and His-108 residues on the distal end. Trp-107 forms adduct with Tyr-229 and Met-255 

in all catalase peroxidases. Viewed in PyMOL.  

Research has shown that the S315T mutation in the katG gene leads to the production of a 

catalase peroxidase enzyme capable of catalytic activity in the mycobacterium but unable to 

form the isoniazid-nicotinoyl adenine dinucleotide adduct to inactivate inhA and kasA activity, 

hence reducing the isoniazid anti-tubercular activity (Yu et al., 2003). A study done on 69 

isoniazid resistant samples from three Brazilian states showed percentage resistances of 87.1%, 

60.9%, and 60% attributed to the codon 315 katG mutation (Silva et al., 2003). In another study 

done on a 894bp central fragment of the katG gene in 212 samples across Africa; South Africa, 

Uganda and Sierra Leone, showed that 68% of the isoniazid resistant samples from South 

Africa and 54.1% of the isoniazid resistant samples in Uganda and Sierra Leone were as a result 

of codon 315 mutation in the katG gene (Haas et al., 1997). Missense AGC-ACC mutation 

(Ser-Thr), AGC-ATC (Ser-Ile) and AGC-CGC (Ser-Arg) were observed at codon 315 while at 

codon 328, TGG-TTG (Trp-Leu) and TGG-TGC (Trp-Cys) were observed (Haas et al., 1997). 

Furthermore, a study done in Iran on 25 isoniazid resistant strains showed 56% of the resistance 
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was as a result of mutations of the katG gene position 315 (Bostanabad, 2011). From all this 

data, codon 315 is shown to play a significant role in isoniazid resistance in M. tuberculosis. 

Other documented katG gene mutations leading to isoniazid resistance are T275C (Pretorius et 

al., 1995), L587M (Saint-Joanis et al., 1999), H108E (Mdluli, 1998) and N138S (Morris et al., 

1995).  

It is important to note that besides the katG gene mutations, studies have shown that point 

mutations in the inhA gene at position −15C/T increase inhA mRNA level in the M. 

tuberculosis wild type which results in inhA overexpression and an eight-fold increase in 

resistance to isoniazid (Larsen et al., 2002). As per Lari et al., (2006), of the 45 isoniazid 

resistant samples analysed in Italy, 37.8% were as a result of katG gene mutation at codon 

position 315 while substitutions C-T at position 15 and G-T at position 24 in inhA accounted 

for 20.0% and 2.2% of the isoniazid resistance respectively. The ahpC and kasA gene mutations 

accounted for 2.2% and 4.4% of the isoniazid resistance. According to Seifert et al (2015), a 

combination of katG S315T and fabGI-inhA c-15t mutations account for 83% of the isoniazid 

resistance.  

Data from these studies agrees with most literature that indicates the majority of the isoniazid 

resistance in M. tuberculosis being as a result of mutations in the katG gene especially at codon 

position 315. Even with that compelling evidence, the mechanism of isoniazid resistance by 

M. tuberculosis as a result of katG gene mutations still remains greatly unexplored and an 

understanding of these resistance mechanisms is bound to provide great insight in next 

generation drug design and discovery.  

1.2.8 High confidence (HC) katG gene mutations  

High confidence mutations are the genetic variations in katG protein that are highly correlated 

with the observed phenotypic resistance of M. tuberculosis to isoniazid.  A systematic literature 
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review of the association of sequencing and phenotypic drug susceptibility testing (DST) data 

for M. tuberculosis (Miotto et al., 2017) identified katG protein mutations: S315I, S315N, 

S315T, pooled frameshifts and premature stop codons as the high confidence mutations based 

on likelihood ratios (LRs > 1) i.e. the strength of association between the mutation and the 

phenotypic drug resistance, and odds ratios (ORs > 1) i.e. the measure of association between 

exposure and outcome.  A study done using 129 M. tuberculosis isolates from WHO/TDR-TB 

Strain Bank and 47 isolates from the MDR-TB patients from the Bangladesh (Lempens et al., 

2018) classified katG protein mutations; S315T and S315N as high-confidence mutations 

basing on the PhyResSE (Phylo-Resistance Search Engine) (Ssengooba et al., 2016) variant 

catalogue which classifies high confidence mutations as those for which strong experimental 

evidence is available linking them to phenotypic isoniazid drug resistance. The high-

confidence mutations mentioned in these studies are further supported by the data from the TB 

Drug Resistance Mutation Database (TBDReaMDB) which classified 15 out of the 273 katG 

mutations as high-confidence mutations leading to isoniazid drug resistance as of August 2019 

(Sandgren et al., 2009). TBDReaMDB classifies mutations as high-confidence using the same 

criteria as the PhyResSE which relies on the experimental data from the reviewed literature 

associating the mutations to phenotypic drug resistance. Furthermore, different studies i.e. Yu 

et al., 2003, Silva et al., 2003, Haas et al., 1997 and Bostanabad, 2011 done in different parts 

of the world attribute the observed phenotypic isoniazid drug resistance to katG protein 

mutation S315T.  This study focused on understanding the mechanism of resistance of the 

documented high confidence katG protein mutations leading to isoniazid resistance (Table 1.3). 
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Table 1.3: High confidence mutations in the M. tuberculosis katG and the supporting 

literature.  

Mutation Supporting literature Country of study 

S140R Purkan et al., 2016 Indonesia 

S140N Ramaswamy et al., 1998 USA, Spain 

G279D Morlock et al., 2003 Brazil 

G285D Abe et al., 2008 Japan 

S315I Lempens et al., 2018  Bangladesh 

Haas et al., 1997 Lesotho, Sierra Leone 

S315N Lempens et al., 2018  Bangladesh 

Ssengooba et al., 2016 Uganda 

Haas et al., 1997 South Africa (Free state, 
Gauteng), Sierra Leone 

S315R Lipin et al., 2007 Russia 

S315T Lempens et al., 2018  Bangladesh 

Ssengooba et al., 2016 Uganda 

Heym et al., 1995 Mali, Ivory coast, France, 
South Africa 

Marttila et al., 1996 Finland 

S316D Hazbon et al., 2006 South Africa 

S457I Bolotin et al., 2009 Canada 

G593D Ramaswamy et al., 1998 USA, Spain 

 

1.3 PROBLEM STATEMENT  

As per 2017, an estimated 10 million people contracted TB and of these, 3% were from South 

Africa. An estimated 558 000 MDR/RR-TB cases were reported in 2017 with 3.5% of those 

being new cases and 18% of the old TB cases reverting to MDR/RR-TB (WHO, 2018). South 

Africa is ranked among the 30 high TB burdened countries with an estimated 3.4% incidence 

in new MDR/RR-TB cases and a 7% incidence of MDR/RR-TB in the old TB cases as per 

2017 (WHO,2018). In order to achieve the World Health Organization target of an 90% 

reduction in TB related deaths and an 80% reduction the TB incidence rate by 2030 (WHO 
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2018), a lot of research needs to be done in understanding of the mechanism of TB drug 

resistance and innovation of new avenues to manage the TB infection. Despite knowing the 

gene mutations; especially the katG gene mutation leading to isoniazid resistance, the 

mechanism by which these mutations in the katG gene lead to the reduced activity of catalase 

peroxidase enzyme and isoniazid resistance is still an open discussion. Currently, only a few 

katG protein mutations occurring at codon positions 315 (Unissa et al., 2018), 275 (Pretorius 

et al., 1995), 587 (Saint-Joanis et al., 1999), 108 (Mdluli, 1998) and 138 (Morris et al., 1995) 

and a few others have been studied leaving the rest unexplored. This study will focus on 

understanding the mechanism of isoniazid drug resistance by the mutations in the katG protein 

with strong experimental evidence (high confidence mutations) linking them to the phenotypic 

isoniazid drug resistance in M. tuberculosis.  

1.4 AIM OF THE STUDY 

This study aims to determine the mechanism of resistance of katG protein mutations against 

isoniazid in M. tuberculosis using bioinformatics approaches. The understanding of the katG 

mutations mechanism of resistance to isoniazid will provide insights in the role of the mutations 

in isoniazid resistance and also inform new approaches to MDR-TB drug design.   

1.5 OBJECTIVES  

1. Retrieval of the TB protein drug target structure from PDB database for mapping of 

mutation and further analysis. 

2. Identification and retrieval high confidence katG isoniazid drug resistant mutations 

from TB Drug Resistance Database and literature for modelling and further analysis. 

3. Modelling the wild type and the respective variants katG protein structures for 

molecular dynamics studies. 
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4. Performing molecular dynamics (MD) simulations and trajectory analysis on the 

modelled wild type and variants katG proteins to study the protein structural behaviour 

over time. 

5. Dynamic residue network (DRN) analysis to investigate the effect of the variations on 

the protein communication network.  

6. Merging MD, DRN data to understand the resistance mechanism of the variants.  
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CHAPTER TWO 
 

HOMOLOGY MODELLING OF WILD TYPE KAT-G PROTEIN AND 
VARIANTS 

2.1 INTRODUCTION  

Homology modelling, also known as comparative modelling, is one of the techniques used in 

studying and calculating the 3D structure of proteins. Besides homology modelling, other 

techniques used are; X-ray crystallography, nuclear magnetic resonance (NMR) and electron 

microscopy (EM). Unlike in these other methods (X-ray crystallography, NMR and EM) which 

require expensive equipment and a lot of time to obtain protein structures, homology modelling 

uses the concept of sequence similarity to calculate and model protein structures. As a result, 

homology modelling can be done using a set of computers and algorithms within hours.  

Homology has had a number of definitions from different schools of thought over the years 

however, the most applicable definition was by Osche in 1982 who defined it as the non-

random similarities between complex structures as a result of common genetic information and 

ancestry (Haszprunar, 1992). As a consequence of this, homology modelling method relies on 

the conservation of the protein structure during evolution (Chothia et al., 1986). The principle 

behind homology modelling is that if two protein sequences have a high enough sequence 

similarity, then it is highly likely that they have the same secondary structure (homologous). 

Two protein sequences are said to be homologous depending on their sequence identity score 

and the length of the sequences. Irrespective of the sequence identity score between two 

sequences, two sequences are said to be homologous if they also satisfy a minimum sequence 

length requirement (Rost, 1999). The argument being that, the shorter the sequence, the higher 

the chances that the alignment is as a result of random chance. Since protein sequences are 

made up of 20 amino acids, two unrelated sequences can match up to 5% of the residues as a 

result of random chance. Hence, the longer the sequence the less likely the sequence match 
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being as a result of chance. Therefore, shorter sequences have higher cut offs for inferring 

sequence homology while for sequences aligned a full length (i.e. 100 residues long), a 

sequence identity score of 30% or higher can safely be regarded as close homology (Rost, 

1999).  

Exploiting that fact, homology modelling uses protein homologs having a sequence similarity 

of ≥ 30% to the target sequence with existent crystal structures as a template to calculate the 

3D structure of the target protein sequence. The process of homology modelling can be broken 

down to four steps i.e. template identification, sequence alignment, model construction using 

template 3D coordinates and validation of the modelled target 3D structure.  

2.1.1 Template identification  

The first step and one of the most crucial steps in homology modelling is identification of the 

protein template. In homology modelling, the backbone atoms of the template are used to 

model the target structure and therefore the identified template must have a high sequence 

similarity (≥ 30%) or at least secondary structure conservation to the target sequence. It should 

also have an already determined crystal structure of good quality (Xiang, 2006). Homologs to 

the target sequence can be identified by submitting the target sequence to programs such as 

BLAST (Altschul et al., 1990), HHpred (Soding et al., 2005), PRIMO (Hatherley et al., 2016), 

PSI-BLAST (Altschul, 1997) and ScanPS (Barton, 1992). Programs like PSI-BLAST, HHpred 

and ScanPS employ complex homology search tools. ScanPS uses a modified version of the 

Smith–Waterman algorithm optimized for parallel processing. PSI-BLAST builds profiles and 

performs database searches in an iterative fashion similar to ScanPS whereas HHpred uses 

Hidden Markov Models (HMMs) to retrieve distantly related homologs to the target sequence.  

The template search tools provide the user with information of all the target homologs together 

with the sequence similarity, identity and alignment scores. Choice of the template sequence is 

dependent on its identity to the target sequence and its quality. The template’s quality can be 
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accessed using PDB validation features i.e. wwPDB validation, resolution, R-value free and R-

value work. A template with wwPDB validation percentile ranks in blue, high resolution and a 

low R-value is considered as a good template. In addition to template quality, presence of 

appropriate ligands and/or cofactors of interest in the template structure is another important 

factor in template selection. The next step after template identification is target and template 

sequence alignment. 

