
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2020

Sub-Sampled Matrix Approximations Sub-Sampled Matrix Approximations

Joy Azzam
Michigan Technological University, atazzam@mtu.edu

Copyright 2020 Joy Azzam

Recommended Citation Recommended Citation
Azzam, Joy, "Sub-Sampled Matrix Approximations", Open Access Dissertation, Michigan Technological
University, 2020.
https://doi.org/10.37099/mtu.dc.etdr/1002

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Other Applied Mathematics Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/323915499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1002
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages

SUB-SAMPLED MATRIX APPROXIMATIONS

By

Joy Azzam

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Mathematical Sciences

MICHIGAN TECHNOLOGICAL UNIVERSITY

2020

© 2020 Joy Azzam

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Mathematical Sciences.

Department of Mathematical Sciences

Dissertation Co-advisor: Dr. Allan A. Struthers

Dissertation Co-advisor: Dr. Benjamin W. Ong

Committee Member: Dr. Cécile M. Piret

Committee Member: Dr. Daniel R. Fuhrmann

Department Chair: Dr. Mark S. Gockenbach

Contents

List of Figures . ix

List of Tables . xxi

Definitions . xxiii

List of Abbreviations . xxv

Abstract . xxvii

1 Introduction . 1

1.1 Work Estimates . 4

1.2 Relationship to Quasi-Newton Algorithms 5

1.3 Notation . 6

2 Matrix Approximation . 9

2.1 Randomized Algorithms for Matrix Approximation 9

2.1.1 Sub-Sampled Update (NS) 12

2.1.2 Symmetric Sub-Sampled Update (SS1) 13

2.1.3 Multi-Step Symmetric Updates (SS2) 15

v

2.2 Convergence Analysis . 16

2.2.1 Mathematical Preliminaries 17

2.2.2 Convergence Theorems . 20

2.2.3 Optimal Fixed Weight Convergence Rates 25

2.2.4 Theoretical Lower Bound for Convergence Rates 27

2.3 Numerical Results . 29

2.3.1 Convergence Test . 30

2.3.2 Sample Size Tests . 33

2.4 Heurestic Accelerated Schemes . 34

2.4.1 Eigenvector Acceleration . 35

2.4.2 Acceleration Convergence Results 37

2.4.3 Relationship to Algorithms in Literature 38

2.4.4 Krylov Spaces . 40

3 Inverse Approximation . 43

3.1 Introduction . 43

3.2 Relationship to Quasi-Newton Algorithms 44

3.3 Sub-Sampled Inverse Approximation 45

3.3.1 Filtering . 47

3.4 Sub-Sampled Accelerated Inverse Approximations 49

3.4.1 Inverse Power method . 51

3.5 Numerical Results . 53

vi

4 Low Rank Approximation . 57

4.1 Introduction . 57

4.2 Low Rank Sub-Sampled Approximation 59

4.2.1 Generic Low Rank Update 59

4.2.2 Compression . 60

4.3 Convergence Analysis . 61

4.3.1 Mathematical Preliminaries 63

4.3.2 Convergence Theorem . 64

4.4 Numerical Results . 65

4.4.1 Convergence Test . 66

4.4.2 Parameter Test . 68

4.4.3 Compression Test . 72

4.5 Heuristic Accelerated Schemes . 72

4.5.1 Acceleration Convergence Results 74

5 Conclusions and Future Works . 77

5.1 Conclusions . 77

5.2 Future Works . 79

References . 81

A Sub-Sample Appendices . 87

A.1 Weight Matrix Interpretation . 87

vii

A.2 Minimum Change Solutions . 88

A.3 Additional Non-Accelerated Computational Results 90

A.4 Additional Accelerated Computational Results 91

B Inverse Matrix Approximation . 105

B.1 Additional Computational Results 105

viii

List of Figures

2.1 (n = 5000) Approximation of XXT where X ∼ N (0, 1)n×n with s =

71 = d
√

5000e. The DFP and BFGS updates converge more slowly

while the sub-sampled methods match their theoretical convergence

rates (shown in dotted lines). 31

2.2 (n = 5000) Approximation of Hessian from Gisette Scale [5] with

s = 71 = d
√

5000e. The DFP and BFGS method show incredible

acceleration for this matrix. The sub-sampled methods work consis-

tently as predicted by their theoretical convergence rates (shown in

dotted lines). 32

2.3 (n = 4700) Approximation of NASA4704 from [7]. s = 69 =

d
√

4704e. The DFP method performs similar to the random matrix

A = XXT while the BFGS method fails. Sub-sampled methods match

their theoretical convergence rates (shown in dotted lines). 32

ix

2.4 (n = 5000) Approximation of XXT where X ∼ N (0, 1)n×n with s =

71. Acceleration of the BFGSA method (∗, adapted from [14]) can

be seen in comparison to the BFGS method (�). Acceleration of the

algorithm 4 (D) can be seen in comparison to S1 (◦). The acceleration

of algorithm 4 continues as the method is targeting the dominant space

of the residual at each step. 38

2.5 (n = 5000) Approximation of Hessian from Gisette Scale [5] with

s = 71. The DFP and BFGS updates perform well as does algorithm 4.

BFGSA (∗) performs well initially with slow terminal convergence. 39

2.6 (n = 4700) Approximation of NASA4704 from [7] with s = 69. The

DFP method performs well while the BFGS method fails. The acceler-

ated BFGSA method shows inconsistent convergence while algorithm 4

shows consistent acceleration in comparison to the consistent sampled

method S1. 39

3.1 (n = 5000) Approximation of the inverse of XXT where X ∼

N (0, 1)n×n with s = 71 = d
√

5000e. AdaRBFGScols performs slowly

compared to AdaRBFGSgauss. The DFPH update and algorithm 8

show improvement compared to AdaRBFGSgauss while algorithm 9

shows an increased terminal convergence rate. 54

x

3.2 (n = 5000) Approximation of the inverse of the Hessian from Gisette

Scale [5] with s = 71 = d
√

5000e. AdaRBFGSgauss and AdaRBFGScols

initially performs well and then slow down. The DFPH update and

algorithms 8 and 9 perform well. 55

3.3 (n = 4700) Approximation of the inverse of NASA4704 matrix from

[7] with s = 69 = d
√

4704e. AdaRBFGScols shows slow convergence.

The DFPH method, AdaRBFGSgauss, and algorithm 8 performs con-

sistently while algorithm 9 shows an approximation error which quickly

corrects itself. 56

4.1 (n = 256) Approximation of A = XXT where X ∼ N (0, 1)n×n with

s = 16, γ = 0.2. The low rank algorithm 2 performs poorly while

the low rank versions of algorithms 1 and 3 perform well. Low rank

accelerated algorithm 4 shows acceleration compared to algorithms 1

and 3 and is competitive with the algorithms from [16]. All methods

approach the best rank 16 approximation of A. 68

4.2 (n = 256) Approximation of modified matrix Ã having effective rank

16 with s = 16 and γ = 10−3. Low rank variants of algorithms 1 to 3

show comparable convergence rates to the optimal theoretical rates of

the un-compressed versions shown in dotted lines. Accelerated variants

converge quickly to the best rank 16 approximation. 69

xi

4.3 Comparison of storage while approximating the modified matrix Ã

using γ̂ = 10−2, 10−3, 10−4. Choosing tolerance parameter γ̂ accord-

ing to the known drop in spectrum of Ã compresses the storage after

enough iterations. Higher values of γ̂ (left) show minimal storage re-

quirement for the sub-sampled methods. Larger values of γ̂ (right)

show large storage requirements initially which compress faster for the

choice closer to the drop of 10−3 in the spectrum of Ã. 70

(a) γ̂ = 10−2 . 70

(b) γ̂ = 10−3 . 70

(c) γ̂ = 10−4 . 70

(d) γ̂ = 10−2 . 70

(e) γ̂ = 10−3 . 70

(f) γ̂ = 10−4 . 70

4.4 (n = 256) Approximation of A = XXT where X ∼ N (0, 1)n×n with

s = 16 and γ = 0.2. Graphs show the rank of each iterate being con-

trolled by the tolerance parameter γ = 0.2 ≈ ‖A−As‖F , matching the

known distribution of A. The methods from [16] require an increas-

ing rank to converge to a best approximation while the sub-sampled

methods only ever store the s directions desired and s more while the

iteration is taking place giving a fixed (user controlled) computational

and storage requirement per iteration. 71

xii

4.5 Comparison of storage requirements while approximating the modified

matrix Ã using different compression schemes. Compressing rk = s

at each iteration (right) yields a fixed storage method. Choosing tol-

erance parameter γ̂ according to the known drop in spectrum of Ã

also compresses the storage after enough iterations (left). The perfor-

mance (center) of the tolerance algorithm with a cap on the rank at

rk ≤ 2s performs well and has a fixed, user controllable overall storage

requirement. 73

(a) Tolerance Compression . 73

(b) Max Rank Compression . 73

(c) Fixed Rank Compression . 73

(d) γ̂ = 10−3 . 73

(e) rk ≤ 2s . 73

(f) rk = s . 73

4.6 (n = 1000) Approximation of A = XXT where X ∼ N (0, 1)n×n with

s = 32 and γ = 0.001. Tolerance based sub-sampled low rank meth-

ods outperform the methods of [14] for matrices with slowly decaying

spectrum (left). RRF and RSSI methods require increasing rank to

converge to the best rank s approximation while the tolerance based

low rank only ever stores an amount proportional to the parameter

γ̂. 75

xiii

4.7 (n = 1000) Approximation of modified matrix Ã having effective rank

32 with s = 32 and γ = 0.001. All the methods converge to the best

rank s approximation in similar amounts of samples(left). Low rank,

sub-sampled accelerated methods only require fixed storage indicated

by the nearly vertical line (right) while the methods of [16] require

increasing storage. 76

A.1 Approximation of the Hessian matrix from the LibSVM problem, Aloi

(n = 128) [5] with s = 12 = d
√

128e. The DFP and BFGS updates

perform well. Algorithms 1 to 3 match their theoretical convergence

rates (shown in dotted lines). 91

A.2 Approximation of the Hessian matrix from the LibSVM problem, Pro-

tein (n = 357) [5] with s = 19 = d
√

357e. The DFP method performs

well while the BFGS method shows poor performance. Algorithms 1

to 3 match their theoretical convergence rates (shown in dotted lines). 92

A.3 Approximation of the Hessian matrix from the LibSVM problem,

Real-Sim (n = 20, 958) [5] with s = 145 = d
√

20, 958e. The DFP

method performs well eventually matching the theoretical convergence

rates for algorithms 1 to 3. The BFGS method fails. Algorithms 1 to 3

methods match their theoretical rates shown in dotted lines but are

terminated after a maximum run-time. 93

xiv

A.4 Approximation of ND6K matrix (n = 18, 000) from [7] with s =

135 = d
√

18, 000e. The DFP and BFGS updates show fast initial

convergence which slows over time. Algorithms 1 to 3 methods match

their theoretical rates shown in dotted lines but are terminated after a

maximum run-time. 94

A.5 Approximation of ex9 matrix (n = 3363) from [7] with s = 58 =

d
√

3363e. The DFP update performs consistently while the BFGS

update fails early in the iteration. Algorithms 1 to 3 methods match

their theoretical rates shown in dotted lines. 95

A.6 Approximation of Chem97ZtZ matrix (n = 2541) from [7] with s =

51 = d
√

2541e.The DFP update performs consistently while the BFGS

update fails early in the iteration. Algorithms 1 to 3 methods match

their theoretical rates shown in dotted lines. 95

A.7 Approximation of Body matrix (n = 17, 546) from [7] with s = 133 =

d
√

17, 546e. The DFP update performs well while the BFGS update

fails. Algorithms 1 to 3 methods match their theoretical rates shown

in dotted lines but are terminated after a maximum run-time. . . . 96

A.8 Approximation of bcsstk matrix (n = 11, 948) from [7] with s = 110 =

d
√

11, 948e. Algorithms 1 to 3 methods match their theoretical rates

shown in dotted lines but are terminated after a maximum run-time. 96

xv

A.9 Approximation of wathen matrix (n = 30, 401) from [7] with s =

175 = d
√

30, 401e. The DFP and BFGS methods perform consistently.

