
RESEARCH ARTICLE Open Access

Improving fold resistance prediction of HIV-
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Abstract

Background: Drug resistance in HIV treatment is still a worldwide problem. Predicting resistance to antiretrovirals
(ARVs) before starting any treatment is important. Prediction accuracy is essential, as low-accuracy predictions increase
the risk of prescribing sub-optimal drug regimens leading to patients developing resistance sooner. Artificial Neural
Networks (ANNs) are a powerful tool that would be able to assist in drug resistance prediction. In this study, we
constrained the dataset to subtype B, sacrificing generalizability for a higher predictive performance, and demonstrated
that the predictive quality of the ANN regression models have definite improvement for most ARVs.

Results: Trained regression ANNs were optimized for eight protease inhibitors, six nucleoside reverse transcriptase (RT)
inhibitors and four non-nucleoside RT inhibitors by experimenting combinations of rare variant filtering (none versus 1
residue occurrence) and ANN topologies (1–3 hidden layers with 2, 4, 6, 8 and 10 nodes per layer). Single hidden layers
(5–20 nodes) were used for training where overfitting was detected. 5-fold cross-validation produced mean R2 values
over 0.95 and standard deviations lower than 0.04 for all but two antiretrovirals.

Conclusions: Overall, higher accuracies and lower variances (compared to results published in 2016) were obtained by
experimenting with various preprocessing methods, while focusing on the most prevalent subtype in the raw dataset
(subtype B).We thus highlight the need to develop and make available subtype-specific datasets for developing higher
accuracy in drug-resistance prediction methods.

Keywords: Artificial neural network, Drug resistance prediction, Subtype-specific training, HIV-1 subtype B, HIV reverse
transcriptase, HIV protease

Background
Living with HIV has come a long way from being a
deadly disease to become a manageable chronic infec-
tion [1] mainly due to the development and use of
antiretrovirals (ARVs). However, resistance to ARVs still
prevails for multiple reasons including non-adherence to
treatment, use of sub-optimal regimens and delayed
initiation of therapy [2, 3]. Thus predicting resistance to
ARVs before and during any treatment is important, and
therefore genotypic testing for prediction finds wide

application due to its simplicity, speed and relatively low
cost, in comparison to the gold standard of phenotypic
assays [4–6]. Furthermore, the prediction algorithms are
continuously evaluated [7, 8], while mutation lists keep
being updated to improve predictability of drug resist-
ance [9, 10]. Disparities between prediction methods
have decreased but discordances still exist between the
different algorithms, especially for some ARVs, as at
2015 [11]; which motivates the need to further improve
accuracy.
Prediction accuracy is essential, as low-accuracy pre-

dictions increase the risk of prescribing sub-optimal
drug regimens and missing the timing for regimen
switches, leading to patients developing resistance
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sooner and so needing recourse to less well-tolerated
third line ARV therapy. If left uncontrolled, the accumu-
lation of resistance mutations may increase the probabil-
ity of resistant strains directly spreading to drug-naive
individuals, rendering therapy more difficult. In order to
address these issues, different research groups have been
involved in producing independent prediction algo-
rithms – such as REGA [12], ANRS [13] and HIVdb
[14] amongst others [15]. As stated in [17], to date the
most widely used ones are the HIVdb algorithm [14]
and the support vector machine-based geno2pheno tool
[16, 18]. More recent work has applied different machine
learning approaches for drug resistance prediction, for
instance multi-label classification [17], K-Nearest
Neighbor and Random Forests [19], sparse signal repre-
sentations coupled to Delaunay triangulation [20, 21]
and Support Vector Machines variants [22], some of
which are based on sequence information, while others
also utilise protein structural information.
The objective of this work was to develop prediction

models that are as accurate as possible. This problem is
usually treated as one of classification, since in a clinical
context it is normally sufficient to predict the effective-
ness (or not) of a given ARV. However, here we solve a
regression problem, thereby making full use of all
available data and so potentially improving the predictive
accuracy of the model. We note that the model output
may be transformed into a classification by setting cut-
off values, and that the drug resistance score may be
clinically useful if the value is borderline, i.e. very close
to a cut-off value.
Our method incorporated the following features: (a)

