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Abstract: While Zr is frequently added to Al alloys to control grain size with the formation of
large (>1 µm) primary precipitates, little research has been conducted on the effect of nanoscale
Al3Zr precipitates on Al alloys. By comparing the precipitation and corresponding strength evolution
between Al-Cu-Zr alloys with different Zr concentrations, the effects of Zr on Al-Cu precipitation with
and without primary Al3Zr precipitates can be observed. In the absence of these large precipitates,
all Al3Zr phases can be formed, through high temperature aging treatments, as a dispersion of
nanoprecipaites inside the Al grains. In this study, Al-Cu-Zr ternary alloys were produced and heat
treated to determine whether an increase in the coarsening resistance of Al-Cu precipitate phases
would be observed with a distribution of the more thermally stable Al3Zr nanoprecipitates. Generally,
properly aged Al-Cu alloys will coarsen when encountering elevated temperatures higher than ~473 K
(~200 ◦C). Diluted Al-Zr alloys (<0.07 at % Zr) resist coarsening behavior until the significantly higher
temperatures of ~673 K (~400 ◦C), but are comparatively limited in strength because of a limited
solubility of Zr in the Al matrix. Hardness testing and transmission electron microscope (TEM) results
are discussed, in which it is found that even very small additions of Zr, when properly accounted for
during heat treating, produce a finer microstructure and higher strength than in similar Al-Cu binary
alloys. No significant change in the thermal stability of strengthening was observed, indicating that
the finer precipitate microstructure is resultant from a higher nucleation density, as opposed to a
decrease in coarsening behavior.

Keywords: aluminum; zirconium; precipitation strengthening; thermal stability

1. Introduction

Zirconium is an important alloying addition for aluminum alloys, mainly because of the thermal
stability Al3Zr phase in the Al matrix [1]. Al3Zr precipitates are coarsening resistant up to temperatures
greater than 673 K (400 ◦C) [1], which is ~200 K higher than commonly used precipitation strengthening
additions in commercial alloys (Cu, Si, Mg, etc.). The low solubility of Zr in Al limits the effectiveness
of Al3Zr precipitates as a primary strengthening method [1,2], but this does not stop Zr from being
widely researched and put to use in several key applications. The desirable thermal stability of
Al3Zr has led to Zr being added in hyperperitectic concentrations to numerous Al alloys to pin grain
boundaries for use in superplastic deformation [1,2] and to refine grains in cold worked alloys [3,4].
It has been demonstrated as a complementary addition to the diluted Al-Sc alloy system for coherent
nanoscale precipitation strengthening [5–7], and it is used in higher concentrations to form bulk
metallic glass [8–10].

Throughout history, the majority of Al-Zr research has focused on alloys with Zr concentrations
higher than the maximum solubility limit of Zr in the Al matrix phase, with the intent of forming large
primary precipitates at the grain boundaries. The notable exception to this is the research focused on
Al-Sc-Zr alloys, which relies on the absence of primary precipitates to achieve the maximum potential
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precipitate strengthening for Al3(Sc, Zr) precipitates. This work focuses on the interaction between
Al-Cu and small Al-Zr precipitates, and thus does not require concentrations high enough to form
primary Al3Zr precipitates.

The primary goal of these experiments was to assess whether diluted Zr additions to Al-Cu
alloys could increase the thermal stability of Al-Cu precipitation strengthening. If the refinement of
microstructures associated with nanoscale Al3Zr precipitates in Al-Cu alloys was shown to be partly
because of a decrease in the coarsening kinetics of Al-Cu precipitates, it could be possible to increase
the strength of more thermally stable Al alloys. To examine this effect, two sets of experiments were
run, each comparing Al-Cu and Al-Cu-Zr alloys: (1) an isothermal heat treatment at 473 K (200 ◦C),
quenching and taking hardness measurements periodically throughout the hold; and (2) a multi-step
heat treatment that increased in temperature from 443 K (170 ◦C) to 643 K (370 ◦C) with five hour
holds at each temperature, quenching and taking hardness measurements between each step.