2.1.2 Sequence alignment  

In this step, the target and selected template protein sequences are aligned to obtain the most 

accurate alignment for creating the model. Since the backbone Cα atoms of the template 

sequence are used in modelling the target structure, this makes the sequence alignment step the 

most crucial step in the modelling process (Prasad et al., 2003). A sequence alignment with 

100% coverage and a similarity score of ≥ 30% is considered high enough for modelling target 

structures (Xiang, 2006).  A number of alignment programs can be used to obtain a custom 

alignment between the target and template protein sequences and these include; Clustal 

(Higgins et al., 1988), Muscle (Edgar, 2004) and TCoffee (Notredame et al., 2000) among 

others. Other programs like 3DCoffee (O'Sullivan et al., 2004) and FUGUE (Shi et al., 2001) 

can be used to generate structural alignments between the target and template proteins 

especially for distantly related homologs. It is advised to manually optimize the target and 

template alignment while accounting for biological information to improve on the model 

quality. Homology modelling also allows the user to use more than one template for target 

modelling to improve on the model quality (Larsson et al., 2008). In this case, missing sequence 

sections in one template are compensated for by the sections from the second template creating 

a more accurate alignment. 
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2.1.3 Target modelling  

During modelling, the backbone atoms and the similar residues between the template and target 

sequences are extracted and used to model the target structure backbone and side chains while 

respecting the spatial restraints between the atoms. For sections with missing residues due to 

insertions and deletions, only the backbone atoms are copied (Fiser, 2010). A number of 

homology modelling programs are available and they include web-based servers; PRIMO, 

SWISS-MODEL (Waterhouse et al., 2018) and HHpred. Standalone programs like 

MODELLER (Sali et al., 1993) and WHATIF (Vriend, 1990) are also available for homology 

modelling. Available modelling methods include; the segment matching method and satisfying 

spatial restraints method to mention but a few. MODELLER uses the satisfying spatial 

restraints method where the distances or optimization techniques are used to satisfy the spatial 

restraints. In this study, MODELLER 9.22 was used for modelling the wild type and variant 

katG structures. Model validation and refinement follows the modelling step. 

2.1.4 Model validation  

After modelling step, the 3D models needs to be checked for the accuracy. This has been done 

by looking at various metrics including if their structures satisfy the protein physicochemical 

rules, stereo-chemical properties, chemical correctness, planarity and also by checking the 

atomic interaction energies in comparison to those of the protein X-ray structures in the 

database. Different validation tools focus on specific model properties, hence it is good practice 

to validate the model using more than one validation program in a bid to get consensus results. 

Model validation can be classification as global validation and local validation. Global 

validation focuses on the quality of the entire protein structure. In MODELLER, global quality 

measurement is assessed using the discrete optimized protein energy (DOPE) score. The DOPE 

score is an atomic distance‐dependent statistical potential from a sample of native structures. 

The score takes into account the finite and spherical shape of the native structures and was 
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derived using a non-redundant set of 1472 crystallographic structures (Shen & Sali, 2006). The 

DOPE score is usually normalized to create a uniform scale, facilitating quality comparison 

between different protein structures. 

Unlike global validation, local quality validation focuses on individual residues or local regions 

in the modelled structure i.e. fit to the local electron density map or steric clashes between 

atoms. Local validation is particularly important especially in identifying and improving 

problematic sections of the protein structure i.e. the loop regions and binding site. Good model 

validation takes into account both the biological data and results from analytical validation 

tools.  A number of programs are available for both global and local validation and these 

include; WHAT_CHECK (Hooft et al., 1996), WHAT IF (Vriend, 1990), ProSA (Sippl, 1993), 

PROCHECK (Laskowski et al., 1993) and VERIFY3D (Eisenberg et al., 1997) to mention but 

a few. In this study, ProSA, PROCHECK and VERIFY3D tools were used to validate the 

generated models.  

2.1.4.1 PROCHECK 

PROCHECK is a protein structure validation program that checks the physiochemical 

properties of the structures which include; psi and phi angles, chirality, bond angles and bond 

length. The program uses parameters derived from the Morris et al., (1992) and bond length 

and angles (Engh and Huber, 1991) derived from the analyzed small molecule structures from 

Cambridge structure database. Ultimately, PROCHECK assesses how normal and abnormal 

the protein structure is compared to the well-refined, high-resolution structures from 

Cambridge structure database. The input file is protein structure file while the output is a 

number of plots including a detailed residue by residue listing (Laskowski et al., 1993). 

2.1.4.2 ProSA 

ProSA is a web-based program that validates protein structures by calculating the overall 

quality score of the structure. ProSA displays the obtained score in comparison with all the 
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experimentally determined structures of similar size present in the protein databank categorized 

by their techniques of study i.e. X-ray crystallography and Nuclear Magnetic Resonance) 

(Wiederstein and Sippl, 2007). The input file is a protein coordinate file or the PDB ID and 

output is a z-score of the overall quality of the structure and a graph of respective residue energy 

scores in the 10 residue and 40 residue windows.  

2.1.4.3 VERIFY3D 

VERIFY3D like ProSA is also a web-based server that validates the quality of the protein 

structures using a statistical approach. The server uses a precomputed database containing 18 

environmental profiles from high resolution structures. The profiles used are based on the 

solvent exposure and secondary structures of the proteins. If the structure under validation falls 

within the environmental profiles, it receives a high score. A structure is considered to have a 

favorable environment if the score is above 0 (Xiong, 2006). The output of the validation is a 

2-D graph showing the folding quality of the protein structure.  

2.1.5 MODELLER  

MODELLER is a computer program that is used for modelling the 3D structures of proteins 

using homology modelling.  Basically, three ingredients are needed for homology modelling 

when using MODELLER i.e. the target protein sequence, the template protein sequence and 

an alignment of the two sequences (Sali et al., 1995). A MODELLER script (Figure 2.1) 

containing the name of the alignment, the templates and the desired number of models to be 

made is run to create the specified models.  
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Figure 2.1: MODELLER script used in homology modelling. The script takes an alignment 

file and templates IDs as augments and returns the specified number of models, in this case 

100.  

MODELLER models protein structures by optimally satisfying the spatial constraints 

expressed by the template and target sequence alignment using CHARMM energy terms. The 

program uses a set of commands that are edited to suit the structures of interest. Besides 

homology modelling, MODELLER can be used for the comparison of protein structures, de 

novo modelling of loops in protein structures and optimization of protein structure models (Sali 

et al., 1993). 

2.2 METHODOLOGY  

2.2.1 Template identification  

The M. tuberculosis katG sequence was retrieved from the National Center for Biotechnology 

Information (NCBI) database by searching using key words: M. tuberculosis and katG protein 

sequence. Results from the search linked the M. tuberculosis katG sequence to the X-ray crystal 

structure in the PDB database with a PDB ID; 2CCA. The PDB protein structure was identified 

as the wild type structure of the M. tuberculosis katG enzyme. The M. tuberculosis katG 

homolog search was done using BLASTP (McGinnis et al, 2004) and HHpred (Zimmermann 

et al., 2018) similarity search tools. The templates were then selected based on sequence 

similarity, E-value, query sequence coverage and presence of co-crystallized ligand of interest 

(isoniazid) (Table 2.1). Two templates with the highest sequence similarity to the wild type 
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katG, lowest E-value, good quality and coverage and with a co-crystallized isoniazid ligand 

were selected. 

2.2.2 Template-target alignment  

The M. tuberculosis sequence and the templates (2CCA and 2V2E) protein sequences were 

retrieved from NCBI and aligned using TCoffee alignment tool (Notredame et al, 2000). The 

alignment file was then edited to retain all the coordinate information from template PDB ID: 

2CAA and only the ligand (isoniazid) coordinate information from template PDB ID: 2V2E. 

Finally, the alignment was then converted to MODELLER format and saved as a pir file for 

the homology modelling step.  

For the katG variants, the respective mutations were introduced in the target sequence using a 

Python script. The alignment between the modelled wild type and the respective variants was 

done using TCoffee alignment tool and the generated alignment file was converted to 

MODELLER format and saved as a pir file.  

2.2.3 Target homology modelling  

For both the wild type and the respective variants, MODELLER version 9.22 was used to 

generate the 3D structures using the generated alignment files. The respective alignment pir 

files were passed to MODELLER together with their specified template PDB files. 100 models 

were generated for each variant and wild type using auto model and slow refinement 

MODELLER options.  

2.2.4 Model validation  

From the 100 models of each structure, the best model was selected based on MODELLER 

normalized z-DOPE score. The model structures with the lowest normalized z-DOPE scores 

were considered as the best and these proceeded to be validated with ProSA, VERIFY3D and 

PROCHECK validation programs using default settings.  
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2.3 RESULTS AND DISCUSSION  

2.3.1 KatG wild type homology modelling 

2.3.1.1 Template identification 

The M. tuberculosis and S. cerevisiae protein structures were identified as the templates for M. 

tuberculosis katG-isoniazid complex structure modelling based on their sequence identity to 

the target, structure resolution, coverage (Table 2.1) and the predicted isoniazid coordination 

residues in the M. tuberculosis katG active site. 

Table 2.1: KatG model templates global quality scores. 

 M. tuberculosis S. cerevisiae  

PDB ID  2CAA  2V2E  

E-value  0.0  3E-18  

R-value Free  0.225  0.187  

R-value Work  0.199  0.165  

Resolution  2 Å  1.68 Å  

z-DOPE score  -1.468  -2.528  

Even with a low sequence identity of S. cerevisiae cytochrome c peroxidase structure to M. 

tuberculosis katG, the two structures have secondary structure and active site conservations 

(Figure 2.2). 

Isoniazid in the M. tuberculosis katG protein is proposed to interact with residues; His-108, 

Arg-104 and Try-107 on the distal end of the heme group (Henriksen et al., 1998, Aitken et al., 

2001and Bertrand et al., 2004) as is the case in the S. cerevisiae. 
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Figure 2.2 Secondary structure conservation between M. tuberculosis and S. cerevisiae 

katG. (A) Shows the level of sequence conservation in the TCoffee alignment as viewed in 

Jalview (Clamp et al., 2004). The dotted lines indicate the insertions in 2CCA katG structure 

that are not present in the 2V2E structure.  (B) Shows structural conservation between the M. 

tuberculosis (green) and S. cerevisiae (cyan) katG structures.  
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2.3.1.2 Template-target alignment  

The target and template sequences were aligned using TCoffee, an alignment programme that 

makes use of a library of heterogeneous data sources to do multiple sequence alignment 

through a progressive method. The generated alignment was then edited to only include the 

ligand section from second template PDB ID: 2V2E (Figure 2.3) and all the residue information 

from first template PDB ID 2CCA.  

 

Figure 2.3: MODELLER input alignment file (pir file). The M. tuberculosis katG target 

sequence is labeled as WT-2cca, the templates are labelled 2cca_clean.pdb and 

2v2e_cleana.pdb. The alignment sequence for 2v2e_cleana.pdb was edited to only include the 

isoniazid ligand information. 

2.3.1.3 Model building  

The wild type katG models were calculated and refined using the MODELLER slow 

refinement method.  100 models were generated for the wild type protein, and the best selected 

based on the normalized z-DOPE score. The best model had a score of -1.006. Visualization 

using PyMOL showed polar interactions between isoniazid and Asp-137, Ser-315 and Val-230 

residues in the modelled M. tuberculosis katG active site (Figure 2.4) unlike in the template 

PDB ID: 2V2E where the isoniazid interacted with residues Pro-132 and Arg-48. This could 
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have been as a consequence of model optimization, a MODELLER function aimed at obtaining 

the model with the least conformation energy. 

 

Figure 2.4: Modelled M. tuberculosis katG protein in complex with isoniazid (yellow). N-

terminal: green, C- terminal: purple. Isoniazid (yellow) has polar contacts with Asp-137, Val-

230 and Ser-315. 

Serine residue interaction with isoniazid in the model katG has a well-documented SNP 

(S315T) known for conferring isoniazid resistance in M. tuberculosis (Lempens et al., 2018). 

A 2D residue interaction analysis using LigPlus (Wallace et al., 1995) showed isoniazid 

hydrogen bond interactions with residues Asp-137 and Val-230 (Figure 2.5) in the katG wild 

type as was indicated in PyMOL.   
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Figure 2.5: LigPlot of isoniazid’s coordinating residues in katG model. Isoniazid had 

hydrogen bond interactions (green dotted lines) between Val-230 and Asp-137. The drug also 

was noticed to have hydrophobic interactions (red dotted lines) with Leu-227, Pro-232, Ser-

315, Ile-228 and the heme group. The residue numbers in the Figure 2.5 are model numbers. 

2.3.1.4 Model validation  

Validation of the katG model with PROCHECK showed 93.2% of the residues in most 

favourable regions, 6.6% in additionally allowed region and none in the disallowed regions. 

ProSA scored the model a z-score of –11.72 which was well within katG size similar protein 

structures present in the Protein Data Bank. Finally, VERIFY3D showed 95.24% of the wild 

type katG model residues to be above the average 3D-ID score of ≥0.2. An average 3D-ID 

score of ≥0.22 indicates that the sequence of the katG model wild type is compatible with the 

protein model as per the 3D profile of the structure (Figure 2.6). 
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Fig 2.6: VERIFY3D validation result for the M. tuberculosis katG wild type model. 

2.3.2 Variant katG homology modelling 

A vast number of mutations leading to katG isoniazid resistance have been documented over 

time and as of August 2019, the TB drug resistance database alone had 273 such documented 

mutations. A number of these mutations in the TB drug resistance database have compelling 

evidence (literature) supporting the notion that they lead to katG isoniazid resistance and such 

mutations have been referred to as high confidence mutations.  