The prediction algorithm used was a regression Artificial
Neural Network (ANN); (b) because the great majority
of publicly available data in the Stanford HIVdb is for
subtype B HIV, only subtype B data was used in this
database to train and test the network, so that the
prediction algorithm is mainly applicable to subtype B
sequence data; (c) in order to reduce data noise, various
forms of data filtering, as described in the Methodology
section, were used. Our regression ANN models com-
pared favourably against recent work by Shen and co-
workers [19], for which similar metrics were used. The
ANN regression models were applied to the protease
(PR) inhibitors fosamprenavir (FPV), atazanavir (ATV),
indinavir (IDV), lopinavir (LPV), saquinavir (SQV),
tipranavir (TPV), nelfinavir (NFV) and darunavir (DRV),
and to the reverse transcriptase (RT) inhibitors lamivu-
dine (3TC), abacavir (ABC), zidovudine (AZT), stavu-
dine (D4T), didanosine (DDI), tenofovir (TDF), efavirenz
(EFV), etravirine (ETR), nevirapine (NVP), rilpivirine
(RPV). Applying cut-offs, we obtain a classification out-
put from our ANN models which is then evaluated
against HIVdb and SHIVA [17]. Our work resulted in

the production of drug-specific regression ANNs with
high mean R2 values, low variance and competitive
classification performances for each of the eight PR in-
hibitors (PIs), six nucleoside RT inhibitors (NRTIs) and
four non-nucleoside RT inhibitors (NNRTIs) for predic-
tions from subtype B HIV.

Methods
Dataset description
Unfiltered PhenoSense assay datasets were retrieved
from Stanford HIVdb [23] for both PR and RT. The
datasets are compactly organized from a consensus B
sequence with conserved positions coded as “-”, with dif-
fering residues coded as the actual amino acids. Mixed
residues are grouped together while indels are repre-
sented as “#” and “~” respectively in a tab-separated file
format. Drug resistance scores for PR and RT inhibitors
are present for each sequence entry as metadata.

Dataset pre-processing
Incomplete sequence entries (i.e. with missing fold re-
sistance ratios for some ARVs) were retained to increase
the sample size. Sequences containing the ambiguous
residue ‘X’, indels or the characters ‘.’, ‘*’, ‘l’, ‘d’ and ‘^’ were
flagged and then expanded to obtain all possible se-
quences consistent with the sequence data. The se-
quence expansion procedure thus yielded differing
numbers of sequences for each ARV (Table 1). Non-B
subtypes were also filtered out from the dataset to im-
prove predictability for the subtype B cluster only. RT
sequences were truncated to 240 residues to conform to
the format of the filtered RT PhenoSense dataset as
available from Stanford HIVdb. Several sequence entries
yielded several thousand to millions of combinations of
sequences, which made the initial design non-practical
in terms of running time and also potentially introduced
bias to the model that would be obtained from the data-
set. This inherent uncertainty resides in the fact that the
sequences may truly be mixed or contain sequencing
errors. Thus a filter was introduced that removed from
the datasets any sequence whose expansion yielded more
sequences than some user-chosen cut-off value.
The experiment was initially started by training ma-

chine learners with sequences that had less than 5, 10,
20, 50, 100, 200, 300 and 1000 combinations upon ex-
pansion. Thereafter only the 300 and 1000 filter levels
were used as candidates for rare variant filtering, due to
their higher performance and number of unique se-
quence IDs that they contained. Rare variant filtering
here means that a sequence is removed if it contains a
residue at a given position that occurs only once across
all sequence samples, and ANNs were constructed and
tested both with and without this filtering. In order to
process the sequence data, the amino acid letters were
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converted to integers using an ad hoc Python script, util-
izing a simple integer encoding scheme, whereby resi-
dues “A”, “R”, “N”, “D”, “B”, “C”, “E”, “Q”, “Z”, “G”, “H”,
“I”, “L”, “K”, “M”, “F”, “P”, “S”, “T”, “W”, “Y” and “V”
were converted to positive integers 1 to 22 respectively
in a similar manner, but not identical to the encoding
approach used by Araya and Hazelhurst [4], who applied
codon-based integer encoding instead on a dataset used
by Ravela and coworkers in 2003 [24]. Possible outliers
were detected by using (1) Principal Components
Analysis from input features and target values and (2)
the prediction error distributions between actual and
predicted scores, and removed (Table 1).

