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Abstract 

 Complex color patterns like the spots on leopards and butterfly wings beg the 

question – how did these traits evolve? To understand the evolution of novel 

morphologies, we need to study the differences in morphogenesis between closely 

related species. Here, I examine and compare the development of complex abdominal 

spot patterns among three species of Drosophila closely related in evolutionary time. 

Through in situ hybridization, I have characterized the expression patterns of three 

pigmentation genes among the fruit fly species. Additionally, I have built upon previous 

work in our lab regarding the regulation of pigmentation by beginning to develop an 

assay to examine interactions between DNA and protein during pupal development. 

These data have progressed our knowledge of animal pattern development and will 

facilitate further study of how novel morphologies emerge in nature. 
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1 Evolution of complex spot patterns in the quinaria group of 
Drosophila 

1.1 Abstract 

 To understand how novel animal patterning emerged, one needs to ask how the 

development of color patterns changed between diverging species. Here, we examine 

three species of fruit flies – Drosophila guttifera (D. guttifera), Drosophila palustris (D. 

palustris), and Drosophila subpalustris (D. subpalustris) – displaying a varying number of 

abdominal spot rows that were either gained or lost throughout evolutionary time. 

Through in situ hybridization, we examine the mRNA expression patterns for Dopa 

decarboxylase (Ddc), tan (t), and yellow (y) – three genes that are known to play a role in 

Drosophila pigmentation – during pupal development. Our results show that Ddc, t, and 

y expression each prefigure the adult abdominal spot patterns in D. guttifera, D. 

palustris, and D. subpalustris. These data show that these three genes are co-expressed, 

and may be co-regulated during pupal development and that changes to gene 

regulation over evolutionary time underlies the variation of abdominal spot rows seen 

between these three species of Drosophila. 
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1.2 Introduction and Background 

 The complexity and diversity of animal body coloration in the natural world are 

astounding. Unique patterns like cheetah spots and zebra stripes beg the question – 

how did these traits evolve? To understand how novel morphologies arose, one needs 

to ask how alterations to organismal development over evolutionary time occurred 

(Raff, 2000). This question gave rise to the discipline of Evolutionary Developmental 

Biology (EvoDevo). EvoDevo provides the questions and tools to compare 

morphogenesis between different species and facilitates the investigation of how novel 

structures – like color patterns – emerged. For example, by asking how mutations 

changed molecular mechanisms over evolutionary time, we can start to learn how the 

cheetah got its spots. However, mammals like cheetahs and zebras would not make a 

good model to study color pattern development, given their relatively long gestation 

periods, low numbers of offspring, and the vast resources and space that would be 

needed to maintain them. Investigating organismal development requires a model that 

can be easily cultured in a lab, but still presents morphological diversity. Hence, insects 

have emerged as a practical system to understand the emergence of novel traits. 

Butterfly wings have served as a system to better understand the molecular 

mechanisms underlying complex pattern development (Carroll et al., 1994; Matsuoka 

and Monteiro, 2018; Monteiro et al., 2013; Zhang et al., 2017; Zhang and Reed, 2016), 

and examination of cockroaches, milkweed bugs, and twin-spotted assassin bugs 

progressed the knowledge of the process of body coloration (Lemonds et al., 2016; Liu 
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et al., 2014; Zhang et al., 2019). However, these findings were built upon the robust 

knowledge of pattern and pigmentation development gained through the study of fruit 

flies, in particular, Drosophila melanogaster (D. melanogaster). 

 D. melanogaster has served as a model organism to the fields of developmental 

biology and genetics for over a century, with no foreseeable expiration date for its value 

(Tolwinski, 2017). This species of Drosophila can be inexpensively and quickly cultured in 

a lab, comes with a well-established genetic toolkit, and has a reliable and annotated 

genome actively used for nearly two decades (Adams et al., 2000). Our initial 

understanding of the genetic mechanisms responsible for adult fruit fly pigmentation 

began with the study of D. melanogaster (Walter et al., 1996; Wright, 1987; Wright et 

al., 1976). These findings built the foundation to understand the processes of insect 

body pigmentation that have been applied broadly to the Drosophila genus and even 

other insect orders.  

To understand how pigmentation patterns develop in adult fruit flies, it is 

imperative to know their lifecycle. Drosophila are holometabolous organisms like 

butterflies, meaning there will be a complete transformation during their lifetime. Fruit 

fly larvae will hatch from eggs laid by females. The newly-hatched first-instar larvae will 

grow in size to progress to the second- and third-instar larvae stages. The third-instar 

larvae cuticle will darken and toughen to become a puparium. The complete 

transformation that holometabolous organisms undergo, referred to as metamorphosis, 
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occurs in the pupa which resides in the puparium. During this pupal development the 

genes required to form the adult fly – including the genes responsible for creating color 

patterns – are expressed. The adult fly eventually breaks out, or ecloses, from the 

puparium ready to begin the Drosophila lifecycle again (Flagg, 1988). 

