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Abstract 

 

Soft actuators have grown to be a topic of great scientific interest recently. As the 

fabrication of soft actuators with conventional microfabrication methods are tedious, 

expensive, and time consuming, employment of 3-D printing fabrication methods appears 

promising as they can simplify fabrication and reduce the production cost. Complex 

structures can be fabricated with 3-D printing such as helical coils can achieve actuation 

performances that otherwise would not be possible with simpler geometries. In this thesis 

development of soft magnetic helical coil actuators of iron-oxide embedded 

polydimethylsiloxane (PDMS) was achieved with embedded 3-D printing techniques. 

Composites with three different weight ratios of 10%, 20%, and 30% iron nanoparticles to 

PDMS were formulated. Using iron nanoparticles with 15-20nm size helps preserve 

viscosity of the printing material low enough that it was possible to print it with small 

gauge 29 needle (180 micrometers inner diameter).  The hydrogel support of Pluroic f-127 

bath and the ability to maintain the ratio of the printed fiber’s diameter to coil diameter 

close to 0.25 approximately resulted in the successful fabrication and release of fabricated 

helical coil structures. This enabled 3-D printed structures characterized as magnetic 

actuators to achieve linear and bending  actuation of more than 300%  and 80°respectively 

in the case of composites with 30% iron oxide nanoparticles. Moreover, it was shown that 

the 3D printed helical coils with 10% iron oxide nanoparticles can be utilized as untethered 

soft robot that is capable of locomotion on 45 and  90 degrees inclines under an applied 

magnetic field.
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1 Introduction 

Actuators are devices that can deform in response to an applied stimuli. Various 

types of stimuli have been utilized for actuators including: current, pressure, temperature, 

voltage, light, and magnetic fields.[1, 2] Depending on the type of applied stimuli, actuators 

have various applications in the automotive, aerospace, biomedical, and robotic industries. 

Soft actuators, are a special class of actuators made of soft materials which have been of 

great interest recently for possible applications in microfluidic systems, medical devices 

for minimally invasive surgery, rehabilitation, locomotion, manipulation of fragile 

agriculture products, human-machine interfaces, and smart textiles[3-5]. Fabrication of 

these soft actuators through conventional fabrication techniques requires tedious and time-

consuming iteration of molding, lithography, and post-processing, which increases the 

costs and limits the complexity of the fabricated actuator’s structures.[6] Recently, the 

radical cost drop in 3-D printing technology because of the open source release of material 

extrusion 3-D printers[7, 8] and subsequent evolution[9-11] has made soft actuator 

fabrication far more accessible.[12-15] 3-D printing techniques enables simpler fabrication 

of complex actuators in one step without the need for post-processing and reduces 

fabrication time and waste material which in turn eliminates the high cost of fabrication 

and labor.[16]Moreover, fabrication of structures in one step instead of assembling them 

could potentially enhance their performance.[17] 

Magnetic fields are among the types of stimulus that can be remotely applied to 

materials with ferromagnetic parts or particles to create soft actuators. Furthermore, 

magnetic fields provide a relatively fast response[18] and the deformation is reversible. 
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Soft actuators mostly consist of polymers, hydrogels, and elastomers as the matrix 

materials with embedded magnetic particles as the filler materials Iron oxide (Fe3O4)[19, 

20], neodymium-iron-boron (NdFeB)[21], and paraseodymium-iron-boron (PrFeB)[22] 

have been used as the filler materials. While the added particles reduce the flexibility of 

the composite, response of these particles to the applied magnetic field results in small 

scale forces (and torques) on each particle that eventually deform the soft composite. 