Neural network construction and architecture
optimization
MATLAB’s (version 2016a) implementation of the
Levenberg-Marquardt feed-forward algorithm with back-
propagation from the Neural Network Toolbox was used
for supervised training, utilizing the mean squared error
(MSE) for weight adjustment. Absolutely conserved resi-
due positions were filtered out in order to reduce com-
putation time. The initial dataset was (pseudo) randomly
split into training, testing and validation sets at rates of
70%, 15 and 15% respectively, setting random seed num-
bers for reproducibility in training and cross-validation.
Training was stopped upon reaching any of a maximum
of 1000 epochs, a maximum of 6 successive validation
failures to decrease or a performance gradient lower

than a minimum set at 1e-7. Input features were the 1-
letter amino acid characters recoded as integers while
the target values were the individual fold drug resistance
ratios. After initial runs using all drug target values at
once for training the regression model, large MSE values
were obtained (not shown), which redirected analysis to-
wards building individual trained matrices for each drug
target. As a requirement for the MATLAB’s newff
function, both the feature vectors and their matching
target values were transposed. The number of hidden
layers was varied from 1 to 3 while nodes were set at
permutations of 2, 4, 6, 8 and 10 for each hidden layer.
One hidden layer of 5–20 nodes was re-evaluated in cases
where high training performances were observed to have
a significantly lower test performances or high variances.

Evaluation of training performance
Training performance was assessed both by regression
and classification methods. For regression-based evalu-
ation, the coefficient of determination (R2) values were
obtained between the predicted (yi) and actual (xi) fold
scores for the whole dataset using the formula

R2 ¼ n
Pn

i¼1 xiyi
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Further, the dataset was randomly divided into 5 sub-
sets of approximately equal size, and 5 different ANNs

Table 1 ANN topologies and filtering parameters for highest observed accuracies for the various ARVs

ARVs Topology Number of unique sequence
IDs/expanded sequences

Number of allowed combinations Rare variant filtering Number of outliers removed

PIs ATV 10x8x6 995 / 13,625 < 1000 ✓ 1

DRV 8 × 8 590 / 10,374 < 1000 ✓ 2

FPV 8x8x8 1429 / 17,501 < 1000 x none

IDV 8x6x10 1459 / 16,977 < 1000 ✓ 1

LPV 10x8x10 1284 / 11,019 < 300 x none

NFV 10x10x10 1524 / 11,929 < 300 x none

SQV 10x10x8 1484 / 11,509 < 300 x none

TPV 10x6x8 698 / 11,989 < 1000 ✓ 2

NRTIs 3TC 10x10x6 1342 / 33,181 < 1000 ✓ none

ABC 14 1401 / 34,016 < 1000 x none

AZT 19 1358 / 33,818 < 1000 ✓ none

D4T 10x4x4 1365 / 34,056 < 1000 ✓ none

DDI 10x6x6 1368 / 34,062 < 1000 ✓ none

TDF 10 × 2 1130 / 29,637 < 1000 x none

NNRTIs EFV 10x6x10 1400 / 33,906 < 1000 ✓ none

ETR 8x2x10 448 / 11,397 < 1000 x 2

NVP 10x10x4 1414 / 20,348 < 300 x none

RPV 16 169 / 2977 < 1000 ✓ none
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were trained on datasets that comprised 4 of the 5 subsets,
and then 5 different R2 values were calculated; we then cal-
culated the mean and the standard deviation of these 5 R2