In addition to some knowledge of the Drosophila lifecycle, a basic 

comprehension of the biochemical process of pigmentation is needed to understand 

color pattern development. The Drosophila pigmentation pathway outlines the enzymes 

and reactions necessary to produce black, brown, and yellow coloration seen on the 

bodies of fruit flies. This biochemical process is shown in Figure 1.1. 

 

Figure 1.1: The pigmentation pathway of Drosophila. 

This illustration of the pigmentation pathway is adopted from (Rebeiz and Williams, 2017; True et al., 
2005; Wittkopp et al., 2003). Tyrosine is converted to Dopa by Pale. Dopa can be shunted into black 
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pigmentation by Yellow (encoded by y) or further converted into Dopamine by Dopa decarboxylase 
(encoded by Ddc). Dopamine can go one of three ways: it can become brown pigment through the activity 
of phenol oxidases; it can be converted into N-acetyl dopamine (NADA) through Arylalkylamine N-acetyl 
transferases (aaNATs) and then result in a lack of pigmentation through phenol oxidases; or it may 
become N-β-alanyl dopamine (NBAD) through the activity of Ebony, followed by a transition to a yellow-
tan pigment by phenol oxidases. The protein Tan (encoded by t) works opposite of Ebony by converting 
NBAD into Dopamine, which may result in brown pigment. This figure highlights the gene products for 
Ddc, t, and y, which this study examines in closer detail.  

While the process of Drosophila pigmentation patterning involves many genes, 

our study focuses on three: Ddc, t, and y, which are all essential to the production of 

black and brown coloration. Ddc is integral to the development of Drosophila body 

pigmentation with the mutant phenotype lacking the dark coloration seen on the wild 

type fly (Walter et al., 1996; Wright et al., 1976). The genes t and y are also required for 

color pattern development, with t mutants expressing less-intense body pigmentation 

compared to the wild type, and mutants of y expressing brown pigmentation as 

opposed to the standard black color (Biessmann, 1985; Hotta and Benzer, 1969; 

Kornezos and Chia, 1992; True et al., 2005).  

Our understanding of pigmentation development in D. melanogaster is 

invaluable. However, the pigmentation patterning of D. melanogaster is relatively 

simple compared to other fruit flies. In order to comprehend the evolution of complex 

patterns, other species must be studied. The established genetic toolkit is readily 

translated to other species of Drosophila. This situation allows the robust exploration of 

genetic mechanisms underlying the complex pattern diversity seen in non-model 

species of the genus Drosophila. The quinaria group, an adaptive radiation of non-model 

fruit flies, displays a great variety of abdominal and wing pigmentation patterns (Figure 
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1.2). This abundant morphological diversity and the recent divergence of the lineage (20 

million years ago (Scott Chialvo et al., 2019)), position the quinaria group as an excellent 

system to study the evolution of pigmentation patterning. D. guttifera is already 

becoming established as a model to study complex pattern development (Bollepogu 

Raja, 2017; Fukutomi et al., 2020; Koshikawa et al., 2017; Werner et al., 2010). 

Figure 1.2: The quinaria group of Drosophila and D. melanogaster. 

The diversity of abdominal patterning can be seen throughout several members of the quinaria group. 
The patterns of spots, single and fused, appear to be gained or lost between the closely related species. D. 
melanogaster is also presented for a comparison of abdominal pigmentation pattern complexity. D. 
guttifera, D. palustris, and D. subpalustris are highlighted. Figure 3 is adopted from a figure courtesy of Dr. 
Thomas Werner, with images from (Werner et al., 2018).  



 

15 

 Our research continues to study body color patterning in D. guttifera, in addition 

to two other members of the quinaria group – D. palustris and D. subpalustris. The 

abdominal spot pattern of D. guttifera consists of six rows of spots, three on each side. 

The pattern of D. palustris has four rows of spots (two per side) and that of D. 

subpalustris has two rows (one per side). The spot rows – dorsal, median, and lateral – 

are outlined in Figure 1.3.  

 

Figure 1.3: Three members of the quinaria group: D. guttifera, D. palustris, and D. subpalustris (lateral 
view) (Werner et al., 2018) 

 The evolution of complex abdominal spot patterns between these three species 

appears to occur through the gain or loss of spot rows. Our hypothesis was that the 

expression patterns of three genes shown to be involved in pigmentation – Ddc, t, and y 

– would be expressed differently during pupal development among these three species. 
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I aimed to characterize these three genes through in situ hybridization during the course 

of pupal development in D. guttifera, D. palustris, and D. subpalustris. 

1.3 Materials and Methods 

 Drosophila stocks – D. guttifera, D. palustris, and D. subpalustris 

The three Drosophila species used in this study were D. guttifera (Drosophila Species 

Stock Center, currently at Cornell University, stock number 15130 – 1971.10), D. 

palustris (collected by Tessa Steenwinkel (Michigan Technological University) in 

Waunakee, Wisconsin), and D. subpalustris (Drosophila Species Stock Center, stock 

number 15130 – 2071.00). All fly stocks were maintained at room temperature on 

cornmeal-sucrose-yeast medium (Werner et al., 2018). 

