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Abstract: This paper presents a multi-timescale control strategy to deploy electric vehicle (EV)
demand flexibility for simultaneously providing power balancing, grid congestion management,
and economic benefits to participating actors. First, an EV charging problem is investigated from
consumer, aggregator, and distribution system operator’s perspectives. A hierarchical control
architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed
to realize their coordinative goal. This is realized by integrating multi-time scale controls that
work from a day-ahead scheduling up to real-time adaptive control. The performance of the
developed method is investigated with high EV penetration in a typical residential distribution
grid. The simulation results demonstrate that HCA efficiently utilizes demand flexibility stemming
from EVs to solve grid unbalancing and congestions with simultaneous maximization of economic
benefits to the participating actors. This is ensured by enabling EV participation in day-ahead,
balancing, and regulation markets. For the given network configuration and pricing structure, HCA
ensures the EV owners to get paid up to five times the cost they were paying without control.

Keywords: congestion management; demand response; electric vehicle; hierarchical control;
microgrid; smart charging; smart grid

1. Introduction

The future power system is anticipated to undergo major transformation as shown in Figure 1 due
to changes in the mode of electricity generation and transportation. Recently, increased environmental
concerns and favorable government policies are leading to increased penetration of renewable energy
sources (RESs), such as wind and solar PVs, in many countries (e.g., USA, Denmark, and Germany) [1–3].
This transformation is progressively phasing-out large power plants which were conventionally used
for balancing purposes [2]. Moreover, limited rotational inertia and low-power regulation capability of
RES create potential issues on power balancing and system stability of the existing power system.

On the other hand, electrification of transportation sector, one of the highest energy consumption
sectors, is rapidly transforming existing fossil fuel vehicles towards electric vehicles (EVs) [2].
The increased penetration of EVs congests most of the existing networks, thereby requiring grid
reinforcements to host them [4]. However, due to faster response and vehicle-to-grid (V2G) features,
EVs can offer great deal of flexibility [5]. This paper presents smart EV charging control strategies to
exploit their flexibilities for system balancing and congestion management of smart distribution grids,
with simultaneous maximization of economic benefits.

The remainder of the paper is structured as follows. Recent related works are reviewed in Section 2.
Next, detailed EV modeling is presented in Section 3. Section 4 presents EV charging strategies from
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consumer, distribution system operator (DSO), and aggregator’s perspectives. A hierarchical control
architecture (HCA) is proposed in Section 5 to realize the multi-time scale control, and the performance
of the HCA is demonstrated in Section 6. Finally, the paper concludes in Section 7.
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2. Recent Related Work

Recently, EVs are gaining significant attention from research communities to deploy their
flexibility for providing system balancing or local congestion management. Authors in [6–13] proposed
various control algorithms and strategies for utilizing EVs flexibility for system balancing purposes.
In particular, supplementary load frequency control using aggregated devices (e.g., EVs [6], EVs and
heat pumps [7], air-conditioners [8], and residential water heaters [9]) are developed to exploit EV
flexibilities for system level balancing. Similarly, the performance of an aggregated V2G and an area
control error approach for providing frequency regulation are demonstrated in [10,12]. The authors
in [13] further developed a framework for ensuring EV to participate in multiple electricity markets.
Such aggregated EVs deployment provides good insights for system planning, but cannot assure that
the network constraints and individual consumer requirements are satisfied.

Actual control of EV must assure consumer, DSO, and aggregator requirements, which are often
conflicting. Most of the current literatures often decouple the EV charging problem and analyze from a
single actor’s perspectives. For instance, minimization of charging costs, is the key objective for EV
owner. To address those concerns, authors in [14] proposed EV charging algorithm to maximize the
comfort, and in [15–17] presented techniques to manage flexibility considering customer preferences.

To ensure grid constraints are within limits, EV charging control is normally carried out by
maximizing network performance with simultaneous assurance of thermal and voltage constraints
limits. The authors in [18,19] investigated impacts of different charging schemes in distribution
networks and developed various control algorithms (e.g., energy shifting [20], load profile
smoothing [21], valley filling [22], peak-shaving [23], and loss minimization [24]) to address grid
issues. In addition, an adaptive control algorithm based on predefined voltage and current sensitivity
is proposed in [25] to mitigate grid constraints violations. Despite technical advantages, economic
aspects are often not well-respected while charging EV from network perspectives.