As the goal of these experiments was to observe the effect of Al3Zr nanoprecipitates on Al-Cu
precipitation, two different concentrations of Zr were observed: 0.05 at % Zr (primary precipitate
free) and 0.2 at % (primary precipitate forming). It was necessary to nucleate and grow the desired
nanoprecipitates with an initial heat treatment procedure before holding at 443 K (170 ◦C). Relevant
phase diagrams were consulted to determine appropriate heat treatments for these alloys, with the
end goal of having the majority of Zr solute atoms precipitated out of solution into coherent Al3Zr
nanoprecipitates, while retaining the Cu solute atoms in solution in the matrix. The concentration
levels of Zr and Cu in these alloys are low enough that the respective binary phase diagrams can
approximate the trends expected in the ternary alloy. These phase diagrams (Figure 1), along with
the listed points that immediately follow this paragraph, describe the heat treatment steps that were
decided on and the reasoning behind their selection.

1. The first required heat treatment step was designed to nucleate Al3Zr nanoprecipitates.
The literature review indicates that precipitation strengthening behavior occurs in Al-Zr alloys at
and above ~648 K (375 ◦C) [5,6]. The ideal temperature for this step was taken to be at the low
end of the range, 648 K (375 ◦C), to reduce the final size of the Al3Zr precipitates. This goal was
made more challenging by the requirements of the second step.

2. As the temperature of the first step was sufficiently high enough to fully precipitate and anneal
Al-Cu precipitates, the second required step was designed to re-solutionize the Cu solute atoms,
such that preferred microstructural arrangements and strengthening could be achieved at a later
step. To reduce overaging of the Al3Zr precipitates, it was desired to keep this step as low in
temperature as possible while still achieving solutionization of Cu. With this in mind, 773 K (500
◦C) was chosen.

3. Once the initial heat treatment steps were completed and the microstructure was created, the
aging and overaging steps were performed, as discussed in Section 2. Aging steps were selected
to be below 473 K (200 ◦C), closely approximating the artificial aging treatments of binary
Al-Cu alloys.

Looking at the phase diagrams in Figure 1 [11,12], several other notable conclusions about the
proposed processing can be drawn. For one, the high liquidus temperature range of the Al-Zr phase
diagram makes it necessary to reach much higher temperatures with the melting of Zr bearing alloys
in order to fully dissolve Al3Zr precipitates into the liquid. This effect is even more pronounced when
adding Zr from master alloys with higher comparative Zr contents, as the large Zr precipitates sink
and can create regions of the melt with disproportionately high liquidus temperatures.

Another notable conclusion is that it will be impossible to solutionize the Zr once these alloys
are created. The relevant temperatures for solutionizing Zr are well above those necessary to begin
melting in the Al-Cu system. Therefore, proper care must be taken with these alloys, as they are less
forgiving of failed heat treatments than current precipitation strengthening alloys.
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Figure 1. These phase diagrams [11,12] demonstrate the challenge of choosing optimal heat treatments
for Al-Cu-Zr alloys. As these alloys have very low Zr content, the binary diagrams are relevant enough
approximations to the ternary reality to assist in determining trends. Vertical dashed lines on these
diagrams denote the main alloy used in this study. The horizontal dashed lines (1, 2, and 3) indicate
the order/temperature of heat treatment steps required to nucleate and grow Al3Zr precipitates before
aging. The list preceding this image in Section 1 describes these steps more fully.

Finally, it can be noted that at the Al-Cu solutionizing temperature of 773 K (500 ◦C), Al3Zr
precipitates have been observed to partially dissolve into the solid solution because of an increased
solubility of Zr in Al, indicated in the literature by a decrease in electrical conductivity after undergoing
heat treatments at elevated temperatures [5,6]. This dissolution behavior is not ideal, but it also cannot
be reasonably avoided. The Al-Cu solutionizing temperature can in fact be lowered to a temperature
that would better preserve the Al3Zr precipitates, but the only way to achieve this in this ternary
system is to decrease the alloy Cu concentration, and in turn the potential for Al-Cu strengthening (see
the solvus line for the Al-Cu binary in Figure 1).

2. Materials and Methods

In preparation for casting the new alloys, master alloys were cut up using a band saw, cleaned
thoroughly using an ultrasonic bath with acetone, and weighed out in the proper amounts to make
~600 g charges of the compositions listed in Table 1. The resulting charges were then cast in a vacuum
induction melter (VIM, constructed at Michigan Technological University, Houghton, MI, USA) into
a bottom-fed permanent mold to create cylindrical bars approximately 19mm in diameter. After
evacuation of the chamber, the charges were held in a liquid state at 1173 K (900 ◦C) for 10 min under
a 99.999% purity argon atmosphere at ~684 torr. After solidification, samples with a thickness of ~1
cm were sectioned from the center of one cylindrical bar from each casting using an abrasive cutoff
disc, and mounted in QuickSet epoxy. The mounted samples were then ground and polished to a final
finishing step of 0.04 micron colloidal silica.