 Artificial selection experiments 

D. palustris exhibits variation in the intensity of its pair of median spot rows. We 

artificially selected flies with prominent, weak, and non-existent median spot rows. We 

then created a separate stock for each phenotype.  

 Identification of pupal stages 

The pupal developmental stages for D. guttifera have been established, and the 

characteristics used to describe each pupal stage were recognizable in D. palustris and 

D. subpalustris and determined accordingly (Fukutomi et al., 2017). 
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 Design and production of anti-sense RNA in situ hybridization probes for Ddc, t, 
and y 

RNA in situ hybridization was used to determine the spatial and temporal expression 

patterns of the pigmentation genes Ddc, t, and y in D. guttifera, D. palustris, and D. 

subpalustris. Probes were 200 to 500 bases in length, and GenePalette was used for 

bioinformatics work (Rebeiz and Posakony, 2004). Selected coding regions for Ddc, t, 

and y were amplified from both D. guttifera and D. palustris genomic DNA. The t probe 

used for all three species was constructed starting with D. guttifera DNA, and the Ddc 

and y probes for both D. palustris and D. subpalustris were derived from D. palustris 

DNA. Due to the close proximity of each species in evolutionary time, the probes were 

used interchangeably. Mean Green PCR Master Mix was used to amplify the partial 

coding regions with forward and reverse primers (Table 1). This reagent puts A-tails on 

the PCR products. After the PCR products were extracted and purified with a Thermo 

Scientific GeneJET Gel Extraction Kit, the A-tailed, purified PCR products were ligated 

into the pGEM-TEasy vector. The ligation products were transformed into chemically-

competent E. coli DH5α cells. The resulting colonies were screened through PCR, using 

the M13 forward and reverse universal primer pair. Positive colonies were chosen to 

make minipreps, and the plasmid was then purified with a Thermo Scientific GeneJET 

Plasmid Miniprep Kit. The insertion direction into the vector was determined through 

PCR amplification with the M13 forward universal primer and either the internal 

forward or internal reverse primer (Table 1.1). Depending on the insertion direction, 



 

18 

either SP6 or T7 RNA polymerase was used during the in vitro transcription reaction to 

produce a DIG-labeled RNA anti-sense probe (Roche DIG RNA Labelling Kit (SP6/T7)).  

Table 1.1: Primers used to produce in situ hybridization probes  

Primer Name Primer Sequence 

D. guttifera Ddc exon 3 forward AGCCATTGATTCCGGATGCGG 

D. guttifera Ddc exon 3 reverse AATCGTGTGCTCATCCCACTCG 

D. guttifera Ddc exon 3 internal forward ACTGGCACAGTCCCAAGTTCC 

D. guttifera Ddc exon 3 internal reverse CATCTTGCCCAGCCAATCTAGC 

D. guttifera t exon 5 forward CAGCGTCTGCTTGGCCACACG 

D. guttifera t exon 5 reverse TTGCCGCTGCGCAACAATTCGG 

D. guttifera t exon 5 internal forward GCTGAATCATTACTACTTTGTGG 

D. guttifera t exon 5 internal reverse AATGGTGTTGATGCTGAACACG 

D. palustris Ddc exon 3 forward TATCGTCATCACATGAAGGGC 

D. palustris Ddc exon 3 reverse GCCATGCGCAAGAAGTAGAC 

D. palustris Ddc exon 3 internal forward TGAAGCACGACATGCAGGG 
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D. palustris Ddc exon 3 internal reverse CAGACCCATGTTCACCTC 

D. palustris y exon 2 forward GAGGAGGGCATCTTTGGC 

D. palustris y exon 2 reverse CGATGCCATGGAATTGCGG 

D. palustris y exon 2 internal forward TCTCGCACCGAGGACAGC 

D. palustris y exon 2 internal reverse CGATCAGATTGAACAGCTCG 

 Template sequences for the RNA in situ hybridization anti-sense probes  

The sequences of the DNA templates were determined through Eurofins Genomics Tube 

Sequencing. See “Appendix of in situ hybridization probe sequences” for the full 

sequence data. 

 Preparation of the pupae for RNA in situ hybridization 

When pupae had developed to the correct pupal stage, they were cut along the 

anterior-posterior axis either between the eyes or on their side through the eyes. These 

cut pupae were fixed with a 4% solution of paraformaldehyde (Electron Microscopy 

Sciences) and kept at -20°C in pure ethanol.  

 in situ hybridization of the pupae 

 The in situ hybridization procedures (adopted from (Jeong et al., 2008)) were 

performed over the course of three to five days, using the anti-sense RNA in situ 

hybridization probe(s) and pupal tissue samples of different developmental stages. The 
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tissue was washed between each step with PBST. On the first day, pupae were treated 

with a 1:1 xylenes : ethanol mixture to remove residual fat tissue. The pupal tissue was 

then fixed (4% paraformaldehyde), treated with Proteinase K (1:25,000 dilution), fixed 

again (4% paraformaldehyde), and then incubated with the anti-sense RNA probe 

(1:500) for 18 to 72 hours at 64°C to 65°C. The reaction was gently agitated throughout 

the incubation to ensure that the hybridization reaction stayed at equilibrium. After the 