In this research, 11 high confidence mutations located in seven different positions of the katG 

protein were studied (Table 2.2). Isoniazid resistance conferring high confidence mutations in 

the katG are not only located near the active site but also more than 10 Å away from the active 

site in the C-terminal domain (Figure 2.7). Mutations at position 315 are part of N-terminal 

loop region 10.4 Å from the Fe in the centre of the heme. Residues at position 315 are believed 

to form part of the isoniazid access channel to the active site. Mutations G279D, G285D and 

G316D from part of the N-terminal loop region and in respect to the heme group, they are 19.7, 

22.5 and 13.2 Å away from the centre of the heme group respectively. Mutations at position 

140 in the N-terminal domain are the only high confidence mutations located in the helix region 

in this domain. These mutations; S140N and S140R are 13.3 Å from the heme group in the 



51 
 

active site. In the C-terminal domain, mutation S457I is located in the helix region 58 Å away 

from the heme while G593D is located in the loop region 40.9 Å from the heme. 

 

Figure 2.7: katG structure with mapped isoniazid resistance conferring high confidence 

mutations. The N-terminal domain is green, C-terminal domain is brown and the variant 

position shown as red spheres, the heme group (yellow) is shown as sticks. 

Research has shown that mutation location plays a role in the isoniazid resistance mechanisms. 

In addition, different mutations at the same location have shown to have different isoniazid 

resistance mechanisms (Cade et al., 2010). 

The modelled katG wild type protein structure in complex with isoniazid was used as the 

template for modelling the respective variants using MODELLER. Alignments were made 

between the modelled wild type structure sequence and the respective variant sequences using 

TCoffee (Notredame et al., 2000) and edited into MODELLER format (pir files). 
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For each variant, 100 models were generated and the best selected based on their z-DOPE 

scores (Table 2.2). 

Table 2.2: The z-DOPE scores of the best MODELLER generated models.  

Homology model  z-DOPE score  

Wild type -1.006 

S140R -0.816 

S140N -0.798 

G279D -0.787 

G285D -0.803 

S315T -0.814 

S315R -0.824 

S315N -0.817 

S315I -0.831 

G316D -0.804 

S457I -0.808 

G593D -0.799 

All the z-DOPE scores were close to the template (2CCA) z-DOPE score of -1.006 indicating 

high structural similarity.  

KatG variant model validation was done using ProSA, PROCHECK and VERIFY3D 

webservers. PROCHECK results obtained from the Ramachandran plot statistics showed that 

variant structures were in agreement with the protein physicochemical rules (Table 2.3). 
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Table 2.3: PROCHECK Ramachandran plot statistics for each variant katG model. 

Structure  

model  

-Residues in most 
favored regions 
[A,B,L]  

Residues in 
additional allowed 
regions [a,b,l,p]  

Residues in 
generously allowed 
regions [~a,~b,~l,~p]  

Residues in 
disallowed 
regions  

S140R 92.4% 7.4% 0.2% 0.0% 

S140N 92.2% 7.8% 0.0% 0.0% 

G279D 92.1% 7.9% 0.0% 0.0% 

G285D 92.1% 7.8% 0.0% 0.2% 

S315T 91.9% 7.8% 0.0% 0.0% 

S315R 92.6% 7.4% 0.0% 0.0% 

S315N 92.7% 6.9% 0.3% 0.0% 

S315I 92.6% 7.3% 0.2% 0.0% 

G316D 92.6% 7.1% 0.3% 0.0% 

S457I 92.6% 7.4% 0.0% 0.0% 

G593D 91.9% 7.6% 0.5% 0.0% 

PROCHECK validation indicated that most of the residues in the models were in the favored 

regions and additionally allowed regions with no residues in disallowed region except for 

model G285D. This model had 0.2% of the residues in the disallowed region. The PROCHECK 

results indicated that there was no steric hindrance of the atoms in the model structures.  

ProSA validation scored all the katG variant models a z-score below the recommended cut-off 

of 0.5 indicating good model quality. Mutations S140N, G279D and S315I had a z-core of -

11.82 while mutations S315R and S315N had a z-score of -11.77. G316D and G593 had a 

ProSA z-score of -11.78 and lastly mutations S140R, G285D, S315T and S457I had z-scores 

of -11.79, -11.96, -11.84 and -11.68 respectively. 

Finally, VERIFY3D validation passed all the generated katG variant models (Table 2.4). In 

VERIFY3D validation, at least 80% of the protein residues need to score ≥ 0.2 for the model 
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to be passed. Models with more 80% or more residues with 3D-ID score ≥ 0.2 are considered 

as good models and those below 80% as bad. 

Table 2.4: Percentage of residues with 3D-ID score ≥ 0.2 in the respective katG variants. 

Variant model  Percentage residues with 3D-ID score ≥ 0.2  VERIFY3D validation  

S140R 92.03%  PASS 

S140N 93.43%  PASS 

G279D 94.97%  PASS 

G285D 95.10%  PASS 

S315T 95.94%  PASS 

S315R 92.87%  PASS 

S315N 93.85%  PASS 

S315I 93.29%  PASS 

G316D 95.10%  PASS 

S457I 92.87% PASS 

G593D 93.99% PASS 

 

2.4 CHAPTER SUMMARY  

In order to study the katG protein behavior after undergoing known resistance conferring 

mutations, the high confidence katG variant structures were modelled using homology 

modelling. Homology modelling is a technique for modelling protein structures using 

templates with a high enough (≥ 25%) sequence identity to the target protein sequence. In this 

chapter, high confidence resistance conferring katG mutations were modelled using a 

homology modelling tool; MODELLER.  The M. tuberculosis katG (PDB ID: 2CCA) and S. 

cerevisiae (PDB ID: 2V2E) protein structures were used as modelling templates for the wild 

type katG and variants.  
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From the models, variants at position 315 were closest to the active site (10.4 Å from the heme 

group) forming part of the isoniazid access channel in the N-terminal domain. Other N-terminal 

variants included S140R, S140N, G279D and G285D that surrounded the active site region in 

the N-terminal domain bringing the total number of variants in the N-terminal to nine. Two of 

the high confidence variants; S457I and G593D were located in the C-terminal domain at a 

distance of 58 Å and 40.9 Å away from the active site heme group. Most of the mutations; 

G279D, G285D, S315I, S315R, S315N, S315T, G316D and G593D formed part of the loop 

regions in the katG structure. The other three high confidence mutations; S140N, S140R and 

S457I formed part of the helix regions in the N and C-terminal domains. 

A number of model quality evaluation programs (MQAPs) were used to access the quality of 

the katG wild type and the respective variant protein models to enable model disqualification 

based on combined results. All MQAPs used indicated that the modelled structures had the 

correct stereochemistry as per the Ramachandran statistics, acceptable energy as per ProSA 

and sequence compatible to 3D structures as per VERIFY3D. The verdict from the model 

validation was that the models were of good quality and could further be used to study the katG 

active site residue interaction with isoniazid through molecular dynamics. The next chapter 

(molecular dynamics) focused on establishing the structural and functional changes in the 

binding characteristics of isoniazid in the M. tuberculosis katG protein.   
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CHAPTER THREE 

MOLECULAR DYNAMICS SIMULATIONS OF THE KAT-G PROTEIN 
AND VARIANTS 

3.1 INTRODUCTION  

Based on the fact that proteins are dynamic molecules (Özen et al., 2011), molecular dynamic 

calculations provide a platform to study protein movements and conformational changes of 

biological macromolecules as a function of time (Alonso et al., 2006). Therefore, molecular 

dynamics can be used to investigate protein-protein and protein-ligand interactions in a system. 

In this chapter, the katG wild type and variants protein conformational changes were examined 

over time using molecular dynamic simulations.  

3.2 MOLECULAR DYNAMIC SIMULATIONS  

Molecular dynamics (MD) is a study of the movement of molecules as a function of time. 

Molecular dynamic simulation is a technique used to produce dynamic trajectories of a system 

composed of a specific number of particles by applying Newton’s laws of motion (González, 

2011).  

Molecular dynamics were first explored and introduced by Alder and Wainwright in the 1950’s 

(Alder & Wainwright, 1959). Later in 1974, Rahman and Stillinger performed the first MD 

simulation which was carried out on a bovine trypsin inhibitor and it lasted a duration of 8.8 ps 

(Stillinger & Rahman, 1974). The principle behind molecular dynamics is solving Newton's 

classical equation of motion (Equation 3.1) by using forces acting between atoms in an initial 

configuration to find the next configuration. To solve Newton’s equation of motion, initial 

conditions like the positions of the atoms in a structure and their velocities need to be 

established first. The atom positions are obtained from the coordinate information in the 

structure PDB file while their velocities are calculated using the Maxwellian distribution 

centered on the desired temperature.    
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F = ma 

Equation 3.1: Newton’s classical equation of motion used in MD simulations. F is the force 

acting on the atom, m is the mass of the atom, and a is the acceleration of the atom.  

Forces acting between atoms in a structure are dependent on the bond length, bond angle and 

the torsional angle between the atoms. For bonded interactions, Hooke's law (F= -kx, where F 

is the force applied, -k is the spring constant and x is the extension) is used to calculate the 

forces acting on the bonded atoms while for non-bonded interactions, Lennard-Jones functions 

are applied. The collection of force equations (bond-angle, bond-length, torsional-angle and 

non-bonded interactions) and their respective constants is called force field equations and these 

are used to reproduce molecular geometry and selected properties of tested structures.  

With the use of force field parameters, MD simulations can be applied in molecular docking 

and drug design, understanding allosteric effect, refining structure predictions and studying 

protein-protein and protein-ligand interactions (Gelpi et al., 2015). Currently three approaches 

can be used when performing MD simulations and these include; molecular mechanics (MM), 

quantum mechanics (QM) and hybridization of MM and QM. 

When using MM in molecular dynamics, the atom nuclei are treated as charged spheres and 

the bonds between atoms as springs (Hooke’s law). The advantage to MM is that it can be 

applied on large systems however, it is not as accurate as QM and it has limited predictive 

power. Unlike MM, QM describes molecule interactions through calculating the electronic 

forces acting between nuclei and electrons and hence it is capable of calculating properties of 

atoms, molecules, crystalline solids and even disordered solids. This makes QM a more 

accurate technique in predicting molecule interaction however, it is not only computationally 

expensive but also time consuming creating the need for hybridization.  
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When using a hybrid of QM and MM, the active site in the structure is described using QM 

and the rest of the structure described using MM. In this way, the system is described in a more 

accurate manner while requiring less computational resources.   

The most commonly used force fields in MD simulations include AMBER (Case et al., 2005), 

CHARMM (Brooks et al., 1983), NAMD (Phillips et al., 2005) and GROMACS (Pronk et al., 

2013). In this study, the GROMACS force fields were used for molecular dynamic simulations. 

3.3 GROMACS  

GROningen MAchine for Chemical Simulations (GROMACS) is a software package used to 

perform molecular dynamic simulations for systems like proteins and lipids. The software 

package uses a set of commands in the command-line interface and takes files as input and 

output (Abraham et al., 2015). The free software comprises of a large pool of flexible tools for 

trajectory analysis that require no scripting from the user. The program also allows the user to 

monitor the progress of the simulations, and the output of the trajectory analysis is represented 

in form of xmgrace graphs (Abraham et al., 2015).  

With the growth in computing power and development of simulation algorithms like 

GROMACS, the study and prediction of interactions between receptors and ligands (Chong et 

al., 1999), prediction of receptor functions and description of transitional states of complex 

interactions (Huang & Caflisch, 2011) has not only been made possible but also eased. The one 

challenge with the available force fields is their lack of parameters for non-core molecules like 

cofactors and inhibitors. However, a number of webservers i.e. ATB (Malde et al., 2011), 

ProDRG (van Aalten et al., 1996) and ACPYPE (Sousa da Silva & Vranken, 2012) are 

available to calculate parameters for these molecules.  
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3.4 AUTOMATED TOPOLOGY BUILDER (ATB)  

As much as the different force fields i.e. AMBER, CHARMM, GROMACS etc. have unique 

parameters, these parameters are for a given set of core molecules i.e. lipids, amino acids, 

nucleic acids, nucleotides and common sugars. These parameters are configured to reproduce 

a given set of properties that match across all the force fields. As a result, other non-core 

molecules such as cofactors, inhibitors and potential drug molecules have to be parameterized 

individually using other tools. Automated topology builder is a web server that uses quantum 

mechanical calculations and a knowledge-based approach to generate topologies and molecular 

dynamic parameters compatible with GROMACS force fields for different molecules (Malde 

et al., 2011). The ATB is capable of generating MD parameters for hetero-molecules, amino 

acid, nucleic acid and solvents.  Besides MD parameter generation, the ATB also acts as an 

archive for already parameterized molecules as part of the GROMACS family of force fields. 

The ATB web server requires a molecule pdb file, the protonation and tautomeric states of the 

molecule as input and the output are the itp and pdb molecule files.  

