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Abstract: The inclusion of electricity generation from wind in microgrids presents an important
opportunity in modern electric power systems. Various control strategies can be pursued for wind
resources connected in microgrids, and droop control is a promising option since communication
between microgrid components is not required. Traditional droop control does have the drawback
of not allowing much or all of the available wind power to be utilized in the microgrid. This paper
presents a novel droop control strategy, modifying the traditional approach and building an
optimal droop surface at a higher dimension. A method for determining the optimal droop
control surface in multiple dimensions to meet a given objective is presented. Simulation and
hardware-in-the-loop experiments of a sample microgrid show that much more wind power can be
utilized, while maintaining the system’s bus voltage and still avoiding the need for communication
between the various components.

Keywords: microgrid; control; optimal

1. Introduction

Two emerging technologies that are important in the modern electric power system include wind
turbines and microgrids. The use of wind to generate electricity has become increasingly common
and provides a clean, sustainable source of energy. Microgrids are small electricity systems that can
operate in connection with the main power grid, but are also able to operate in a disconnected or
islanded mode. They allow for a more reliable and efficient power system, since electricity does not
have to be transmitted long distances to reach customers [1].

Including wind turbines as part of the generation mix in a microgrid is one way to take advantage
of the benefits of both of these technologies [2]. The size of both wind turbines and microgrids can
vary greatly. In this paper, an example microgrid is presented that could represent a small building,
with one wind turbine and one liquid-fuel generator. An updated droop control scheme is presented
for wind turbines connected with microgrids, which allows more of the power available from the wind
to be utilized.

Droop control is a common control method for power systems, including DC [3] and islanded [4]
microgrids. The main benefit of droop control is that sources and loads are not required to communicate
or share information with one another [5]. In a DC distribution system, each source is assigned a
droop setting so that the power supplied by each source changes as the system load changes. All of the
microgrid components are connected to a common bus, so fluctuations in the load cause fluctuations
in the bus voltage. The nominal bus voltage is always the same for all sources, but assigning different
droop settings allows each source to supply more or less power as the bus voltage changes [5].
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The application of droop control has been studied with microgrids and specifically with microgrids
containing wind resources. Researchers have proposed various adjustments to traditional droop
control, to achieve improved operation when applied with wind resources and with microgrids.
For example, Luo et al. proposed an offset P′ in addition to the linear droop setting for sources
connected to the DC microgrid bus [6]. Additional research has suggested increasing droop gains in a
DC microgrid as the load level increases to improve current sharing among sources [7].

In one study of the application of droop control with wind resources in microgrids, two distinct
droop settings were recommended: one for operation in connection with the larger grid and one for
operation in islanded mode [8]. Another approach giving lower droop settings to those sources with
higher power margins was proposed [9], in order to improve frequency regulation of wind turbines.
The implementation of droop control with wind sources in microgrids was also shown in [10].

Successful implementation of droop control with wind sources in a standalone DC microgrid has
been demonstrated [11]. For an AC microgrid, previous research has suggested including H∞ control
to improve the performance of traditional droop control and reduce errors based on measurement
noise [12].

The challenges encountered in using droop control with wind resources due to the variable nature
of wind are clear [13]. When using traditional linear droop control, appropriate droop control settings
that allow for load sharing while also utilizing energy from the wind are difficult to find. This paper
will present an alternative droop control method to address these challenges. Another common type
of control for wind resources in Maximum Power Point Tracking (MPPT); this paper presents an
alternative approach using a modified droop control method.

Unlike diesel or other fossil fuel-based generators, wind generation includes uncertainties due to
the variable nature of the power available with changing wind conditions. Optimization of the number
and location of distributed wind generators given these uncertainties has been demonstrated [14],
and the droop control method proposed here is designed to optimize the utilization of wind resources
given the uncertainties in their operation over time.

One application for this research is remote microgrids, which are not located near the main
electrical grid and therefore operate as standalone systems. These microgrids may also be located in
countries that do not have a centralized electricity grid system or on physical island communities [15].
In some cases, these communities have relied on diesel generation; the addition of renewable energy
resources with control methods such as droop control can reduce their consumption of diesel fuel,
leading to reduced operational costs and reduced carbon emissions [16].