18 to 72 hours of incubation was completed the pupae were incubated in Roche α-DIG 

AP Fab Fragments (1:6000) at 4°C overnight. This reaction attached the Fab Fragments 

bound to the alkaline phosphatase enzyme to the α-DIG present on the anti-sense RNA 

probes. On the final day, the tissue was incubated with a staining solution of Promega 

BCIP/NBT in the dark. The alkaline phosphatase-catalyzed reaction converted this 

staining solution to a purple-stain at the point of mRNA and anti-sense probe 

hybridization. This staining allows the mRNA expression patterns of the gene of interest 

to be visualized on the pupal tissue. Staining would become apparent from two to 12+ 

hours. 

 Imaging of Ddc, t, and y expression patterns after in situ hybridization 

Pupae were manipulated to remove the head, legs, and wings either before or after 

staining. The pupal abdomens were then imaged with an Olympus SZX16 microscope 

and an Olympus DP72 camera. The images were digitally captured with Olympus 

cellSens software, and the digital images were stacked with Helicon Focus.  
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1.4 Results 

 Our group had shown that both t and y expression during pupal development 

prefigures the abdominal spot pattern of D. guttifera (Bollepogu Raja, 2017). Intrigued 

by the fact that these two genes are regulated in the exact same complex expression 

pattern, I wanted to determine if more genes could show such a phenomenon – given 

the rarity of two genes being expressed in identical complex patterns. I tested for a third 

known pigmentation gene, Ddc, through in situ hybridization to determine if it was also 

expressed in the same spot pattern, and found that this was the case. These data show 

the co-expression and suggest the co-regulation of three genes into the same 

expression pattern during pupal development in D. guttifera. 

 To investigate this co-expression further, I chose to study species with subsets of 

the D. guttifera abdominal pattern. I wanted to determine if the expression patterns of 

Ddc, t, and y changed to prefigure the adult spots in D. palustris and D. subpalustris. I 

used in situ hybridization to characterize Ddc, t, and y mRNA during pupal development 

and found that all three genes are expressed to foreshadow the adult abdominal spot 

patterns of D. palustris and D. subpalustris. In some instances, there was very weak or 

no signal for gene expression correlating to the median spot row of D. palustris. This 

faint signal was expected, given the variation of spot intensity seen in the adult fruit 

flies.  
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 These data show that Ddc, t, and y expression foreshadows the adult spot 

patterning of D. guttifera, D. palustris, and D. subpalustris. Ddc mRNA is present in all 

three species during the pupal stages P11 and P12, in addition to later stages in D. 

guttifera and D. palustris. The expression of t is seen in D. guttifera at P11 and at P12 in 

D. palustris and D. subpalustris. Signal for y is seen at P10 in all three species in addition 

to P12 in D. palustris. Additionally, I showed the expression of t and Ddc prefiguring the 

abdominal shading seen in D. palustris and D. subpalustris, respectively. Thus, the mRNA 

expression amongst species correlate precisely with the presence of black spots on the 

abdomen. Although correlative in nature, my observations suggest that color pattern 

diversity within the quinaria group is driven by the deployment of upstream factors that 

collectively co-regulate these three downstream target genes. 

 t and y expression prefigure the adult D. guttifera spot pattern 

 Past in situ hybridization experiments in our lab show that t and y foreshadow 

the adult abdominal spot patterns of D. guttifera (Bollepogu Raja, 2017).  
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 Ddc expression also foreshadows the adult D. guttifera spot pattern 

 Ddc mRNA correlates with the spot pattern on D. guttifera (Figure 1.4). 

 

Figure 1.4: in situ hybridization of Ddc during D. guttifera pupal development  

(A) Dorsal and (B) lateral view of adult D. guttifera (Werner et al., 2018). (C – F) Ddc mRNA expression at 
stages P11 (C, D), P12 (E), and P13 (F).  

 Ddc, t, and y expression correlates with the adult D. palustris spot pattern  

 The spot pattern of D. palustris lacks the dorsal row of spots seen on D. guttifera; 

however, the median and lateral rows are present (with variation to the intensity of 
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pigmentation seen in the median row). The mRNA expression patterns of Ddc, t, and y 

prefigure the adult abdominal pattern of D. palustris. Expression of t is also shown to 

foreshadow the abdominal shading seen at the median row of spots (Figure 1.5).  
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Figure 1.5: in situ hybridization of Ddc, t, and y during D. palustris pupal development 

(A) Dorsal and (B) lateral view of adult D. palustris (Werner et al., 2018). (C – J) Ddc mRNA expression at 
stage P11 (C – F), P12 (G – I), and P12-P15 (J). (K – P) t gene expression at stage P11 – P12 (K) and P12 (L – 
P). (Q – T) y mRNA at stages P10 (Q, S) and P12 (R, T).  