3.5. MODE-TASK SUITE 

Besides the conventional MD trajectory analysis techniques i.e. RMSD, RMSF and Rg, MD 

data can be further analysed to investigate the global motions and identification of essential 

motions of macromolecules. The MODE-TASK (Ross et al., 2018) is a software suite 

comprising of a number of tools used to analyse and compare protein dynamics using MD 

trajectory data (Ross et al., 2018). The suite is composed of normal mode analysis (NMA) and 

principal component analysis (PCA) tools used in identifying most prominent conformations 

in a protein MD trajectory. In addition to conformation analysis tools, MODE-TASK also 

includes mode visualization tools and a MODE-TASK PyMOL plugin (Ross et al., 2018). 
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3.5.1 Principal component analysis (PCA) 

Principal component analysis is a technique that can be used to identify the most biologically 

relevant protein motions. The technique analyses a data table in which observations are 

described by several inter‐correlated quantitative dependent variables (Ross et al., 2018). The 

technique has vast applications including detection of correlated motion in molecular dynamics 

data. In this study, PCA was used to illustrate the 3D conformational sampling and internal 

dynamics of the wild type and variant katG proteins using scripts in the MODE-TASK suit. 

Principal component analysis takes an MD trajectory in terms of a small number of variables, 

sometimes referred to as essential degrees of freedom (EOF) and extracts the most important 

nodes in the movement of the molecule and this is performed on the Cartesian coordinates of 

the molecule (Haider et al., 2008). The mean squared positional fluctuations (variances) of each 

atom are readily calculated from the total simulation. If the obtained variances do not change 

significantly over time that would imply that within the observed period, only motion about 

one native conformation was recorded. Principle component analysis uses a covariance matrix- 

(C) of the protein MD simulation that is obtained by first superimposing the protein coordinates 

on a reference structure, which is usually the initial coordinates, or the average coordinates and 

then a displacement vector for each residue (described by the Cα or Cβ coordinates of the 

residue i) at a time point t is obtained (Ross et al., 2018). 

3.6 METHODOLOGY  

Molecular dynamic trajectories for the katG wild type and variants were calculated using a 

step-by-step MD standard operating procedure as illustrated in Figure 3.1. 
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Figure 3.1: Schematic diagram of the methodology followed in MD calculations.  

3.6.1 Topology generation  

3.6.1.1 Protein topology  

The protein topology file and processed structure files were generated using the pbd2gmx 

command in the GROMACS 5.1.5 package while using the GROMOS96 54a7 force fields. In 

addition to having parameters for core molecules, the GROMOS96 54a7 force field parameters 

also contain parameters for the heme group which is present in the katG active site. The input 

file for the pbd2gmx command was the modelled holo katG coordinate file (containing only 

the protein and heme atom coordinates) and the outputs were a topology file (.top), a position 

restraint file (.itp) and a post processed structure file (.gro). The topology file contained 

parameters for the bonded and non-bonded atom interactions while the processed structure file 

(.gro) contained the structure atoms coordinate information as defined by the GROMOS96 

54a7 force fields and finally the .itp file contained the restraints for the heavy atoms.  

3.6.1.2 Ligand topology  

The ligand (isoniazid) PDB file was submitted to the ATB topology builder tool to generate a 

topology file using default settings. The outputs were the ligand .itp file containing the atom 
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connection information and the coordinate (.pdb) file. The ligand pdb file was converted to .gro 

format using the editconf GROMACS command (gmx editconf –f file.pdb -o file.gro).   

3.6.2 Box definition and solvation  

The protein and ligand coordinate information was combined to create a single structure file 

containing the protein-ligand complex. This was done by copying and pasting the ligand.gro 

coordinate information to the protein .gro coordinate file and ensuring that the atom number in 

the complex file was correct. Molecular dynamic simulations were run under periodic boundary 

conditions (PBC) using a cubic box to mimic an infinite system. The editconf GROMACS 

command was used to place the protein-ligand complex in the center of the cubic box (cube 

side length: 11.1 nm) with a clearance space of 1 nm to satisfy the minimum image convention. 

The system was solvated using SPC water model (spc216) using the solvate GROMACS 

command. Solvation of the system was to mimic the normal protein environment and ensure 

easy interactions between the protein and the ligand.  

3.6.3 Addition of ions  

Molecular dynamic simulations require a system of net charge of zero (neutral system) in order 

to mimic protein behavior invitro. The neutral system was achieved by adding 23 NA ions to 

the system to equilibrate the original structure’s net charge of –23. This was done by running 

the grompp command to generate the .tpr file and determine the net charge of the system. The 

.tpr file was then used as input file for the genion tool in GROMACS that replaces a specified 

number of water molecules in the system with the user specified ions (CL or NA).  

3.6.4 Energy minimization  

Energy minimization prior to MD simulations is important to ensure that the system has no 

steric clashes or inappropriate geometry resulting from the addition of water molecules and 

ions from the prior steps. The grompp GROMACs command was used to generate a binary 
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input file (.tpr) which was used as an input file for the GROMACS MD engine mdrun 

minimization command. Minimization was done using the steepest descent minimization 

integrator for 50000 steps and minimization was stopped when the maximum force of < 1000.0 

kJ/mol was achieved. Verification of minimization was done by analyzing the GROMACS 

energy terms file (em.edr) using the energy GROMACS command to generate the 

potential.xvg file. The potential.xvg shows the energy minimization curve and this was viewed 

using xmgrace plots.  

3.6.5 Equilibration  

After minimization, system equilibration was required to optimize the solvent together with 

the solute in the system. Equilibration was done by bringing the solvent to the desired 

simulation temperature of 300 K under the NVT ensemble (constant Number of particles, 

Volume, and Temperature) for 100 ps. The desired system density was achieved through 

pressure equilibration under NPT ensemble (i.e. constant number of particles (N), constant 

pressure (P) and constant temperature (T)) for 100 ps to stabilize the pressure of the system at 

around 1.0 bar. Temperature and pressure equilibrations were verified using the GROMACS 

energy command which created temperature and pressure equilibration graphs that were 

viewed using xmgrace plots.  

3.6.6 Production MD  

Consequent to completion of the temperature and pressure equilibration, the position restraints 

were released and production MD run using GROMACS commands. Molecular dynamic 

simulations were run for 200 ns and trajectories dumped every 10 ps. The next step was 

visualization and trajectory analysis.  

3.6.7 Analysis  

Upon completion of the production MD runs, the structure was removed from the PBC 

simulation box and centered using the trjconv GROMACS command. The trajectory of the 
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MD run was then analyzed using, RMSD, RMSF and Rg. The dynamics of the structures over 

the simulation time were viewed using visual molecular dynamics (VMD) tool (Humphrey et 

al., 1996). 

3.6.7.1 RMSD  

The root mean square deviation is the measure of the average distance between the atoms 

(usually backbone atoms) of superimposed proteins. The RMSD is used to measure the stability 

of the simulated structure over the simulation time. The RMSD for the protein structures was 

calculated using the rms GROMACS command and visualized using xmgrace plots. 

3.6.7.2 Principal component analysis  

Principal component analysis was calculated from the MD trajectory of the katG wild type and 

variants. The input files for PCA were the trajectory files (xtc) and the topology files (tpr). The 

trajectory files from the MD simulation were prepared by first removing the periodic boundary 

conditions (PBC), removing the water molecules and fitting atoms to the reference structure 

using the gmx trjconv command. Then, GROMACS commands; gmx covar and gmx anaeig 

were used to create the covariance matrix and diagonalize the matrix respectively by selecting 

the backbone atoms option in both commands. An R script (Appendix 1) written by Arnold 

Amusengere (RUBi PhD student) was edited to fit the study requirements and used to plot the 

3D heat maps showing the most prominent structure conformations. 

3.6.7.3 RMSF  

The root mean square fluctuation is the standard deviation of the atom position calculated from 

the average structure. The RMSF is used to measure local chain flexibility and structure 

stability. The RMSF was calculated using the rmsf GROMACS command and visualized using 

the xmgrace plots.  
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3.5.7.4 Radius of gyration  

This is a measure of the distribution of atoms of a protein around its axis. The Rg was used to 

describe the overall spread and compactness of the molecule (structure). A stably folded 

molecule will have tight Rg whereas a molecule that unfolds will have a fluctuating Rg. The 

GROMACS command gyrate was used to calculate the Rg and the gyration graphs were 

visualized using xmgrace pots.  

3.7 RESULTS AND DISCUSSION  

The MD simulations were performed to study the katG protein conformational and behavioral 

changes as a result of the high confidence katG mutations known to confer isoniazid drug 

resistance. To do this, MD simulations were run on the modelled katG-isoniazid complex, the 

modelled holo katG and the respective variants as discussed in the following sections.  

3.7.1 Modelled katG-isoniazid complex  

Analysis of the 200 ns MD simulations showed an unstable isoniazid interaction in the katG 

active site of both the model and the template (PDB ID: 2v2e) protein structures (Figure 3.2). 

Isoniazid was observed to maintain interaction within the active site for approximately 22 ns 

and then changed conformation i.e. isoniazid pyridine ring was interacting with the active site 

as opposed to the hydrazine group as indicated in literature (Henriksen et al., 1998, Aitken et 

al., 2001 and Bertrand et al., 2004). The isoniazid conformation change in the active site was 

attributed to the observed reduction in hydrogen bonds and strength of interactions between 

the isoniazid and the active site residues as the MD simulations progressed, a scenario also 

observed by Unissa et al., (2018) during 10 ns katG simulations.    
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Figure 3.2: Isoniazid conformational change in the model and template katG active site. 

A1: Shows model katG-isoniazid conformation before the 22 ns mark, a1: shows the model 

katG-isoniazid's interacting residues before 22 ns mark, A2: shows model katG-isoniazid 

conformation after 22 ns, a2: illustrates model katG-isoniazid‘s interacting residues after 22 

ns, B1: illustrates template katG conformation before 22 ns, b1: shows template katG-

isoniazid's interacting residues before 22 ns, B2: illustrates template katG-isoniazid 

conformation after 22 ns, and finally, b2: shows template isoniazid's interacting residues after 

22 ns.  

Early in the simulation (before 22 ns) the isoniazid was observed to have two pi-alkyl and one 

unfavorable bond interaction in the model whereas the template had two hydrogen bonds and 

one van der Waals interaction in the katG active site. Further into the simulation (after 22 ns) 

isoniazid was observed to have two pi-alkyl and one hydrogen bond interactions between its 

pyridine ring and the active site in the model katG. In the template, isoniazid had one hydrogen 

bond, two pi-alkyl bonds and one van der Waals interaction which are weaker than the 

hydrogen bond interactions observed early in the MD simulation.  Due to the observed weak 

interactions and in the interest of studying katG variant conformational changes over a 
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significant time (200 ns), katG holo structures were used for further investigation (MD-

simulations).  

3.7.2 Isoniazid unbound katG and modelled variants  

Molecular dynamic simulations were performed on the holo structures of the katG wild type 

and the respective variants to study the conformational dynamics of the structures at atomic 

resolution. Post MD analysis was performed using RMSD, RMSF and Rg following the steps 

as explained in section 3.5.  

3.7.2.1 RMSD  

The root mean square deviation was used to measure the conformational diversity between the 

two sets of values in the context of the holo wild type katG protein structure and respective 

variant holo structures as shown in Figure 3.3.  

Analysis of the katG wild type conformational flexibility over a 200 ns trajectory of showed 

RMSD fluctuations between 0.2 nm and 0.6 nm (Figure 3.3) until the 150 ns mark where the 

protein stabilizes around 0.45 nm. The 150 ns mark was taken as the protein equilibration point. 

Variants S315I, S315N, S140R, G593D, G285D, G316D and G279D showed an increased 

RMSD compared to the wild type. Six of these variants; S315I, S315N, S140R, G285D, G316D 

and G279D are located in the N-terminal domain around the active site with an average distance 

of 15.82 Å from the heme group in the active site. Variant G593D is in the C-terminal domain 

at a distance of 40.9 Å from the active site. Reduced RMSD was observed in variants S315R 

and in the early stages (up to 100ns) of variant S140R. Variant S315T located in the N-terminal 

and S457I in the C-terminal showed somewhat similar RMSD as that observed in the wild type 

(Figure 3.3).  
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Figure 3.3: RMSD graphs of katG wild type and variant proteins. The graphs show a 

comparison of the katG wild type (black) and variants’ (respective color) structural stability 

over the 200 ns simulation.  The y-axis represents RMSD in nm of the structure throughout the 

simulation and x-axis represents time in ns. 
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Pertaining to structural stability, variants S140R and G316D in the N-terminal domain had an 

increased structural instability compared to the wild type and the rest of the variants. Both 

S140R and G316D had a fluctuation ranging from 0.2 nm to 0.7 nm suggesting more backbone 

residue flexibility in the variants. The rest of the variants especially S315R and S315I that had 

an RMSD range of 0.2 - 0.35 nm and 0.2 - 0.5 nm respectively showed more structural rigidity 

compared to the wild type. 

In as far as the RMSD distribution is concerned; the wild type displayed a bimodal RMSD 

distribution (Figure 3.4) as was the case for most of the variants indicating two prominent 

structural conformations of the katG structure. The mutations caused varying backbone 

conformational variability of the katG structure with variants S315R, S315T and S140N having 

less variability (RMSD means of 0.36, 0.41 and 0.38 respectively) compared to the wild type 

with an RMSD mean of 0.42. On the other hand, variants S315N, S315I, S140R, S457I, 

G279D, G316D, G285D, and G593D showed more conformational diversity (RMSD mean of 

0.49, 0.49, 0.51, 0.44, 0.46, 0.55, 0.49 and 0.49 respectively) compared to the wild type 

structure. Variants S140R and G316D had the most conformational space compared to all the 

variants and the wild type which was also observed earlier in the structural flexibility graphs 

(Figure 3.3).  The variant S140R is located on the distal end of the heme group and G316D is 

on the proximal end (Figure 2.7). The observed wide histogram bases signify more sampled 

conformations in the MD simulation for the respective variants (S140R and G316D).  