Pirmoradi et al. fabricated a magnetic membrane of iron oxide nanoparticles in 

polydimethylsiloxane (PDMS) matrix using microfabrication techniques and characterized 

it as an actuator.[23] Evans et al. synthesized core-shell particles of iron oxide magnetic 

particles with PDMS complex to fabricate a magnetic membrane.[24] Electrically 

conductive composites were fabricated using silver coated magnetic particles dispersed in 

PDMS matrix where curing under an applied magnetic field caused alignment of the 

particles along the constant magnetic field direction, and it was shown that the composite’s 

resistivity will change under applied pressure or magnetic field.[25] Magnetic film had also 

been fabricated using PDMS and magnetic particles and their application had been studied 

as the valve in microfluidic devices.[26]  

Bioinspired soft robots in the form of inchworm, turtle, and millipede were 

fabricated using magnetic microparticles in silicon rubber and their locomotion 

mechanisms were studied with actuation under applied magnetic field.[22, 27, 28] Most of 

the structures fabricated through these techniques were either simple structures such as 

films, while more complicated structures were fabricated through multiple 

microfabrication techniques and assemblies. 
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3-D printing enables the fabrication of more complex structures in a simpler one 

step and some research has been done in this area for magnetic actuators. An early trial on 

inkjet printing of a material to develop magnetic structures was done with a custom-made 

3-D printing stage, where the iron oxide magnetic particles were dispersed in a solvent and 

by evaporating the solvent, simple structures as rings and squares were formed.[29] Zhang 

et al. formulated filaments of polylactic acid (PLA) with dispersed iron oxide particles 

composite and 3-D printed various structures with them. The shape memory effect of these 

structures was used for actuation. By applying an alternating magnetic field at the high 

frequency of 25-50 kHz, magnetic particles vibration generated heat and introduced shape 

change. As the magnetic field was removed, the generated heat was lost and structures 

returned to their original shape.[30] Zhu et al. developed a novel artificial microfish of 

poly(ethylene glycol) diacrylate (PEGDA) hydrogel with added iron oxide particles at the 

head and platinum in the tail part of the fish using microscale continuous optical printing 

(μCOP). By using hydrogen peroxide as the fuel, the chemical decomposition reaction of 

the platinum catalyst and hydrogen peroxide provided the propulsion drive for the 

microfish at the tail, while it was being steered under the applied magnetic field through 

the head part of the structure.[31] Shao et al. devised a complex micro-scale (less than a 

millimeter diameter) structure coil spring using iron oxide incorporated PEGDA hydrogel 

with continuous liquid interface production (CLIP) technique. UV light was used to cure a 

vat of hydrogel. Although complex magnetically-active structures were achieved, 

structures were not characterized as actuators.[32] Cilium of PDMS-iron oxide 
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nanoparticles, was 3-D printed by ink writing of PDMS-iron oxide nanoparticles and their 

bending actuation were studied under the permanent magnetic field.[33] Roh et al. 3-D 

printed smart mesh-like structure of PDMS and iron microparticles that floated on the 

liquid surface. Under an applied magnetic field, these structures underwent up to 20% 

strain. Moreover, their application as a soft robot that can grab and transport particles on 

the liquid interface under alternating magnetic field was shown.[34] Kim et al. developed 

complex structures with direct ink writing of silicon-based material while using a 

secondary fugitive support ink as the wall for confining the magnetic silicon ink. During 

the extrusion, alternating magnetic was applied to the nozzle tip to align the magnetic 

NdFeB microparticles in predefined directions. As the silicone curing completed, the 

support wall was washed away. Alignment of the magnetic particles in different directions 

enabled complex fast shape change of the soft structure as well as locomotion and transport 

of the cargo under the magnetic field.[35]  

Although the employment of 3-D printing for the fabrication of soft actuators was 

recently noticed, it still didn’t has not reached its full potential as most of these 3-D printed 

structures still lacks the complexity and simplicity of the process now common with fused 

filament fabrication (FFF) the most popular type of 3-D printing. In addition, while some 

of the studies enabled the fabrication of complex structures as coils, the 3-D printing 

method that were used are expensive and limit accessibility for both researchers as well as 

commercialization. On the other hand, while the use of support material enabled fabrication 

of more complex soft actuators, they still lack the potential to fabricated complex arbitrary 

structures as a helical coil that lacks support from previously printed layers as in 
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conventional printing. Since most of these soft actuators are comprised of silicon-based 

elastomeric composites, they require curing at a higher temperature for an extended time. 