To simultaneously respect technical and economic concerns, authors in [26] proposed an optimum
EV charging control strategy from aggregator perspectives. Optimized EV charging control based
on cost minimization [27–31] and risk assessment [32] is developed to simultaneously realize cost
minimization and respect network constraints. In addition, distribution market based EV charging
coordination is developed in [33–37] to enable EV participation in multiple electricity markets.
However, those approaches lack capability to address any real-time operational uncertainties that may
stem from errors in load forecast and EV plug-in/-out estimates. This requires a rigorous and generic
approach to simultaneously assure consumer comfort, technical constraints, and profit maximization
during EV charging. The novel contributions of this paper include:

(1) An optimum EV charging algorithm from EV owner, EV aggregator, and DSO perspectives,
is developed and a coordination framework among them to apprehend their coordinative goal
is designed.
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(2) A HCA consisting of scheduling, coordinative, and adaptive control layers is designed to ensure
EV participation to day-ahead, balancing, and regulation markets.

(3) A multi-time scale control that works from a day-ahead scheduling up to real-time control is
proposed to simultaneously utilize EV flexibilities for solving both grid balancing and network
congestions management.

3. Modeling and Characterization of Electric Vehicle

3.1. Electric Vehicle Modeling

From power system perspective, an EV is a storage device which can be regarded as an electrical
load while charging and a static generating source while discharging. Therefore, EV in this paper is
modeled as a three state model as shown in Figure 2 and detailed in the following subsections.
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3.1.1. Charging

During charging, EV is modeled as a constant power load such that its power is a continuous
control variable ranging from zero to its maximum (max) power rating (Pmax

i ) as:

Pchg
i ∈ [o Pmax

i ] ∀ SOCi ≤ SOCmax
i (1)

where Pchg
i is the charging power, SOCmax

i is the maximum allowable state-of-charge (SOC), and
subscript i denotes the EV index. Note that the charging power is constrained by given SOCmax

i .

3.1.2. Discharging

EV is essentially a static generating source of injecting power back to the grid in discharging mode
of operation and is modeled as follows:

Pdsg
i ∈ [o − Pmax

i ] ∀ SOCi ≥ SOCmin
i (2)

where Pdsg
i is the discharging power and SOCmin

i is the minimum (min) allowable SOC.

3.1.3. Idle

During idle mode, EV is connected to the grid, but it neither draws nor injects power. However,
the EV can still provide both up and down regulation capability even during its idle state.

Figure 2 depicts a graphical representation of up and down regulation capability of an EV, which
is computed mathematically as follows:
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Pup
i = PEV

i − (−Pmax
i )

Pdn
i = Pmax

i − PEV
i

(3)

where Pup
i and Pdn

i are, respectively, the up and down regulation capacities for the ith EV operating
at PEV

i . The higher the value of Pmax
i , the higher the total regulation potential of the EV would be.

One notable attribute is that Pup
i is normally higher than Pdn

i while charging and vice-versa.
As the key focus of this paper is to enable EVs for providing multiple grid supports, a simple three

state model is implemented. In particular, the focus of this paper is to develop a mechanism to utilize
EV flexibilities in various grid supports rather than on explicitly consideration of battery degradation,
non-linearity, and charging/discharging efficiencies. Nonetheless, a detailed investigation of the
battery performance will be done as an extension of this work.

3.2. Electric Vehicle Driving Characteristics

Configuration of EV data (e.g., arrival/departure time, availability, and travel distance probability)
is of utmost importance to design proper control strategies for EV charging/discharging. In particular,
the arrival and departure of EVs are configured by using statistical information on travelling behaviors
of light cars in Denmark [38]. The arrival and departures of light electric cars over 24 h for a typical
working-day are depicted in Figure 3a. It can be observed that majority of the vehicles (more than 60%)
departs for their first trip between 6:00 and 9:00, while the majority of vehicles arrive back to home
between 14:00 and 17:00. In addition to the arrival and departure time, Figure 3b depicts the availability
of EVs for charging/discharging throughout the day. An interesting observation here is that more than
94% of EVs are available for charging throughout a day. However, it should be noted that EVs may
be available at different distribution feeders. Figure 3c illustrates the travelling distance probability
in a day in Denmark. It is observed that majority (approximately 70%) of the cars drive less than
50 km/day and minority (less than 10%) drive more than 100 km/day. The EV data for simulation are
configured using those national statistical information sets.
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3.3. Electric Vehicle Charging Framework

EV charging control requires proper coordination among consumer, aggregator, DSO, balancing
and regulating markets (BRM), and day-ahead energy market. A coordination framework, as shown
in Figure 4, is implemented to ensure coordination among the actors. Primarily, aggregator plays a key
role to ensure overall coordination by interacting with the other actors as follows:
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• Aggregator-Consumer: The interaction between aggregator and consumer is realized through a
common goal of charging cost minimization. While doing so, aggregator initiates EV charging
control strategies with simultaneous assurance of travel requirement of each EV.