Alternatively, some microgrids have the option to operate while connected with the grid, or in
a separate, islanded mode [17]. The improved droop control method proposed in this paper can
be applied with a microgrid that is operating as an island. Stability is important regardless of the
operational mode, but becomes especially important in islanded microgrids [18].

Previous work has demonstrated the use of multidimensional droop control with wind resources,
where a plane is used for the droop control relationship rather than the traditional line [19].
Related work has presented a method for finding an optimal droop control relationship in two
dimensions to meet a given objective [20]. This paper presents an improved method for designing
droop control for wind resources in DC microgrids, combining each of these two approaches to create
an optimal multidimensional droop controller.

2. Microgrid Modeling and Control

A simplified modeling approach will be used for DC sources connected through a power
electronics converter to the microgrid and controlled using droop control. This equivalent approach
allows the converter model to be simplified to only a variable output voltage, without including the
actual switching, or an average model of the switching, in the simulation. This approach will be used
in this paper as a preliminary method for modeling the system and designing droop control algorithms.
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Average mode modeling for power electronics will then be simulated [21], and full switching models
will be implemented using hardware-in-the-loop.

The example microgrid system used in the first part of this paper is shown in Figure 1. Five state
equations define this system: one for the bus voltage, one for the droop controller for each source
and one for the current from each source.

di1
dt

L1B = V1s −Vbus − R1Bi1 (1)

dierror,1

dt
= ire f 1 − i1 (2)

di2
dt

L2B = V2s −Vbus − R2Bi2 (3)

dierror,2

dt
= ire f 2 − i2 (4)

dVbus
dt

Cload = i1 − i2 −
Vbus
Rload

. (5)

Figure 1. Simple microgrid example with two sources and one load.

Source voltages V1s and V2s can then be replaced by implementing proportional-integral control
loops as:

V1s = kp(ire f 1 − i1) + kiierror,1 (6)

V2s = kp(ire f 2 − i2) + kiierror,2. (7)

Source 2 will utilize traditional linear droop control, where:

ire f 2 =
Vre f −Vbus

Rd
. (8)

The reference current for Source 1 is left as a variable, ire f 1. The following section will demonstrate
a method to find the optimal i∗re f 1 as a function of bus voltage and other variables to meet a given
objective. The numeric values used for this microgrid model are shown in Table 1. The full state model
and proportional-integral control design are presented in [19].



Energies 2018, 11, 1818 4 of 20

Table 1. Microgrid parameter values.

Component Value Unit

R1B 0.1 Ω
L1B 1 mH
R2B 0.2 Ω
L2B 2 mH

Cload 1 mF
Vre f 100 V
Rd 1
kp 1
ki 10

Optimization of Droop Control

Using the system model defined above, this section will describe a method to identify an optimal
droop control relationship between reference current, bus voltage and other variables to meet a given
objective [20]. The state equation model of the system is first solved to find the steady-state result,
since droop control allows a system to move between stable steady-state points [5].

i1,ss = ire f 1 (9)

ierror,1,ss =
R1Bire f 1(Rd + Rload) + Rload(Rdire f 1 + Vre f )

ki(Rd + Rload)
(10)

i2,ss = −
Rloadire f 1 −Vre f

Rd + Rload
(11)

ierror,2,ss =
Rload(Rdire f 1 + Vre f ) + R2B(−Rloadire f 1 + Vre f )

ki(Rd + Rload)
(12)

Vbus,ss =
Rload(Rdire f 1 + Vre f )

Rd + Rload
. (13)

Most of the quantities in this steady-state result are constant system parameters or control values
that will be selected. The load resistance Rload is the only remaining item that can vary. Since we are
solving for i∗re f 1 as a function of Vbus, the steady-state result can be used to solve for the load resistance:

Rload =
RdVbus,ss

Rdire f 1 −Vbus,ss + Vre f
. (14)