As the curing process is time-consuming, these silicon-based structures tend to lose shape 

easily due to the lack of support. 

In order to overcome these challenges, embedded 3-D printing methods were 

introduced to develop free-form complex structures.[36-38] In these methods, structures 

are printed inside a secondary hydrogel bath that provides the temporary support for the 

printed structures. Successful fabrication of electrically conductive soft helical coil 

structures of PDMS- carbon nanotube was achieved in another work by the author.[39] 

Here, we developed complex helical coil magnetic soft actuators of PDMS-iron oxide 

nanoparticles using these embedded 3-D printing methods. Proper design of helical coil 

parameters, material composition and  chose of printing bath achieved successful 

fabrication of  helical magnetic coil structure. Capability of soft helical coil structure in 

achieving high linear actuation and bending actuation is demonstrated.  The effect of iron 

oxide concentration on the actuation behavior of these 3-D printed samples is studied. The 

advantages of helical coil structure for locomotion under applied magnetic field for soft 

robot and their ability to climb a vertical surface is shown and discussed.    
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2 Chapter 2: Materials and Methods 

2.1 Materials 

Iron oxide (Fe3O4) with a diameter of 15-20 nm was purchased from the U.S. 

Research Nanomaterial Lab (Houston, TX). Pluronic f-127 powder was purchased from 

Sigma-Aldrich (St. Louis, MO). Chloroform was purchased from Fisher Scientific 

(Waltham, MA).  PDMS Slygard 182 was purchased from DOW Corning (Midland, MI). 

2.2 Preparation of PDMS- Iron Oxide Nanoparticle Composite 

Iron oxide nanoparticles (NP) were dispersed in the PDMS using ultrasonication. To 

enhance the dispersion of the nanoparticles, chloroform was used as the solvent. First, each 

of the PDMS part A and iron oxide nanoparticles were separately dispersed in chloroform 

by bath sonication for 1 hour. For each 3 grams of PDMS part A, 20 ml of chloroform was 

used. To enhance the dispersion of the magnetic particles, for each 0.3 gram of iron oxide 

20 ml of chloroform was used (maximum of 1.5% W/V ratio of iron oxides to chloroform). 

Then, dispersions of PDMS-chloroform and iron oxide NP-chloroform were mixed 

together by probe ultrasonication. Probe sonication was done for 1 hour, with 1 second on 

and 1 second of pulse at 80% frequency. Finally, the dispersion was then heated on a 

hotplate set at 120 oC so that the chloroform evaporated as fast as possible, where the 

dispersion of iron oxide NP in PDMS was achieved. Then, PDMS part B (curing agent) 

wax mixed with the prepared dispersion with a ratio of 1: 10. After carefully mixing by for 

15 minutes, the prepared ink sat for 1h in room temperature for making sure that trapped 

gasses were removed. 
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2.3 Preparation of Pluronic Hydrogel 

The Pluronic f-127 hydrogel was made with 40% weight concentration. The pluronic 

powder was gradually added to a container of deionized water (DIW) at 4 oC that placed 

in the ice bath, where it was being magnetically stirred at 700 rpm. Ice bath temperature 

was controlled by adding ice until all the powder was dissolved. This process might take 

hours depending on the volume of the hydrogel being prepared (up to 24 hours for 500 ml). 

After complete dissolution, the hydrogel was stored in refrigerator for further use. 

2.4 3-D Printing 

 
The materials were 3-D printed on an open-source converted Lulzbot Mini (Aleph 

Objects, Loveland CO). The mini was adapted with an open-source syringe pump.[40] The 

fused filament fabrication (FFF) nozzle extruder was removed and the 3-D printed syringe 

pump was mounted in its place. In order to have the printer functioning properly, start and 

end G-code was removed, and a line of G-code was added for each print so that the software 

enables cold extrusion at room temperature (M301 P2 ).  