values. Regression performances were then compared
against prediction models from the article published in
2016 by Shen and co-workers [19], in which regression
machine learning models, namely the Random Forest and
the K-nearest neighbor algorithms were used. The raw
dataset used in this work and in ref. [19] is the same, i.e.
the Stanford HIVdb dataset; however, the filtering used in
this paper is as described above, whereas ref. [19] uses fil-
tering provided by Stanford HIVdb [23]. In order to further
verify our models against overfitting, R2values were calcu-
lated over different subsets of the data set, namely the
whole dataset, the validation set and finally the test set.
Furthermore, classification accuracy was evaluated

against Stanford HIVdb and a recently-published
approach implemented as the SHIVA web server [17]. We
used the EMBOSS backtranseq tool [25] to back-translate
protein sequences to one of its (DNA) codon permuta-
tions in FASTA format as input for Stanford HIVdb’s Si-
erra web service (GraphQL API) tool to obtain resistance
predictions. SHIVA predictions were obtained by submit-
ting FASTA-formatted protein sequences to the web ser-
ver. Drug resistance classes (susceptible, resistant and
intermediate) were coded as numbers 0, 1 and 2 respect-
ively. While Stanford HIVdb defined three classes, SHIVA
defined two: susceptible and resistant. Classification accur-
acies were evaluated by calculating misclassification rates,
defined as the proportion of non-concordant pairs be-
tween PhenoSense Assay classes and the independently-
predicted classes for each of: our ANN approach, Stanford
HIVdb and SHIVA. Cut-offs from Stanford HIVdb avail-
able at [26] were used for classifying our ANN predictions
and those of the PhenoSense Assay dataset. We do not
define new binary cut-offs for evaluating SHIVA; for a
limited number of ARVs binary cut-offs are available from
the PhenoSense Assay [27], and for the remaining ARVs
we proceed in the following way. An upper and a lower
bound misclassification rate were computed for SHIVA as
the conversion from a multiclass to a binary classification
is ambiguous - an intermediate class may lie closer to a re-
sistant or susceptible class. We set the number of truly
misclassified pairs (0,1 or 1,0) as the lower bound, while
the number of discordant pairs involving intermediate re-
sistance sequences (2,0 or 2,1) was added to the discord-
ance value to set an upper bound for misclassification
rates. All proportions were then evaluated as percentages,
as shown in Table 2.

Results and discussion
Table 1 shows that differing numbers of sequences were
obtained from the different filtering approaches. In general,
allowing expansion of sequences to less than 1000,

combined with rare variant filtering produced the best re-
sults. Multiple (2–3) hidden layers were found to be re-
quired for all ARVs, with the exception of ABC, AZT, and
RPV. DRV, ETR and RPV have the lowest numbers of
unique sequence IDs, and hence may suffer from lack of
generalizability compared to the other ARVs. However, in
this study we attempted to find the optimal balance be-
tween the number of sequences and the possibility of
retaining sequences containing sequencing errors.
The procedure used to build our models is referred to

as protocol A. Our results are compared to the models
used by Shen and co-workers [19], namely the Random
Forest (RF) and the K-nearest neighbor (KNN), which
both utilise Delaunay triangulation for structural feature
encoding (henceforth referred to as protocol B and C
respectively in this paper).

Regression performances for HIV PIs
The results are presented in Fig. 1a and Additional file 1:
Table S1. The procedure used to build our models is
referred to as protocol A. In all, protocol A yielded better
results than protocols B and C. Very low variances were
generally observed using protocol A, except in the case of
ATV, IDV and LPV where variances were comparable to
those observed in protocols B and C. Improvements of
largest magnitudes for PIs were observed from protocol A
for FPV, SQV and TPV with mean differences of 0.117,
0.116 and 0.219 respectively from the top-scoring
protocols in B.