The power supplied by Source 1 in steady state can then be calculated, (14) used to replace Rload
and the result simplified to:

P1,ss = V1s,ssi1,ss (15)

Given the steady-state power as a function of ire f 1 and Vbus, an objective function can be selected,
and we can solve for i∗re f 1 as a function of Vbus that meets that objective in an optimal way. For example,
choose an objective to have a constant output power from Source 1, regardless of changes in the
system load,

J = (P̂− P1,ss)
2 (16)

where P̂ is the desired power for Source 1 to supply. The full objective function is then:

J = (P̂− ire f 1(R1Bire f 1 + Vbus,ss))
2. (17)
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Taking the derivative of the objective function with respect to Vbus and setting the result equal to
zero results in:

0 = 2ire f 1(−P̂ + ire f 1(R1Bire f 1 + Vbus,ss)). (18)

Solving for the optimal i∗re f 1 gives the optimal relationship for reference current with respect to
bus voltage, desired output power and line resistance,

i∗re f 1 =
−Vbus +

√
4P̂R1B + V2

bus

2R1B
. (19)

Previous work implemented a constant desired power P̂ of 2000 W and demonstrated the
operation of the microgrid using this optimal droop control relationship in two dimensions [20].
If the desired power depends on an additional variable, it becomes P̂(w), where w is the wind speed,
for example. The optimal droop control relationship is now a function in multiple dimensions:

i∗re f 1 =
−Vbus +

√
4P̂(w)R1B + V2

bus

2R1B
. (20)

The use of this control strategy is demonstrated in the following sections.

3. Small Microgrid

As an initial example, the small microgrid shown in Figure 1 is used. For this example, a 2-kW
wind turbine is simulated. The power curve for the turbine is shown in Figure 2; this relationship is
used to replace P̂(w) in (20). Source 2 represents a small diesel generator.
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Figure 2. Power curve for a 2-kW wind turbine.

For a first test case, a step change in wind speed from 10 m/s–13 m/s was implemented first in
simulation and then hardware-in-the-loop. Figure 3 shows this step change in wind speed, along with
the associated step change in power available from the wind, based on Figure 2.
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Figure 3. Step in change in (a) wind speed and (b) power available from the wind, implemented in
both simulation and hardware-in-the-loop.

3.1. Simulation Results

The system was simulated using the optimal multidimensional droop control relationship found
in (20). Figure 4 shows the power supplied by each source during the simulation. When the wind
speed is increased at t = 0, the power supplied by Source 1 increases to match the new level of
available power from the wind.
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Figure 4. Simulation results for power supplied by Sources 1 and 2 during a step change in wind speed.

3.2. Hardware-In-The-Loop Results

A Hardware-In-the-Loop (HIL) approach was used to verify the simulation results presented
in the previous section. This allows the system to be emulated in software, while connecting with
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real-world hardware in real time [22]. Using an HIL approach allows the proposed control method to
be tested virtually with an example system, while interfacing with real hardware [23].

Both the simulation and HIL used the same component values; the HIL experimental apparatus
is shown in Figure 5. This particular HIL unit, the Typhoon HIL600, has 32 channels of ±5-V Analog
Output (AO) that are mapped to data points in the HIL circuit. These signals are then offset and scaled
by the microgrid control board to 0 V–+3.3 V and are read by the 12-bit analog to digital converters on
three DSPs. For this test, five channels of analog signals are needed to implement the multidimensional
optimal droop control. The analog signal parameters and the scaling from the HIL are shown in Table 2.

Figure 5. Typhoon HIL600 with microgrid control board and three TI-F28335 DSP ControlCARDs
(two cards were used for this paper). HIL, Hardware-In-the-Loop.

Table 2. HIL analog output configuration. AO, Analog Output.

AO Channel Model Parameter Scaling

1 Vbus 100 V per 1 VDC
2 I1 10 A per 1 VDC
3 I2 10 A per 1 VDC
4 V1,re f 100 V per 1 VDC
5 V2,re f 100 V per 1 VDC

BNC connectors on the microgrid control board are linked with the first four analog output
channels that are then connected to an oscilloscope. For this research, the first three channels are used
to view Vbus, I1 and I2 and capture the results in oscilloscope traces.