From the data, the high confidence mutations seem to be affecting not only the stability of the 

katG protein structure but also, there is a significant conformational change between the katG 

wild type structure and that of the variants. Further analysis of the backbone flexibility and 

conformational changes was done using PCA. 
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Figure 3.4: Histogram presentation of the differences in the Cα atom RMSD between the 

wild type holo katG and variants. The y-axis represents the frequency of the sampled 

conformations and x-axis represents the RMSD of the sampled conformations. 
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3.7.2.2 Principal component analysis 

Principal component analysis was used to further explain the observed RMSD results and to 

examine the conformational changes and energy distribution over the course of the simulation. 

Principal component analysis identified both clockwise and anti-clockwise protein 

conformational movements over the 200 ns trajectory with variants: S315R, S315N, S315I, 

S140R, S140N, G593D, G285D and G279D having a clockwise conformational shift while 

G316D, S315T and the wild type exhibiting a somewhat similar anti-clockwise shift (Appendix 

2). This means that the mentioned variants caused a change in the protein’s behavior leading 

to a directional shift in protein’s conformation sampling from anti-clockwise to clockwise. 

Conformational change patterns (i.e. clockwise and anti-clockwise) are of paramount 

importance in as far as protein interactions are concerned as they are essential for activities like 

ligand binding, bimolecular recognition, enzymatic catalysis and determining protein 

functionality (Kurplus & McCammon, 1983). The difference in conformational shift between 

the variants and the wild type could be impacting the reaction of isoniazid in the katG protein 

active site of the respective variants leading to resistance.  

Further analysis of the PCA data using energy heat maps illustrated difference between the 

wild type and variant conformational space and energy over the trajectory (Figure 3.5). From 

the heat maps, the wild type structure is observed to have a larger conformational variation as 

compared to variants S315R, S457I, S315T, S140N and G279D. The energy heat map 

observations are in agreement the RMSD data that showed a lower backbone flexibility in the 

wild type and the mentioned variants. 

In the wild type RMSD data, a bimodal distribution is observed whereas the PCA data shows 

three prominent conformations. The third observed conformation in the wild type is believed 

to be the transitional conformation between the two major ones. 
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Figure 3.5: Energy heat maps of the katG wild type and variants over a 200 ns trajectory. 

Surfaces are colored based on the Gibbs free energy levels from maroon (high energy/ maxima) 

to blue (low energy/ minima). The contours represent an increase in the free energy (kJ/mol). 

Variants S140R and S315I that showed more structural instability in section 3.7.2.1, are 

observed having a greater conformational space compared to the wild type and other variants. 
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This indicates that these two variants had a more divergent conformation sampling that was 

not observed in the wild type. 

Variants S140R, S140N, G279D, G285D, S315I and G316D showed higher energy barriers 

between their prominent conformations as compared to S315N, S315R, S457I and the wild 

type. Structures with high energy barriers between conformations require more energy to move 

from one conformation to the next. Since in nature low energy interactions are favored, 

structures requiring more energy would have limited conformational variation. As observed in 

section 3.7.2.1, the mutations have a varying effect in terms of conformational space and 

variability on the katG structure. 

3.7.2.3 RMSF  

The protein residue flexibility of the katG wild type and the respective variants was compared 

using RMSF KatG residues at positions 26 - 110 (Figure 3.6) showed reduced residue 

flexibility across all variants as compared to the wild type. This region includes active site 

residues Arg-104, His-108 and Trp-107 that coordinate isoniazid forming hydrogen bonds.  

Variant S315T was observed to have the least RMSF around the katG active site (26 - 110) 

compared to all the other studied variants. Reduction of the katG region 26 - 110 residue 

flexibility especially the active site residues could be impacting the reaction of isoniazid in the 

active site.  In addition to the significantly decreased residue flexibility, mutation of serine to 

threonine in S315T variant has been shown to reduce the size of the active site access channel 

causing steric hindrance as a result of the additional methyl group in threonine, hence 

preventing isoniazid from accessing the active site (Marney et al., 2017).  

Studies also show that variant S315T has a high catalytic activity as compared to other variants 

hence increasing its virulence since catalase activity is important in protecting the bacteria from 

toxic oxygen radicals (Suarez et al., 2009). 
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Figure 3.6: RMSF in the holo katG wild type and variant structures. The regions with 

reduced RMSF across the variants in comparison to the wildtype are marked blue. Regions 

with increased residue fluctuation in both the wild type and variants are marked red (left).  

The reduction in residue flexibility at positions 26-110 across all the variants, even those that 

are in the C-terminal domain (G593D and S457I) implies an allosteric effect of the mutations 

on the katG structure. KatG residues 250 - 300 and 330 - 350 showed increased RMSF in both 

the katG wild type and the respective variants. These regions are loop regions hence explaining 

the observed high residue flexibility. 

In the C-terminal, increased RMSF was observed in both the wild type and variant katG at 

positions 630 - 725 with variant S457I having the highest residue flexibility at these positions. 

This is region is part of a loop region which explains the observed residue flexibility.  A general 

RMSF analysis showed reduced residue flexibility across all the variants when compared to 

the wild type. 
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3.7.2.4 Radius of gyration  

The intermolecular compactness of the katG structures and the respective variants was 

compared using the Rg. Rg determined the protein’s folding and unfolding state by measuring 

the mean distance of the atom collection from its center of mass.  

Interestingly, Rg analysis (Figure 3.7) showed all high confidence mutations structures having 

a lower Rg as compared to the wild type. In as far as the protein structure is concerned, this 

meant that the mutations lead to contraction of the katG structure resulting in a more compact 

variant protein as compared to the wild type. Bearing in mind the effects of protein compactness 

on the katG, decreases would result in active site and access channel residues moving away 

from each other, whereas increases in protein compactness would result in the residues moving 

closer to each other.  

Variant S316D showed the least change in the Rg as compared to the other variations whereas 

variants S315T, S315R and S140R had the highest gyration deviation compared to the wild 

type. The observed changes in the katG protein compactness especially for variant S315T are 

in agreement with a study by Unissa et al, (2018) and Marney et al., (2017) that showed 

narrowing of the isoniazid access channel and increased steric hindrance as a result of the katG 

mutations especially at position 315. The increase in structure compactness as an effect of the 

mutations was consistent across all the variants irrespective of their location in the protein. 

Despite studies showing that mutations in the katG have different mechanisms of conferring 

resistance to isoniazid (Cade et al., 2010), this data shows a uniform effect in at least among 

high confidence mutations.   
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Figure 3.7: Histogram presentation of the wild type katG structure (blue) and the 

respective variants (deep pink) Rg.  The y -axis represents the degree of protein compactness 

in nm and the y-axis represents the frequency. 

 

3.8 CHAPTER SUMMARY  

Molecular dynamics simulations were applied on the katG-isoniazid complex, the holo wild 

type katG and the holo variants to katG structures to study the protein conformational changes 

over a 200 ns trajectory. Trajectory analysis was used to identify and describe protein patterns, 
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stability, interactions and conformational changes. In the katG-isoniazid complex, ligand 

instability was observed in the both the wild type and variants around the 25 ns mark into the 

MD simulations. This was attributed to less hydrogen bonds formed between isoniazid and 

active site residues further into the simulation (after 22 ns) in the models compared to the 

template. The change in orientation of isoniazid in the active site resulted in a reduction in the 

hydrogen bonds between isoniazid and the katG active site. 

Molecular dynamic simulations were further performed on the holo katG wild type and variant 

protein structures for 200 ns. Trajectory analysis of the holo simulations indicated a varying 

backbone flexibility of the katG structure across the different variants with majority of the N-

terminal variants; S315I, S315N, S140R, G285D, G316D and G279D having an increased 

RMSD while S315R showing a reduced RMSD compared to the wild type.  In as far as structure 

stability is concerned, variants S140R and G316D in the N-terminal domain showed increased 

structural instability compared to the wild type and the rest of the variants. S140R is located in 

the distal side of the heme group while G316D in the proximal end. 

Results from conformation analysis using PCA supported the RMSD findings that showed 

variants S315R, S457I, S315T, S140N and G279D having less conformational variability 

compared to the wild type katG. In addition, variants S140R, S140N, G279D, G285D, S315I 

and G316D showed higher energy barriers between their prominent conformations implying 

more energy requirement between conformational shifts.  

Residue flexibility (RMSF) analysis showed reduced residue flexibility from position 26 to 110 

across all the variants. This region contains the M. tuberculosis katG unique loop hook region 

(position 26 - 30) believed to be involved in not only mediating interdomain interactions but 

also responsible for the katG structure dimer assembly (Bertrand et al., 2004). Region 22 - 110 
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also encompasses isoniazid coordinating residues His-108, Arg-104 and Trp-107 in the katG 

active site.  

Protein compactness calculations (Rg) showed increased structure compactness across all the 

variants as compared to the katG wild type. The implication of this is a more folded katG 

structure in the variants than in the wild type. This data therefore suggests that the studied 

mutations in the katG protein could be conferring resistance not only through changing the 

protein stability but also affecting the active site residue flexibility, structural stericity and 

increasing the compactness of the of the protein structure. The data also identified uniform 

effect of all the mutations in the katG (increase in compactness) suggesting to an extent, a 

common mechanism of conferring resistance across high confidence mutations.   

 In the next chapter, the protein residue network communication of the wild type and variants 

was analyzed through dynamic residue network analysis (DRN) to establish the mutation’s 

effect on protein residue communication. 
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CHAPTER FOUR 

DYNAMIC RESIDUE NETWORK ANALYSIS OF THE KAT-G AND 
VARIANTS 

4.1 INTRODUCTION  

In a system composed of macromolecules, biological function is based on macromolecule 

interactions and dynamics (Özen et al., 2011). These interactions and dynamics have over the 

years been studied using MD simulations and trajectory analysis techniques like RMSD, RMSF 

and the Rg. Much as the mentioned techniques are informative, however more insight into 

residue interactions in MD simulations can be obtained through studying the interactions and 

behavior of particular residues to establish their importance to the protein behavior as a whole. 

Through dynamic residue network (DRN) analysis, particular residue interactions and 

importance throughout the MD simulation can be analyzed.  

4.2 RESIDUE INTERACTION NETWORK (RIN) 

In RIN, a single residue is considered as a node and the physicochemical interactions, like 

covalent and non-covalent bonds are represented as edges. Residues are considered to be 

interacting if they are within a user defined distance of each other which is usually 6.5 - 7.5 Å 

(Atilgan et al., 2004). A cut-off distance of 6.7 Å is usually used since literature has shown that 

it includes all the residue neighbors around in the first coordination shell of a central residue 

(Atilgan et al., 2004). RINs are graphs that are analyzed using mathematical methods like 

average shortest path (L) and betweenness centrality (BC). Originally, the RIN analysis 

approach involved analyzing a structure independently and not as a trajectory from MDs 

however, a new approach of analyzing the RINs over the course of MD trajectory has been 

developed and this is called dynamic residue network (DRN) analysis (Brown et al., 2017). 
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4.3 DYNAMIC RESIDUE NETWORK  

Like in RIN, in DRN analysis, the Cβ atom of each residue (Cα for glycine) in a protein is treated 

as a node and the interactions between the residues (within a specified cutoff) as edges. In DRN 

however, residue interaction analysis is done throughout the course of the MD trajectory. In 

this study, DRN analysis was done using the average shortest path L and betweenness centrality 

mathematical approaches under the MD-TASK tool (Brown et al., 2017).  

4.3.1 Average shortest path / Reachability   

Average shortest path or reachability is the mean of the shortest paths to a node i. The shortest 

path between two nodes i and j is the least number of edges between the two nodes. The 

reachability describes the accessibility of the residue in a protein structure and literature 

(Ozbaykal et al., 2015) suggests that residues with high reachability influence protein 

conformational changes. 

4.3.2 Betweenness centrality 

Betweenness centrality of a node is the number of short paths between all other nodes that pass 

through the node of interest. BC is therefore a measure of how central a residue is in the protein 

communication network. Ozbaykal, (2015) suggests that residues with high BC values play a 

vital role in the inter-protein and intra-protein domain communication. BC is related to L as it 

shows how often a residue of interest is involved in the shortest path and studies have shown 

an inverse relationship between BC and L (Penkler et al., 2018).  

4.3.3 MD-TASK tool  

The MD-TASK is a tool suite capable of analyzing MD trajectories using network analysis 

techniques, perturbation response scanning (PRS) and dynamic cross-correlation (DCC). The 

tool was developed using Python for Linux/Unix-based systems and utilizes Python scripts to 

analyze MD trajectories (Brown et al., 2017). The tool can also use the igraph package of R to 
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plot the residue contact maps and supports various non-standard Python libraries like NumPy, 

SciPy, Matplotlib, MDTraj and NetworkX.  