Algorithms 1 to 3 methods match their theoretical rates shown in dot-

ted lines but are terminated after a maximum run-time. 97

A.10 Approximation of the Hessian matrix from the LibSVM problem, Aloi

(n = 128) [5] with s = 12 = d
√

128e. All methods show quick ini-

tial convergence. The accelerated BFGSA method adapted from [14]

shows slower performance while the DFP method and algorithm 4 show

performance consistent with other tests. 98

A.11 Approximation of the Hessian matrix from the LibSVM problem, Pro-

tein (n = 357) [5] with s = 19 = d
√

357e. The un-accelerated BFGS

method performs poorly and the accelerated BFGSA method shows

minimal acceleration in comparison to other tests. The DFP method

also shows weak performance compared to algorithm 4. 99

A.12 Approximation of the Hessian matrix from the LibSVM problem,

Real-Sim (n = 20, 958) [5] with s = 145 = d
√

20, 958e. The BFGS

method fails after initially performing the same as the accelerated

BFGSA method adapted from [14]. The DFP method and algorithm 4

initially perform similarly but algorithm 4 shows acceleration consis-

tent with other tests. 100

xvi

A.13 Approximation of ND6K matrix (n = 18, 000) from [7] with s = 135 =

d
√

18, 000e. All the methods perform well. BFGSA shows varied accel-

eration over the BFGS update while DFP shows performance consisten

with other tests. Algorithm 4 outperforms other methods with consis-

tent acceleration seen against the un-accelerated S1 method. . . . 101

A.14 Approximation of ex9 matrix (n = 3363) from [7] with s = 58 =

d
√

3363e. The BFGS update fails on this matrix but the accelerated

BFGSA converges. The DFP method and algorithm 4 show consistent

performance. 102

A.15 Approximation of Chem97ZtZ matrix (n = 2541) from [7] with s =

51 = d
√

2541e. BFGS method fails while the other methods converge

with similar performance to other tests. 102

A.16 Approximation of Body matrix (n = 17, 546) from [7] with s = 133 =

d
√

17, 546e. The BFGS method fails after good initial convergence.

Algorithm 4 shows consistent acceleration as in other experiments. 103

A.17 Approximation of bcsstk matrix (n = 11, 948) from [7] with s =

110 = d
√

11, 948e. The BFGS update fails early in the iteration and

was terminated. Algorithm 4 shows consistent acceleration compared

to BFGSA and S1. 103

xvii

A.18 Approximation of wathen matrix (n = 30, 401) from [7] with s =

175 = d
√

30, 401e. All methods perform consistently regardless of the

matrix being very large. The DFP and BFGS methods were termi-

nated due to maximum run-time while algorithm 4 shows consistent

acceleration and faster run-times. 104

B.1 Computing an approximate inverse of the Hessian matrix from the

LibSVM problem, Aloi (n = 128) [5] with s = 12 = d
√

128e.

AdaRBFGScols method shows slow convergence while AdaRBFGSgauss

has improved performance. 107

B.2 Computing an approximate inverse of the Hessian matrix from the

LibSVM problem, Protein (n = 357) [5] with s = 19 = d
√

357e.

AdaRBFGScols method shows slower convergence. 108

B.3 Computing an approximate inverse of the Hessian matrix from the Lib-

SVM problem, Real-Sim (n = 20, 958) [5] with s = 145 = d
√

20, 958e.

Plot indicates a maximum run-time was reached for the sub-sampled

methods. 109

B.4 Computing an approximate inverse of ND6K matrix (n = 18, 000)

from [7] with s = 135 = d
√

18, 000e. AdaRBFGSgauss shows faster

initial convergence which is outperformed by AdaRBFGScols. Algo-

rithms 8 and 9 were terminated due to maximum run-time but show

fast convergence. 110

xviii

B.5 Computing an approximate inverse of ex9 matrix (n = 3363) from

[7] with s = 58 = d
√

3363e. Plots indicate slow convergence for

AdaRBFGScols and SSInvP initially which is later corrected. 111

B.6 Computing an approximate inverse of Chem97ZtZ matrix (n = 2541)

from [7] with s = 51 = d
√

2541e. AdaRBFGScols shows poor conver-

gence. Algorithm 9 outperforms other algorithms. 112

B.7 Computing an approximate inverse of Body matrix (n = 17, 546) from

[7] with s = 133 = d
√

17, 546e. AdaRBFGScols performs slowly while

AdaRBFGSgauss and the DFPH update converge. Algorithms 8 and 9

were terminated due to maximum run-time. 113

B.8 Computing an approximate inverse of bcsstk matrix (n = 11, 948)

from [7] with s = 110 = d
√

11, 948e. Note the slow convergence of the

AdaRBFGScols method. For this test matrix algorithm 8 outperforms

algorithm 9. 114

B.9 Computing an approximate inverse of wathen matrix (n = 30, 401)

from [7] with s = 175 = d
√

30, 401e. AdaRBFGScols shows slow per-

formance while AdaRBFGSgauss and the DFPH update perform well.

Algorithms 8 and 9 show consistent initial performance but were ter-

minated due to exceeding the maximum run-time. 115

xix

List of Tables

2.1 Computational effort of various sub-sampled algorithms for s =

{512, 256, 128} relative to s = 512. Three matrices are testes: Rand

XXT (n = 5000), with X ∼ N (0, 1)n×n; Gisette Scale (n = 5000)

Hessian [5]; and NASA4704 (n = 4704) [7]. Values of 1 indicate

that the method is converging at the same rate as having sampled

with s = 512 (with respect to the total number of matrix samples cost

metric). 34

xxi

Definitions

A Fixed Matrix

Ã Fixed Matrix Modified to have Effective Rank l

Al Best Rank l Approximation to A

B Approximation to A

∇2f(x) Hessian Matrix of Scalar Function f(x)

E[ẑ] Expectation of ẑ

γ̂ Low Rank Tolerance Parameter

H Approximation to A−1

In Identity Matrix of size n× n

〈X, Y 〉 Frobenius Inner Product of Matrices X and Y

λmin(X) Smallest Eigenvalue of Matrix X

λmax(X) Largest Eigenvalue of Matrix X

l Low Rank Target Dimension

m,n Problem Dimensions

‖X‖F Frobenius Norm of Matrix X

‖X‖F (W1,W2) Weighted Frobenius Norm of Matrix X

N (0, 1) Gaussian Normal Distribution with mean 0 and standard deviation 1

p Number of Power Iterations

P Projection Matrix

PW−1,U Weighted Projection Matrix

Q Orthogonal Matrix where QT Q = In

Rm×n Real Vector Space of m by n Matrices

Rk Residual Rk = A−Bk at Iteration k

ρ Convergence Rate

s Number of Sampling Directions

Tr[X] Trace of Matrix X

U ,V Random Dimension Reduction Matrices

W Weight Matrix

x̂ Random Matrix

xxiv

List of Abbreviations

AD Algorithmic Differentiation

AdaRBFGScols Adaptive Randomized BFGS method (Column Sampling)

AdaRBFGSgauss Adaptive Randomized BFGS method (Gaussian Sampling)

BFGS Broyden-Fletcher-Goldfarb-Shanno (Optimization Method)

BFGSH BFGS Inverse Matrix Approximation Update

BFGSA Accelerated BFGS Matrix Approximation

DFP Davidon-Fletcher-Powell (Optimization Method)

DFPH DFP Inverse Matrix Approximation Update

LibSVM Library of Support Vector Machine Problems

NS Non-Symmetric Sub-Sampled Update

RRF Randomized Range Finder

RSSI Randomized Sub-Space Iteration

S1 Symmetric Sampled Update

SMW Sherman-Morrison-Woodbury (Inverse Formula)

SS1 Symmetric Sub-Sampled Update

SS1A Accelerated Sub-Sampled Update

SS2 Two-Step Symmetric Sub-Sampled Update

SSInv Inverse Sub-Sampled Update (Matrix Acceleration)

xxv

SSInvP Inverse Sub-Sampled Update (Inverse Matrix Acceleration)

SSLR Sub-Sampled Low Rank Algorithm

SS1SMW Sub-Sampled Inverse Matrix Approximation Algorithm

SVD Singular Value Decomposition

SPD Symmetric Positive Definite

xxvi

Abstract

Matrix approximations are widely used to accelerate many numerical algorithms.

Current methods sample row (or column) spaces to reduce their computational foot-

print and approximate a matrix A with an appropriate embedding of the data sam-

pled. This work introduces a novel family of randomized iterative algorithms which

use significantly less data per iteration than current methods by sampling input and

output spaces simultaneously. The data footprint of the algorithms can be tuned (in-

dependent of the underlying matrix dimension) to available hardware. Proof is given

for the convergence of the algorithms, which are referred to as sub-sampled, in terms

of numerically tested error bounds. A heuristic accelerated scheme is developed and

compared to current algorithms on a substantial test-suite of matrices.

The sub-sampled algorithms provide a lightweight framework to construct more useful

inverse and low rank matrix approximations. Modifying the sub-sampled algorithms

gives families of methods which iteratively approximate the inverse of a matrix whose

accelerated variant is comparable to current state of the art methods. Inserting a

compression step in the algorithms gives low rank approximations having accelerated

variants which have fixed computational as well as storage footprints.

xxvii

Chapter 1

Introduction

Randomly sampled matrix approximations are used to accelerate many numerical

algorithms. Randomized sampling of Hessian matrices along blocks of directions was

used to accelerate Quasi-Newton minimization algorithms [4, 27] in the numerical

optimization setting. More recently, iterative solvers for linear systems have been

constructed using random samples of the rows of matrices [15].

Randomized algorithms to approximate the inverse of an n×n matrix A are developed

explicitly in [14] and implicitly when used as pre-conditioners [1, 3] for linear systems.

Typical algorithms randomly sample V ∈ Rn×s2 with s2 < n and update (using

Quasi-Newton updates based on minimum-change formulations [4, 12, 27]) the current

1

approximation to A−1 with the random sample

AV ∈ Rn×s2 .

The sampling matrix V is used to partially reduce the data footprint of the update

and can be tuned by selecting s2 < n.

In the optimization context [25] Quasi-Newton schemes generate either a Symmetric

Positive Definite (SPD) sequence Bk → A or the SPD sequence Hk → A−1 gen-

erated by applying the Sherman-Morrison-Woodbury (SMW) formula to Bk. Both

the matrix inverse algorithms [14] and the Block BFGS method [12] apply SMW to

approximate A−1. Omitting the SMW computation from the algorithms in [12, 14]

gives algorithms which approximate A. Here and in what follows, x̂ ∼ pi×j indicates

that the matrix x̂ ∈ Ri×j has entries drawn from the distribution p and x̄ = E[x̂] is

the expectation of x̂.

The primary motivation for sampled algorithms is to reduce the data footprint of the

algorithms and provide (partially) tunable algorithms for modern hardware architec-

tures. The sub-sampled algorithms evaluate

UTAV ∈ Rs1×s2 . (1.1)

2

where U ∼ N (0, 1)m×s1 and V ∼ N (0, 1)n×s2 to sample row and column spaces

simultaneously. The data footprint (s1 × s2) of these sub-sampled algorithms can be

fully tuned (by selecting both s1, s2 � m,n) to available hardware and is significantly

smaller than the footprint (s1 × n and/or m × s2) of algorithms which update with

samples UT A and/or AV .