Metals 2018, 8, 331 4 of 11

Table 1. Expected and Observed Alloy Compositions.

Element
Al-1.3 at % Cu Al-1.3 at % Cu-0.05 at % Zr Al-1.3 at % Cu-0.25 at % Zr

Target ICP Target ICP Target ICP

Cu (at %) 1.30 1.30 1.30 1.42 1.30 1.31
Zr (at %) - - 0.05 0.05 0.25 0.27

A hole was also drilled in each casting to create chips that could be dissolved for ICP-OES analysis.
For each sample, approximately 0.4 g of these chips was dissolved in HCl and HNO3 using an Anton
Paar microwave digestion setup, followed by dilution with water into a final solution volume of 100 mL.
ICP-OES was performed with a Perkin Elmer Optima 7000DV to verify the Cu and Zr concentrations
for each casting. Typical detection limits for ICP-OES on this machine, according to Perkin Elmer
documentation, range between 0.15 and 4.5 µg/L for reported elements. Coincidentally, both Al and
Cu have the same reported detection limit of 0.9 µg/L. The detection limit of Zr is not reported, thus it
was estimated here to match the highest reported detection limit of 4.5 µg/L. As each sample consisted
of 0.4 g of alloy dissolved and diluted into a 100 mL solution, these detection limits correspond to
minimum detectable alloy concentrations of 2.25 × 10−4 wt % for Al and Cu and 1.125 × 10−3 wt %
for Zr, which are well below the alloy concentrations used in this study.

Vickers hardness testing was performed for each sample using a LECO MHT Series 200 hardness
tester (LECO Corporation, St. Joseph, MI, USA). Using the automated XY stage, hardness indents were
created with 10 g of force and a 15 s hold time in a large grid across the sample. For the isothermal
aging study (Table 2), indents were performed in a 2× 5 grid for a total of 10 points, and for the stepped
aging study (Table 2), indents were performed in a 3 × 10 grid for a total of 30 points. The hardness
data reported in Section 3 represent the average value of one grid of hardness indents (10 or 30
points, depending on the study), with error bars indicating the 95% confidence interval within the
hardness grid.

Table 2. Heat Treatment Schedules for Al-Cu-Zr Experiments.

Step Step Intent Isothermal Aging at 473 K Stepped Aging

Time (h) Temp (K) Time (h) Temp (K)

(1) Nucleate Al3Zr 3 623 3 648
(2) Solutionize Cu 3 798 1 773
(3) Age 6 473 5 443
(4) ↓ 12 (18 total) 473 5 493
(5) Over-age 18 (36 total) 473 5 543
(6) ↓ 24 (60 total) 473 5 593
(7) ↓ 30 (90 total) 473 5 643
(8) ↓ 36 (126 total) 473 - -
(9) ↓ 42 (168 total) 473 - -
(10) ↓ 48 (216 total) 473 - -

After evaluating these indents, the epoxy was broken off of the sample in preparation for heat
treatment using a bench-mounted vice, taking care not to deform the relatively soft aluminum
sample. Heat treatment was performed on the samples in a Thermolyne box furnace with a Furnatrol
53,600 Controller, according to the schedules depicted in Table 2. Between each heat treatment step,
the samples were quenched in water as they were removed, and epoxy was then re-applied to the
samples in such a way that minimal polishing was required to achieve a freshly polished surface.
Another round of 30 hardness tests were performed, offset from the previous indent grids to avoid
unwanted interactions, and then the sample was again broken out of the epoxy and placed back in the
furnace at the next temperature. This process (mount → hardness test → unmount → heat treat →
repeat) was repeated until all heat treatment steps were complete.
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After completion of the stepped aging heat treatment described in Table 2, transmission electron
microscope (TEM) samples were created from each of the specimens. TEM sample preparation was
performed as follows: 0.5 mm thick slices were cut from the sample using a Japax Lux3 Wire EDM
(Japax, Japan). Each slice was then polished on both sides to a mirror surface, and 3 mm diameter discs
were punched out using a specialized hole punch. Using a Gatan Disc Grinder system, these discs were
polished further on each side to yield a final thickness of approximately 50 microns, and a final surface
polished with 0.04 micron colloidal silica. These discs were then perforated with a Metalthin Twin
Jet Electropolishing System (South Bay Technology Inc., San Clemente, CA, USA), using a solution of
29% reagent grade nitric acid and 71% reagent grade methanol. The solution was kept below 243 K
(−30 ◦C) with a Multicool recirculating methanol refrigeration unit. The relevant operating settings
for the Metalthin instrument were as follows: 20–30 volts, jet speed of 4, sensitivity of 7–8.