• Aggregator-DSO: Interaction with DSO is realized through a common aim to avoid local grid
congestions management. Aggregator and DSO communicate back and forth to settle charging
power without jeopardizing the network constraints.

• Aggregator-BRM: Aggregator bids to BRM with aggregated regulation capabilities of EVs.
The primary responsibility of the aggregator is to ensure committed ancillary services and the
objective is to maximize benefit from its participation to BRM.

• Aggregator-Day-ahead Market: While interacting with day-ahead market, aggregator bids
energy for EV charging and in return acquires hourly electricity price.
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It is worth mentioning that this paper is focused on EV charging from consumer, DSO, and
aggregator perspectives, while the impacts of BRM and energy markets are incorporated through the
regulating and price signals, respectively.

4. Electric Vehicle Charging from Multiple Actors Perspective

This section first presents EV charging problem from consumer, aggregator, and DSO perspectives.
Then, a generic EV charging approach to realize their coordinative goals is presented.

4.1. Consumer Perspective

Consumer normally intends to minimize their EV charging cost without due concern on the
network conditions. Therefore, cost minimization (Min.) is a key objective while viewing the EV
charging from consumer perspectives, and is mathematically formulated as follows:

Min.
Tout

i

∑
k=Tin

i

Ck × Pk
i × ∆t (4)

which is subjected to the following set of constraints:
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Pmin
i < Pk

i < Pmax
i

SOCTout
i = SOCmax

SOCmin ≤ SOCi ≤ SOCmax

SOCk+1
i = SOCk

i +
Pk

i ×∆t

BCp
i

(5)

where Pk
i is the charging rate of ith EV, Ck is the electricity price for the for kth slot, Tin

i /Tout
i is

the plug-in/-out time of EVs, and ∆t is the time slot duration in hours. Moreover, Pmin
i /Pmax

i
are minimum/maximum EV charging power, SOCmin/SOCmax are the minimum/maximum SOC,
SOCk/SOCk+1 are the SOC at kth/(k + 1)th slots, and BCp

i is the battery capacity of ith EV. The first
constraint imposes charger capacity limits such that Pmin

i equals zero during grid-to-vehicle (G2V) and
equals “−Pmax

i ” during V2G. The second and the third constraints ensure travel requirements of the EV
owners, while the fourth constraint sets the variations of SOC as a function of charging/discharging
power. The forth constraint assumes a linear relationship between power and SOC despite the
fact that their actual relationship is non-linear. Nonetheless, the linear relationship gives fairly
accurate computation of SOC for investigating impacts of EVs on grid performances. It is worth
mentioning that EV battery energy consumptions during journeys are not directly considered.
However, the consumptions during each journey are reflected in terms of changes in SOC between
plugged-out and plugged-in.

The optimization is solved by a simplex solver available in MATLAB 2016a (MathWorks, Natick,
MA, USA) optimization toolbox to compute optimized schedules of each EV for each slot. It is worth
mentioning that controlling EVs based on electricity cost encourages all EVs to be charged during
low price period, thereby congesting the network and violating the grid limits. This requires explicit
consideration of network limits in the EV charging optimizations.

4.2. Distribution System Operator Perspective

DSO is primarily responsible for delivering quality power supply to consumers and satisfying
operational grid constraints (e.g., voltage and thermal limits). As such, one of the key intents of
the DSO would be to better utilize the existing grid assets. In this paper, a technique of shifting the
consumption from peak to lower demand periods with simultaneous consideration of thermal and
voltage constraints is implemented. Mathematically, the energy shifting is formulated as:

Min.
K

∑
k=1

{
Lk

Lmax

(
N

∑
i=1

Pk
i × ∆t

)}
(6)

where Lk is the feeder loading at kth slot, and Lmax is the feeder maximum capacity. Particularly, Lk

represents the predicted day-ahead load profile which is considered as a deterministic value and Lmax

is the maximum of Lk. Note that Lk represents the loading of the feeder connecting the secondary of the
substation transformer to the following node, which is literally same as the loading of the substation
transformer. The objective function is formulated such that it allows the EVs to charge during the
periods of low loading. Since the maximum amount of power that the EV can draw is limited by the
thermal capacity of upstream feeders, a thermal constraint is introduced as follows:

N

∑
i=1

Pk
i ≤

(
LMax − Lk

)
∀ k = 1 : K (7)

In addition to the thermal constraints, EV constraints illustrated in Equation (5) are incorporated
to satisfy EV travel requirements. The optimization problem subjected to constraints (5) and (7)
is solved using linear programming (LP) available in MALTAB to obtain optimized EV schedules.
After obtaining the optimized EV schedules, a power flow calculation is performed at each slot with
the optimized EV schedules to ensure that voltage are within acceptable limits:
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Vmin < Vj < Vmax ∀ j = 1 : nd (8)

where Vmin/Vmax are the minimum/maximum allowable voltage and nd is total number of nodes in
the given network. If the optimum EV schedules result in violation of voltage limits at any slot, EVs are
rescheduled based on their SOC to bring the voltage back to the limits. In particular, the rescheduling
is done such that EVs having higher SOC, which were initially scheduled for charging, are rescheduled
to idle state to bring back the voltage within acceptable limits. The EVs are subsequently set idle
in the descending order of SOC until the voltage of all nodes reaches within the acceptable limit.
Since the EVs are set idle based on SOC, the proposed approach will not be impacted due to presence
of distributed generations. As such, it presents a simple yet effective algorithm to ensure the voltages
of each node are within the acceptable limits.

One formal method in solving the given problem could be direct incorporation of voltage and
thermal limits as constraints in the formulation and solve by using non-linear solvers. However,
introduction of highly non-linear voltage and current flow constraints in the optimization normally
increase the risk of non-convergence especially with the increased number of EVs and need of number
of optimizations (e.g., periodic optimization as described in Section 5). Therefore, we implement a
simple yet effective approach for EV scheduling which works fairly well for the intended focus of this
paper. The EV schedules which satisfy both thermal and voltage constraints form the final schedules.

4.3. Electric Vehicle Aggregator Perspective

The aggregator is primarily responsible for acting on behalf of individual EVs, who otherwise
cannot directly participate in electricity markets. In fact, the aggregator trades flexibilities stemming
from EVs either to resolve the distribution grid constraints or to resolve system unbalancing.
As aggregator is a commercial entity, its primary objective is to maximize its economic benefits.
Therefore, the aggregator tries to minimize the EV charging cost subjected to travel requirements of
EV owners and network constraints. As aggregator normally get benefited from a day-ahead energy
market, the EV charging from an aggregator perspective is formulated to minimize charging cost based
on day-ahead electricity prices as follows:

Min.
K

∑
k=1

N

∑
i=1

Ck × Pk
i × ∆t (9)

Note that EV charging is subjected to consumer travel constraints set per Equation (5) and network
constraints set per Equation (7). The optimization problem is solved by LP with Simplex solver to
determine the optimum charging schedules for individual EVs. As the cost saving from the day-ahead
market is relatively low, it is a challenging task for the aggregator to ensure enough financial incentives
to EV owners to motivate their participation.

4.4. Coordinative Goal of Consumer, Distribution System Operator, and Aggregator

The preceding sections investigate EV charging seen from consumer, DSO, and aggregator
perspectives. It is observed that consumer are mainly concerned with charging cost minimization,
DSO is concerned about technical performance and better utilization of the grid assets, and aggregator
tries to maximize the benefits by trading the demand flexibility to different markets. One of the best
approaches to realize their coordinative goal is to maximize economic benefits (equivalently minimize
costs) with simultaneous assurance of the consumer comforts, grid constraints violations, and better
utilization of the grid assets. We propose a mechanism to maximize economic benefits by enabling
EVs to participate in day-ahead as well as BRM markets. The coordinative objective consists of two
parts as follows:
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Min.

{
K

∑
k=1

N

∑
i=1

Ck × Pk
i × ∆t

}
+ Max.