There are related algorithms in the literature, many of which fall in the general frame-

work described in [16]. Although these algorithms indeed construct one (expensive)

sub-sample of the form Q∗AQ to approximate the action of A associated with its

dominant eigenspace, the matrix Q is expensive to compute, requiring samples AΩ

(Ω ∼ N (0, 1)n×s2) to construct.

In this work, U and V are cheaply generated by sampling N (0, 1), and self-correcting

updates are described which embed the sub-samples UTAV and iteratively sum them

to generate various sub-sampled matrix approximations. Chapter 2 describes three

methods using sub-sampled data, eq. (1.1), to approximate a matrix A and gives

proof of their convergence. Inserting an additional algebraic update into the matrix

approximation algorithms generates methods for approximating the inverse matrix

A−1. Self-correcting updates constructed in this way are described and numerically

tested in Chapter 3. Performing a compression step to reduce the data footprint of

the iterate generates sub-sampled low rank methods. Chapter 4 explores this idea and

the effects of different compression schemes, some of which have fixed computational

3

footprints as well as overall storage footprints.

1.1 Work Estimates

Throughout the thesis it will be assumed that users are only given ‘black-box’ access to

the target matrix A which efficiently computes products AV , UTA and/or UTAV for

UT ∈ Rs1×m and V ∈ Rn×s2 . Typically, the cost of accessing this data is proportional

to the number of output entries; this will be the primary cost metric to compare

efficiency of the algorithms. To understand this metric, consider the approximation

of UT∇2f(x)V for smooth f : Rm → R using standard central differences. For a

small δ, each output entry,
[
UT∇2f(x)V

]
i,j

= uTi ∇2f(x) vj, is approximately

f(x+ δ(vj + ui))− f(x+ δ(vj − ui))− f(x− δ(vj − ui)) + f(x− δ(vj + ui))

4δ2||vj||||ui||
.

The cost of evaluating UT∇2f(x)V is the number of output entries multiplied by the

four function evaluations. In fact, the full Hessian action ∇2f(x)vj = [∇2f(x)V]j

used in the block BFGS scheme [12] also has a ‘black-box’ approximation: simply

take U to be the identity. Forward-forward mode AD [23] can provide the same func-

tionality while avoiding the difficulty of choosing δ appropriately and the unavoidable

precision loss due to cancellation.

4

When comparing computational cost of the algorithms, the product AV is referred

to as an m× s2 sample of the matrix A, UTA is an s1× n sample of A, while UTAV

is an s1 × s2 sub-sample of the matrix A. The sample AV samples the input space

of A, the sample UT A samples the output space of A, and the sub-sample UT AV

samples the input and output spaces of A simultaneously. One should observe that

the sub-sample contains only a small portion of each sample UT A and AV . Because

of this, sub-sampled algorithms will require more iteration than sampled algorithms.

In spite of this, sub-samples are efficient at capturing information and provide an

excellent foundation for compact, efficient algorithms.

1.2 Relationship to Quasi-Newton Algorithms

The goal of this thesis is to develop and analyze iterative approximations to A which

use sub-samples UTAV . The resulting algorithms are strongly connected to and

motivated by Quasi-Newton algorithms from nonlinear optimization and sampled

Quasi-Newton algorithms [14].

Various sampled Quasi-Newton methods [12, 14] have been developed based on block

updates [4]. The block optimization algorithm [12] takes several Quasi-Newton steps

with a fixed Hessian approximation (to reduce linear algebra) before performing a

5

block update, and accelerates terminal convergence with an ingenious heuristic. Sev-

eral variant block updates (based on traditional minimum change justifications for

DFP and BFGS [25]) are developed and used in iterative algorithms for approximat-

ing inverses [14]: additional theory and heuristic acceleration techniques have also

been explored [13].

The sub-sampled algorithms presented use minimum-change motivated arguments to

determine a family of updates which iteratively incorporate s1× s2 pieces of informa-

tion from the sub-sample UTAV ∈ Rs1×s2 to generate a sequence of approximations

to A. The data footprint of each iteration is s1×s2 which is substantially smaller than

that of the sampled algorithms [12, 13, 14] and can be fully tuned to the available

hardware. Sampled methods using UT A or AV have additional storage and compu-

tational requirements proportional to the problem size n, while sub-sampled methods

can have fixed storage and computational requirements proportional to s1, s2 � n.

Convergence rates are derived which are comparable with existing Quasi-Newton al-

gorithms [12, 13, 14].

1.3 Notation

Throughout the thesis: SPD is an acronym for symmetric positive definite and W de-

notes SPD weight matrices; superscript + denotes the Moore-Penrose pseudo-inverse;

6

〈X, Y 〉F = Tr
[
XTY

]
and ‖X‖2F = 〈X,X〉F denote the Frobenius inner product and

norm; residuals are measured using weighted norms,

‖X‖2
F (W−1

1 ,W−1
2)

= ‖W−1/2
1 XW

−1/2
2 ‖2F and ‖X‖2F (W−1) = ‖W−1/2XW−1/2‖2F ,

with conforming SPD weights W1, W2 and W ; algorithms are developed using the

W -weighted projector, which projects onto the column space of W U ,

P = PW−1,U = W U(UT W U)−1UT . (1.2)

The weighted projector satisfies

PW = W PT = PW PT and W−1P = PTW−1 = PT W−1P .

7

Chapter 2

Matrix Approximation

2.1 Randomized Algorithms for Matrix Approxi-

mation

Numerical optimization texts (e.g. [25]) motivate and derive Quasi-Newton update

schemes for SPD matrices A using constrained minimum change criteria (for B ≈ A

and H ≈ A−1) in weighted Frobenius norms. Traditional algorithms are derived

by selecting different weights. Block update algorithms (sampled algorithms in our

terminology) which update multiple directions simultaneously are derived [12, 14]

9

similarly. The KKT equations [25] for the quadratic programs,

Bk+1 = arg min
B

{
1

2
‖B −Bk‖2F (W−1) | B U = AU and B = BT

}
(2.1)

Hk+1 = arg min
H

{
1

2
‖H −Hk‖2F (W−1) | U = H AU and H = HT

}
(2.2)

gives two different updates using the same sample AUk: the update to Bk produces

Bk+1, an improved approximation to A; the update to Hk produces Hk+1, an improved

approximation to A−1. Solutions to eqs. (2.1) and (2.2) can be obtained by taking

the derivative of the norm with respect to the matrix B and enforcing the constraint

equations (see section A.2 for the sub-sampled version). The linear algebraic updates

that result are

Bk+1 = Bk + PB(A−Bk) + (A−Bk)PT
B − PB(A−Bk)PT

B ,

Hk+1 = Hk + PH(A−1 −Hk) + (A−1 −Hk)PT
H − PH(A−1 −Hk)PT

H ,

(2.3)

where the weighted projectors PB and PH defined by eq. (1.2) are

PB = PW−1,U = W U(UT W U)−1UT ,

PH = PW−1,AU = W AU(UT AW AU)−1UTA.

Block DFP [27] is the B formulation, eq. (2.1), with W = A,

Bk+1 = (In − PDFP) Bk(In − PT
DFP) + PDFPA. (2.4)

10

where

PDFP = PA−1,U = AU(UT AU)−1UT .

Block BFGS [12, 14] is the H formulation, eq. (2.2), (inverted using the Shermann-

Morisson-Woodbury formula) with W = A−1,

Bk+1 = Bk −BkU
(
UTBkU

)−1
UTBk + AU

(
UTAU

)−1
UTA. (2.5)

Setting W = A−1 in the B update, eq. (2.1), produces an update containing the term

A−1, which is not useful.

Lastly, algorithms that fall in the general framework described in [16] embed the

sub-sample Q∗AQ into a low-rank approximation PIn,QAPT
In,Q

when A is SPD. For

symmetric positive semi-definite A, they apply the Nyström method which constructs

(AQ)(Q∗AQ)−1(AQ)∗ = PA−1,QAPT
A−1,Q using the sample AQ.

The goal of this thesis is to use sub-samples UTAV to iteratively construct approxi-

mations to A. The matrix updates B → A will all satisfy

UTB V = UTAV.

There are many such potential updates, for instance, U U+AV V + minimizes the

unweighted Frobenius norm.

11

2.1.1 Sub-Sampled Update (NS)

We define updates using the minimal change criterion;

Bk+1 = arg min
B

{
1

2
‖B −Bk‖2F (W−1

1 ,W−1
2)
| UTB V = UTAV

}
, (2.6)

which defines the self-correcting update (for details see section A.2)

Bk+1 = Bk + PW−1
1 ,Uk(A−Bk)P T

W−1
2 ,V k . (2.7)

By construction, eq. (2.7) simply corrects the sub-sampled mismatch UT (A−Bk)V .

It cannot increase the weighted Frobenius norm ‖A − Bk‖2F (W−1
1 ,W−1

2)
and, provided

the sub-space sequences Uk and Vk eventually exhaust the underlying spaces, the

weighted residual must decrease monotonically to zero.

Given A ∈ Rm×n, an initial estimate B0 ∈ Rm×n, sub-sample sizes {s1, s2}, and

SPD weights {W1,W2}, eq. (2.7) generates a sequence {Bk} that converges to A

monotonically in the appropriate weighted Frobenius norm. The resulting algorithm is

summarized in algorithm 1: boxed values show the number of output entries computed

for the sub-sample UT AV ; the return-line double boxed value is the total number of

output entries used.

12

Algorithm 1 NS: Non-Symmetric Sub-Sampled Approximation

Require: B0 ∈ Rm×n, SPD W1 ∈ Rm×m, W2 ∈ Rn×n, {s1, s2} ∈ N.

1: repeat {k = 0, 1, . . .}

2: Sample Uk ∼ N(0, 1)m×s1 and Vk ∼ N(0, 1)n×s2

3: Compute residual Λk = UT
k AVk − UT

k BkVk ∈ Rs1×s2 s1s2

4: Update Bk+1 = Bk +W1Uk(UT
k W1Uk)−1Λk(V T

k W2Vk)−1V T
k W2

5: until convergence

6: return Bk+1 . (k + 1) (s1s2)

Algorithm 1 does not generate symmetric approximations for symmetric A. The

next two sections modify the basic algorithm to preserve symmetry. When discussing

symmetric updates, the iterations will always use symmetric initializations B0 = BT
0

and symmetric weights W = W1 = W2.

2.1.2 Symmetric Sub-Sampled Update (SS1)

Setting Vk = Uk gives a symmetric sub-sample UT AU . Using weights W = W1 = W2

in algorithm 1 with symmetric initialization B0 = BT
0 gives a sequence of symmetric

approximations, Bk, to a symmetric n × n matrix A. The resulting algorithm is

summarized in algorithm 2 with the number of output entries computed shown in

boxes as before.

13

Algorithm 2 SS1: Symmetric Sub-Sampled Approximation

Require: B0 ∈ Rn×n satisfying BT
0 = B0, SPD W ∈ Rn×n, s1 ∈ N.

1: repeat {k = 0, 1, . . .}

2: Sample Uk ∼ N (0, 1)n×s1

3: Compute residual Λk = UT
k AUk − UT

k BkUk ∈ Rs1×s1 . s21

4: Compute P̃k = W Uk(UT
k W Uk)−1

5: Update Bk+1 = Bk + P̃kΛkP̃
T
k

6: until convergence

7: return Bk+1 . (k + 1) (s21)

Remark 1. Algorithm 2 (with W = In) can be viewed as a sub-sampled BFGS up-

date: apply the orthogonal projection PIn,U = UUT to both sides of eq. (2.5) to get

algorithm 2 with W = In. Algorithm 2 can be viewed as a sub-sampled DFP update.