4.4 METHODOLOGY  

4.4.1 Reachability and betweenness centrality  

The reachability and betweenness centrality of the residues in the wild type katG and variants 

were determined using the MD-TASK tool. MD-TASK Python script calc_network.py was 

used to calculate and plot the L and BC of the holo katG wild type and variant protein structures 

using a node separation distance threshold of 6.7Å and a step of 100. A step in DRN is an 

integer that defines the trajectory frame to be used in the network calculation. In this case, the 

network was calculated for every 100th frame in the trajectory.  

Furthermore, MD-TASK was used to calculate the average and standard deviation in L and BC 

using the MD-TASK avg_network.py Python script ("MD-TASK documentation — MD-

TASK 1.0.1 documentation", 2019). Reduced topology and trajectory files containing only the 

Cβ atoms of a residue (Cα for glycine) were used for DRN analysis. The files were reduced 

using the VMD (Humphrey et al., 1996) script in the MD-TASK documentation. 

The avg_network.py Python script generated the average and standard deviation files for the 

L and BC.  Using an excel sheet, the change in average L (ΔL) and BC (ΔBC) was calculated 

by subtracting the average L and average BC of the respective variants from that of the wild 

type (wild type minus variant). A 50 ns trajectory (150 ns – 200 ns) was used to calculate the 

dynamic residue network as opposed to the whole trajectory because the katG wild type 

simulation was observed to equilibrate and stabilize from the 150 ns mark onwards (Figure 

3.3). 

The mean and standard deviation of the ΔL and ΔBC between the wild type and the respective 

variants were also calculated. For each variant, residues with a ΔL and ΔBC ≥ 2SD and ≤ -2SD 
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from the mean were considered to have a significant enough change. A standard deviation of 

2SD from the mean was used so as to get only the residues with a significant ΔL and ΔBC.  

4.5 RESULTS  

4.5.1 Reachability 

Dynamic residue network was employed to analyse the katG residue topological spread in 

relation to other residues and to analyse the protein communication over a trajectory of the last 

50 ns. The difference between the average L of the wild type and variants was obtained for all 

the variants. In order to obtain the statistically significant values, a value of 2SD away from 

the mean was used to identify the residues from variant proteins, which characterizes 

significant residue connectivity. Those residues that displayed ΔL that is ≥ 2SD and ≤ -2SD 

from the mean were considered to have significant change in the protein residue connectivity 

(Appendix 3). These residues were further mapped on the katG structure to identify their 

distribution pattern in the various mutants (Figure 4.1). 

A negative ΔL (≤ -2SD) difference between the wild type and variant signified an increased 

inter-residue distance in the protein network of the variants compared to the wild type. The 

implication of this is less availability of the specific residues for signal transduction in the 

variant’s residue network. A positive ΔL (≥ 2SD) difference signified the opposite which is 

more availability of particular residues of interest in the protein signal transduction network of 

the variant. A difference of zero meant there was no change in the mean shortest path of the 

particular residue to the others in the wild type and variant protein structures.  

From the DRN average L analysis, all katG variants showed decreased inter-residue distance 

at katG loop region 280 - 303 (Figure 4.2). These results show a linear correlation between the 

L and RMSF results observed in section 3.7.2.3 that indicated increased residue flexibility 

around the same region. Prior studies (Brown et al.2017) have indicated a similar relationship 
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between L and RMSF. The region 280 - 303 forms part of the surface loop region made up of 

residues at positions 278 to 312.   

 

Figure 4.1: KatG variant structures with mapped positions of residues with ΔL ≥ 2SD 

(red) and ≤ -2SD (blue). Pink shows the mutation positions in the katG structures. 

Literature suggests that the surface loop region (position 278-312) is conserved across at least 

three catalase-peroxidase enzymes from namely; M. tuberculosis, B. pseudomallei and H. 



84 
 

marismortui (Bertrand et al., 2004). In B. pseudomallei catalase peroxidase, the loop region 

was proposed to be the isoniazid binding site however, studies (Pierattelli et al., 2004) later 

presented the δ-meso edge of the heme as the favorable binding site for isoniazid in the catalase 

peroxidase enzymes. The proposed mode of isoniazid activation in the surface loop region was 

an electron transfer pathway that would have made it unique for catalase-peroxidase enzymes.  

 

Figure 4.2: KatG structure of the loop region with ≥ 2SD ΔL (residues 280 - 303: red). The 

loop region showed decreased inter-residue distance across all katG variants. 

 

An increase in inter-residue distance was noted in the region 26 - 38 across most variants 

(S140R, S315T, S315I, S315N, G316D, and S457I) compared to the wild type. This region 

forms part of the loop region (26 - 100) believed to facilitate dimerization of the katG protein 

(Bertrand et al., 2004).  

To further investigate which residues are important in the variant’s protein communication, the 

DRN betweenness centrality was calculated and discussed in the next section. 

4.5.2 Betweenness Centrality 

The betweenness centrality for the variants was calculated to identify which residues are 

important in the katG protein communication. Using the MD-TASK tool, the average BC for 
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the katG wild type and for each of the protein variants was calculated and the difference 

between the wild type and variants average BC worked out (wild type BC minus variant BC). 

The residues with ΔBC of ≥ 2SD and ≤ -2SD from the mean were identified and mapped on 

the katG structure (Figure 4.3). In this case, the residues marked in blue had a negative ΔBC 

after subtracting the variants average BC from the wildtype. This meant that these residues 

were involved in more inter-residue shortest paths in the variants compared to the wild type 

communication network. 

 Irrespective of the location of the mutation in the katG, the residues with significant change in 

BC were identified (Appendix 4) especially around the interface region between the N and the 

C-terminal domains suggesting an allosteric effect of the mutations on the katG structure away 

from the active site. 

The interface residues are responsible for interdomain communication between the N-terminal 

and the C-terminal domains in the protein structure. The mutations effect on the interface 

region could be impacting on the protein’s communication network as the interface region is 

known to have a traffic of network communication. 

Literature shows that besides interdomain interaction in one monomer, in the dimer M. 

tuberculosis katG protein, interdomain interactions also occur between N-terminal and C-

terminal domains of different monomers (Bertrand et al., 2004).  

Studies also show that the C-terminal domain is important in stabilizing the katG active site 

and preventing coordination of the distal histidine to the heme iron (Baker et al., 2004). 

Removal of the C-terminal domain from the protein structure significantly diminished the 

catalase and peroxidase function of the katG protein (Baker et al., 2004) implying that this 

domain is important in maintaining the structural architecture of the katG protein.   
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Figure 4.3: KatG variant structures with mapped positions of residues with ΔBC ≥ 2SD 

(red) and ≤ -2SD (blue). Pink shows the SNP position on the katG structure. 

Literature suggests that there is an inverse relationship between the BC and L residues in a 

protein network. Consequently, the same relationship was observed between BC results and 

RMSF (Penkler et al, 2018).  
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Interestingly, more residues in the N-terminal domain were involved in the protein network 

shortest paths than those observed in the C-terminal domain across all variants (Table 4.1). The 

observed change in BC in the variants could be a copying mechanism of the katG to maintain 

the catalase function amidst the mutations. 

Table 4.1: Distribution of ΔBC results (≤ -2SD) in the variant’s N and C-terminal 

domains.  

katG variant Number of residues with ≤ -2SD 

BC in the N-terminal 

Number of residues with ≤ -2SD 

BC in the C-terminal 

S140R 9 9 

S140N 15 6 

G279D 14 7 

G285D 18 8 

S315T 14 7 

S315R 15 7 

S315N 20 4 

S315I 13 7 

G316D 12 8 

S457I 12 5 

G593D 13 12 

4.6 CHAPTER SUMMARY 

 In this chapter, dynamic residue network analysis was used to determine residue accessibility 

(reachability) and the importance of the residues in the protein communication network 

(betweenness centrality) for both the katG wild type and variants. Molecular dynamics coupled 

with DRN analysis have previously shown useful in providing detailed insights into the 

understanding of single nucleotide polymorphism (SNPs) mechanism of action at the 

molecular level in addition to identifying the most important residues in the variants (Brown et 

al., 2017, Sanyanga et al., 2019).  

Overall, across all the variants, there was an increase in accessibility for the region of residues 

280 -303. This region forms part of the loop region conserved across three catalase-peroxidases 
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that was once proposed to be the isoniazid binding site (Pierattelli et al., 2004). An increase in 

accessibility means reduced average L observed in the variants compared the wild type. A 

decrease in accessibility between regions 26 -38 meant increased average L in the katG dimer 

facilitating region of the variants as compared to the wild type.  

From the betweenness centrality analysis, most change in BC was observed in the katG 

interface region between the N -terminal and C-terminal domains. Of the two domains, the N-

terminal domain had the lion’s share of the BC residues involved more in the inter-residue 

shortest paths. The negative change in BC (indicated in blue in Figure 4.3) meant increased 

residue importance in protein communication network of the variants as opposed to the wild 

type. The allosteric effect of the mutations in the katG interface region could be one of the 

compensatory mechanisms of the katG protein after undergoing mutation. In the next chapter, 

alanine scanning was used to determine which interface residues are important in the 

interdomain communication in a bid to zero in on the most important residues in the katG 

variant interface. 
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CHAPTER FIVE 
ALANINE SCANNING 

5.1 INTRODUCTION 

In this chapter alanine scanning was used to identify katG N-terminal and C-terminal domain 

interface residues that are important in the domain binding and interdomain communication. 

This was in an attempt to further explain the observed change in BC results from Chapter 4. 

Alanine scanning is a computational-based approach used for identifying important residues 

responsible for protein - protein interaction at the protein interfaces. Since alanine scanning is 

useful in identifying interface residues, it not only can be used to identify residues at the protein 

- protein interface but also at domain - domain interfaces in a protein.  In alanine scanning, 

residues at the protein - protein or domain - domain interface region are mutated to the alanine 

amino acid and a map of destabilising (important), stabilising and neutral (less important) 

residues generated (Kortemme et al., 2004). The effect of the deletion of an amino acid side 

chain beyond the Cβ carbon atom on the affinity of a protein-protein complex is determined 

and this measure is used to quantify residue importance in the interaction (Kortemme et al., 

2004). The important residues or “hot spots” as known by Clackson and Wells (Clackson & 

Wells, 1995) are believed to contribute the bulk of the binding energy in the protein - protein 

complexes. Alanine is the residue of choice for mutational scanning because it retains the beta 

carbon and no other side chain. Alanine also not only has a propensity to form alpha helices 

but can also occur in beta sheets (Kortemme et al., 2004). Alanine scanning was done using 

the ROBETTA webserver (Kim et al., 2004). 

5.2 ROBETTA 

ROBETTA is a webserver that uses free energy calculation to compute the effects of alanine 

mutation of the interface residues on the binding free energy of a protein-protein complex. An 

interface residue is one that contains one or more atoms within 4 Å radius of an atom belonging 
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to the partner subunit (Kortemme et al., 2004). The free energy function consists of a linear 

combination of a Lennard-Jones potential to describe atomic packing interactions, an implicit 

solvation model, an orientation-dependent hydrogen-bonding potential derived from high-

resolution protein structures, statistical terms approximating the backbone-dependent amino 

acid-type and rotamer probabilities and an estimate of unfolded reference state energies 

(Kortemme et al., 2004).  

The input files to ROBETTA webserver are the protein-protein complex pdb structure file, the 

definition of the interface between the two partner (A, B) and finally an optional list of 

mutations. The webserver then uses the free energy function (Equation 5.1) to generate a table 

of predicted changes in binding free energy (ΔΔ Gbind) for all alanine mutations.  

∆ G = Wattr ELJattr + WrepELJrep +WHB(sc − bb)EHB(sc − bb) + WHB(sc − sc)EHB(sc − sc) 

WsolGsol + Wφ /ψ Eφ /ψ (aa) + Ʃ𝒂𝒂𝟐𝟎  naa𝐄𝐚𝐚
𝐑𝐞𝐟 

ELJattr: Attractive part of a Lennard-Jones potential. 

ELJrep: A linear distance-dependent repulsive term. 

EHB(sc −bb) :Orientation-dependent side chain-backbone hydrogen bond potential. 

EHB(sc −sc): Orientation-dependent side chain-side chain hydrogen bond potential. 

Gsol: Implicit solvation model. 

W: Relative weights of the different energy terms. 

Eφ / ψ (aa): Amino-acid type (aa) dependent backbone torsion angle propensity. 

Eୟୟ
ୖୣ୤

 : Amino-acid type dependent reference energy, which approximates the interactions made    

in the unfolded state ensemble. 

Equation 5.1: Binding free energy function used by ROBETTA. The function calculates 

effects of alanine mutation on binding free energy of a protein-protein complex (Kortemme et 

al., 2004). 
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The output table consists of the following columns; column 1: number of mutated residue in 

the pdb file, column 2: pdb chain identifier, column 3: measure of whether a residue side chain 

atom is within 4 Å of an atom on the other partner, column 4: continuous residue numbering 

of all partners, column 5: amino acid type according to one-residue nomenclature in 

alphabetical order (1-A, 2-C, 3-D, 4-E ...), column 6: ∆∆G(bind), predicted change in binding 

free energy upon alanine mutation, column 7: ∆∆G(bind, obs) observed changes in binding free 

energy upon alanine mutation and finally column 8: G(partner), predicted change in protein 

stability of the mutated complex partner upon alanine mutation. 