Successfully prepared TEM specimens were analyzed on a JEOL JEM-2010 high resolution
transmission electron microscope (JEOL, Tokyo, Japan). All images were captured with a Gatan Orius
SC200 high-speed digital camera, and chemical analysis of nanoscale features was performed using
an Oxford energy dispersive spectrometer (EDS). TEM analysis of these specimens yielded images
of hundreds of precipitates for each heat treated specimen. The length and width of all resolvable
precipitates were measured manually using the freely available image processing software ImageJ.

3. Results and Discussion

Figures 2 and 3 describe the strengthening behavior observed for the isothermal and stepped
aging experiments, respectively. From these results, it could immediately be seen that all Zr-bearing
Al-Cu alloys invariably maintained a higher strength than the binary Al-Cu alloys, by what appears to
be a constant strengthening increment for each set of experimental parameters. This strengthening
increment appears to be thermally stable at elevated temperatures that would normally coarsen
and overage Al-Cu (primarily Al2Cu) precipitates. This information taken by itself was promising,
especially considering that the alloy containing only 0.05 at % Zr was shown to have a similar
strengthening effect as the alloy containing 0.2 at % Zr, implying that aged, nanoscale Al3Zr precipitates
are equally as effective as the larger primary precipitates. However, the results did not indicate any
noticeable increase in thermal stability of the total precipitation strengthening that would be expected
to accompany any improvement in coarsening resistance of the Al-Cu precipitate phases.
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Figure 2. This plot describes the overaging of two Al-Cu alloys at 473 K (Table 2 isothermal), one
alloy with Zr additions and one without. In this experiment, the Zr-containing alloy consistently had
a slightly higher strengthening than the Al-Cu binary. Error bars represent a 95% confidence level in
the mean hardness data (10 Vickers indents in a grid across the sample for each point).
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Figure 3. This plot describes the overaging of Al-1.3 at % Cu as consecutively higher 5 hr heat
treatments were performed (Table 2 stepped), compared with overaging in the same alloy with two
different levels of Zr additions. While there is little statistical difference between the two Zr-bearing
alloys, a significant higher strengthening effect can be observed in both of them when compared with
the Al-Cu binary. Error bars represent a 95% confidence level in the mean hardness data (30 Vickers
indents in a grid across the sample for each point).

Without consulting TEM images of the sample microstructure, the false assumption could be
reached that the Zr additions do not significantly affect the Al-Cu precipitation behavior, and that the
observed thermally stable strengthening increment is entirely because of strengthening contributions of
Al3Zr nanoprecipitates. However, TEM images of the samples taken after completion of stepped aging
(Table 2) negate this possibility. In these images, Al-Cu precipitates found in the Al-1.3 at % Cu sample
have measured lengths ~3× longer than the precipitates found in both of the Al-1.3 at % Cu-(0.05, 0.2)
at % Zr samples, suggesting that the addition of Zr does significantly affect the precipitation behavior
of Al-Cu precipitates. Representative images are shown in Figure 4.
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Figure 4. These TEM images, taken after completion of the 643 K (370 ◦C) stepped heat treatment
described in Section 2, demonstrate the difference in Al-Cu precipitate growth between an Al-Cu alloy
with and without Zr additions.



Metals 2018, 8, 331 7 of 11

A comparison of observed precipitate lengths and aspect ratios between the three alloys that
underwent the stepped aging heat treatment (Table 2) can be seen in Figure 5. This comparison indicates
that the Al-Cu precipitate aspect ratio distributions are consistent between Al-Cu and Al-Cu-Zr alloys.
It also shows that the average Al-Cu precipitate length, while similar in both observed Al-Cu-Zr alloys,
is noticeably larger in the binary Al-Cu alloy.
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(primarily Al2Cu) precipitates in the three different alloys. These measurements were made on TEM
images of the alloys after completion of the 643 K (370 ◦C) stepped aging heat treatment (Table 2).