Remark 2. Algorithm 2 does not preserve positivity. A non-SPD result can be ob-

served when

A =

1 0

0 1

 , B =

1 0

0 9

 , and U =
1√
2

1

1

 .

14

2.1.3 Multi-Step Symmetric Updates (SS2)

An alternative approach to generate symmetric approximations is to symmetrize

eq. (2.7) as follows

Bk+1/2 = Bk + PW−1,Uk(A−Bk)P T
W−1,V k

Bk+1 =
1

2

(
Bk+1/2 +BT

k+1/2

)
.

(2.8)

For symmetric A and B0, it can be shown that the convergence rate for eq. (2.8) is

comparable to Algorithm 2. However, for symmetric A the additional sample,

PW−1
2 ,V kAP T

W−1
1 ,Uk =

(
PW−1

1 ,UkAP T
W−1

2 ,V k

)T
,

can be directly incorporated to give

Bk+1/3 = Bk + PW−1
1 ,Uk(A−Bk)P T

W−1
2 ,V k

Bk+2/3 = Bk+1/3 + PW−1
2 ,V k(A−BT

k+1/3)P
T
W−1

1 ,Uk

Bk+1 =
1

2

(
Bk+2/3 +BT

k+2/3

)
,

(2.9)

where the last line again enforces symmetry. The two-step symmetric algorithm

is summarized in algorithm 3 with sample counts boxed as before. The two-step

algorithm has superior convergence properties.

15

Algorithm 3 SS2: Two-Step Symmetric Sub-Sampled Approximation

Require: B0 ∈ Rn×n satisfying B0 = BT
0 , SPD W ∈ Rm×m, {s1, s2} ∈ N.

1: repeat {k = 0, 1, . . .}

2: Sample Uk ∼ N(0, 1)n×s1 and Vk ∼ N(0, 1)n×s2

3: Compute residual Λk = UT
k AVk − UT

k BkVk ∈ Rs1×s2 s1s2

4: Compute Bk+1/3 = Bk +W Uk(UT
k W Uk)−1Λk(V T

k W Vk)−1V T
k W

5: Compute residual Λk+1/3 = (UT
k AVk)T − V T

k Bk+1/3Uk ∈ Rs2×s1

6: Compute Bk+2/3 = Bk+1/3 +W Vk(V T
k W Vk)−1Λk+1/3(U

T
k W Uk)−1UT

k W

7: Update Bk+1 = 1
2
(Bk+2/3 +BT

k+2/3)

8: until convergence

9: return Bk+1 . (k + 1) (s1s2)

2.2 Convergence Analysis

The convergence results rely extensively on properties of randomly generated pro-

jectors. In the computational tests, projections are generated by orthogonalizing

matrices with individual entries drawn from N(0, 1). For square matrices, this pro-

cess gives rotations drawn from a distribution which is invariant under rotations [28].

The sub-sampled algorithms use symmetric weighted rank s projectors,

ẑ = W 1/2U(UT W U)−1UT W 1/2, (2.10)

16

whereW is an SPD weight matrix and U is simply the first s columns of such a random

rotation. The expectation of random symmetric n× n projections ẑ, E[ẑ] ∈ Rn×n, is

crucial in the analysis to come. Write zi for the eigenvalues of E[ẑ] with the standard

ordering z1 ≤ z2 ≤ · · · ≤ zn. The extreme eigenvalues z1 and zn determine the

algorithms convergence with the best results when z1 = zn.

For clarity the next section collects a number of useful definitions and lemmas.

2.2.1 Mathematical Preliminaries

Definition 3. A random matrix X̂ ∈ Rm×n is rotationally invariant if the distribution

of Qm X̂ Qn is the same for all rotations Qi ∈ O(i).

Lemma 4 (Random Projections). For any distribution ẑ of real, symmetric rank s

projectors in Rn,

0 ≤ λmin(E[ẑ]) ≤ s

n
≤ λmax(E[ẑ]) ≤ 1. (2.11)

Further, if ẑ is rotationally invariant, then E[ẑ] = s
n
In.

Proof. Let x ∈ Rn with xTx = 1. Since ẑ is a projector,

0 = λmin(ẑ) ≤ xT ẑ x ≤ λmax(ẑ) = 1.

17

Since E[xT ẑ x] = xTE[ẑ]x, taking the expectation gives

0 ≤ xTE[ẑ]x ≤ 1,

for all unit vectors x. Since the trace is linear, the sum of the eigenvalues of E[ẑ]

equals Tr(E[ẑ]) = E[Tr(ẑ)] = E(s) = s, which establishes eq. (2.11). Rotationally

invariant ẑ satisfy E[ẑ] = αIn since for all Q1, Q2 ∈ O(n),

E[ẑ] = E[Q1 ẑ Q2] = Q1 E[ẑ]Q2,

Using a similar argument, linearity of the trace gives α = s
n
.

Lemma 5 (Projection Cancellation). For R ∈ Rm×n and conforming symmetric

projections ŷ, ẑ,

〈R ẑ,R ẑ〉F = 〈R,R ẑ〉F (2.12)

〈ŷ R ẑ, ŷ R ẑ〉F = 〈ŷ R ẑ, R ẑ〉F = 〈ŷ R ẑ, R〉F (2.13)

Proof. Expanding the definition of eq. (2.12),

〈Rẑ,Rẑ〉F = Tr[ẑTRTR ẑ] = Tr[RTR ẑ ẑT] = Tr[RTR ẑ] = 〈R,R ẑ〉F ,

18

since Tr[AB] = Tr[BA] and ẑ is a projector. Similarly for eq. (2.13),

〈ŷ R ẑ, ŷ R ẑ〉F = Tr[ẑTRT ŷT ŷ R ẑ] = Tr[ẑTRT ŷTR ẑ] = 〈ŷ R ẑ, R ẑ〉F ,

〈ŷ R ẑ, R ẑ〉F = Tr[ẑTRT ŷTR ẑ] = Tr[ẑ ẑTRT ŷTR] = Tr[ẑTRT ŷTR] = 〈ŷ R ẑ, R〉F .

Lemma 6 (Spectral Bounds). For any R ∈ Rm×n and conforming symmetric positive

semi-definite matrices S1, S2, and (in the special case m = n) S the following bounds

hold:

λmin(S1)〈R,R〉F ≤ 〈S1R,R〉F ≤ λmax(S1)〈R,R〉F , (2.14)

λmin(S2)〈R,R〉F ≤ 〈R,RS2〉F ≤ λmax(S2)〈R,R〉F , (2.15)

λmin(S)2〈R,R〉F ≤ 〈S R,RS〉F ≤ λmax(S)2〈R,R〉F . (2.16)

Proof. To establish eq. (2.14) write R = [r1|r2| · · · |rn] and note that the results follows

immediately from 〈S1R,R〉F =
∑n

i=1 r
T
i S1ri and 〈R,R〉F =

∑n
i=1 r

T
i ri since

n∑
i=1

λmin(S1) r
T
i ri ≤

n∑
i=1

rTi S1ri ≤
n∑

i=1

λmax(S1) r
T
i ri. (2.17)

Equation (2.15) follows directly from eq. (2.14) applied to S2 and RT since

〈R,RS2〉F = 〈RT , ST
2 R

T 〉F = 〈ST
2 R

T , RT 〉F = 〈S2R
T , RT 〉F .

19

To establish eq. (2.16) note that for symmetric positive semi-definite T

〈T 2R,RT 2〉F = 〈T R, T 2 T R〉F and 〈T R, T R〉F =
n∑

i=1

rTi T
2ri.

Equation (2.16) then follows immediately with T = S1/2 from eq. (2.14) applied to

S1 = T 2 and the standard bound eq. (2.17) with S1 = T 2.

2.2.2 Convergence Theorems

Convergence results for algorithms 1 to 3. are for E[‖B−A‖2F]. Such results dominate

similar results for ‖E[B − A]‖2F since

‖E [B − A]‖2F = E
[
‖B − A‖2F

]
− E

[
‖B − E [B]‖2F

]
,

as shown in [14].

Theorem 7 (Convergence of NS algorithm 1). Let A ∈ Rm×n and W1 ∈ Rm×m

and W2 ∈ Rn×n be fixed SPD weight matrices. If Uk ∈ Rm×s1 and Vk ∈ Rn×s2 are

random, independently selected matrices with full column rank (with probability one),

then eq. (2.7) generates a sequence, Bk, from an initial guess B0 ∈ Rm×n satisfying

E
[
‖Bk+1 − A‖2F (W−1

1 ,W−1
2)

]
≤ (ρNS)k+1E

[
‖B0 − A‖2F (W−1

1 ,W−1
2)

]
,

20

where ρNS = 1− λmin(E[ŷ])λmin(E[ẑ]), with

ŷk = W
1/2
1 Uk(UT

k W1Uk)−1UT
k W

1/2
1 , ẑk = W

1/2
2 Vk(V T

k W2Vk)−1V T
k W

1/2
2 . (2.18)

Proof. Define the kth residual as Rk := W
−1/2
1 (Bk − A)W

−1/2
2 . With some algebraic

manipulation, eq. (2.7) can be re-written as

Rk+1 = Rk − ŷkRkẑk. (2.19)

Computing the squared Frobenius norm of eq. (2.19),

〈Rk+1, Rk+1〉F = 〈Rk − ŷkRkẑk, Rk − ŷkRkẑk〉F

= 〈Rk, Rk〉F − 〈Rk, ŷkRkẑk〉F − 〈ŷkRkẑk, Rk〉F + 〈ŷkRkẑk, ŷkRkẑk〉F

= 〈Rk, Rk〉F − 〈ŷkRkẑk, Rkẑk〉F ,

where we have made use of theorem 5. Taking the expected value with respect to

independent samples Uk (leaving Vk and Rk fixed) gives

E
[
‖Rk+1‖2F | Vk, Rk

]
= 〈Rk, Rk〉F − 〈E[ŷk]Rkẑk, Rkẑk〉F

≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rkẑk, Rkẑk〉F

≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rk, Rkẑk〉F ,

(2.20)

where we applied theorem 6 to the symmetric positive semi-definite matrix E[ŷk], and

21

utilized eq. (2.12). Taking the expected value with respect to independent samples

Vk and leaving Rk fixed gives

E[‖Rk+1‖2F | Rk] ≤ 〈Rk, Rk〉F − λmin(E[ŷk])〈Rk, RkE[ẑk]〉F

≤ 〈Rk, Rk〉F − λmin(E[ŷk])λmin(E[ẑk])〈Rk, Rk〉F .

Taking the full expectation gives

E[‖Rk+1‖2F] ≤ E [〈Rk, Rk〉F]− λmin(E[ŷk])λmin(E[ẑk])E [〈Rk, Rk〉F]

= (1− λmin(E[ŷk])λmin(E[ẑk]))E[〈Rk, Rk〉F].

Since

E[‖Rk+1‖2F] = E[‖Bk − A‖2F (W−1
1 ,W−1

2)
,

un-rolling the recurrence for k + 1 iterations yields the desired result.

Remark 8. The condition that Uk and Vk are chosen independently of each other is

required to justify E[〈ŷkRkẑk, Rkẑk〉F] = 〈E[ŷk]Rkẑk, Rkẑk〉F .

Theorem 9 (Convergence of SS1 algorithm 2). Let A,W ∈ Rn×n be fixed SPD

matrices and Uk ∈ Rn×s be a randomly selected matrix having full column rank with

probability 1. If B0 ∈ Rn×n is an initial guess for A with B0 = BT
0 , then after applying

22

k + 1 iterations of the update in algorithm 2, the iterates Bk+1 satisfy

E[‖Bk+1 − A‖2F (W−1)] ≤ (ρSS1)
k+1E[‖B0 − A‖2F (W−1)], (2.21)

where ρSS1 = 1− λmin(E[ẑ])2 and

ẑk = W 1/2Uk(UT
k W Uk)−1UT

k W
1/2.