For the fabrication of complex helical coil structures, an embedded 3-D printing 

method was used in which the structure is printed inside a secondary hydrogel bath to 

provide temporary support for the structure. The pluronic hydrogel was used as the 

secondary bath. To achieve successful printing of miniature  helical coil structures with 

diameter of 4 mm, a custom G-code was written to define the helical print path. To achieve 

fine resolution, 1-inch long gauge 29 blunt needles with an inner diameter of 180 

micrometers was utilized on a 3ml Luer-lok syringe. Long needle enables reaching out to 
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higher bath depth without disturbing the gels and prints. Prior to the start of each print, a 

few milliliters of 4 oC pluronic (pluronic in liquid state) was added to the top of the hydrogel 

container so that the liquid pluronic fills the possible voids that might be created during the 

print process. As the printing completed, the printing containers were confined with 

parafilm and put on the hotplate at 85 oC for curing. Inks with a higher concentration of 

iron oxide required longer curing time. As the curing completed, the container was cooled 

down to   for the pluronic to turn into liquid and the printed structures were released. 

Finally, printed coils were removed and were washed with 4  oC DIW to remove pluronic 

residuals. 

 
Table 1. 3-D printing parameters. 

 

Iron oxide 
concentration (%) 

Needle 
gauge 

Print speed 
(mm/s) 

Extrusion 
rate 

Curing time 
(h) at 85 oC 

10 30 2 0.08 16 

20 30 2 0.09 18 

30 30 2 0.13 22 

 

2.5 Characterization 

2.5.1 Printing Material Rheometry  

The 3-D printing materials were characterized using a HR-2 rheometer (TA 

Instruments). Constant volume of the 3-D printing materials (1 ml) was put under the 

device with a cone of 20 mm diameter and characterization were completed on the 
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amplitude sweep mode with the strain of 0.1-500 for 25 data point, where storage and loss 

modulus were measured. 

2.5.2 Microscopic imaging 

Field emission scanning electron microscopy (FESEM) (SE-4700 Hitachi) was 

utilized to investigate the morphology of the prepared composites. Images with 

magnifications of 5-40KX captured at 5KV voltage were used to determine the efficacy of  

particles dispersion method and formation of agglomeration. 

2.5.3 Atomic force microscopy 

AFM (Dimension ICON system) (Bruker, CA.) was employed to study surface 

characteristics of the 3D printed composites under ambient conditions. AFM provides the 

surface topology of the printed composite. Peaks and roughhouses on the  surface can be 

attributed to embedded nanoparticles which change surface characteristics. 

2.5.4 Linear and bending magnetic actuation test 

To study the bending actuation performance, helical coil structure with known 

length were hung from one end, while three constant N42 magnet (K&J Magnetics, 

Pipersville, PA)  with 19mm diameter and 6.5mm thickness with surface field of 3661 

Gauss were stacked together, that provided a surface field of 5902 Gauss for the three 

stacked magnets. The stacked magnets were set on a magnet holder stage and stationed at 

40 mm distance with theirs poles perpendicular to the free end of the hanging structure. 

The magnets were then moved toward the structure on known intervals with the use of a 

manipulator and the imaging completed for each step. Similarly, to characterize linear 
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actuation, the magnets were positioned at a known distance with their pole aligned with 

the vertical axis of the hanged coil structure. Imaging completed at a known interval of 

5mm by moving the magnets toward the structure, using ImageJ software, deformation was 

measured.  

 

2.5.5 Coil Locomotion Tests 

A thin (1/16 inch) clear acrylic plate was used as the substrate. Cameras were 

positioned to capture the top and side views. By moving a magnet under the structure, coil 

structures began to rotate where the locomotion was captured. Making incline surfaces at 

known intervals of 10 degrees, coil structure effectiveness to perform as the soft robots on 

the upward direction were investigated. 
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3 Chapter 3: Results 

 

3.1 3-D Printing Results 

 
Figure 1.- Photographs illustrating the 3-D printing process of helical coils of 
PDMS-magnetic iron oxide nanoparticles. 
 