Orowan strengthening contributions of the oblong θ’ precipitates can be estimated using
Equation (1) [13], where M = 3.06 is the Taylor factor [14], G = 25.4 GPa is the shear modulus of
the matrix [15], b = 0.286 nm is the Burgers vector magnitude of the matrix [15], and r0 = 0.572 nm is
the inner dislocation cut-off radius [16]. Image analysis of the TEM images yields average precipitate
plate diameter (Dp) and an estimate of the thickness (tp), although the actual thickness can be assumed
to be slightly lower than this estimate because of unknown disorientation of the TEM images. The
volume fraction ( fv) can be assumed to be at equilibrium and estimated from the solvus composition
for a given alloy.
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(
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(
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)1/2

r0

)
(1)

Using this method, Orowan strengthening contributions of the θ’ precipitates were estimated to
be 23.9 and 63.9 MPa for Al-1.3 at % Cu and Al-1.3 at % Cu-0.05 at % Zr alloys, respectively, after the
final stepped heat treatment step of 643 K (370 ◦C). The difference between these two estimates is
~40 MPa, which accounts for a significant amount of the observed difference between these alloys of
~58 MPa.

Upon closer inspection of the TEM samples for the Al-Cu-Zr alloys, a fine dispersion of rounded
Zr-rich nanoprecipitates becomes apparent among the larger θ’ precipitates, as seen in Figure 6.
When analyzed with EDS, these rounded precipitates contain not only Al and Zr, as would be expected
with simple Al3Zr precipitate phase, but significant quantities of Cu as well, when compared with the
matrix (Figure 7).

The formation of these Zr-rich precipitates could only have occurred during the initial heat
treatment step, which was intended to solutionize Cu and simultaneously form the Al3Zr phase.
It is unclear whether this phenomenon is because of an attraction of Cu atoms to the stable Al3Zr
precipitates at these higher temperatures, or to the formation of a stable, ternary Al-Cu-Zr phase.
While many Al-Cu-Zr intermetallic phases are known to exist, only the τ9 phase (Al-15.7 at % Cu-17.1
at % Zr) is predicted to potentially be stable with the given alloy composition at 773 K (500 ◦C) [8,17].
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One consequence of forming Al-Cu-Zr precipitates, as opposed to the simple Al3Zr phase, is that
a small amount of Cu is depleted from the matrix and made unavailable for θ’ precipitates. However,
assuming all Zr matrix content is used to form τ9 precipitates, the maximum loss in matrix Cu content
would still only be ~0.046 at % Cu for the Al-1.3 at % Cu-0.05 at % Zr alloy and ~0.072 at % Cu for the
Al-1.3 at % Cu-0.2 at % Zr alloy (assuming a Zr solubility limit of 0.078 at % Zr). This is expected to
result in a decrease in the final θ’ precipitate phase fraction of up to ~5% when compared with the
Al-1.3 at % Cu binary alloy.Metals 2018, 8, x FOR PEER REVIEW  8 of 11 
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Figure 6. This TEM image of the Al-1.3 at % Cu-0.05 at % Zr sample, taken after completion of the
643 K (370 ◦C) stepped heat treatment described in Section 2, shows the three different phases observed
during TEM of the Al-Cu-Zr alloys: (A) elongated θ’ precipitates; (B) rounded Zr-rich precipitates;
and (C) the Al matrix phase. Several locations where θ’ precipitates and the Zr-rich precipitates
intersect are visible within this image as well.

It is also interesting to note that the θ’ and Zr-rich precipitates intercept each other in several
instances within Figure 6. These instances are representative of all such behavior observed in other
Al-Cu-Zr TEM images, in that the elongated θ’ precipitates tend to terminate in or on a Zr-rich
precipitate when they intercept. This behavior may be indicative of the nucleation of θ’ precipitates on
the previously formed Zr-rich precipitates [17]. Nucleation on Al3Zr precipitates could account for
the Cu-enriched nature of the Zr-rich phase. This nucleation phenomenon contributes to an increased
number density of θ’ precipitates, which in turn results in lower average dimensions of θ’ precipitates
in the Zr-bearing alloys when compared with the binary alloys.