Proof. Following similar steps outlined in the proof in theorem 7, we arrive at

〈Rk+1, Rk+1〉F = 〈Rk, Rk〉F − 〈Rk, ẑkRkẑk〉F .

Taking the expected value with respect to Uk leaving Rk fixed we have

E
[
‖Rk+1‖2F | Rk

]
= 〈Rk, Rk〉F − E [〈Rk, ẑkRkẑk〉F]

= 〈Rk, Rk〉F − E
[
Tr[RT

k ẑkRkẑk]
]

= 〈Rk, Rk〉F − Tr [E [RkẑkRkẑk]]

= 〈Rk, Rk〉F − Tr
[
E
[
(Rkẑk)2

]]
≤ 〈Rk, Rk〉F − Tr

[
E [Rkẑk]2

]
= 〈Rk, Rk〉F − Tr [RkE [ẑk]RkE [ẑk]] ,

where the inequality arises from application of Jensen’s Inequality. Simplifying and

23

applying eq. (2.16),

E[‖Rk+1‖2F (W−1) | Rk] = 〈Rk, Rk〉F − 〈E[ẑk]Rk, RkE[ẑk]〉F

≤ 〈Rk, Rk〉F − λmin(E[ẑk])2〈Rk, Rk〉F .

Taking the full expectation and un-rolling the recurrence yields the desired result.

Theorem 10 (Convergence of SS2 algorithm 3). Let A,Uk, Vk and B0 be defined as

in theorem 7, and let W be a fixed SPD matrix. After applying k + 1 iterations of

algorithm 3 with W = W1 = W2, the iterates Bk satisfy

E
[
‖Bk − A‖2F (W−1)

]
≤ (ρSS2)

k+1E
[
‖B0 − A‖2F (W−1)

]
,

where

ρSS2 = 1− 2λmin(E[ŷ])λmin(E[ẑ]) + λmin(E[ŷ])2λmin(E[ẑ])2.

Proof. Define kth residual Rk and projectors ŷk and ẑk as in theorem 7 with W =

W1 = W2. The iteration given in eq. (2.9) can be re-written in terms of Rk as follows.

Rk+1/3 = Rk − ŷkRkẑk

RT
k+2/3 = RT

k+1/3 − ẑkRT
k+1/3ŷk

Rk+1 =
1

2

(
Rk+2/3 +RT

k+2/3

)
24

Theorem 7 gives

E
[∥∥Rk+1/3

∥∥2
F

]
≤ (ρNS)E

[
‖Rk‖2F

]
,

and a repeated application of theorem 7 gives

E
[∥∥Rk+2/3

∥∥2
F

]
≤ (ρNS)E

[
‖Rk+1/3‖2F

]
≤ (ρNS)2E

[
‖Rk‖2F

]
.

Lastly, we observe via the triangle inequality that

E
[
‖Rk+1‖2F

]
= E

[∥∥∥∥1

2

(
Rk+2/3 +RT

k+2/3

)∥∥∥∥2
F

]

≤ 1

2
E
[∥∥Rk+2/3

∥∥2
F

]
+

1

2
E
[∥∥RT

k+2/3

∥∥2
F

]
= (ρNS)2E

[
‖Rk‖2F

]
,

Un-rolling the loop for k + 1 iterations gives the desired result.

2.2.3 Optimal Fixed Weight Convergence Rates

To discuss convergence rates, define

ρNS(y1, z1) = 1− y1z1,

ρSS1(z1) = 1− z21 ,

ρSS2(y1, z1) = (1− y1z1)2,

(2.22)

25

and note that the convergence rates for algorithms 1 to 3 can be expressed as

‖Rk+1‖2F (W−1
1 ,W−1

2)
≤ ρ‖Rk‖2F (W−1

1 ,W−1
2)

(2.23)

with the appropriate ρ, eq. (2.22), evaluated at y1 = λmin(E[ŷ]) and z1 = λmin(E[ẑ]).

Since any symmetric rank s random projection ẑ on Rn satisfies 0 ≤ z1 ≤ s
n
≤ zn ≤ 1

and rotationally invariant distributions, e.g. UU+ with U ∼ N(0, 1)n×s, further

satisfy E[ẑ] = s
n
, minimizing the various convergence rates ρ over the appropriate

domains gives the following optimal rates.

Corollary 11. (Optimal Convergence Rate) The optimal convergence rates for algo-

rithms 1 to 3 are obtained attained for Uk and Vk sampled from rotationally invariant

distributions,

ρoptNS = 1− s1
m

s2
n
,

ρoptSS1 = 1−
(s2
n

)2
,

ρoptSS2 =
(

1− s1
m

s2
n

)2
.

(2.24)

26

Proof. Each part is simply the result of an explicit optimization,

ρoptNS = min
0≤y≤s1/m
0≤z≤s2/n

(1− yz) = 1−
(s1
m

)(s2
n

)

ρoptSS1 = min
0≤z≤s2/n

(1− z2) = 1−
(s2
n

)2
ρoptSS2 = min

0≤y≤s1/m
0≤z≤s2/n

(1− yz)2 =
(

1− s1
m

s2
n

)2

Remark 12. Theorems 7, 9 and 10 all assume the weight matrix W and distributions

are fixed. All of the non-accelerated numerical experiments use fixed weights and

sample from fixed rotationally invariant distributions.

2.2.4 Theoretical Lower Bound for Convergence Rates

Lower bounds (entirely analogous to the upper bounds in theorems 7, 9 and 10 but

using the upper bounds in theorem 6) are easily derived. For example, the two-sided

error bound for algorithm 1 is

ρNS(ym, zn)E[‖Rk‖2F] ≤ E[‖Rk+1‖2F] ≤ ρNS(y1, z1)E[‖Rk‖2F],

where as before y1 ≤ y2 ≤ · · · ≤ ym is the spectrum of E[ŷ], z1 ≤ z2 ≤ · · · ≤ zn is the

spectrum of E[ẑ] and the explicit form for ρNS is in eq. (2.22). We collect the similar

27

results for algorithms 1 to 3 in theorem 13.

Corollary 13 (Two-Sided Convergence Rates). Given the assumptions of theorems 7,

9 and 10 the explicit formulas eq. (2.22) for ρ give two-sided bounds,

ρNS(ym, zn)k+1 ≤
E
[
‖Bk+1 − A‖2F (W−1

1 ,W−1
2)

]
‖B0 − A‖2F (W−1

1 ,W−1
2)

≤ ρNS(y1, z1)
k+1

ρSS1(zn)k+1 ≤
E
[
‖Bk+1 − A‖2F (W−1)

]
‖B0 − A‖2F (W−1)

≤ ρSS1(z1)
k+1

ρSS2(yn, zn)k+1 ≤
E
[
‖Bk+1 − A‖2F (W−1)

]
‖B0 − A‖2F (W−1)

≤ ρSS2(y1, z1)
k+1

where y1, ym, z1, zn are the extreme eigenvalues of E[ŷ] and E[ẑ].

Proof. We prove the NS result; the proofs for SS1 and SS2 are analogous. Equa-

tion (2.20) of theorem 7 and theorem 6 gives

E
[
‖Rk+1‖2F | Vk, Rk

]
= 〈Rk, Rk〉F − 〈E[ŷk]Rkẑk, Rkẑk〉F

≥ 〈Rk, Rk〉F − λmax(E[ŷk]) 〈Rk, Rkẑk〉F .

Following theorem 7 (expectation in Vk and repeating the inequality) gives

E[‖Rk+1‖2F | Rk] ≥ 〈Rk, Rk〉F − λmax(E[ŷk]) 〈Rk, RkE[ẑk]〉F

≥ 〈Rk, Rk〉F − λmax(E[ŷk])λmax(E[ẑk]) 〈Rk, Rk〉F .

28

Then taking the full expectation gives the inequality

E[‖Rk+1‖2F] ≥ E [〈Rk, Rk〉F]− λmax(E[ŷk])λmax(E[ẑk]) E [〈Rk, Rk〉F]

= (1− λmax(E[ŷk])λmax(E[ẑk])) E[〈Rk, Rk〉F].

Combine this with theorem 7 and unroll the iteration to obtain the NS result.

Remark 14. If ŷ and ẑ are rotationally invariant, the upper and lower probabilis-

tic bounds in theorem 13 coincide since z1 = zn = s1
n

and y1 = ym = s2
m

. Algo-

rithms 1 to 3 all use rotationally invariant distributions and converge predictably at

the expected rate. The algorithms still converge with other distributions provided the

smallest eigenvalue of the expectation is positive.

2.3 Numerical Results

The sub-sampled methods given by algorithms 1 to 3 are tested on a variety of SPD

matrices: A = XXT , X ∼ N (0, 1)n×n; ridge regression matrices chosen from [5];

and matrices chosen from the Sparse Suite Library [7]. Algorithms 1 to 3 were imple-

mented within the MATLAB code framework in [14] and tested on the same collection

of problems from [5, 7]. All computational tests were performed on Superior, a high-

performance computing infrastructure at Michigan Technological University.

29

The experiments are organized as follows: Section 2.3.1 compares the sub-sampled

algorithms with s = s1 = s2 = d
√
ne (the sample size used in [14]) on one moderate

sized n ≈ 5000 matrix from each of the three classes tested in [14]; Section 2.3.2

demonstrates the independence of the convergence on the sample size s � n for the

same three matrices; the convergence of the sub-sampled algorithms on the remaining

matrices from [14] are available in section A.3.

2.3.1 Convergence Test

The convergence,

‖A−Bk‖F
‖A−B0‖F

,

of sampled algorithms [14] with sample size s = d
√
ne are compared to the sub-

sampled algorithms with s1 = s2 = s on three matrices: (n = 5000) XXT with

X ∼ N (0, 1)n×n Figure 2.1; (n = 5000) Gisette-Scale [5] Figure 2.2; and (n = 4704)

NASA [7] Figure 2.3. These figures show: BFGS(�) as specified by eq. (2.5); DFP (�)

as specified by eq. (2.4); NS (⊗) as specified by Algorithm 1; SS1 (•) as specified by

Algorithm 2; SS2 (�) as specified by Algorithm 3. Theoretical convergence rates from

eq. (2.24) are shown in dotted lines. Runs were terminated after 5n2 iterations or when

the relative residual norm fell below 10−2. Algorithms 1 to 3 converge predictably:

30

linear in the semilog plots matching the theoretical convergence rates (dotted lines).

DFP and BFGS have target dependent weight matrices which may initially improve

convergence. For the Gisette-Scale matrix fig. 2.2 DFP and BFGS show a dramatic

improvement. However, fig. 2.3 and various examples from [14] in the supplementary

materials show that BFGS can fail to converge.

Sampling Uk and Vk from rotationally invariant distributions, all the experiments

show the predictable optimal convergence rates from eq. (2.24) (dotted lines). With

these choices the expected convergence rate of both NS and SS1 is 1−
(
s
n

)2
while the

expected convergence rate of SS2 is
(

1−
(
s
n

)2)2
= 1− 2

(
s
n

)2
+
(
s
n

)4
.

0 0.5 1 1.5 2 2.5

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - Random

BFGS

DFP

NS

SS1

SS2

Figure 2.1: (n = 5000) Approximation of XXT where X ∼ N (0, 1)n×n

with s = 71 = d
√

5000e. The DFP and BFGS updates converge more slowly
while the sub-sampled methods match their theoretical convergence rates
(shown in dotted lines).