{
K

∑
k=1

N

∑
i=1

Rup
k ×

[
Pk

i + Pmax
i

]
+ Rdn

k ×
[

Pmax
i − Pk

i

]}
(10)

where Rup
k and Rdn

k are the up and down regulation prices at kth slot; and Max. means maximization.
The first part of the objective function essentially minimizes the total EV charging cost based on the
day-ahead electricity prices, while the second part of the objective function maximizes the benefit
by participating in BRM. Note that the proposed method considers payments for regulation capacity
based on the availability. However, energy payments for regulation are not explicitly modeled and
will be included as a part of the extension of this work. This two-part objective function is converted
into a single minimization problem by minimizing the negative of aggregator benefits (i.e., the second
part of Equation (10)) as follows:

Min.
K

∑
k=1

N

∑
i=1

(
Ck × Pk

i × ∆t− Rup
k ×

[
Pk

i + Pmax
i

]
− Rdn

k ×
[

Pmax
i − Pk

i

])
(11)

The consumer requirements and network constraints are imposed per Equations (5), (7) and (8),
and the problem is solved by using the Simplex solver available in MATLAB optimization toolbox.
To practically enable participation of the EVs to different electricity markets, a hierarchical architecture
capable of executing multi-time scale control is implemented.

5. Hierarchical Coordinated Electric Vehicle Charging

A HCA is set up to enable a multi-timescale EV charging control starting from a day-ahead
scheduling to the real-time monitoring and control. Particularly, the HCA is designed for enabling EVs
to participate in multiple electricity markets, namely day-ahead (Spot), hourly balancing (Elbas) and
real-time (regulation). The HCA is designed with scheduling, coordinative, and adaptive control layers
so as to realize the multi-time scale control. The scheduling is the outermost control layer that exhibits
slowest response, while adaptive is the innermost layer that exhibits the fastest response. As depicted
in Figure 5, the lower HCA layer backs up the immediate upper layer in smaller time-frame.
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5.1. Scheduling Layer

The scheduling layer (SL) is primarily responsible for preparing day-ahead operational schedules
of total number of EVs for the next 24 h. As individual EV data (e.g., Tin

i , Tout
i , Pmax

i , SOCi) are often
unavailable in a day-ahead time-frame, the charging/discharging schedules are made for aggregated
EVs by considering the percentage of EV availability over a day as illustrated in Figure 3. As depicted
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in the Figure 6, day-ahead electricity price, feeder load, and EV availability percentage are used to
compute optimum EV schedules for the next day. The following algorithm is implemented to compute
the aggregated EV charging power at each slot:

• Hourly electricity prices for the next day are taken from spot market.
• DSO provides forecasted load for every 15 min for the next 24 h.
• EV availability at different time slots is generated based on distribution of arrival and departure

of EVs and percentage availability of the EVs over the day.
• The SL minimizes the charging cost based on the coordinative goal (Section 4.4) to determine

total power allocated for EV charging at each time slot. The solution thus consists of optimized
aggregated schedule for all slots for next 24 h.

As SL generates optimum aggregated schedule, additional mechanism to optimally distribute
the aggregated power among the plugged-in EVs is desired. To do so, SL dispatches the aggregated
schedules as a reference signal to the inner HCA layer.
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5.2. Coordinative Layer

The coordinative layer (CL) works with 15 min time resolution to optimally allocate the aggregated
power received from SL among the plugged-in EVs. In particular, the aggregated power received from
SL for a particular time slot is distributed among all the plugged-in EVs at the slot. As such, the CL
considers only the EVs that are plugged-in at that moment and prepares their charging/discharging
schedules. One notable attribute of the CL is that it has the capability to consider BRM requirements
(if any) in addition to the schedules received from SL. A conceptual framework for the operation of CL
is presented in Figure 6 and is described as follows:

• All EVs send their SOC, Tin, Tout, and Pmax to the aggregator after plugged-in. Therefore, those
matrices for each plugged-in EV are known to CL.
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• Any unusual travel requirements, including emergency charging, are assumed to be provided by
the customers during plug-in period.

• Upon receipt of those matrices from all connected EVs, the aggregator performs optimization
considering network constraints and individual EV requirements to compute optimum
operational schedules of each EV. Those schedules are then dispatched to each EV.

• At the end of each slot, all plugged-in EVs send their updated measurement matrices and the
optimization is performed again considering the newly added EVs and observed deviations in
charging/discharging profiles of the EVs. The process is repeated periodically at each time slot
(every 15 min in this paper).

As the balancing market closes an hour ahead of the actual operation, the CL allows updating
EV schedules to enable their participation to BRM. As BRM offers significantly higher prices, it is a
great opportunity for all consumer, aggregator, and DSO to participation in BRM for maximizing the
benefits. It should be noted that the actual regulating power that each EV can provide depends greatly
on the actual operation condition of the EV. For instance, EV in lower SOC regime can provide only
down-regulation, while the EV in higher SOC regime can provide only up-regulation. Therefore, CL
should reschedule each plugged-in EV to maximize their benefit considering both day-ahead market
and BRM. It is worth mentioning that the proposed mechanism requires back and forth communication
between EV aggregator and individual EVs. Our previous works [5,39] demonstrated the performance
of required communication from both simulation and experiments that can effectively deployed for
the proposed algorithm.