Comparison of TEM EDS scans for the three phases indicated in Figure 6 can be found in Figure 7.
The difference in Cu:Zr intensity ratios between the θ’ and τ9 precipitates in Figure 7 clearly indicates
that the two precipitate phases are of different compositional makeup. It should also be noted that
the Zr content in the scan for the θ’ precipitate is not universal; some of the θ’ precipitates observed
showed no noticeable Zr content, while others still showed Zr quantities between the matrix and
Al3Zr concentrations. This discrepancy could potentially be due to inaccuracies in measuring low
concentration elements in relatively thin precipitates, or to the unknowing contamination of signal
from small, nearby Zr-rich precipitates.



Metals 2018, 8, 331 9 of 11

Figure 7. During TEM analysis of Al-1.3 at % Cu-0.05 at % Zr samples aged according to the schedule
for Experiment 2 (Table 2), these energy dispersive spectrometer (EDS) scans were obtained of the
three main phases that were observed. Microstructural images of these phases, labeled as A, B, and C,
are clearly pointed out in Figure 6.

4. Conclusions

In this research, experiments were run to determine whether Al3Zr nanoprecipitates, formed with
a custom heat treatment and diluted Zr additions to Al-Cu binary alloys, could increase the thermal
stability of the relevant Al-Cu precipitates. Different alloy compositions were observed in order to
differentiate between the effect of large primary Al3Zr precipitates and the aged nanoprecipitates.
While no significant change in the rate at which strengthening decreased during overaging was
observed, TEM images taken at the end of overaging heat treatments clearly depict θ’ precipitates
in the binary alloys achieving dimensions approximately three times larger than in the Al-Cu-Zr
ternary alloys. Also present in TEM images of the Al-Cu-Zr alloys were rounded nanoprecipitates
that were found to contain both Zr and Cu atoms at higher levels than the matrix concentration.
These precipitates are believed to be either Cu-enriched Al3Zr phase or τ9 phase, which has
a composition of Al-15.7 at % Cu-17.1 at % Zr and has been reported to be stable with the alloy
concentration at the initial Al-Zr aging step of 773 K (500 ◦C) [8,17]. It is indicated, from the positioning
of the θ’ relative to the Zr-rich precipitates, that the latter precipitates appear to behave as nucleation
sites for the Al-Cu precipitates, increasing the nucleation density and limited average growth of the
θ’ precipitates.

The difference in strengths between the binary and ternary alloys can be mostly accounted for as
the difference in Orowan strengthening because of the difference in precipitate dimensions and phase
fractions. Image analysis of the precipitates provided enough data to estimate Orowan strengthening
of the precipitates in the binary and ternary alloys, and the estimated difference of ~40 MPa explains
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the majority of the observed difference in strengthening of ~58 MPa. Further differences in the
strengthening are likely to be a combination of error in the strengthening calculations and the added
strengthening benefit of the Zr-rich precipitates. It should also be noted that a large fraction of the
strengthening of these alloys is due to solid solution strengthening, which behaves similarly in both
alloys and is significant because of the relatively high solubility of Cu in the Al matrix. However, the
strengthening effect of the precipitates is still a significant factor, and differences in the coarsening
behavior, if present, should be reflected in the total strength. The fact that little difference in the
thermal stability of strengthening was observed appears to imply that the coarsening rate is not
significantly different with the addition of Zr (in either concentration), but that there were simply
higher initial precipitate nucleation events in the Al-Cu-Zr alloys due to the presence of the aged Al3Zr
nanoprecipitates. Therefore, the average precipitate size was smaller in Zr bearing alloys by the time
precipitate growth transitioned from being mainly matrix-depletion driven to being coarsening driven.

Future experiments should attempt to more thoroughly document Al-Cu precipitate growth
with TEM throughout overaging in an attempt to understand this phenomenon more fully, as this
study only had access to TEM images after aging was completed. Collecting TEM precipitate size
distributions concurrently with the strengthening data taken between each heat treatment step would
allow insight into how strengthening sources evolve differently with and without the presence of Zr.
TEM images from earlier in the aging process may also confirm the proposal that nucleation of Al-Cu
precipitates was assisted by the presence of Al3Zr nanoprecipitates, causing the initial strengthening
differences. The proposed experiments should include long isochronal aging of Al-Cu-Zr alloys with
an initial high temperature aging step to nucleate Al3Zr/τ9 nanoprecipitates, as described in this study.
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