31

0 0.5 1 1.5 2 2.5

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Gisette-Scale

BFGS

DFP

NS

SS1

SS2

Figure 2.2: (n = 5000) Approximation of Hessian from Gisette Scale
[5] with s = 71 = d

√
5000e. The DFP and BFGS method show incredible

acceleration for this matrix. The sub-sampled methods work consistently as
predicted by their theoretical convergence rates (shown in dotted lines).

0 0.5 1 1.5 2

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - NASA

BFGS

DFP

NS

SS1

SS2

Figure 2.3: (n = 4700) Approximation of NASA4704 from [7]. s =
69 = d

√
4704e. The DFP method performs similar to the random matrix

A = XXT while the BFGS method fails. Sub-sampled methods match their
theoretical convergence rates (shown in dotted lines).

32

2.3.2 Sample Size Tests

Equation (2.24) gives the expected convergence rate, ρ, of the various algorithms

as a function of the ratio of sample size s and matrix dimension n. Consider two

experiments running SS1 with rotationally invariant sampling on the same A ∈ Rn×n

with sample size s and 2s: the first experiment involves s2 matrix samples at each

step, and one expects the residual to be reduced by a factor of 1 −
(
s
n

)2
after each

step; the second experiment involves (2s)2 matrix samples each step, and one expects

the residual to be reduced by a factor of of 1−
(
2s
n

)2
after each step. Since the primary

cost metric for algorithms is the number of matrix samples, four steps of size s2 is

the same amount of work as one step of size (2s)2. Taking four steps of size s2 gives

approximately the same reduction as one step of size (2s)2 since

(
1−

(s
n

)2)4

=

(
1−

(
2s

n

)2
)1

+O

((s
n

)4)
.

All formulas in eq. (2.24) have the same scaling behavior and as a result the expected

convergence of all the sub-sampled algorithms should be essentially independent of

s for 1 � s � n. In practice, one has the freedom to choose s to suit the available

computational hardware.

This behavior is verified for the sub-sampled algorithms algorithms 1 to 3 on the three

33

test problems from section 2.3.1. Table 2.1 reports the total computational effort for

each matrix, normalized by the corresponding number of matrix samples for s = 512.

All of the entries are very close to one, indicating that the computational effort is

independent of s.

Matrix s NS SS1 SS2
128 0.997 0.992 0.999

Rand 256 0.996 0.996 1.004
512 1.000 1.000 1.000
128 0.996 0.990 0.995

Gisette Scale 256 0.996 0.993 0.998
512 1.000 1.000 1.000
128 0.996 0.998 0.994

NASA4704 256 0.996 1.002 0.998
512 1.000 1.000 1.000

Table 2.1
Computational effort of various sub-sampled algorithms for

s = {512, 256, 128} relative to s = 512. Three matrices are testes: Rand
XXT (n = 5000), with X ∼ N (0, 1)n×n; Gisette Scale (n = 5000)

Hessian [5]; and NASA4704 (n = 4704) [7]. Values of 1 indicate that the
method is converging at the same rate as having sampled with s = 512

(with respect to the total number of matrix samples cost metric).

2.4 Heurestic Accelerated Schemes

Motivated by the sub-sampled analysis, a heuristic accelerated scheme is presented.

Numerical convergence and acceleration is verified in section 2.4.2. Lastly, observa-

tions are made comparing the heuristic scheme to other accelerated sampled algo-

rithms in section 2.4.3, and how algorithm 4 can be interpreted as a modified block

Krylov method section 2.4.4.

34

2.4.1 Eigenvector Acceleration

The update underlying algorithm 2 samples and then corrects the sample mismatch

in the residual Rk = A − Bk. Larger corrections (and consequently more significant

improvements in the approximation Bk+1) occur if UTRkU is large. Block-power it-

eration on Rk is a simple heuristic to enhance subspaces associated with the larger

eigenvalues of Rk. Algorithm 4 summarizes an extension to algorithm 2 by incorpo-

rating a fixed number, p, of inner block-power iterations. As before, work estimates

are boxed on the right (p steps of a block power iteration involving p n s matrix sam-

ples and a square symmetric sample involving s2 matrix samples) at each step with

the total double boxed on the result line. This is not a sub-sampled algorithm (each

internal power iteration involves a sample) and involves significantly more matrix

samples per iteration. Despite this, algorithm 4 is competitive for small values of p.

35

Algorithm 4 SS1A: Accelerated Symmetric Approximation

Require: B0 ∈ Rn×n satisfying BT
0 = B0, SPD W ∈ Rn×n, s ∈ N.

1: repeat {k = 0, 1, . . .}

2: Sample U0,k ∼ N (0, 1)n×s

3: B0,k = Bk

4: loop {i = 1, 2, . . . , p}

5: Λ = AUi−1,k −Bi−1,kUi−1,k

6: Σ = Λ(UT
i−1,kWUi−1,k)−1UT

i−1,kW

7: Bi,k = Bi−1,k + Σ + ΣT −WUi−1,k(UT
i−1,kWUi−1,k)−1UT

i−1,kΣ

8: Ui,k = Λ

9: end loop . p n s

10: Compute residual Λk = UT
p,kAUp,k − UT

p,kBp,kUm,k ∈ Rs×s s2

11: Compute P̃k = W Up,k(UT
p,kW Up,k)−1

12: Update Bk+1 = Bk + P̃kΛkP̃
T
k

13: until convergence

14: return Bk+1 . (k + 1)(p n s+ s2)

Remark 15. Implementing similar acceleration for algorithm 3 would target the in-

put/output spaces of the interior non-symmetric updates. For symmetric target ma-

trices A, the residual Rk is symmetric and little acceleration is realized unless the

input and output spaces match as in algorithm 4.

36

2.4.2 Acceleration Convergence Results

We now compare the performance of algorithm 4 SS1A, (with rotationally invariant

sampling and p = 2) to various algorithms: S1, BFGS, DFP, and a re-interpretation of

the heuristic accelerated BFGS algorithm from [14] which is termed BFGSA. Specif-

ically, BFGSA is obtained by applying the Sherman-Morrison-Woodbury formula to

the the adaptively sampled algorithm AdaRBFGS in [14], which approximates A−1.

The sampled algorithm, S1, is the B formulation in eq. (2.3) with rotationally invari-

ant weight W = In.

The convergence (relative Frobenius residual ‖A − Bk‖F/‖A − B0‖F against matrix

samples) of accelerated algorithms with sample size s = d
√
ne from [14] are compared

to the heuristically accelerated algorithm 4 with s1 = s2 = s on the three matrices

from section 2.3: (n = 5000) XXT with X ∼ N (0, 1)n×n Figure 2.4; (n = 5000)

Gisette-Scale [5] Figure 2.5; and (n = 4704) NASA [7] Figure 2.6. These figures

show: BFGSA (∗) as specified by eq. (2.5) with adaptive sampling described in [14];

S1 (◦) as specified by eq. (2.3); SS1A (D) as specified by Algorithm 4; BFGS (�) as

specified by eq. (2.5); DFP (�) as specified by eq. (2.4). Runs were terminated after

5n2 iterations or when the relative residual norm fell below 10−2. The results show

SS1A matching or outperforming the other algorithms for the three matrices from

section 2.3.1. Further accelerated experiments are discussed in section A.4.

37

0 0.5 1 1.5 2 2.5

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - Random

BFGS

DFP

S1

BFGSA

SS1A

Figure 2.4: (n = 5000) Approximation of XXT where X ∼ N (0, 1)n×n

with s = 71. Acceleration of the BFGSA method (∗, adapted from [14])
can be seen in comparison to the BFGS method (�). Acceleration of the
algorithm 4 (D) can be seen in comparison to S1 (◦). The acceleration of
algorithm 4 continues as the method is targeting the dominant space of the
residual at each step.

2.4.3 Relationship to Algorithms in Literature

We revisit the algorithms that fall in the general framework described in [16]. Recall

that such algorithms construct a single (expensive) sub-sample, Q∗AQ, to approxi-

mate the action of A associated with its dominant eigenspace. This matrix Q can be

computed using a modified block power method, as described in algorithm 5.

Further, recall that for SPD A, the sub-sampled data is embedded using the low-rank

approximation PIn,QAPT
In,Q

. Hence, algorithm 5 can be viewed as a single outer loop

38

0 0.2 0.4 0.6 0.8 1 1.2

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Gisette-Scale

BFGS

DFP

S1

BFGSA

SS1A

Figure 2.5: (n = 5000) Approximation of Hessian from Gisette Scale [5]
with s = 71. The DFP and BFGS updates perform well as does algorithm 4.
BFGSA (∗) performs well initially with slow terminal convergence.

0 0.2 0.4 0.6 0.8 1

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - NASA

BFGS

DFP

S1

BFGSA

SS1A

Figure 2.6: (n = 4700) Approximation of NASA4704 from [7] with
s = 69. The DFP method performs well while the BFGS method fails.
The accelerated BFGSA method shows inconsistent convergence while algo-
rithm 4 shows consistent acceleration in comparison to the consistent sam-
pled method S1.

39

Algorithm 5 RSSI: Randomized Subspace Iteration (Stage A) [16]

1: Sample U ∼ N (0, 1)n×s

2: Compute Y0 = AU . n s
3: Compute QR-decomposition Y0 = Q0R0

4: loop {i = 1, 2, . . . , p}
5: Compute Ỹi = A∗Qi−1
6: Compute QR-decomposition Ỹi = Q̃i R̃i

7: Compute Yi = AQ̃i

8: Compute QR-decomposition Yi = QiRi

9: end loop . 2 p n s

10: return Qp . (2 p+ 1)(n s)

of algorithm 4 with the modification that intermediate data Λ = AUi−1,k−Bi−1,kUi−1,k

is not used.

2.4.4 Krylov Spaces

Block Krylov method [20] computes a low-rank matrix approximation by searching

the Krylov space Vp(U0,k) of A, where

Vp(U0,k) = span{AU0,k, (AA
T)AU0,k, . . . , (AA

T)p−1AU0,k}.

Algorithm 6 is adapted from the description given in algorithm 2 of [20].

40

Algorithm 6 Block Krylov Iteration (Stage A) [20]

1: Sample U ∼ N (0, 1)n×s

2: Compute K =
[
AU0,k|(AAT)AU0,k| . . . |(AAT)p−1AU0,k

]
m×p s

3: Compute QR-decomposition K = QR

4: return Q . (2 p− 1)(n s)

Algorithm 4 can also be viewed as a modified block Krylov method. Each inner

iteration builds approximations in the space

span{U0,k, (A−B0,k)U0,k, (A−B1,k)(A−B0,k)U0,k, . . . ,

(
p−1∏
i=0

(A−Bi,k)

)
U0,k},

which approximates the Krylov space Vp(U0,k) of the residual A−Bk. In Algorithm 4

each intermediate space Ui−1,k ≈ (A−B)i U0,k is only stored during one inner iteration

and the Krylov matrix K is never formed.

41

Chapter 3

Inverse Approximation

3.1 Introduction

Approximations of the inverse of a matrix are used to accelerate many algorithms

[21, 22]. For example, inverse matrix approximations can be used as pre-conditioners

[1, 19, 21, 22] using the limited memory BFGS update [24]. More recently, accelerated

inverse matrix approximations [14] were developed using classical block Quasi-Newton

matrix updates [4].

Current methods for approximating the inverse of a matrix A ∈ Rn×n sample the

matrix A by computing UT A and/or AV , as described in chapter 1. Inverse approx-

imations are obtained by applying the Sherman-Morrison-Woodbury (SMW) formula

43

[29] at each step, generating an iterative method for inverse approximation. The

SMW formula converts a rank s update for a matrix to the corresponding update

for the inverse matrix. This approach was used in the classical BFGS and DFP

quasi-newton optimization methods.