3-D printing of the helical coil structures (coil diameter of 4 mm,  pitch of 1.6 mm) 

was done through the embedded printing method as described in the material and methods 

section, where pluronic f-127 was used as the secondary support bath to provide the 

temporary support during fabrication of geometrically complex models. Figure 1 shows 

the printing process of a helical coil structure. Printing starts as the long needle reaches the 

depth of the hydrogel bath. As material is injected, the shear stress originated by needle’s 

movement turns the hydrogel to liquid surrounding the needle’s tip, where the composite 

is injected. As the needle translates away from a specific voxel in the bath, the shear stress 

is removed from that volume that will result in the liquefied hydrogel  returning to the 

originalgel state and confining the extruded magnetic material. Thus, the high viscosity 

pluronic hydrogel provides the required support for the next voxel (e.g  as shown in Figure 

1 the  turns of the coil to be injected) in the design path and prevents it collapsing to the 

next layer and ruining the print (Figure 2). As the printing is completed, the printed 

structure is set on the hotplate at 85 oC until the curing of the structure. It should be noted 
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that although pluronic is a hydrogel with 60% water content, it holds its form in relatively 

high temperatures needed for curing for hours.  

 

Figure 2.  Completed 3-D printed magnetic helical coil structures inside pluronic 
hydrogel support bath. a & b) Side view of 3-D printed coils printed with various 
injection rate. c) Bottom view of the cross section of 3-D printed helical coil inside 
the pluronic support bath. 
 

 

Figure 3- Release of cured 3-D printed PDMS-iron oxide composites after  reducing 
the hydrogel bath temperature to 4oC , a &b) side view of released 3-D printed 
helical coils, c & d) Top view of 3-D printed helical coil released after completion of 
curing. 
 

3-D prints are released from the bath by returning the hydrogel to 4 oC, where the 

pluronic hydrogel turns into liquid and release the printed structure (Figure 3). 

3.2 Ink rheometry: 

Loss modulus can be defined as the dissipated amount of energy during the oscillatory 

shear flow, G”. Storage modulus, G’, can be defined as the amount of energy stored in the 

viscoelastic liquid during the oscillatory shear flow.[41] Loss modulus is an indication of 

a b c d 

a b c 
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the viscous behavior of the material and storage modulus is an indication of elastic behavior 

of the material. These material properties are measured by oscillation rheometry technique 

for the prepared composites with three different concentration ratios and the results are 

shown in Figure 4. As can be seen in Figure 4, for each concentration ratio, the loss 

modulus is higher than the storage modulus. The loss modulus for the composite for the 

30% filler nanoparticle composite is almost one order of magnitude higher than loss 

modulus for the 10% iron oxide filler ratio composite. However, all the formulated 

composite inks have a viscosity (loss modulus) close to the pure PDMS. 

 

Figure 4- Ink rheometry: Measure loss and storage modulus (G’’ and G respectively ) 
for three different concentration of PDMS- iron oxide nanoparticle filler. 
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3.3 SEM and AFM images 

 
Figure 5- SEM images of the PDMS-Fe3O4 nanoparticles composites with 10% 
concentration at 8K (A), 15K(B), and (40K) magnification, depicting agglomeration 
of particle in size of 50-500 nm.  
 
 

 
Figure 6- AFM images of  a &b) PDMS-Fe3O4 composites surface depicting 
nanoparticles aggregates,  c & d) AFM images of pure PDMS 
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Cross-sectional FESEM images depict a relatively scarce dispersion of nanoparticle 

filler inside the PDMS polymer matrix as seen in Figure 5. Particles size are varied 

between 50nm to 500 nm. However, the smaller single spherical nanoparticles of iron oxide 

with a nominal diameter of 15-20 nm was not detected. While there are that studies claimed 

very fine dispersion of nanoparticles using similar dispersion methods with iron-oxide 

microparticle where SEM images showed a very homogenous dispersion. That could be 

possible that the fact that microparticle was used instead help in better monodispersion of 

particles compared to nanoparticles.[23, 33, 35]  AFM provides high resolution images of 

the composite's surface and provides a better determination of surface morphology than 

FESEM. Figure 6 shows a typical AFM of the composite's surface, where smaller single 

spherical particles can be observed throughout the surface along with larger particles. 