 Ddc, t, and y mRNA also foreshadows the adult D. subpalustris spot pattern 

 D. subpalustris lacks both a dorsal and median row of spots, making its 

abdominal pattern the “simplest” of the three species of interest. The Ddc, t, and y 

expression patterns during pupal development prefigure the adult abdominal spot 

pattern – just as in D. guttifera and D. palustris – in addition to Ddc prefiguring the adult 

shading pattern (Figure 1.6). 
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Figure 1.6: in situ hybridization of Ddc, t, and y during D. subpalustris pupal development 

(A) Dorsal and (B) lateral view of adult D. subpalustris (Werner et al., 2018). (C – G) Ddc mRNA expression 
at stage P11 (C – D) and P11 – P12 (F, G). (H) t gene expression at stage P12. (I – K) y mRNA at stage P10. 
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1.5 Discussion  

 The adult D. guttifera, D. palustris, and D. subpalustris have different abdominal 

pigmentation patterns. Among the three species, these spot-patterns appear to be 

assembled by the gain or loss of spot rows. Here, we show that Ddc, t, and y are 

uniquely co-expressed to foreshadow these different patterns. Our data support the 

initial hypothesis that these genes’ co-expression correlates with the abdominal spots 

seen on all three species. These observations suggest that changes to the co-regulation 

of Ddc, t, and y underlie some of the morphological diversity seen within the quinaria 

group.  

 There is not a straightforward method to determine if co-regulation exists 

between multiple genes (Allocco et al., 2004). Gene co-expression – a phenomenon 

seen among genes with a related purpose – suggests their co-regulation, and this allows 

us to hypothesize possible gene co-expression networks (Brown et al., 2000; Eisen et al., 

1998; Garg and Achenie, 2002; Spellman and Rubin, 2002; Villa-Vialaneix et al., 2013; 

Wu et al., 2002; Yu et al., 2003; Zhang and Horvath, 2005). Therefore, we can begin to 

predict how genes with both similar functions and expression patterns may be co-

regulated and then investigate their positions within gene regulatory networks (GRNs). 

Studying the evolution of GRNs responsible for Drosophila pigmentation continues to 

clarify the morphological diversity seen within the genus and allows us to better 

understand the evolution of complex structures (Camino et al., 2015; Carroll, 2000; 

Davidson and Levin, 2005; Grover et al., 2018; Jeong et al., 2008; Koshikawa et al., 2015; 
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Ordway et al., 2014; Roeske et al., 2018). From the information presented in this study, 

we can continue to elucidate the GRN(s) responsible for creating complex spot patterns 

on the abdomen of D. guttifera, and start to understand this same process in two 

untouched species – D. palustris and D. subpalustris.  

 The spots seen in D. guttifera, D. palustris, and D. subpalustris provide more than 

just a model to understand complex color patterns; they are serial homologous 

structures, just like the rows of spots on butterfly wings (Monteiro, 2008). Studying the 

GRNs responsible for generating these repeated patterns will progress our 

understanding of how serial structures evolved in nature. This further justifies the value 

of the quinaria group as a system to investigate morphogenesis.   

 The results of in situ hybridization shown in this study provide sufficient evidence 

of co-expression of three pigmentation genes seen among three species of Drosophila. 

The next step to determine possible co-regulation would be cluster analysis of RNA-seq 

data during stages of pupal development in all three species (Tomancak et al., 2007). 

This information would provide temporal data of gene expression that could be 

compared to the temporal and spatial data provided by our in situ hybridization results. 

Correlation among the expression of Ddc, t, y, and transcription factors would provide 

possible regulatory candidates. We could then use in situ hybridization of these 

candidate transcription factors to provide further spatial and temporal data to 

determine the GRN(s) dictating the expression of Ddc, t, and y in these three species. 
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 The implications to unraveling the GRN(s) controlling Ddc and y apply to more 

than just color pattern development. Ddc and y are vital to the lifecycles of agricultural 

pests and disease vectors, such as the Asian tiger mosquito, black cutworm, brown 

planthopper, and kissing bug (Chen et al., 2018; Lu et al., 2019; Sterkel et al., 2019). We 

have demonstrated the potential of these three species of Drosophila as a robust 

system to understand the regulation of these pigmentation genes, which could have 

application to both agriculture and human health. 