3.2 Relationship to Quasi-Newton Algorithms

The block BFGS update is derived in the H formulation (see eq. (2.2)) yielding an

inverse matrix approximation which is then heuristically accelerated [14]. The block

DFP update is derived in the B formulation (matrix approximation, see eq. (2.1)) but

an application of the SMW yields an inverse matrix approximation which is highly

competitive and seems to have seen little to no usage or mention in literature. The

linear algebraic update that results in applying the SMW formula to eq. (2.4) is

Hk+1 = Hk −Hk AU
(
UT AT Hk AU

)−1
UT AT HT

k + U UT AU UT . (3.1)

Remark 16. The application of the SMW formula to a minimum change formulation

does not produce a minimum change inverse update. That is, the block BFGS B

formula is not a minimum change in the context of eq. (2.1). Similarly the block DFP

H formula is not a minimum change in the sense of eq. (2.2). They are the inverse

of a minimum change update, that is Bk+1Hk+1 = Hk+1Bk+1 = In.

44

3.3 Sub-Sampled Inverse Approximation

The sub-sampled methods in algorithms 1 to 4 produce matrix approximations as de-

scribed in chapter 2 using the generic sub-sampled data UT AV . For inverse approx-

imation, symmetric sub-sample UT AU will be used. For random U ∼ N (0, 1)n×s,

this data contains a projection of each invariant space of A. The dominant spaces

with larger eigenvalues are represented proportionately more than those with smaller

eigenvalues. This allows the sub-sampled methods to better approximate the domi-

nant eigenspace of A. Application of the SMW formula to SS1 yields a method SS1SMW

which at each iteration constructs the inverse of the matrix approximate iterate.

The sub-samples favors the dominant eigenspace of the original matrix, in the sense

that they contain larger amounts of the dominant spaces per update. Any error in

the least dominant eigenspace will be amplified in the corresponding inverse matrix

approximation when one applies the SMW formula to such an update. Nevertheless

inverse approximations which minimize ‖A−1 − H‖ are possible. With the addition

of appropriate filtering at each iteration, approximations which minimize ‖I −H A‖

will be shown to be quite effective and competitive to current methods. The norm

‖I − H A‖ is common metric from the sparse inverse approximation literature (see

[2, 6] for example).

45

Filtering of the data sub-sampled from the residual Λk = UT
k AUk − UT

k BkUk is re-

quired for numerical stability of the initial iterates. For matrices with very small

singular values (eigenvalues for A = AT) or ill-conditioned matrices A the un-filtered

updates with have oscillatory errors which eventually correct themselves. For the

unknowing user, such errors make the approximations less helpful as one would need

to detect or know when to terminate the iteration. Algorithms 1 to 3 are all self-

correcting and application of the SMW will yield convergent inverse approximations

in the sense of ‖A−1 −H‖, as the iterates will eventually give the inverse of the ma-

trix approximations which converge. Application of a filter prevents the convergence

of Hk → A−1 but expediently computes a matrix H which is the inverse of a low-

rank approximation of A. The inverse matrix approximation can reduce the norm

‖I −H A‖ used in [14]. The resulting algorithm is described in algorithm 7 and the

filtering methods are given in section 3.3.1.

46

Algorithm 7 SS1SMW: Sub-Sampled Matrix Inverse Approximation

Require: B0 ∈ Rn×n and H0 = B−10 SPD, s ∈ N.

1: repeat {k = 0, 1, . . .}

2: Sample Uk ∼ N (0, 1)n×s

3: Compute residual Λk = UT
k AUk − UT

k BkUk ∈ Rs×s

4: Λk = Filter(Λk)

5: Update Bk+1 = Bk + UkΛkU
T
k

6: Update Hk+1 = Hk −Hk Uk(Λ−1k + UT
k Hk Uk)−1UT

k Hk

7: until convergence

8: return Bk+1 and Hk+1

3.3.1 Filtering

Filtering matrix approximations to maintain the SPD property is commonly used in

the implementation of various quasi-newton optimization procedures. The data Λk ∈

Rs×s has a user controlled fixed storage requirement and computation of the singular

value (eigenvalue) decomposition, or any other matrix factorization, are attainable

at a (cheap) fixed computational cost as the user is able to choose the sampling

dimension s � n. Further, in practice one can use whatever factorization is done in

the filter step as an inexpensive ”on-the-fly” check to determine when the algorithms

have reached their limit in terms of minimizing ‖I − H A‖. The minimum relative

47

norm ‖I−Hk A‖
‖I−H0 A‖ will depend in practice on the spectrum of A, but detection of when

the algorithm nears this minimum can be done cheaply.

As is noted in chapter 2, the sub-sampled update SS1 does not maintain the SPD

property for Bk at each iteration. Application of the SMW formula to the unweighted

SS1 update (W = In) produces an update having the following projector

PSMW = PBk,U = Hk U(UT Hk U)−1UT . (3.2)

This projection is only properly defined when Bk is SPD so a filtering method which

maintains this at each iteration will produce sub-sampled algorithms which minimize

the sub-sampling error as described above. The following is a description of some

common filtering techniques used to maintain the SPD property in optimization lit-

erature based on the eigenvalue decomposition Λk = X ΩXT .

Filter(Λk) = X |Ω|XT ,

Filter(Λk) = X̃ Ω̃ X̃T ,

where |Ω| replaces the eigenvalues with their absolute value and Ω̃ drops search di-

rections which had negative eigenvalues and updates on the reduced set of directions

X̃.

48

3.4 Sub-Sampled Accelerated Inverse Approxima-

tions

The general framework of the hybrid accelerated method algorithm 4 applies p steps

of the block power iteration updating with the intermediate data from each inner step

using a sampled algorithm. The last piece of data is then used as a proxy for the

dominant eigenspace of the residual at that iteration and an accelerated sub-sample

is used. For inverse matrix approximation, one can apply an inverse matrix approx-

imation such as BFGS-H or DFP-H at each intermediate step. Applying the SMW

formula to the sub-sampled update in the accelerated step gives an accelerated inverse

matrix approximation. Doing so in this setting where the sampled sub-space has been

enriched produces an algorithm which avoids the sub-sampling issues described.

Algorithm 8 produces an approximation H to its inverse A−1 and is competitive with

current state of the art methods.

49

Algorithm 8 SSInv: Accelerated Inverse Symmetric Approximation

Require: H0, B0 ∈ Rn×n satisfying BT
0 = B0, H

T
0 = H0, SPD W ∈ Rn×n, s ∈ N.

1: repeat {k = 0, 1, . . .}

2: Sample U0,k ∼ N (0, 1)n×s

3: B0,k = Bk

4: loop {i = 1, 2, . . . , p}

5: AU = AUi−1,k

6: PDFP = AU(UT
i−1,k AU)−1UT

i−1,k

7: Bi,k = (In − PDFP) Bi−1,k(In − PT
DFP) + PDFPA

8: Hi,k = Hi−1,k −Hi−1,k AU
(
UT AHi−1,k AU

)−1
UT AHi−1,k + U UT AU UT

9: Ui,k = AU −Bi−1,kUi−1,k

10: end loop . p n s

11: Compute residual Λk = UT
p,kAUp,k − UT

p,kBp,kUm,k ∈ Rs×s s2

12: Compute P̃k = W Up,k(UT
p,kW Up,k)−1

13: Update Bk+1 = Bp,k + P̃kΛkP̃
T
k

14: Update Hk+1 = Hp,k −Hp,kUp,k

(
Λ−1k + UT

p,kHp,kUp,k

)−1
UT
p,kHp,k

15: until convergence

16: return Hk+1 . (k + 1)(p n s+ s2)

Remark 17. The sub-sampled matrix update eq. (2.7) works on the residual A−Bk.

Applying the SMW formula yields the update to Hk+1 in algorithm 8 seen in the last

line. The update requires the residual A−Bk and inverting two s×s matrices. Due to

50

these requirements the SSInv algorithm simultaneously builds a matrix and inverse

matrix approximation from the samples and accelerated sub-samples of A.

3.4.1 Inverse Power method

The inverse matrix approximation algorithm 8 constructs the inverse of the matrix

approximation from algorithm 4. The acceleration used in that setting targets the

dominant eigenspace of the residual A−Bk. The heuristic acceleration can be adapted

to approximate the dominant space of the matrix residual B−A or the inverse residual

I −H A. For inverse matrix approximation targeting the dominant eigenspace of the

inverse residual A−1 −Hk may yield an improved convergence rate.

The above can be understood in terms of the projectors used in the B and H for-

mulations eq. (2.3). In the inverse (H) formulation the projector acts on the inverse

residual A−1 −Hk. When constructing an approximation of A−1 one cannot directly

target this space, but the following can be done.

(A−1 −Hk)AU = (A−1A−Hk A)U

= (In −Hk A)U

= U −Hk AU

51

The above gives a weighted sample of the inverse residual using only the original

samples AU . The following modified algorithm targets the inverse residual in this

way and is also competitive against current state of the art methods.

Algorithm 9 SSInvP: Accelerated Inverse Symmetric Approximation

Require: H0, B0 ∈ Rn×n satisfying BT
0 = B0, H

T
0 = H0, SPD W ∈ Rn×n, s ∈ N.

1: repeat {k = 0, 1, . . .}

2: Sample U0,k ∼ N (0, 1)n×s

3: B0,k = Bk

4: loop {i = 1, 2, . . . , p}

5: AU = AUi−1,k

6: PDFP = AU(UT
i−1,k AU)−1UT

i−1,k

7: Bi,k = (In − PDFP) Bi−1,k(In − PT
DFP) + PDFPA

8: Hi,k = Hi−1,k −Hi−1,k AU
(
UT AHi−1,k AU

)−1
UT AHi−1,k + U UT AU UT

9: Ui,k = Ui−1,k −Hi−1,kAU

10: end loop . p n s

11: Compute residual Λk = UT
p,kAUp,k − UT

p,kBp,kUm,k ∈ Rs×s s2

12: Compute P̃k = W Up,k(UT
p,kW Up,k)−1

13: Update Bk+1 = Bp,k + P̃kΛkP̃
T
k

14: Update Hk+1 = Hp,k −Hp,kUp,k

(
Λ−1k + UT

p,kHp,kUp,k

)−1
UT
p,kHp,k

15: until convergence

16: return Hk+1 . (k + 1)(p n s+ s2)

52

3.5 Numerical Results

Our inverse hybrid algorithms algorithms 8 and 9 are tested on a variety of SPD

matrices: A = XXT , X ∼ N (0, 1)n×n; ridge regression matrices chosen from [5];

and matrices chosen from the Sparse Suite Library [7]. Algorithms 8 and 9 were

implemented within the MATLAB [18] code framework in [14] and tested on the

same problems from [5, 7]. All computational tests were performed on Superior, a

high-performance computing infrastructure at Michigan Technological University.

The convergence,

‖In −HkA‖F
‖In −H0A‖F

,

of sampled algorithms [14] with sample size s = d
√
ne are compared to the hybrid al-

gorithms with s1 = s2 = s on three matrices: (n = 5000) XXT with X ∼ N (0, 1)n×n

Figure 3.1; (n = 5000) Gisette-Scale [5] Figure 3.2; and (n = 4704) NASA [7] Fig-

ure 3.3. These figures show: AdaRBFGScols(⊗) as specified by [14]; AdaRBFGSgauss

(•) as specified by [14]; DFP (�) as specified by eq. (2.4); SSInv (◦) as specified by

Algorithm 8; SSInvP (D) as specified by Algorithm 9.

Runs were terminated after 5n2 iterations or when the relative residual norm fell

below 10−2.