Even though CL provides a perfect platform for participation to BRM by allowing periodic
updates on EV schedules, it has no controllability to capture any intra-slot (within 15 min) discrepancies.
Therefore, an adaptive control layer that adapts EV schedules based on real-time operating condition
of the local network is implemented.

5.3. Adaptive Layer

The adaptive layer (AL) is designed to address any intra-slot discrepancies that cannot be captured
by SL and CL. Particularly, AL locally monitors and controls the EVs near real-time based on the
contemporary network conditions. In particular, voltage at the consumer point of connection (POC)
is continuously monitored and charging/discharging rate of the EV is adjusted adaptively using a
simplified P(V) droop as shown in Figure 7b. The proposed P(V) droop is formulated as follows:

Pk
i (t) =


Pk

i Vn > Vth
n

Pk
i +

(Vn−Vth
n )

Vth
n −Vmin

n

(
Pk

i − Pmax
i

)
Vmin

n < Vn < Vth
n

−Pmax
i Vn ≤ Vmin

n

(12)

where Vn, Vth
n , and Vmin

n are the measured voltage at the POC, threshold voltage, and minimum cutoff
voltage for the nth node, respectively. Vth

n is essentially the voltage beyond which the P(V) droop
starts functioning, and Vmin

n is the minimum allowable voltage beyond which the EV discharges at
maximum power (i.e., Pmax). A simple linear interpolation between Vth

n and Vmin
n is done to determine

the corresponding droop power Pk
i (t) as a function of Vn. It is worth mentioning that the performance

of the adaptive control can be improved by properly designing Vth for each node. We implement
a multi-power flow approach as proposed in our previous works [35,40,41] to compute the voltage
threshold of each node in the network. Primarily, the Vth of a node nearer to the substation is higher
compared to the Vth of the node farther from the substation. This is done to avoid unfair impact to the
farthest end EV(s). As mentioned earlier, violation of voltage overrides the optimum schedule initially
dispatched by the CL. Therefore, at the end of each time slot, AL sends the updated SOC and actual
power to the CL, which is then used by CL to update the EV schedules of the subsequent slots.
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6. Results and Discussion

6.1. Configuration of Simulation Parameters

The performance of the proposed methodology is demonstrated through a 24 h time sweep
simulation performed in a real residential distribution network located in southeast of Denmark.
One notable attribute of the test network is that it has significant penetration of EVs and other flexible
resources, such as heat pumps and electric water heaters. Figure 7a illustrates the one line diagram of
a test network which comprises 15 nodes and supplies 45 detached residential consumers. The 24 h EV
charging horizon, starting from the noon of a day until the noon of the next day, is then converted into
15 min time-slots. Subsequently, EV availability, feeder load, and electricity prices for each slot are
configured. In particular, the EV availability distribution (Figure 3a) is utilized to configure Tin/Tout,
while the travel distance probability (Figure 3b) is used to configure initial SOC.

It is worth mentioning that the generation of arrival/departure time, driving profile, and initial
SOC was done using stochastic procedure as presented in our previous work [38]. Particularly,
the national statistical data as presented in Figure 3 were used to generate individual driving profile
and travel distance for each EV. Subsequently, those travel distance and arrival/departure times are
used to compute initial SOCs for the given number of EVs. Figure 8a illustrates the configuration of
initial SOC of each EV and Figure 8b illustrates the connection nodes for each EV. Note that EVs are
uniformly allocated at each node based on the number of consumers connected to that node. As such,
the nodes which have no consumer will have no EV. For instance, nodes 1–3 do not have any consumer
connected, thereby having no connected EVs. One notable attribute of the test grid is that it can host
up to 60% penetration of the proposed EVs. Note that each EV in this paper is assumed to have 4 kW,
16 kWh, lithium-ion chemistry. In order to make the paper case interesting, we made the network
congested by allocating one EV per consumer.
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Moreover, a typical winter day load profile, illustrated in Figure 9, is used for simulation to
capture the worst case operating scenario from EV accommodation perspective. Electricity prices
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as shown in Figure 10 are taken for the simulation. In particular, the day-ahead electricity price is
taken from Nordic spot market, balancing price is taken from Elbas, and regulating price is taken from
Danish transmission system operator. Note that the electricity prices for both charging and discharging
are assumed to be the same because all the existing utilities are adopting the same pricing structure for
charging as well as discharging.
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6.2. Simulation Results and Analysis

This section first demonstrates the performance of the proposed method from consumer, DSO,
and aggregator perspectives. Then, HCA performance to realize their coordinative goal is evaluated.