Table 2 Comparison of misclassification rates (percentages) for
our ANN approach, Stanford HIVdb and SHIVA

ARVs ANN HIVdb SHIVA

PIs ATV 26.61 28.57 84.53

DRV 2.98 22.57 32.41–53.49

FPV 16.08 36.97 67.0–79.74

IDV 34.29 26.19 81.92

LPV 9.79 36.82 68.05–83.51

NFV 25.23 20.36 80.84

SQV 30.37 38.75 67.25–88.16

TPV 9.07 39.88 unavailable

NRTIs 3TC 3.87 12.09 90.21

ABC 6.53 33.78 50.76–72.25

AZT 36.19 29.88 90.38

D4T 7.31 44.07 79.15

DDI 8.05 57.52 34.14–92.44

TDF 5.39 37.2 37.36–66.53

NNRTIs EFV 16.08 21.05 81.32

ETR 6.58 13.21 unavailable

NVP 24.87 9.4 73.97

RPV 1.55 24.99 8.33
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Regression performances for NRTIs
In the case of NRTIs (Fig. 1b and Additional file 1:
Table S2), better predictability was observed for all
drugs using protocol A except for 3TC, where the
performance, though high, was similar to that ob-
tained in protocol B. Very high mean R2 values with
very small variances were obtained for AZT, DDI and
TDF. Their high degree of fit combined to their low
variability suggests that the ANN model is explaining
most of the observed variation, likely due to higher
sequence quality obtained after filtering.

Regression performances for NNRTIs
In the case of NNRTIs (Fig. 1c and Additional file 1:
Table S3), protocol C outperformed protocol A by a
narrow margin in for EFV and NVP. Very high mean
accuracies were attained in the case of RPV and ETR,
surpassing both protocols B and C. However, the smaller
sample size for RPV (Table 1) (169 unique sequence IDs
for a total of 2977 expanded sequences) may indicate
that while appearing to perform exceptionally well, the
model may not generalize well to more divergent
sequences. ETR is supported by a comparatively higher
number of unique sequence IDs, and will generalize
slightly better that the model developed for RPV.

Overfitting assessment
As seen in Table 3, for all ARVs we verify that overfitting
is minimized by ensuring that R2 values do not signifi-
cantly decline in the test set with respect to both the
whole dataset and the validation sets.

Classification performance for all antiretrovirals
We provide additional support for our approach by
comparing misclassification rates against Stanford
HIVdb and SHIVA, all with respect to the Pheno-
Sense assay data. It can be observed from Table 2
that lower misclassification rates are obtained, with

the exception of NVP, AZT, NFV and IDV. An im-
portant point to observe here is that we considered
the entirety of the dataset filtered by our means for
the development of the ANN described in this paper,
the counts being shown in Table 1. This was per-
formed so that only high confidence sequences would
be compared for each individual antiretroviral. Both
Stanford HIVdb and SHIVA were developed using
another data set, the Stanford HIVdb pre-filtered
data, and this factor may have affected their perform-
ance on the dataset used here.

Fig. 1 The mean R2 values and their standard deviations for the protocols A, B, C, and the various ARVs

Table 3 R2 values (3 dp) obtained from individual subsets
obtained after filtering

ARV classes ARVs Whole dataset R2 values Validation set
R2 values

Test set
R2 values

PIs ATV 0.951 0.913 0.856

DRV 0.991 0.991 0.989

FPV 0.980 0.938 0.958

IDV 0.899 0.816 0.842

LPV 0.966 0.922 0.883

NFV 0.975 0.924 0.939

SQV 0.977 0.949 0.906

TPV 0.989 0.995 0.943

NRTIs 3TC 0.995 0.988 0.985

ABC 0.984 0.956 0.954

AZT 0.994 0.979 0.985

D4T 0.995 0.996 0.979

DDI 0.997 0.997 0.992

TDF 0.999 1.000 0.992

NNRTIs EFV 0.976 0.905 0.967

ETR 0.996 0.993 0.982

NVP 0.962 0.939 0.927

RPV 0.982 0.956 0.915
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Conclusions
This work focused on the pre-processing and optimization
of ANN regression models for the prediction of fold
resistance scores for HIV-1 subtype B using RT and PR
PhenoSense data available in the public domain from
Stanford HIVdb. As expressed by Dahake and co-workers
[28], there is a need to develop subtype-specific databases,
and we made such an attempt by constraining the dataset
for subtype specificity, sacrificing generalizability for a
higher predictive performance for subtype B. The results
obtained show that the predictive quality of the ANN
regression models is at least comparable to that of other
methods, and for most ARVs is a definite improvement.
The approach presented in this paper is applicable to