The hot spot residues are considered as those with predicted binding free energy ≥ 1 kcal/mol, 

neutral residues as those with binding energy value between -0.8 and 0.99 kcal/mol and the 

stabilising residues as those with binding energy value < - 0.8kcal/mol.  

5.3 PROTEIN INTERACTION CALCULATOR (PIC) 

In addition to determining the key residues in the N and C-terminal domain interaction, the 

protein interaction calculator was used to identify all the N and C-terminal interface residues 

involved in domains interaction irrespective of whether they were hotspot residues or not.  The 

idea was to compare this information with the change in BC data and identify which BC 

residues are in the interface region and later identify which BC residues in the interface region 

are also hotspot residues. 

Protein interaction calculator is a webserver that takes the protein structure coordinate file as 

input and determines the type of interactions and the residues involved in a protein - protein 

interaction (Tina et al., 2007) and in this case, the domain - domain interaction. The server is 

able to calculate disulphide bonds, interactions between hydrophobic residues, ionic 

interactions, hydrogen bonds, aromatic - aromatic interactions, aromatic - sulphur interactions 

and cation-π interactions within a protein or between proteins in a complex (Tina et al., 2007). 
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5.4 METHODOLOGY 

5.4.1 Alanine scanning 

In order to determine important interface residues using ROBETTA, a Python script was used 

to edit the katG (monomer) pdb structure file of the wild type and variants homology models, 

naming the N-terminal domain residues as chain A and the C-terminal domain residues as chain 

B. The wild type and variant coordinate structure files (pdb) were submitted to the ROBETTA 

webserver to generate an output table file.  A Python script was used to identify the residues in 

the output file that had binding free energies of ≥ 1 kcal/mol (destabilising residues) and < -

0.8kcal/mol (stabilizing residues). The residues with binding energy ≥ 1 kcal/mol were 

considered as the hot spot residues. 

5.4.2 Protein interaction calculation 

The model katG wild type pdb coordinate file created using the Python script in section 5.4.1 

was submitted to the PIC webserver and all the interactions selected i.e. disulphide bonds 

interactions, hydrophobic residues interactions, ionic interactions, hydrogen bonds 

interactions, and aromatic–aromatic interactions. The output file was a list of all the residues 

involved in the respective interactions and their residue numbers. 

5.5 RESULTS 

The PIC server was used to identify the katG interface residues responsible for the N and C –

terminal domain interaction (Table 5.1) and the ROBETTA webserver was used for alanine 

scanning to identify the destabilizing and stabilizing residues in katG variant interface region. 

From alanine scanning, only the destabilizing residues were identified together with their 

binding energy (Appendix 5). The change in BC residues that are also interface residues from 

the PIC results were identified to narrow down the BC results to only interface residues (Table 

5.2 and Table 5.3) 
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Table 5.1: Table of the N and C-terminal domain interface residues. 

Domain Interface residues 

N-terminal domain F183, F185, G421, V423, A424, R425, R418, I115, H116, D117, G118, N41, V47, 

R42, Q50, Y113, R119, L43, L45, L48, A65, V68, V73, F167, F181, P422 

C-terminal domain L430, L427, D487, Y426, V431, R484, S486, Y608, N615, N701, D612, L611, V697, 

L704, A621, A614, M624, P429, V586, P432 

 

Table 5.2: Change in BC residues in the N-terminal interface region.  

Variant ΔBC BC residues in the N-terminal interface residues 

S140R  ≥2SD D117, G118, R418 

≤ -2SD L48, Q50, H116 

S140N   ≥2SD G118, R418 

≤ -2SD V47, L48, Q50, I115, H116 

G279D  ≥2SD R418 

≤ -2SD L48, Q50, I115, H116, A424 

G285D  ≥2SD R418 

≤ -2SD L43, V47, L48, Q50, Y113, I115, H116, D117, G118 

S315T  ≥2SD R418 

≤ -2SD L43, L45, L48, Y113, D117, G118 

S315R   ≥2SD D117 

≤ -2SD L48, Q50, H116, G118, A424 

S315N  ≥2SD D117, R418 

≤ -2SD L48, Q50, H116, G421, P422 

S315I   ≥2SD D117, R418 

≤ -2SD L48, Q50, G118 

G316D  ≥2SD R418 

≤ -2SD I115, H116 

S457I  ≥2SD  

≤ -2SD  

G593D  ≥2SD Y113, D117 

≤ -2SD Q50 

The residues in red were identified as hotspot residues by alanine scanning. 
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Table 5.3: Change in BC residues in the C-terminal interface region.  

Variant ΔBC BC and C-terminal interface residues 

S140R  ≥2SD R484, S486, D487 

≤ -2SD V586 

S140N   ≥2SD D487 

≤ -2SD V586, N615 

G279D  ≥2SD S486, D487 

≤ -2SD V586, N615 

G285D  ≥2SD D487 

≤ -2SD V586 

S315T  ≥2SD S486, D487 

≤ -2SD V586 

S315R   ≥2SD D487, Y608 

≤ -2SD R484, S486 

S315N  ≥2SD R484, D487 

≤ -2SD S486 

S315I   ≥2SD S486, D487 

≤ -2SD R484 

G316D  ≥2SD R484, D487 

≤ -2SD D612 

S457I  ≥2SD D487 

≤ -2SD Y608, N615 

G593D  ≥2SD R484, S486 

≤ -2SD V586 

The residues in red were identified as hotspot residues by alanine scanning.  

The identified residues with significant change in BC from the interface region were compared 

to the results from alanine scanning to check for any data correlation. Since betweenness 

centrality was used to identify residues with increased importance in katG variants 

communication network and alanine scanning used to identify hotspot residues, comparing the 

data helped identify the destabilizing residues in the katG protein interface that were both 

involved more and less in the inter-residue communication of the variants.  
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From the comparison, residue Leucine at position 48 (L48) was identified as a destabilizing 

residue in the N-terminal domain with increased importance across all variants except (G316D, 

S457I and G593D). Variants S457I and G593D is located in the C-terminal and while 457I did 

not have any significant change in BC residues in the N-terminal domain, G593D only had 

three residues with significant change in BC in the N -terminal interface. This suggests that 

variant S457I effect on the interface communication between the N and C-terminal domain 

could be localised to the C-terminal interface residues only. In addition, a significant change 

in BC for residues; L48, Q50, H116, D117 was identified across most variants (S140R, S140N, 

G279D, G285D, S315T, S315R, S315N and G316D). This suggests a common communication 

pattern across most of the mutants in the katG protein that involves the mentioned residues. 

In the C-terminal domain, destabilizing residue Aspartic acid at position 487 had less 

importance in the protein communication across all variants except (S140R and S315T). Like 

in the N-terminal, in the C-terminal, residues; V586, N615, R484 and S486 were identified as 

important in residue communication across most variants compared to the wildtype. The 

destabilizing residues with increased importance for all the variants were plotted on the katG 

structure (Figure 5.1). Figure 5.1 also shows the residues of interest forming a communication 

path from the C-terminal to the -terminal domain emphasizing further the importance of the 

interface region in the katG variants. 
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Figure 5.1: KatG structure with mapped change in BC residues identified as destabilising 

residues by alanine scanning. The N-terminal domain is green, C-terminal domain: purple, 

destabilizing residues with ≤ -2SD change in BC are blue spheres while destabilizing residues 

with ≥2SD change in BC are the red spheres. 

5.5 CHAPTER SUMMARY  

In this chapter, alanine scanning was used to determine the key interface residues in N and C-

terminal domains of katG wild type and variants that are responsible for the bulk of the protein 

binding energy. From the alanine scanning residues; L43, L48, Y113, R119, D487, F737, 

Y608, L611, L437 and R484 were identified as the important/ key residues in the katG 

interdomain communication. Most of the identified residues were consistent across the 

different variants suggesting a common mechanism of inter-domain interaction across the 

variants. This observation was expected as variant homology models were used as opposed to 

last frame from the MD simulation trajectory which could have shown different results. 

Calculations using the last frame of the MD trajectory were not done in the interest of time and 

are to be completed in the future work.  The DRN change in BC data was compared to the 



97 
 

alanine scanning results and common residues across the different data sets identified for the 

different variants. According to alanine scanning, these residues are destabilising residues and 

responsible for the binding energy between the two domains. As per BC data, these residues 

showed increased importance in the residue network in the respective variants as compared to 

the wild type. Since the C-terminal domain is necessary for the protein’s catalase and 

peroxidase function, there seems to be more need for protein inter-domain communication in 

the variants than in the wild type. 
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CONCLUDING REMARKS AND FUTURE WORK 

The M. tuberculosis catalase peroxidase (katG) protein is a 740 amino acid long homodimer 

containing a heme group in the N-terminal domain. The protein is responsible for protecting 

the bacteria from toxic radicals i.e. hydrogen peroxide present in the aerobic environment. The 

enzyme also activates the TB first-line pro-drug isoniazid that has anti-tubercular activity 

through inhibiting the synthesis of mycolic acids which are important in the bacteria cell wall 

synthesis.  

Single nucleotide mutations in the katG have previously been reported (Lempens et al., 2018, 

Feuerriegel et al., 2015, Sandgren et al., 2009) to lead to isoniazid drug resistance.  In this 

study, the high confidence mutations in the M. tuberculosis katG protein were investigated to 

gain insight in their mechanism of action. 

To understand the effect of the high confidence mutations on the katG protein in terms of 

change in protein stability, flexibility, conformational change, interaction with isoniazid and 

change in commutation network, the holo and complex (katG -isoniazid) wild type and variants 

katG proteins were modelled and molecular dynamic simulations run on the models (Figure 6). 

In addition, trajectory analysis, dynamic residue analysis, and alanine scanning calculations 

were done to determine the structural changes, the protein communication network and to 

identify the key residues in the inter-domain interaction respectively. 

Interestingly, from the MD simulations, the isoniazid (ligand) remained coordinated in the katG 

active site for only 22 ns and analysis of the drug’s coordinating residues showed reduced 

hydrogen bond interactions in the both the template and models as the simulation progressed.  

Results from the 200 ns MD trajectory analysis of the holo katG and variant structures showed 

that the mutations had varying conformational and protein flexibility effects on the katG 

structure. Variants S315I, S315N, S140R, G285D, G316D and G279D had an increased 
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backbone flexibility while S315R showed a reduced backbone flexibility when compared to 

the wild type. These results were further supported by the principal component analysis data 

which in addition implicated variants S315R, S457I, S315T, S140N and G279D as having less 

conformational variability compared to the wild type. Furthermore, PCA identified mutants 

S140R, S140N, G279D, G285D, S315I and G316D as having increased energy barriers 

between conformations hence increasing their energy requirements for conformational change. 

Literature indicates that conformational changes are essential for ligand binding and enzymatic 

catalysis (Kurplus & McCammon, 1983). 

 

Figure 6: Flow diagram of the methodology followed in the study. 

Pertaining the katG structure stability, variants S140R and G316D in the N-terminal domain 

showed increased structural instability compared to the wild type and the rest of the variants. 

Residue flexibility analysis identified the region 26-110 having less flexibility in all katG 

variants. This is a loop region believed to facilitate the dimerization of the katG structure in 

solution (Bertrand et al., 2004). This region also contains active site residues His-108, Arg-104 

and Trp-107. Change in the active site residue behavior could be one of the many ways by 

which the mutations prevent isoniazid activation.  In addition, all the variants displayed an 
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increased structural compactness compared to the wild type. This observation is supported by 

literature from Marney et al, (2017) which indicated a reduction in the katG active site access 

channel as a result of increased compactness in the mutants. 

DRN ΔL and ΔBC analysis identified the katG interface region as one containing residues most 

important in the mutants’ communication. Alanine scanning was used to identify which 

residues in the interface were destabilizing (hotspots) or stabilizing. A comparison of the 

change in BC and alanine scanning data showed residue L48 as the most important 

destabilizing residue in the variants and residues L43, L48, Y113, R119, D487, F737, Y608, 

L611, L437 and R484 as the common destabilizing in the all variants. These structural changes 

observed in the holo katG and variants protein structures are indicative of the mechanisms of 

katG resistance to isoniazid. In summary, the high confidence mutations were noticed to have 

both varying and similar effects on the behavior of katG protein structure. Some of these effects 

included; reduction in conformational space and variability, reduction in residue fluctuation 

especially in the dimerization loop, increase in steric hindrance to prevent isoniazid binding, 

increase in structural compactness and requirement of more energy to shift between structural 

conformations. Finally, this study identified residues in the katG interface region as the most 

important in the variant’s communication network unlike in the wildtype. This could be a 

compensatory mechanism to maintain the katG catalase activity in the mutants. 

Since the katG protein functions as a dimer in solution, these findings can be used in future, to 

study the katG dimer resistance mechanisms while in complex with isoniazid. In addition, 

alanine scanning and PIC calculations will be done using the last frame from MD simulations 

as opposed to the homology models to clearly observe the change in protein behavior.  
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APPENDIX 

Appendix 1: The R script used to plot the 3D energy heat map data from PCA. 

 

Appendix 2: 2D PCA graphs for the katG wild type and variants. 
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Appendix 3: Table of katG residues with ≥ 2SD and ≤ -2SD ΔL in the katG variants. 