Larger particles span up to half a micrometer, implying large aggregate of nanoparticles. 

While bright dot light can be observed in both type of composites, the surface roughness 

in pure PDMS relatively smaller (less than 20nm), the surface roughness in composites are 

as high as 80 nm which could be aggregate of the nanoparticles as the SEM images suggest.  
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3.4 Magnetic Actuation Testing  

 
Figure 7- Linear actuation behavior of the helical coil structures with 10, 20, and, 
30% Fe3O4 nanoparticles embedded in PDMS matrix under applied magnetic field. 

3-D printed helical coil structures characterized as linear magnetic actuators. Linear 

actuation was defined as a change in the initial structure’s height under an applied magnetic 

field divided by the initial structure’s height. While increasing the magnetic field strength, 

the coils behaved in a semi-linear pattern until they reach a certain limit where forces exert 

the coils springs’ restoring forces. Then the coils completely unwind and get attached to 

the magnet. This actuation consist of both straightening the coil’s fiber and fiber’s 

stretching. Increasing the magnetic particle weight ratio greatly increased actuation 

performance. While for 10% iron oxide weight ratio a field of 3000 Gauss was needed to 

unwind the coils to achieve a 160% actuation, 20% and 30% weight ratio composite 

maximum actuation of 267% and 337% was achieved with a magnetic field of 1125 and 

820 Gauss, respectively (Figure 7). Thirty percent iron oxide embedded composites 
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attained the largest deformation under an applied magnetic field, specifically under smaller 

magnetic field strength where actuators perform in a linear manner. 

 

Figure 8- Bending actuation behavior of the helical coil structures with 10, 20, and, 
30% Fe3O4 nanoparticles embedded in PDMS matrix under applied magnetic field. 

Bending actuation behavior of 3-D printed helical coil under an applied magnetic 

field was studied for three different iron oxide concentration composites. The bending 

actuation also showed a semi-linear and exponential behavior like linear actuation. The 

coils showed a linear increase in the bending up to 25° , 22° and 21.8° for 30%, 20% and 

10% iron oxide embedded PDMS helical coils under field of 250, 400 and 550 Gauss. 

After that, coils started straightening and reaching and as the result bending angle 

increased exponentially, reaching maximum of 80°, 78° and 72° for 30%, 20% and 10% 

iron oxide embedded PDMS coils at field with intensity of 312, 600, 700 Gauss 

respectively.  
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4 Chapter 4: Discussion 

 

To achieve successful helical coil structures of the PDMS-iron oxide nanoparticles 

composite, embedded 3-D printing was utilized to enable fabrication of a structure that 

lacks the typical support provided by the just printed beneath layer in typical fused filament 

fabrication (FFF) and fused deposition modeling (FDM) prints. The helical coil structure’s 

printing was done in a single continuous extrusion of the composite material into the 

support bath. The design of the hydrogel support bath was critical to achieve a successful 

print; pluronic turns into a liquid at below 10 oC temperature and stays at gel state at 

temperatures above. As a result, the hydrogel provided the required support for the 

structure that prevents it from collapsing due to gravity for extended hours at high 

temperatures that is essential for facilitating PDMS curing. To avoid the introduction of air 

voids inside the bath as the result of needle movement, a small quantity of liquid pluronic 

(pluronic at a temperature below 4 oC) was provided at top of the bath to fill the gaps while 

completing the print process. This was especially helpful during the curing process as the 

extended heating cause the trapped air to expand and could potentially ruin the prints. As 

the curing of the PDMS was completed, the pluronic bath temperature was lowered to 4 oC 

to liquefy. When pluronic liquefied, printed coil structures were released from the bath. 