subtype B, and an obvious question is whether it can be
extended to the other subtypes? Previous studies [29, 30]
involving HIV-1 subtypes A, B and C envelope glycopro-
tein V3 loop region, suggest that subtype B and C share
similar co-receptor usage as opposed to subtype A. Also,
Raymond and co-workers [31] hinted that subtypes B
and C share similar genotypic determinants, and for this
reason, by extrapolation our method may extend to the
C subtype. However, a key difficulty is the paucity of
publicly available phenotypic assay data for training and
testing any extrapolation to other subtypes, so the
development of a methodology that leads to accurate
models will be challenging [32, 33]. It is hoped that our
work will lead to more non-B subtype drug resistance
data becoming available.

Additional file

Additional file 1: Table S1. Mean R2 values and their standard
deviations for PIs for protocols A, B and C. Table S2. Mean R2 values and
their standard deviations for NRTIs for protocols A, B and C. Table S3.
Mean R2 values and their standard deviations for NNRTIs for protocols A, B and C.
(DOC 45 kb)

Abbreviations
3TC: Lamivudine; ABC: Abacavir; ANN: Artificial neural network; ANRS: Agence
Nationale de Recherche sur le Sida et les hepatites virales; ARV: Antiretroviral;
ATV: Atazanavir; AZT: Zidovudine; D4T: Stavudine; DDI: Didanosine;
DRV: Darunavir; EFV: Efavirenz; ETR: Etravirin; FPV: Fosamprenavir; HIV: Human
immunodeficiency virus; HIVdb: HIV drug resistance database; IDV: Indinavir;
KNN: K-Nearest Neighbors; LPV: Lopinavir; MSE: Mean squared error;
NFV: Nelfinavir; NNRTI: Non-nucleoside reverse transcriptase inhibitor;
NRTI: Nucleoside reverse transcriptase inhibitor; NVP: Nevirapine; PI: Protease
inhibitor; RF: Random forest; RPV: Rilpivirine; RT: Reverse transcriptase;
SQV: Saquinavir; TDF: Tenofovir; TPV: Tipranavir

Acknowledgements
Not applicable.

Funding
This work was supported by the National Research Foundation of South
Africa under grant number 93690 awarded to ÖTB, and by grant number
80983 awarded to NTB. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the funders.

Availability of data and materials
The datasets analysed during the current study are available in the Stanford
HIVdb repository, https://hivdb.stanford.edu/pages/genopheno.dataset.html [23].

Authors’ contributions
OSA wrote the scripts for filtering and computing the neural networks, and
drafted the manuscript. ÖTB and NTB helped in the design of the study, in
analysing the results, and in revising the manuscript drafts. All authors read
and approved the final manuscript.

Authors’ information
O.S.A. completed his undergraduate studies with Honours in Agricultural
Biotechnology at the University of Mauritius. He later joined the Research
Unit in Bioinformatics (RUBi) while doing his Master’s degree at Rhodes
University in South Africa, where he is currently doing his PhD. His research
is focused around the application of residue interaction networks and the
use artificial neural networks in the context of drug resistance prediction in
HIV.
N.T.B. studied Mathematics, receiving his BA and MA degrees from the
University of Cambridge, U.K., and PhD from the University of Southampton,
U.K. He has held positions of Professor of Applied Mathematics for many
years.
Ö.T.B. received her BSc degree in Physics from Bogazici University, Istanbul,
Turkey. Then she moved to the Department of Molecular Biology and
Genetics at the same University for her MSc degree. She obtained her PhD
from Max-Planck Institute for Molecular Genetics and Free University, Berlin,
Germany. She is the Director of Research Unit in Bioinformatics (RUBi) at
Rhodes University. Özlem’s broad research interest is comparative genomics,
structural bioinformatics and tool development.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Research Unit in Bioinformatics (RUBi), Department of Biochemistry and
Microbiology, Rhodes University, Grahamstown 6140, South Africa.
2Department of Mathematics (Pure and Applied), Rhodes University,
Grahamstown 6140, South Africa.