The droop controller for each source was implemented on an individual Texas Instruments
F28335 DSP ControlCARD [24]; each was then programmed through the Embedded Coder toolbox
in MATLAB/Simulink (Verison 2014b, Mathworks, Natick, MA, USA). The control card for Source 1
implements optimal multidimensional droop control as in (20), while the card for Source 2 implements
linear droop control as in (8), each using a PID control loop. Using separate control cards for each
of the two sources ensures the implementation of decentralized control; each source uses only
local information, and communication between sources and/or the other microgrid components
is not required.

For the HIL experiment, all power electronics switching was included, along with parasitic
inductances and capacitances. The circuit schematic used in the Typhoon software is shown in Figure 6.
The parameter values used for the two sources are shown in Table 3.
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Figure 6. Hardware-in-the-loop schematic for the small microgrid example.

Table 3. Source 1 and Source 2 parameter values.

Source 1 Source 2
Component Value Unit Component Value Unit

Vh 400 V Vh 380 V
Rh 0.2 Ω Rh 0.2 Ω
Ch 0.2 mF Ch 0.2 mF
Lh 1.5 mH Lh 1.5 mH
Cl 0.08 F Cl 0.08 F
Ll 5 mH Ll 5 mH
RB 0.1 Ω RB 0.23 Ω
LB 1.2 mH LB 0.8 mH
Vre f 300 V Vre f 300 V
Rd 0.9 Rd 0.8
kpi 1 kpi 1
kii 10 kii 10
kpv 1 kpv 1
kiv 10 kiv 10

The optimal multidimensional droop control relationship in (20) was implemented in
hardware-in-the-loop, and the same step change in wind speed that was used in the simulation
was also used here.

The optimal droop controller implemented for Source 1 is shown in Figure 7, while the traditional
droop controller implemented for Source 2 is shown in Figure 8.
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Figure 7. HIL controller for Source 1: optimal multidimensional droop.

Figure 8. HIL controller for Source 2: traditional droop.

Figure 9 shows the microgrid bus voltage and the currents supplied by both sources. Both currents
share the same zero point on the oscilloscope trace, while the bus voltage zero point is offset for
visibility. As in the simulation results, when a step increase in the wind speed occurs, Source 1
increases its output based on the increased power available from the wind. Source 2 decreases its
output so that the two sources together share the load, which is constant for this example.

Figure 9. Hardware-in-the-loop results with optimal multidimensional droop control during a step
change in wind speed: Ch1 bus voltage; Ch2 Source 1 current; Ch3 Source 2 current.

3.3. Comparison of Results

MATLAB was used to plot the imported data from the oscilloscope traces in Figure 9, along with
the simulation results presented earlier. This demonstrates a direct comparison for the same scenario
that was both simulated and tested using HIL. Figure 10 shows the microgrid bus voltage during the
step change in wind speed, with both the simulation and HIL results shown together.
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Figure 10. Simulation and hardware-in-the-loop results for bus voltage during a step change in
wind speed.

Figures 11 and 12 show the current supplied by each source, with both the simulation and HIL
results shown together. The simulation and HIL steady-state values of current before and after the step
change in wind speed match; however, the two sets of results do not match during the transient event.
This is due to the fact that different time constants were used in the simulation and HIL experiments.
The proportional and integral gains for the PI controller in the simulation and HIL were also not
tuned to achieve a very fast transient response. Since the control methods proposed in this paper are
designed for use over large time periods, the difference found between simulation and HIL results for
this test of a very small time period was not a key concern for this research.
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Figure 11. Simulation and hardware-in-the-loop results for Source 1 current during a step change in
wind speed.
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Figure 12. Simulation and hardware-in-the-loop results for Source 2 current during a step change in
wind speed.