Moreover, pluronic provided higher resolution and smaller feature sizes compared to the 

other types of support bath such as gelatin for the PDMS material. [39] 

Although other studies attempted fabrication of helical coil structures using a similar 

mechanism, they failed to achieve fabricating free-standing coils.[37, 38, 42] While some 
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of these works were able to release the cured structure from the hydrogel support bath, 

however, they only kept their shapes inside a liquid phase and no reports of successful free-

standing coils in the air were given. An imperative factor in achieving successful prints 

was the right coil design parameters. A variety of print speeds were attempted while 

keeping other parameters (structure geometry, extrusion rate, needle size) the same. A 

faster speed provided a smaller fiber’s diameter, while reducing print speed increases that. 

As the result, with gauge 29 needles, 2 mm/s print speed was selected. This print speed 

allowed enough time for the material to be extruded throughout the print pass 

homogenously, yielding fiber’s with diameter of 0.8-1.2 mm, while final coil’s diameter 

varied between 3.6-4.3 mm. As the ratio of the fiber’s diameter to the coil’s diameter 

decreased, 3-D printed coil structures lost their shape after removal from the bath by 

unwinding and turning into a straight fiber while immersing them into a liquid like DIW 

retained them their coil geometry. 

Rheometry tests of ink gave insight into the reasonable formulation of the composites 

to achieve desirable printability. Increased viscosity requires a larger needle gauge to print 

,which dramatically affects the resolution of the prints. 10% and 20% iron oxide 

concentrations yielded inks with similar loss modulus to the plain PDMS. Loss modulus 

G” can be interpreted as the viscous behavior of the material.[41] Since both concentrations 

had similar loss modulus to the PDMS, printing with a small gauge 30 needle (180 

micrometers inner diameter) was achieved. In the case of the PDMS with 30% iron oxide 

nanoparticles, although the loss modulus was almost twenty times higher than pure PDMS, 

the material still had more of a liquid like behavior than the gel behavior and it was possible 
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to print with the same gauge 30 needles[43]. However, a slightly higher extrusion rate was 

required to compensate for the increased viscosity. These results indicate that future work 

could achieve even higher resolutions with these materials. 

One of the key advantages of embedding iron oxide particles with 15-20 nm size was 

that they only slightly increased  viscosity even up to 30% weight embedded nanoparticles. 

Hence, formulated 3-D printing materials were still printable with fine 180-micrometer 

diameter needles that enable high resolution, whereas in other studies extrusion printing 

silicon-based magnetic particle incorporated ink needles with a diameter of 410 um had 

been used.[35] 

Achieving successful and homogeneous dispersion of nanoparticles inside the matrix 

is critical for attaining a composite’s  3-D printable multifunctionality.  Morphology of the 

synthesized composite was studied using FESEM and AFM. FESEM depicted a PDMS 

matrix embedded with few aggregated particles of size between 50 nm to 500 nm, while 

AFM provided a better insight into the nanoparticle’s dispersion with higher resolution. 

Comparing the AFM images of the composite’s surface to the pure control PDMS sample, 

similar small bright spot-like throughout the sample was observed suggesting that those 

bright spots cannot be considered  the fine dispersion of iron oxide nanoparticles with 

diameter of 15-20 nm. However, formation of aggregate of iron oxide particles can be 

noticed. Considering both AFM and FESEM images, it can be suggested that the dispersion 

mechanism was not effective in achieving monodispersed nanoparticles. (Figure 5 & 6)  

3-D printed helical coil structures were characterized as linear magnetic actuators with 

30% embedded iron oxide composites achieving the highest actuation. Coil actuator 
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devices demonstrated a linear actuation behavior under the applied magnetic field until 

they reach a certain threshold where the magnetic pull force overcomes the restoring force. 