 Previous work in our laboratory investigated the regulation of t and y in D. 

guttifera to understand the development of this fruit fly’s complex abdominal spot 

pattern. However, there are very few genetic tools available in D. guttifera and none are 

readily available for D. palustris and D. subpalustris. Despite the difficulties working with 

non-model organisms, I chose to investigate the development of abdominal 

pigmentation in these two species. Along with D. guttifera, these three members of the 

quinaria group are an excellent system to study the evolution of pattern development 

due to the gain or loss of spot rows seen among the species. Establishing methods to 

produce transgenic D. palustris and D. subpalustris will facilitate the identification of 

regulatory elements responsible for the development of their spot patterns. If we 

elucidate the evolutionary changes to regulatory networks underlying the gain or loss of 

spot rows among these three species, then we can better understand how complex 

patterns emerged in nature and begin to ask how the leopard got its spots. 
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1.6 Conclusion 

 Here we show that three genes known to be involved in Drosophila pigmentation 

– Ddc, t, and y – have expression patterns during pupal development that precisely 

foreshadow the abdominal spot patterns of D. guttifera, D. palustris, and D. 

subpalustris. The co-expression of three genes into the exact same complex pattern is 

rarely seen, and suggests that the co-regulation of Ddc, t, and y shapes the morphology 

of these color patterns. This potential co-regulation provides a starting point to not only 

study pattern development but also how multiple genes are regulated into the same 

expression pattern. Through cluster analysis or similar approaches, we can understand 

the GRNs that underlie the evolution of spot patterns in these species and progress our 

knowledge of how novel traits emerge. 
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2 Fixation and fragmentation of chromatin from D. guttifera 
pupae for further processing in Chromatin 
Immunoprecipitation assays 

2.1 Abstract 

 Chromatin immunoprecipitation (ChIP) is a useful tool to examine DNA-protein 

interactions. However, a ChIP protocol is not readily available for the non-model fruit fly 

D. guttifera. Here we outline a procedure to produce 100-300 base pair fragments of 

chromatin from D. guttifera pupae for further ChIP processing. This information 

provides the foundation to develop a ChIP-seq or ChIP-PCR assay for D. guttifera pupae. 

Such a protocol will allow us to examine interactions between previously identified cis-

regulatory elements (CREs) and transcription factors (TFs) in D. guttifera. 
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2.2 Introduction 

 Novel morphologies arise primarily due to changes in gene expression patterns, 

which can result from alterations in non-coding DNA (changes in cis) or the presence of 

new TFs, morphogens, or entire gene networks (changes in trans), or both (Gompel et 

al., 2005). Previous work in our lab identified three possible regions of non-coding DNA 

– or CREs – which may regulate the gene yellow (y) in D. guttifera (Bollepogu Raja, 

2017). These putative CREs were labeled as “Spot” (Sp), “Stripe” (S), and “Wing-body” 

(WB). Sp, S, and WB are suggested to serve as binding sites for TFs to regulate the 

expression of y (Mora et al., 2015; Rojano et al., 2018). 

 Through in situ hybridization, mRNA from both the Hox TF abd-A and the 

pigmentation gene y were shown to prefigure the lateral row of spots in D. guttifera 

(Bollepogu Raja, 2017). This correlation prompted the question – is Abd-A binding to any 

of the CREs (Sp, S, or WB) that possibly regulate y? To address this question, we began 

to develop a ChIP protocol to investigate DNA-protein interactions during D. guttifera 

pupal development (Nelson et al., 2006). ChIP is completed by fixing TFs to chromatin 

with formaldehyde and then fracturing the chromatin through sonication. Antibodies 

specific to TFs of interest are used to precipitate the bound chromatin, which can then 

be either amplified or sequenced. Though no ChIP experiments were run successfully, I 

determined a method of isolating, fixing, and fragmenting to a set size the chromatin 

from D. guttifera pupae (referred to as a “chromatin preparation”). Here, I outline the 

steps to produce a chromatin preparation from D. guttifera pupae for ChIP experiments. 
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2.3 Materials and Methods 

 Producing and determining the fragment sizes of a chromatin preparation 

• Add 1 mL of 1xPBS to a 1.5 mL-microcentrifuge tube and then add 0.1 g of D. 

guttifera pupae at the developmental stage(s) of interest 

• Crack the pupae with a sterile 7 cm polypropylene pellet pestle, blue 

• Spin the sample down for 5 minutes at maximum speed and remove the 

supernatant 

• Rinse in 500 μL ChIP Fix Solution and vortex quickly 

• Spin the sample down for 5 minutes at maximum speed and remove the 

supernatant 

• Crack the floating pupae with a sterile 7 cm polypropylene pellet pestle, blue 

• Replace the 500 μL ChIP Fix Solution with 1 mL ChIP Fix Solution and resuspend 

the pupae 

• Nutate the samples at room temperature for 20 minutes with a Fisher Scientific 

Nutating Rotator 

• Turn on the Bioruptor® Plus sonication device (diagenode) and set the water 

bath temperature to 4°C 

• Add 100 μL of 125 mM Glycine to neutralize the fixation reaction and continue to 

nutate the samples for five minutes at room temperature 

• Spin the sample down for 5 minutes at maximum speed and remove the 

supernatant 
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• Add 1 mL of 1xPBS 