6.2.1. Consumer Perspective

As discussed in Section 4.1, consumers tend to charge their EV during low price periods and
discharge (if applicable) during high price periods without due respect on network conditions.
Figure 11a illustrates the optimum EV charging profile seen from consumer perspectives when
EVs are allowed only for charging (i.e., G2V), while Figure 11b illustrates the optimum EV
charging/discharging from consumer perspective when EVs are allowed for V2G. It can be seen that
all EVs are scheduled for charging at low price period (2:00–6:00) and are scheduled for discharging
during high price periods (20:00–22:00).

It can further be observed that the feeder capacity limit of 250 kVA is violated in both G2V and
V2G cases. Furthermore, Figure 11d depicts that the voltage at the farthest end node (node 15) is
far less than the acceptable lower limit (0.95 pu) in both G2V and V2G cases. More interestingly, the
voltage and network limit violations are worse than the case with uncontrolled charging. This is due
to coincidence of EVs charging during low price period and discharging during high price periods.
Therefore, the charging/discharging of all EVs coincides. Even though the EV charging cost (depicted
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in Figure 12) is significantly lower, the network limit violations cannot allow such schedules. This issue
can be taken care of by explicitly considering grid constraints in the optimization process.Energies 2017, 10, 37 13 of 17 
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6.2.2. Distribution System Operator Perspective

The key intent of the DSO is to shift the EV charging during low demand periods to better utilize
the existing grid assets. Simulation results for the optimum EV charging seen from DSO perspective
are illustrated in Figure 11c. It is observed that EVs are scheduled for charging during the lower
demand period and the network constraints are kept within the limits. It is clearly seen that the feeder
capacity (250 kVA) and voltage of the farthest end node (which was violated while charging from
consumer perspective) are respected. However, Figure 11c further depicts that some of the EVs are
also charged during higher price periods. This leads to a higher EV charging cost compared to the
EV charging cost seen from consumer perspective. As depicted from Figure 12, the total cost of EV
charging from DSO perspective is more than double compared to the case of consumer perspective.

6.2.3. Aggregator Perspective

Aggregator solves the EV charging problem considering charging cost and network limit.
Figure 13a illustrates the EV charging profiles for G2V and V2G cases seen from aggregator perspective.
It is observed that the total feeder load, including EV and base load, is within the network limit
of 250 kVA for both the cases. Figure 13b further depicts that the voltage is also within the limit
throughout the charging horizon. The EV charging from aggregator perspective is similar to that of
the consumer perspective (Figure 11a,b), except the network limits are respected during EV charging



Energies 2017, 10, 37 14 of 18

from aggregator perspective. This can be seen as rescheduling of some of the EVs from their initial
scheduled charging/discharging to bring the network constraints back within the limits. Due to the
need of rescheduling, total cost of EV charging from aggregator perspective is comparatively higher
than the total cost seen from consumer perspective. In particular, as seen from Figure 12, the cost
increases by 21.15% in G2V and by 18.08% in V2G case compared to that of the consumer perspective.
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In addition, it is observed from Figure 12 that the total cost for EV charging is negative in both 
G2V and V2G. Basically, paying the negative price means getting money back instead. In fact, the 
participation of EVs in BRM allows the EV owners to earn money. For the given configuration of 
electricity price, the consumers were able to get approximately five times the total cost paying for EV 

Figure 13. EV charging/discharging from aggregator perspective.

It is worth mentioning that the total cost during V2G is significantly lower (by 45.26%) compared
to the case of G2V only. However, the monitory benefits resulting from EV participation to day-ahead
markets only are often insufficient to compensate for the battery degradation. Therefore, a HCA
approach to realize the coordinative goal of maximizing the total cost of EV charging control with
simultaneous assurance of consumer comfort and network constraints is realized.