4. Residential Microgrid

The simulation and HIL results presented above demonstrate the function of the proposed
optimal multidimensional droop control method, using a small example microgrid with a constant
load and a simple step change in wind speed. This section will compare the use of linear, planar
and optimal multidimensional droop control with an example residential-scale microgrid. The details
of the modeling method used for each component in the microgrid can be found in [19], and the full
microgrid model is shown in Figure 13.

Figure 13. Example microgrid for the demonstration of droop control methods.
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The full example microgrid was simulated three times: first with traditional linear droop control,
then with multidimensional droop control using a plane and, finally, with optimal multidimensional
droop control using a surface. The results using each type of control are presented in the following
sections. The system was modeled for a 24-h period, using the wind speed and load profiles shown in
Figure 14. A 12-kW wind turbine was simulated, with the power curve shown in Figure 15.
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Figure 14. (a) Load and (b) wind speed profiles for the simulated 24-h period.
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Figure 15. Power curve for the 12-kW wind turbine.

4.1. Traditional Droop Control

First, the system was simulated using traditional, linear droop control for both sources. The droop
control relationships are shown in Figure 16. The conventional source and the energy storage device
will keep their same linear droop control settings for all three of the simulations.
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Figure 16. Linear droop control relationships for (a) wind source and (b) conventional source for
first simulation.

The results of simulating the system are shown in Figure 17. Both sources share the load, and the
wind resource does not change its operation based on the wind speed. The battery is needed throughout
the day to provide additional power to the system.
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Figure 17. Simulation results using traditional droop control: (a) power supplied by each source;
(b) power consumed by each load; and (c) power supplied by the battery.

4.2. Multidimensional Droop Control

Next, the system was simulated using multidimensional droop control for the wind resource.
The droop control plane is shown in Figure 18, along with the operation of the source during this
simulation. The points marked D, E and F provide a reference for the plot of the source’s output with
respect to time, which is shown in Figure 19.
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Figure 18. Multidimensional droop control relationship for the second simulation.

The results of simulating the system are shown in Figure 19. The points marked D, E and F
provide a reference to the source’s movement along the droop control plane, shown in Figure 18.
Both sources share the load, and the wind resource changes its operation based on the wind speed.
The conventional resource is needed during times of lower wind speed to ensure that the load is met.
The battery is now able to charge during the times of higher wind speed.

Figure 19. Simulation results using multidimensional droop control: (a) power supplied by each source;
(b) power consumed by each load; and (c) power supplied by the battery.

4.3. Optimal Multidimensional Droop Control

Finally, the system was simulated using optimal multidimensional droop control for the wind
resource. The method presented above was used to find the optimal surface for a 12-kW wind turbine.
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The droop control surface is shown in Figure 20, along with the operation of the source during this
simulation. The points marked G, H and I provide a reference for the plot of the source’s output with
respect to time, which is shown in Figure 21.

Figure 20. Optimal multidimensional droop control relationship for the third simulation.

The results of simulating the system are shown in Figure 21. The points marked G, H and I
provide a reference to the plot of the source’s movement along the droop control surface, shown in
Figure 20. Both sources share the load, and the wind resource changes its operation based on the
wind speed. The conventional source outputs its minimum requirement of 500 W throughout the
simulated day. The battery is able to charge for most of the day and supplies some power to the system
when needed.

Figure 21. Simulation results using optimal multidimensional droop control: (a) power supplied by
each source; (b) power consumed by each load; and (c) power supplied by the battery.
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4.4. Comparison of Simulation Results

The power supplied from the two sources in each of the three simulations are compared in
Figure 22. Using multidimensional droop control with a plane allows more of the energy from the
wind to be utilized, while using an optimal multidimensional droop control surface allows almost all
of it to be utilized. This also requires the conventional source to be used less, resulting in fuel savings.
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Figure 22. Power supplied from (a) wind source and (b) conventional source using 2D, 3D and optimal
3D droop. Power available from the wind is also shown.

A comparison of the amount of unused energy for each case is shown in Table 4.
Using multidimensional droop control (a plane) decreases the unused energy by almost 75% compared
to traditional linear droop control. Using the optimized droop surface for the wind source decreases
the unused energy by an additional 94%.