• Spin the sample down for 5 minutes at maximum speed and remove the 

supernatant 

• Add 350 μL of ChIP Lysis Buffer 

• Homogenize the pupae with a sterile 7 cm polypropylene pellet pestle, blue  

• Quickly spin down the samples 

• Sonicate the samples for 40 rounds with a Bioruptor® Plus sonication device 

(diagenode). One round is 30 seconds of maximum sonication (1 mA) and 60 

seconds of rest 

• Add 350 μL of phenol chloroform to each sample, vortex, and let the samples sit 

at room temperature for five minutes 

• Centrifuge the samples at maximum speed for 10 minutes at room temperature 

and then transfer 80 μL of the top layer to a 1.5 mL-microcentrifuge tube 

• Add 8 μL 3M Sodium Acetate pH 5.5 and 240 μL 100% ethanol to the 

microcentrifuge tube 

• Store at -70°C to -80°C for at least one hour 

• Turn on the refrigerated centrifuge and set the temperature to 4°C 

• Spin down at 4°C at maximum speed for 10 minutes 

• Take off the supernatant, do not agitate the pellet 

• Wash the pellet with 1 mL 70% ethanol 

• Spin at maximum speed for five minutes at room temperature 
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• Take off the supernatant and air dry the samples for five minutes to remove 

residual ethanol 

• Dissolve the pellet in 50 μL of EB Buffer and let samples sit at 4°C overnight 

• Run 30 μL of the sample and 15 μL of loading buffer on a 1% agarose gel 

 Solution list 

1.8% formaldehyde ChIP Fix Solution (100 mL):  

• 4.9 mL 37% formaldehyde 

• 10 mL 0.5 M HEPES  

• 200 μL 0.5 M EDTA 

• 500 μL 100 mM EGTA 

• 2 mL 5 M NaCl 

• Fill to 100 mL with DI water 

ChIP Lysis Buffer (250 mL):  

• 5 mL 0.5 M EDTA 

• 12.5 mL 1 M Tris-HCl pH 8.0 

• 1.25 mL EMPIGEN BB 

• 2.5 g SDS 

• Fill to 250 mL with DI water  
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2.4 Results 

 The chromatin preparation procedure was completed with D. guttifera pupae in 

duplicate and the results are shown in Figure 2.1. The chromatin was fragmented into 

sizes ranging, primarily, from 100 to 300 base pairs (bp). Lesser amounts of chromatin 

produced from the protocol range from 300 to 3000 bp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Gel electrophoresis of ChIP chromatin preparation  
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2.5 Discussion and Conclusion 

 Though no successful ChIP experiments in D. guttifera pupae were completed, 

this protocol provides a starting point to develop and execute future ChIP experiments. 

Chromatin fragments should be between 150 and 300 bp for ChIP assays (Kidder et al., 

2011). In order to possibly increase the DNA yield, pupae can be frozen and 

homogenized before starting the chromatin preparation. However, this change in 

protocol may affect the efficacy of the sonication; thus, the procedure would need to be 

re-validated to achieve the correct chromatin fragmentation. 

 Before using ChIP to examine potential TF interactions with the putative y CREs, 

validation of a protocol should be done. Histone acetylation is frequently seen at 

transcriptionally active sites in the genome, meaning that a ChIP assay using an antibody 

for acetyl groups and the CREs could prove useful in developing a protocol (Creyghton et 

al., 2010). 

 It should also be noted that TFs interacting with the identified CREs in D. 

guttifera may only be occurring in cells that will become incorporated into the spot 

pattern. This means that only small patches of epithelial cells on the developing pupa 

may be relevant to the study. ChIP requires large amounts of cells, anywhere from 104 

to over 107 (MilliporeSigma, 2020). Producing this large of a sample of tissue providing 

the applicable environment of TFs may not be technically feasible. Other applications 

requiring smaller samples, such as MicroChIP and CUT&RUN, may be better suited to 
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understand DNA-protein interactions in this situation (Acevedo et al., 2007; Skene and 

Henikoff, 2017).  
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4 Appendix of in situ hybridization probe sequences 

4.1 D. guttifera Ddc exon 3 probe sequence 

NNNNNNNNNNNNNNGAANNNNNGCCCGACGTCGCATGCTCCCGGCCGCCATGGCGGCCGC

GGGAATTCGATTAGCCATTGATTCCGGATGCGGCGCCCGAAAAGCCCGAGGATTGGCAGGATG

TGATGAAGGACATCGAACGGGTCATCATGCCGGGCGTCACACACTGGTACAGTCCCAAGTTCC

ATGCGTACTTCCCCACGGCCAACTCGTATCCGGCCATTGTGGCGGACATGTTGAGCGGAGCGAT

TGCCTGCATTGGATTCACTTGGATTGCGAGTCCGGCGTGCACTGAACTCGAGGTGGCCATGCTG

GATTGGCTGGGCAAGATGTTGGATCTGCCTGCCGAGTTTTTGGCCTGCTCGGGCGGCAAGGGC

GGCGGCGTCATCCAAGGAACGGCCAGTGAATCCACATTGGTGGCATTACTGGGCGCCAAGGCG

AAGAAGCTGCAGGAGGTGAAGGCCAAGCATCCCGAGTGGGATGAGCACACGATTAATCACTA

GTGAATTCGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCCAACGCGTTGGATGCATAG

CTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGT

GAGATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTANAGCCTG

GGGTGCCTAATGAGTGAGCTAACTCACGTTAATTGCATTGCGCTCACTGCCCGCTTGCCATACG

GGAGACCTGTCGTGACCACTGCGTTAATGAATCGNNCANCGCGCGTGGNNAAGCGNGNNNG

CGNAGTGTGGGCACGTCGCGNNNNTTCANGCAATGACNCTNNACTCAATNAAATTAAGATGG

TNNNNNNATCTGAGCTGCTGCACGNCCGNATCNNGTANNCGAGACTTGCAGTTGAGATGGAA

NAGAGTAAAGNGTTTACNNTGCNGNNNNTTTGNNGGTCTGGGCGTCGGCNNGNGGANGGN

NCAAGTGCCAGGANNNGGTNNGATTTGGNGGTANGGGNAGGNNTNNAANNTAANANANN

GNNGGAAANCTGGNNNNNCCNNNACCNNCNNTTGCTGCTTTTTTTGGANNCNNNNNNANCA

ANNNNNNCNNGNNNNTATNNNNTNNNNG 
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4.2 D. guttifera t exon 5 probe sequence 

NNNNNNNNNNNAGGGCGNTTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGGCGGCCGCG

GGAATTCGATTCAGCGTCTGCTTGGCCACACGGAGGACGCACTGACGGAGACGCTGAATCATT

ACTACTTTGTGGTCGCTCACATCATCAACGACAAGCCGCAGGGCAAGTACAATGTGCGGGAGG

AGCACTTCATGTCCCTCTGCTACGCTGGCCACTTGCCCGGCTACACAATGAGCCACAATCGCCAT

GGACTCGTGTTCAGCATCAACACCATTAGCGCCGAATTGTTGCGCAGCGGCAAAATCACTAGTG

AATTCGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCCAACGCGTTGGATGCATAGCTT

GAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAA

ATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGG

TGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAA

ACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTG

GGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGT

ATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAA

CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT

CCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA

CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC

CGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAT

AGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACG

AACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTA

AGANNNNN 
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4.3 D. palustris Ddc exon 3 probe sequence 

NNNNNNNNNNNNGGCGAATTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGGCGGCCGCG

GGAATTCGATTTATCGTCATCACATGAAGGGCATCGAGACCGCCGACTCCTTCAACTTTAATCCA

CACAAATGGATGCTGGTCAACTTTGACTGCTCGGCCATGTGGCTCAAGGATCCCAGTTGGGTGG

TGAATGCCTTCAATGTGGATCCTCTTTATTTGAAGCACGATATGCAGGGATCTGCTCCCGACTAT

CGCCACTGGCAAATCCCGCTGGGCAGACGTTTCCGTGCTCTCAAACTCTGGTTTGTGCTGCGTCT

TTACGGTGTAGAGAATCTCCAGGCTCACATCCGACGTCATTGCGGATTTGCCAAGCAGTTTAGT

GAGCTCTGTGTGGCGGATAAACGTTTCGAGCTGGCTGCTGAGGTGAACATGGGTCTGGTCTGC

TTCCGCCTCAAGGGAACTAATGAAAGGAACGAGGCGCTACTGAAGCGCATCAATGGACGCGGC

AAGATTCACATGGTGCCGGCCAAGATCCGGGATGTCTACTTCTTGCGCATGAATCACTAGTGAA

TTCGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCCAACGCGTTGGATGCATAGCTTGA

GTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAAT

TGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTG

CCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAAC

CTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGG

CGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATC

AGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACAT

GTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCAT

AGGCTCCGCCCCCCTGACNAANATCACAAAAATCGACCCTCAAGTCAAAGNTGGNGAANCCCG

ACGGGACNNTAANNNNNCAAGGGGTNTNN 
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4.4 D. palustris y exon 2 probe sequence 

NNNNNNNNNNNNNGGGCGATTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGGCGGCCGC

GGGAATTCGATTCGATGCCATGGAATTGCGGAGTGTACAGCATCGACGAATGCCAGCAGCCAA

TGGCATTCTGATCAATCAGATTGAACAGCTCGACGCCATCGTCGCTCATCACTCGGGCCGTGGT

GTGAGCATTTCCTCCACGCTCGTCCAAAGCCACAAACTCATGGTAACTGTCCTCGGTGCGGGAT

TCGTCTCTCAAGATTCGCGTGGACACCGCGAACTGGCGATGACTGGCCAGGGGACTGAAGTAC

AGGGTGCGATAGCCATCGGAGCGAATGGGCGACAAGGCGATGCCAAAGATGCCCTCCTCAATC

ACTAGTGAATTCGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCCAACGCGTTGGATGC

ATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCT

GTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAG

CCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAG

TCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTG

CGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCG

AGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGG

AAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGG

CGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTG

GCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCT

CCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCNCCTTTCTCCCTTCGGGAAGCGTGGCGCT

TTCTCTAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAGCTGGGCTGNNT

GCNGAACCCCCGTT 
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