6.2.4. Hierarchical Coordinated Charging

Unlike individual actors perspective where EVs are scheduled based on their individual objectives,
the HCA first formulate the problem as a single optimization problem considering the requirements of
each actor. In particular, the HCA minimizes the total EV charging cost (equivalently maximizes the
benefits) by considering day-ahead, balancing, and regulating prices through explicit consideration
of network limits and EV requirements as constraints. The HCA thus provides a framework for EVs
to participate in BRM with the remaining up-/down-regulation capabilities of already scheduled
EVs. Figure 14 depicts the regulating capacity of EVs during G2V and V2G scenarios. It is observed
that regulation-up capacity is significantly smaller compared to the regulation-down capacity in G2V
case. This is due to the fact that the EV can provide the regulation-up during charging periods only.
As EVs stays idle for most of the time, they provide regulation-down capability for most of the time.
However, during V2G case, both up- and down-regulations are remarkably higher compared to the
case of G2V. This is due to increased regulation potential resulting from V2G capability. One interesting
observation from Figure 14 is that the regulation capacity from EVs is greater than the feeder capacity
limit. Therefore, the usable up-/down-regulation capabilities are limited to the network thermal limit.
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In addition, it is observed from Figure 12 that the total cost for EV charging is negative in both
G2V and V2G. Basically, paying the negative price means getting money back instead. In fact, the
participation of EVs in BRM allows the EV owners to earn money. For the given configuration of
electricity price, the consumers were able to get approximately five times the total cost paying for EV
charging. In particular, EV charging cost during V2G in HCA is compared with the total charging cost
of G2V while charging from consumer perspective. In addition to the significant financial benefits,
HCA also allows to utilize EV flexibility by DSO for solving grid congestion and by system operators
for system balancing. However, one should note that the utilization of those additional flexibilities
from EVs may result in violations of voltage in the network, thereby requiring a real-time control.

Figure 15 illustrates a portion of voltage and total EV charging power profiles at the farthest end
node in the network before and after realization of the adaptive control. Figure 15a,b demonstrates
how EV flexibilities are utilized to solve local voltage violations. In particular, at the beginning of
each slot, the voltage deviates below the pre-defined values due to random additions of loads to
emulate errors on load forecasting and/or plug-in/-out of EV estimates. However, the P(V) droop
implemented at each EV charging controls the actual power of the EVs whose voltage at the POC
is violated to bring the voltage back within the acceptable limits. Figure 15b illustrates the total EV
charging power at node-15 where the voltage was violated. It can be observed that the droop decreases
the EV power per observed POC voltage when voltage lies between Vth and Vmin. Thus, the droop
acts locally to improve voltage in real-time which otherwise cannot be done by SL and CL.
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7. Conclusions 

This paper presented a multi-time scale EV charging control algorithm to simultaneously 
maximize the economic benefits and technical grid supports. First, the EV charging problem is 
investigated individually from consumer, DSO, and aggregator perspectives. Potential drawbacks 
while analyzing EV charging from individual actor’s perspective are quantified and a generic HCA 
framework is developed to realize the coordinative goal. Particularly, HCA integrates multi-time 
scale control, including a day-ahead scheduling, 15-min based periodic balancing, and real-time 
adaptive control. This is done to simultaneously respect economic benefits, network constraints, and 
consumer requirements in the EV charging problem. Simulation results demonstrated the capability 
of the HCA in enabling consumer participation in day-ahead, balancing, and BRM. For the given 
configuration, the EV owners were able to get significant economic benefit (up to five times the cost 
they were paying in the base case) using this approach. The future work will incorporate battery 
degradation and non-linear network constraints in the existing models to expand the capability of 
the presented method. Moreover, availability and energy payments from regulation markets will be 
incorporated in the future. 
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7. Conclusions

This paper presented a multi-time scale EV charging control algorithm to simultaneously
maximize the economic benefits and technical grid supports. First, the EV charging problem is
investigated individually from consumer, DSO, and aggregator perspectives. Potential drawbacks
while analyzing EV charging from individual actor’s perspective are quantified and a generic HCA
framework is developed to realize the coordinative goal. Particularly, HCA integrates multi-time scale
control, including a day-ahead scheduling, 15-min based periodic balancing, and real-time adaptive
control. This is done to simultaneously respect economic benefits, network constraints, and consumer
requirements in the EV charging problem. Simulation results demonstrated the capability of the HCA
in enabling consumer participation in day-ahead, balancing, and BRM. For the given configuration,
the EV owners were able to get significant economic benefit (up to five times the cost they were
paying in the base case) using this approach. The future work will incorporate battery degradation
and non-linear network constraints in the existing models to expand the capability of the presented
method. Moreover, availability and energy payments from regulation markets will be incorporated in
the future.
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