Table 4. Comparison of unused energy from the wind for three droop control methods, in a full
microgrid example.

Droop Control Strategy Reference Current Equation Unused Energy (W-h)

Linear ire f 1 =
Vre f−Vbus

Rd
149,770

Planar ire f 1 =
Vre f−Vbus

Rd1
+ vw

Rd2
39,792

Optimal Surface ire f 1 =
−Vbus+

√
4P̂(w)R1B+V2

bus
2R1B

2651

The bus voltage during each of the simulations is shown in Figure 23. When multidimensional
droop control is used, with both a plane and an optimal surface, the bus voltage varies more than in the
traditional linear droop control case. This is one trade-off that needs to be considered when selecting
the droop surface. In all three cases, the bus voltage remains within ±5% of the nominal 300 V.
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Figure 23. Microgrid bus voltage with (a) optimal multidimensional droop control, (b) multidimensional
droop control and (c) traditional droop control.

5. Conclusions

The results presented in this paper show that the droop control relationship for a source in a
DC microgrid can be optimized to meet a given objective. An example microgrid was simulated and
demonstrated through HIL, and the results show that a droop control relationship can be chosen to
allow the power supplied by a source to match the power available from the wind.

This control method retains the advantages of traditional droop control and does not require
a communication link between the system components. It also allows all of the power available
from the wind to be utilized, which is an improvement over traditional droop control and over
multidimensional droop control using a plane. The droop control surface is optimized for general
operation of the system; it is not necessary to know the expected wind speed and load profiles in order
to determine the surface shape.

Other control methods for renewable energy resources in microgrids, such as MPPT, have other
benefits for different applications; for example, in situations where microgrid components have active
information sharing available, other controller options may support optimal operation for a given
objective. However, the lack of dependence on communication is important for system reliability,
especially for microgrids in remote residential or military solutions. The optimal multidimensional
droop control method demonstrated in this paper retains the beneficial simplicity of traditional droop
control, while allowing the variability of renewable energy resources to be included in the droop
control relationship.

In the optimal multidimensional droop control method presented in this paper, the optimal
reference current depends on the changing bus voltage and the reference power, which may be a
function of another variable such as wind speed. The optimal reference current also depends on R1B,
the line resistance the connects the source to the DC bus. The reference power P̂ is a value chosen by
the control designer based on the scenario. However, the bus voltage is measured continuously while
the microgrid is operating, and there may be some small errors in its measurement. The value of R1B is
constant, but there may also be some error in the actual resistance included in the system. A sensitivity
analysis was conducted on the constant value of R1B, and the measured value of Vbus, to determine the
impact of variations on the performance of the controller.
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One method for evaluating the sensitivity of a model to a given parameter is to find the ratio of
the actual value given perfect information and the reference value based on the model parameters [25].
The optimal relationship for the reference current is repeated:

i∗re f 1 =
−Vbus +

√
4P̂R1B + V2

bus

2R1B
(21)

5.1. Sensitivity in R1B

A ratio was calculated to compare the reference current based on the actual resistance value to
the reference current based on an assumption of an 0.1 Ω resistance. The result is plotted in Figure 24
over a range of resistances from ±50% from the nominal value. This result shows that even if the line
resistance used to calculate the reference current differs within ±50% from the actual line resistance,
the impact on the reference current is less than ±0.1%.
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Figure 24. Ratio of the actual to ideal reference current with respect to line resistance.

5.2. Sensitivity in Vbus

A ratio was calculated to compare the reference current based on the actual bus voltage to the
reference current based on an assumption of a bus voltage measurement of 295 V. The result is plotted
in Figure 25 over a range of bus voltages from ±1% from the nominal value. This result shows that
even if the measured bus voltage used in the controller differs within ±1% from the actual bus voltage,
the impact on reference current is also less than ±1%.
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Figure 25. Ratio of actual to ideal reference current with respect to measured bus voltage.

The parameter sensitivity analysis presented here demonstrates that small errors in bus voltage
measurement and large errors in the line resistance value have a minimal effect on the calculated
reference current for optimal multidimensional droop control.
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