Received: 11 March 2017 Accepted: 7 August 2017

References
1. Reynolds L. HIV as a chronic disease considerations for service planning in

resource-poor settings. Glob Health. 2011;7:35.
2. Zhang F, Dou Z, Ma Y, Zhang Y, Zhao Y, Zhao D, et al. Effect of earlier

initiation of antiretroviral treatment and increased treatment coverage on
HIV-related mortality in China: a national observational cohort study.
Lancet Infect Dis. 2011;11:516–24.

3. Xing H, Ruan Y, Li J, Shang H, Zhong P, Wang X, et al. HIV drug resistance
and its impact on antiretroviral therapy in Chinese HIV-infected patients.
PLoS One. 2013;8:1–7.

4. Araya ST, Hazelhurst S. Support vector machine prediction of HIV-1 drug
resistance using the viral nucleotide patterns. Trans R Soc South Africa.
2009;64:62–72.

5. Tang MW, Shafer RW. HIV-1 antiretroviral resistance: Scientific principles and
clinical applications. Drugs. 2012;72:1–25.

6. Prosperi MCF, De Luca A. Computational models for prediction of response
to antiretroviral therapies. AIDS Rev. 2012;14:145–53.

7. Drăghici S, Potter RB. Predicting HIV drug resistance with neural networks.
Bioinformatics. 2003;19:98–107.

Sheik Amamuddy et al. BMC Bioinformatics  (2017) 18:369 Page 6 of 7

dx.doi.org/10.1186/s12859-017-1782-x
https://hivdb.stanford.edu/pages/genopheno.dataset.html


8. Riemenschneider M, Heider D. Current Approaches in Computational Drug
Resistance Prediction in HIV. Curr HIV Res 2016;1–9.

9. Wensing AM, Calvez V, Günthard HF, Johnson VA, Paredes R, Pillay D, et al.
2014 update of the drug resistance mutations in HIV-1. Top. Antivir. Med.
2014;22:642–50.

10. Wensing AM, Calvez V, Günthard HF, Johnson VA, Paredes R, Pillay D, et al.
2015 update of the drug resistance mutations in HIV-1. Top Antivir Med.
2015;23:132–41.

11. Wagner S, Kurz M, Klimkait T. Algorithm evolution for drug resistance prediction:
comparison of systems for HIV-1 genotyping. Antivir Ther. 2015;20:661–5.

12. Van Laethem K, De Luca A, Antinori A, Cingolani A, Perno CF, Vandamme AM.
A genotypic drug resistance interpretation algorithm that significantly predicts
therapy response in HIV-1-infected patients. Antivir Ther. 2002;7:123–9.

13. Meynard J-L, Vray M, Morand-Joubert L, Race E, Descamps D, Peytavin G,
et al. Phenotypic or genotypic resistance testing for choosing antiretroviral
therapy after treatment failure: a randomized trial. AIDS. 2002;16:727–36.

14. Rhee S-Y, Gonzales MJ, Kantor R, Betts BJ, Ravela J, Shafer RW. Human
immunodeficiency virus reverse transcriptase and protease sequence
database. Nucleic Acids Res. 2003;31:298–303.

15. Lengauer T, Sing T. Bioinformatics-assisted anti-HIV therapy. Nat Rev Microbiol.
2006;4:790–7.

16. Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test
interpretation. Clin Infect Dis. 2006;42:1608–18.

17. Riemenschneider M, Hummel T, Heider D. SHIVA - a web application for
drug resistance and tropism testing in HIV. BMC Bioinf. 2016;17:314.

18. Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoffmann D,
et al. Geno2pheno: interpreting genotypic HIV drug resistance tests.
IEEE Intell Syst Their Appl. 2001;16:35–41.

19. Shen C, Yu X, Harrison RW, Weber IT. Automated prediction of HIV drug
resistance from genotype data. BMC Bioinf. 2016;17:278.

20. Yu X, Weber IT, Harrison RW. Sparse representation for prediction of HIV-1
protease drug resistance. Proc. 2013 SIAM Int. conf. Data mining. SIAM Int.
conf. Data Min. 2013;2013:342–9.