S315N ≥2SD L45, L48 ,H49 ,Q50 ,N51 ,R214 ,P280 ,A281 ,D282 ,L283 ,V284 ,G285 ,P286 ,E287 ,P288 

,E289 ,A290 ,A291 ,P292 ,L293 ,L298 ,G299 ,W300 ,K301 ,S302 ,S303 ,P367 ,F368 

≤ -2SD A53 , V54 ,A55 ,D56 ,P57 ,M58 ,D207 ,E208 ,R209 ,A359 ,T363 

S140R ≥2SD L4 ,L48 ,H49 ,Q50 ,N51 ,N236 ,G237 ,G285 ,P286 ,E287 ,E289 ,A290 ,A291 ,P292 ,L293 

,E294 ,G297 ,L298 ,G299 ,W300 ,K301 

≤ -2SD E3 , G33 ,G34 ,N35 ,Q36 ,D37 ,W38 ,W39 ,P40 ,N41 ,P57 ,P325 ,R740 

S140N ≥2SD G32, G33, G34 ,L48 ,H49 ,Q50 ,N51 ,P286 ,E287 ,P288 ,E289 ,A290 ,A291 ,P292 ,L293 

,E294 ,L298 ,G299 ,W300 ,K301 ,P367 ,F368 ,G369 ,K590 ,L598 

≤ -2SD M2, K27 ,P40 ,N41 ,P57 ,M58 ,T363 ,P501 ,F737 ,D738 ,V739 ,R740 

G593D ≥2SD K27, H49, Q50 ,N51 ,D282 ,L283 ,V284 ,G285 ,P286 ,E289 ,A290 ,A291 ,L298 ,G299 

,W300 ,K301 ,S302 ,S303 ,G305 ,T306 ,D311 ,A312 ,I313 ,T314 ,D366 ,P367 ,F368 ,G369 

,N508 ,D511 ,K600 ,A649 

≤ -2SD W39, P40, N41 ,A69 ,R209 ,T363 ,G560 ,N733 ,R740 

S315R ≥2SD L48, H49, Q50 ,N51 ,P52 ,A60 ,G285 ,P286 ,E287 ,P288 ,E289 ,A290 ,A291 ,P292 ,L293 

,E294 ,L298 ,G299 ,W300 ,K301 ,S303 ,P367 ,F368 

≤ -2SD P40, N41 ,S211 ,T363 ,K600 ,G601 ,N602 ,P603 ,L643 ,G644 ,V645 ,R740 

S315T ≥2SD N44,L45,K46,L48,H49,Q50,N51,H276,G277,A281,D282,L283,V284,G285,P286,E287,P28

8,E289,A290,A291,P292,L298,G299,W300,K301,S303,I313,T314,P367,F368,A649,M664 

≤ -2SD M26, K27,Y28,P29,V30,E31,G32,P40,N41,P325,P363,P401,R740 

G285D ≥2SD L45,L48,R214,V284,D285,P286,E287,P288,E289,A290,A291,P292,L298,G299,W300,K30

1,S302,S303,G305,P367,F368 

≤ -2SD M26,P29,V54,P57,N236,L437,V442,F737,D738,V739,R740 

G316D ≥2SD P52,R214,E289,A290,A291,P292,G297,L298,G299,K301,D366,P367,F368,G369,N508,D5

09,P589,G676 

≤ -2SD M26,K27,Y28,P29,V30,E31,G32,G33,G34,Q36,D37,W38,P40,P57,M58,L205,A281,P325,

T363,R740 

S315I ≥2SD L48,H49,Q50,N51,P286,P288,E289,A290,A291,P292,L293,E294,Q295,G297,L298,G299,

W300,K301,G305,G307,P367,F368 
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≤ -2SD M26,K27,Y28,P29,V30,E31,G32,G33,Q36,D37,W39,P40,T363 

S457I ≥2SD R42,L45,K46,Q50,K213,R214,P286,E287,P288,E289,A290,A291,P292,L293,E294,G297,L

298,G299,W300,K301,S302,S303,D366,P367,F368,G369,G665 

≤ -2SD M26,K27,E31,P57,D202,R209,T363,Q500,L634,F737,D738,V739,R740 

G279D ≥2SD L48,H49,Q50,N51,G285,P286,E287,P288,E289,A290,A291,P292,L293,E294,L298,G299,

W300,K301,S302 

≤ -2SD M26,K27,P57,G59,A60,A61,R740 

 

 

Appendix 4: Table of katG residues with ≥ 2SD and ≤ -2SD Δ BC in the katG variants. 

S315N ≥2SD M26, P40, P57, H108, D117, S140, L143, R209, N218, A411, K414, R418, W438, D440, 

R484, D487, L488, T579, D580, S583, F584, G593, E602, K613, L616, N733, L734, 740 

≤ -2SD L48, Q50, W107, R114, H116, G125, L132, S134, V166, Q190, P193, E195, V196, Y197, 

W198, V223, R254, L415, G421, P422, F483, S486, P589, L604 

S140R ≥2SD M26,P57,D117,G118,G121,R140,K143,A411,F414,R418,W438,V442,R484,G485,S486,D4

87,G491,P501,D580,S583,K613,L616,L734,V739,R740 

≤ -2SD L48,Q50 ,N51 ,H116 ,M126 ,D194 ,V196 ,R253 ,N258 ,S482 ,E582 ,V586 ,L587 ,E588 ,P589 

,K590 ,D592 ,L604 

S140N ≥2SD M2, P40 ,P57 ,M105 ,G118 ,N138 ,N140 ,N218 ,A411 ,K414 ,R418 ,W438 ,Q439 ,G485 

,D487 ,K488 ,P501 ,T579 ,D580 ,S583 ,F584 ,L616 ,N733 ,L734 ,V739 ,R740 

≤ -2SD P29,V47 ,L48 ,Q50 ,N51 ,P100 ,I115 ,H116 ,G125 ,R128 ,D194 ,V223 ,A256 ,M257 ,M420 

,G490 ,V586 ,L587 ,P589 ,K590 ,N615 

G593D ≥2SD P40 ,M105 ,Y113 ,D117 ,K143 ,N218 ,A256 ,K414 ,W438 ,R484 ,S486 ,D580 ,S583 ,D593 

,K613 ,L616 ,N733 ,L734 

≤ -2SD K2, Q25, N26, T87, M101, P111, D169, E170, P194, A197, L202, I203, N233, R464, G465, 

N468, E557, V561, K565, A566, D567, K575, P578, L579, P580 

S315R ≥2SD P40 ,P57 ,D117 ,S140 ,E217 ,N218 ,T251 ,K414 ,Y418 ,W438 ,D487 ,G491 ,T579 ,D580 

,S583 ,N602 ,E607 ,Y608 ,M609 ,L616 ,L734 ,R740 
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≤ -2SD N44 ,L48 ,H49 ,Q50 ,N51 ,R114 ,H116 ,G118 ,G121 ,G123 ,G125 ,D194 ,M255 ,P288 ,A424 

,A480 ,F483 ,R484 ,S486 ,E588 ,P589 ,T618 

S315T ≥2SD M26 ,P40 ,P57 ,W91 ,G121 ,K213 ,N218 ,M257 ,D411 ,T414 ,R418 ,W438 ,V442 ,G485 

,S486 ,D487 ,K488 ,D580 ,S583 ,G593 ,N602 ,K613 ,L616 ,N733 ,L734 ,V739 ,R740 

≤ -2SD L43 ,N44 ,L45 ,K46 ,L48 ,H49 ,N51 ,Y113 ,D117 ,G118 ,S134 ,E195 ,V196 ,N258 ,A480 

,F483 ,E582 ,A585 ,V586 ,K590 

G285D ≥2SD M26 ,P57 ,K213 ,N218 ,A411 ,K414 ,R418 ,D419 ,W438 ,V442 ,D487 ,K488 ,D580 ,S583 

,F584 ,G593 ,K613 ,L616 ,N733 ,L734 ,R740 

≤ -2SD L43 , N44 ,V47 ,L48 ,Q50 ,T112 ,Y113 ,R114 ,I115 ,H116 ,D117 ,G118 ,P131 ,S134 ,E195 

,Y197 ,G199 ,T314 ,S482 ,F483 ,G491 ,V586 ,L587 

G316D ≥2SD M26 ,P40 ,P57 ,W90 ,M105 ,A109 ,N138 ,E217 ,N218 ,K414 ,R418 ,R484 ,G485 ,D487 

,K488 ,P501 ,S583 ,R595 ,K613 ,L616 ,N733 ,L734 ,R740 

≤ -2SD D94, P100 ,T112 ,I115 ,H116 ,G120 ,D142 ,W198 ,L216 ,R254 ,A256 ,L298 ,F483 ,L587 

,E588 ,P589 ,A591 ,L604 ,D612 ,N637 

S315I ≥2SD M26, P40,P57 ,M105 ,A109 ,D117 ,K143 ,N218 ,A411 ,K414 ,R418 ,W438 ,G485 ,S486 

,D487 ,G491 ,D580 ,S583 ,G593 ,M609 ,K613 ,L616 ,L734 

≤ -2SD L48, Q50 ,R114 ,G118 ,M126 ,L132 ,V188 ,Q190 ,Y197 ,G199 ,A221 ,K274 ,T435 ,A480 

,F483 ,R484 ,L604 ,P605 ,T618 ,R693 

S457I ≥2SD M26, P57 ,W90 ,K143 ,R209 ,N218 ,A411 ,K414 ,W438 ,G485 ,D487 ,P501 ,T579 ,D580 

,S583 ,G593 ,R595 ,K583 ,L616 ,V694 ,V739 ,R740 

≤ -2SD I103, A110 ,R114 ,E195 ,V196 ,Y197 ,W198 ,R214 ,L216 ,I228 ,F252 ,M255 ,F483 ,G491 

,L587 ,Y608 ,N615 

G279D ≥2SD M26, M105 ,A109 ,N218 ,A256 ,K414 ,R418 ,W438 ,G485 ,S486 ,D487 ,K488 ,G491 ,T579 

,D580 ,S583 ,N602 ,K613 ,L616 ,N733 ,L734 

≤ -2SD L48 ,Q50 ,T112 ,I115 ,H116 ,G120 ,G125 ,D194 ,Y197 ,W198 ,F252 ,M255 ,A424 ,L436 

,V586 ,L587 ,P589 ,D592 ,G593 ,L604 ,N615 
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 Appendix 5: Table of destabilizing residues in the katG variant interface. 

Variant Residue Binding energy (kcal/mol) 
S140N L43 2.07 

L45 1.07 
L48 2.21 

Y113 4.08 
R484 1.76 
D487 4.94 
R489 1.19 
Y608 1.74 
L611 1.78 
N615 1.07 

   
S140R L43 1.96 

L48 2.28 
Y113 1.78 
R119 1.28 
L437 1.14 
R484 2.31 
D487 1.93 
Y608 2.19 
L611 1.21 

   
G279D L43 2.16 

L45 1.30 
L48 1.92 

Y113 1.85 
R119 1.40 
L437 1.28 
D440 4.04 
D487 1.79 
R489 3.49 
Y608 2.23 
F737 1.39 

   
G285D L43 2.15 

L45 1.26 
L48 1.90 

Y113 1.94 
R119 1.33 
L437 1.31 
D440 4.16 
R484 2.24 
D487 1.63 
R489 3.61 
L611 1.86 
N615 1.64 
F737 1.41 
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S315I L43 1.95 

L45 1.05 
L48 2.30 

Y113 2.85 
R119 1.19 
L437 1.23 
D440 1.11 
R484 1.66 
D487 4.35 
R489 1.21 
Y608 1.98 
L611 1.49 
D612 1.12 
F737 1.45 

   
S315N L43 1.88 

L45 1.06 
L48 2.18 

Y113 1.36 
R119 2.27 
L437 1.70 
D440 1.26 
R484 1.29 
S486 1.27 
D487 1.37 
R489 1.81 
Y608 1.95 
L611 1.41 
D612 1.10 
F737 1.19 

   
S315R L43 1.96 

L48 2.24 
Y113 1.88 
R119 1.29 
L437 1.25 
D487 2.11 
Y608 2.23 
L611 1.14 
F737 1.16 

   
S315T L43 1.39 

L45 1.21 
L48 2.29 

D117 2.07 
R484 1.56 
Y608 1.73 
L611 1.53 
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F737 1.32 
   

G316D L43 1.42 
Y113 2.11 
R119 1.36 
L437 1.23 
D440 3.29 
R484 3.02 
S486 1.02 
D487 1.53 
R489 2.72 
Y608 1.84 
F737 1.07 

   
S457I L43 1.61 

L48 2.43 
Y113 2.56 
R114 1.08 
D117 1.44 
R119 1.78 
L437 1.21 
R484 2.07 
S486 1.27 
D487 3.65 
R496 1.50 
Y608 1.89 
L611 1.77 
D612 1.19 
F737 1.43 

   
G593D L43 1.96 

 L45 1.05 
 L48 2.39 
 D117 1.44 
 R119 2.50 
 L437 1.16 
 D440 3.47 
 R484 2.18 
 S486 1.35 
 R489 2.76 
 Y608 2.12 
 L611 1.75 
 F737 1.14 

 

 

 

 