In the linear region, the maximum achieved linear actuation was 50%, 60% and 75% for 

coils of 10, 20, and 30% magnetic particle embedded devices, respectively. As devices 

passed the linear region, they suddenly undergo large deformation where coils completely 

unwind and enable a large stroke, from 150% of initial to 360%. This noticeable actuation 

is achieved due to the unique design of the helical coil structure device through 3-D printing 

fabrication method. No other reports of soft 3-D printed magnetic linear actuation are 

available to the best of our knowledge. Several studies fabricated dielectric elastomer 

actuator using microfabrication techniques where strains from 2% up to 150% were 

achieved. These dielectric elastomer actuators required a very high voltage (electric field) 

to operate.[44-46] Yu et al. reported a bistable electroactive polymer actuator where a 

maximum actuation of 80% at 2400 V and 70 °C condition was achieved.[47] Tawk et. al 

3-D printed a negative pressure (vacuumed) soft actuator where a maximum of 250%  

compression was achieved, while they required order of magnitudes more time (60-90s) 

compared to the magnetic actuator to operate[48].  

Magnetic bending actuation characterization of the 3-D printed coils demonstrated 

noticeable bending properties of the helical structures achieving up to 80° bending angle. 

While 30% embedded iron-oxide nanoparticle embedded composites achieving 80°  

bending actuation with an applied field of 312 Gauss, 20% and 10% embedded composites 

achieved bending of 78° and 72° at field of 600 and 700 Gauss respectively. Similar to 

linear actuation, bending behavior also demonstrated a semi-linear actuation performance 
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region at the beginning while increasing exponentially with stronger fields that makes the 

coil’s fiber straighten.  

Application of 3-D printed helical coil structures for untethered soft robots under 

applied magnetic field was demonstrated for the 10% embedded iron-oxide nanoparticles 

composites. Locomotion of soft robots on inclines are challenging as the need to withstand 

their own weight as they displace. The larger the incline angle the robots can successfully  

travel on, exhibits the better suitability of them for untethered soft robot application. 10% 

embedded iron oxide nanoparticles successfully travel on inclines of 45°. Moreover, it was 

shown that they can easily climb vertical surface. Park et al. fabricated helical coils of 

PDMS embedded iron-oxide particles through molding and characterized it as untethered 

soft robots, where they demonstrated limited displacement of 20 cm on a small incline of 

15°.[49]   

PDMS is a widely used biocompatible material in biomedical and microfluidic 

industries that have been used for various applications.[50] As a magnetic field is applied 

remotely and magnetic actuators possess fast response, the 3-D printed helical coil actuator 

can be used as the artificial muscle.[51] Moreover, these coils can be employed for catheter 

guidance or tissue manipulation applications.[52, 53] Also, miniature helical coils have 

been utilized as the leg for robots.[49] Enhancing the dispersion of the magnetic 

nanoparticles along the length of the 3-D print can potentially enhance the performance of 

the actuators. Increasing the particle size improves the magnetic performance, however, 

negatively effects the viscosity of the printing material and printing resolution. Optimizing 

particle size in regard of the printing material viscosity has the potential to enhance 
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actuation performance and is left for future work. In addition, by using a two head printer 

the density of magnetic nanoparticles could be varied created more complicated actuation. 

Finally, incorporation of conductive particles along with magnetic particles could improve 

multifunctional composites that can be used for applications such as antenna or magneto 

resistive sensors in 3-D printed soft electronics.[54, 55] 
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5 Conclusion  

This study demonstrated how to successfully 3-D print complex soft magnetic 

actuators of PDMS-iron oxide nanoparticles with an embedded printing method. 

Employment of pluronic f-127 hydrogel as the support bath and maintaining the proper 

ratio between fiber’s diameter to coil’s diameter enabled successful fabrication and 

removal of free-standing helical coil springs. Utilizing iron oxide nanoparticles with 15-20 

nm diameter preserved viscosity of the composite’s close to pure PDMS, which facilitated 

achieving high resolution through the employment of gauge 29 (180 micron diameter) 

needles. The development of complex helical coil structures enabled linear magnetic 

actuation, which demonstrated a noticeable 360% device’s linear actuation and 80° 

bending actuator in helical coils containing 30% iron oxide nanoparticles. Printed helical 

coil structure application as untethered soft robot was demonstrated where they were able 

to easily be steered on 45° and 90° inclines. PDMS- based helical coils can be employed 

as in a variety of applications such as biocompatible artificial muscles and to catheter 

steering systems or fast rotating legs for soft robots. 
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