21. Yu X, Weber IT, Harrison RW. Prediction of HIV drug resistance from
genotype with encoded three-dimensional protein structure. BMC
Genomics. 2014;15:S1.

22. Masso M, Vaisman II. Sequence and structure based models of HIV-1
protease and reverse transcriptase drug resistance. BMC Genomics.
2013;14(Suppl 4):S3.

23. Stanford HIVdb. Genotype-Phenotype Datasets. 2014 [cited 2016 Dec 13].
Available from: https://hivdb.stanford.edu/pages/genopheno.dataset.html.

24. Ravela J, Betts BJ, Brun-Vézinet F, Vandamme A-M, Descamps D, van
Laethem K, et al. HIV-1 protease and reverse transcriptase mutation patterns
responsible for discordances between genotypic drug resistance
interpretation algorithms. J Acquir Immune Defic Syndr. 2003;33:8–14.

25. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology
open software suite. Trends Genet. 2000;16:276–7.

26. Hedlin H. Genotype-Phenotype Datasets: DRMcv. 2014 [cited 2017 May 22].
Available from: https://hivdb.stanford.edu/download/GenoPhenoDatasets/
DRMcv.R.

27. Monogram Biosciences. Phenosense HIV Drug Resistance Assay. 2014 [cited
2017 Jul 18]. p. 1–2. Available from: https://www.monogrambio.com/sites/
monogrambio/files/imce/uploads/PS_report_new_Watermark.pdf.

28. Dahake R, Mehta S, Yadav S. Polymorphisms in HIV-1 subtype C reverse
transcriptase and protease genes in a patient cohort from Mumbai.
J Antivir Antiretrovir. 2016;8:5–7.

29. Gupta S, Neogi U, Srinivasa H, Shet A. Performance of genotypic tools for prediction
of tropism in HIV-1 subtype C V3 loop sequences. Intervirology. 2015;58:1–5.

30. Riemenschneider M, Cashin KY, Budeus B, Sierra S, Shirvani-Dastgerdi E,
Bayanolhagh S, et al. Genotypic prediction of co-receptor tropism of
HIV-1 subtypes a and C. Sci Rep. 2016;6:24883.

31. Raymond S, Delobel P, Mavigner M, Ferradini L, Cazabat M, Souyris C, et al.
Prediction of HIV type 1 subtype C tropism by genotypic algorithms built
from subtype B viruses. J Acquir Immune Defic Syndr. 2010;53:167–75.

32. Awoke T, Worku A, Kebede Y, Kasim A, Birlie B, Braekers R, et al. Modeling
Outcomes of First-Line Antiretroviral Therapy and Rate of CD4 Counts
Change among a Cohort of HIV / AIDS Patients in Ethiopia: A Retrospective
Cohort Study. PLoS ONE. 2016;11:1–18.

33. Duber HC, Dansereau E, Masters SH, Achan J, Burstein R, DeCenso B, et al.
Uptake of WHO recommendations for first-line antiretroviral therapy in
Kenya, Uganda, and Zambia. PLoS One. 2015;10:1–12.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Sheik Amamuddy et al. BMC Bioinformatics  (2017) 18:369 Page 7 of 7

https://hivdb.stanford.edu/pages/genopheno.dataset.html
https://hivdb.stanford.edu/download/GenoPhenoDatasets/DRMcv.R
https://hivdb.stanford.edu/download/GenoPhenoDatasets/DRMcv.R
https://www.monogrambio.com/sites/monogrambio/files/imce/uploads/PS_report_new_Watermark.pdf
https://www.monogrambio.com/sites/monogrambio/files/imce/uploads/PS_report_new_Watermark.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Dataset description
	Dataset pre-processing
	Neural network construction and architecture optimization
	Evaluation of training performance

	Results and discussion
	Regression performances for HIV PIs
	Regression performances for NRTIs
	Regression performances for NNRTIs
	Overfitting assessment
	Classification performance for all antiretrovirals

	Conclusions
	Additional file
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