53

0 0.5 1 1.5 2 2.5 3 3.5

·107

10−3

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

Random

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure 3.1: (n = 5000) Approximation of the inverse of XXT where
X ∼ N (0, 1)n×n with s = 71 = d

√
5000e. AdaRBFGScols performs slowly

compared to AdaRBFGSgauss. The DFPH update and algorithm 8 show
improvement compared to AdaRBFGSgauss while algorithm 9 shows an in-
creased terminal convergence rate.

54

0 0.2 0.4 0.6 0.8 1

·107

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

LibSVM - Gisette-Scale

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure 3.2: (n = 5000) Approximation of the inverse of the Hessian
from Gisette Scale [5] with s = 71 = d

√
5000e. AdaRBFGSgauss and

AdaRBFGScols initially performs well and then slow down. The DFPH up-
date and algorithms 8 and 9 perform well.

55

0 1 2 3 4 5 6 7

·107

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

SparseSuite - NASA

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure 3.3: (n = 4700) Approximation of the inverse of NASA4704
matrix from [7] with s = 69 = d

√
4704e. AdaRBFGScols shows slow con-

vergence. The DFPH method, AdaRBFGSgauss, and algorithm 8 performs
consistently while algorithm 9 shows an approximation error which quickly
corrects itself.

56

Chapter 4

Low Rank Approximation

4.1 Introduction

Typical data sets arising from a wide range of applications in scientific computing and

data analysis are very large but have an underlying (effectively) low rank structure

(see [16] for a list of applications). This structure can be explored to compare and

analyse data (see [11] for examples) or provide useful starting conditions for iterative

methods (see [1, 19]). Specifically, low rank approximations of the data set can be

used to compress the information and indeed provide best approximations (see [16]

for general analysis).

The optimal low rank approximation is the truncated SVD. Given a target matrix A

57

and desired rank l:

Al = arg min
B

{‖A−B‖ | rank(B) ≤ l} , (4.1)

is the best rank l matrix approximating A. Al can be computed directly from the

reduced SVD Al = Ul Σll V
T
l where rank(Ul) = rank(Vl) = l and Σll is a diagonal

matrix. The column space of Ul spans the most dominant column space for the

matrix A. The column space of Vl spans the most dominant row space. In this way

the low-rank approximation Al captures most of the action of the matrix A and will

provide approximate solutions to Ax = b with minimal error.

Randomized methods [16] approximate this dominant space by sampling the column

space UT A or row space AV . Using an oversampling parameter to accelerate the

convergence, authors of [16] construct rank r approximations using samples of the

matrix via AQ where Q ∈ Rn×r where r = l+q. The additional q sampling directions

will give more information for the best l directions and as shown in [16] is crucial to

the convergence of their methods.

In this thesis, approximations are constructed sampling both row and column spaces

simultaneously at each iteration by evaluating the sub-sample UTAV ∈ Rs1×s2 , where

U ∈ Rm×s1 and V ∈ Rn×s2 . In many settings, sub-samples can be computed with less

memory overhead and computation. Constructing approximations this way requires

58

iterating until the necessary amount of data has been accumulated. Each iteration

requires computation of s1s2 output elements and the data is accumulated until the

desired convergence is reached, a maximum amount of computation is done, or a

maximum amount of matrix access are done.

4.2 Low Rank Sub-Sampled Approximation

Initializing algorithms 1 to 3 with B0 = 0 · In will give iterates whose ranks increase

by s each iteration. In this setup, the iterates quickly become full-rank well before

the convergence is realized. As a result, producing low-rank approximations require

compression of the update B̂k+1 → Bk+1 at each iteration.

4.2.1 Generic Low Rank Update

Inserting a subroutine for the compression at each iteration of algorithms 1 to 3 will

yield low rank approximations. A pseudo-code description is below.

59

Algorithm 10 SSLR: Sub-Sampled Low-Rank Approximation

Require: B0 ∈ Rn×n, SPD W ∈ Rn×n, s1 ∈ N, γ̂ ∈ R.

1: repeat {k = 0, 1, . . .}

2: Update B̂k+1 = SSUpdate[Bk]

3: Bk+1 = Compress[B̂k+1]

4: until convergence

5: return Bk+1 . (k + 1) (s21)

4.2.2 Compression

The sub-sampled update step (line 2 of algorithm 10) increases the rank of Bk by s

(with probability 1) for the updates given in algorithms 1 to 3 or (p+ 1)s when using

the accelerated update from algorithm 4. To generate a low rank approximation,

one needs to reduce the ranks periodically throughout the iteration. Constructing a

factorization of the iterate and truncating to a fixed rank r, a max rank rk (where

rk ≤ 2s for example), or an adaptive rank rk such that

‖B̂k+1 −Bk+1‖ ≤ γ̂‖A‖, (4.2)

compresses the approximation at each iteration. This allows a user to have control

over the storage per iterate as well as the amount of computation. The numerical

60

experiments will show that the parameter γ̂ will control the rank of iterates and can

be used to target the best approximation of a matrix.

Remark 18. It should be noted with a tolerance based scheme, such as eq. (4.2), the

iterates may still increase in rank initially. Different values of γ̂ will allow the rank

of the iterates to reduce as Bk+1 → Al with weak dependence on the singular value

distribution of A.

4.3 Convergence Analysis

The convergence of algorithm 10 with the tolerance based compression given in

eq. (4.2) depends on the parameter γ̂ and the underlying convergence of algorithms 1

to 3. Recall that theorems 7, 9 and 10 give bounds of the form

E
[
‖Bk+1 − A‖2F (W−1

1 ,W−1
2)

]
≤ ρk+1E

[
‖B0 − A‖2F (W−1

1 ,W−1
2)

]
.

The following corollary gives related bound for E
[
‖Bk+1 − A‖F (W−1

1 ,W−1
2)

]
.

Corollary 19. The expected value of the norm of the residuals for algorithms 1 to 3

satisfies,

61

E
[
‖Bk+1 − A‖F (W−1

1 ,W−1
2)

]
≤ (ρNS)(k+1)/2E

[
‖B0 − A‖F (W−1

1 ,W−1
2)

]
(4.3)

E
[
‖Bk+1 − A‖F (W−1)

]
≤ (ρSS1)

k+1)/2E
[
‖B0 − A‖F (W−1)

]
(4.4)

E
[
‖Bk+1 − A‖F (W−1

1 ,W−1
2)

]
≤ (ρSS2)

k+1)/2E
[
‖B0 − A‖F (W−1

1 ,W−1
2)

]
. (4.5)

Proof. Let Rk+1 = W
1/2
1 (Bk+1−A)W

1/2
2 (W1 = W2 for algorithm 2) and let ‖ · ‖F be

the appropriate norm. For each sub-sampled algorithm,

E [‖Rk+1‖F] = E

[√
‖Rk+1‖2F

]
≤
√

E
[
‖Rk+1‖2F

]
,

where the last inequality arises from applying Jensen’s inequality to the square root

function. Applying the results of theorems 7, 9 and 10 and taking the square root

gives

E [‖Rk+1‖F] ≤
√
ρk+1E

[
‖R0‖2F

]
= ρ(k+1)/2

√
‖R0‖2F

after noting E [‖R0‖2F] = ‖B0 − A‖2F as B0 and A are constant.

Remark 20. Taking a square root and applying Jensen’s inequality as above in the

proofs of theorems 7, 9 and 10 produces the same results as theorem 19.

62

4.3.1 Mathematical Preliminaries

The compression of each iterate introduces an error term. The following lemma will

be of use to bound the accumulation of these errors.

Lemma 21. If ak+1 ≤ µ ak + γ with 0 ≤ µ < 1, γ ≥ 0 and a0 > 0 then

an ≤ µna0 +
γ

1− µ
. (4.6)

Proof. Writing out the summation and observing a telescoping sum gives the equality.

Applying the assumption (ak+1 ≤ µ ak+γ) gives the finite geometric series with initial

term γ and rate µ which is bounded by the infinite geometric sum.

an − µna0 =
n−1∑
k=0

µk (an−k − µan−k−1) ≤
n−1∑
k=0

µkγ ≤ γ

1− µ
(4.7)

63

4.3.2 Convergence Theorem

Theorem 22 (Convergence of Tolerance Low Rank algorithm 10). Let A ∈ Rm×n and

fix SPD weight matrices W1 ∈ Rm×m and W2 ∈ Rn×n. If Uk ∈ Rm×s1 and Vk ∈ Rn×s2

are random, independently selected matrices with full column rank (with probability

one), then algorithm 10, with SSUpdate given by algorithms 1 to 3, generates a se-

quence, Bk, from an initial guess B0 ∈ Rm×n satisfying

E [‖Bk+1 − A‖F] ≤ (ρ)(k+1)/2E [‖B0 − A‖F] +
γ̂‖A‖F
1− ρ1/2

,

where ρ and ‖ · ‖F are the appropriate convergence rates and norms from theorems 7,

9 and 10 and γ̂ > 0.

Proof. Let B̂k+1 be the un-compressed update in algorithm 10 with compression given

by eq. (4.2), then

E [‖Bk+1 − A‖F] = E
[∥∥∥Bk+1 − ˆBk+1 + ˆBk+1 − A

∥∥∥
F

]
≤ E

[∥∥∥Bk+1 − ˆBk+1

∥∥∥
F

]
+ E

[∥∥∥ ˆBk+1 − A
∥∥∥
F

]
,

where the last steps are given by the triangle inequality and linearity of the expected

64

value. Applying the compression inequality eq. (4.2) we have

E
[∥∥∥Bk+1 − ˆBk+1

∥∥∥
F

]
+ E

[∥∥∥ ˆBk+1 − A
∥∥∥
F

]
≤ (ρ)(k+1)/2E [‖B0 − A‖F] + γ‖A‖F .

To obtain the result, apply theorem 21 with ak = E
[
‖B̂k − A‖F

]
, µ = ρ1/2, and

γ = γ̂‖A‖F .

Theorem 22 shows that as the sub-sampled method converges the error term from the

compression of each iterate can at worst accumulate to the bound given, in practice

such large accumulations are not typically seen.

4.4 Numerical Results

The sub-sampled low rank method algorithm 10 was implemented and tested using

matrix updates via algorithms 1 to 3 on two synthetic matrices. The first matrix A =

X XT , where X ∼ N (0, 1)n×n has the typical slowly decaying spectrum associated

with random SPD matrices of that form. The second matrix Ã is constructed to have

a steep drop in the spectrum at a specific target rank. Specifically, given

A = UlΣllV
T
l + (I − UlU

T
l)A(I − VlV T

l),

65

where Al = UlΣllV
T
l is the best rank l approximation, define

Ã = UlΣllV
T
l + 10−3(I − UlU

T
l)A(I − VlV T

l). (4.8)

The modified matrix Ã is said to have an effective rank of l with a drop of 10−3.

As in section 2.3.1, the size of the aggregated pieces of information will be the primary

cost metric for the algorithms. Algorithm 10 was implemented in Mathematica 12.0

[17] and computational tests were performed on a Windows 10 laptop.

The experiments are organized as follows: the first tests the convergence of algo-

rithm 10 with update from algorithms 1 to 3 on the two synthetic matrices A and

Ã of size n = 256, the second experiment tests the effective compression in terms of

storage of the iterates in response to the compression parameter γ̂, the last tests the

storage requirements using different compression schemes.

4.4.1 Convergence Test

The convergence,

‖A−Bk‖F
‖A−B0‖F

,

66

of the sub-sampled algorithms with s1 = s2 = 16 is tested on the matrices A and Ã

with size n = 256. Ã was modified such that the singular values drop off by a factor of

10−3 after l = 16. The codes were run with B0 = 0·In using γ̂ = 10−3. Note the choice

of γ̂ is the same as the drop factor in eq. (4.8) which a user may know from some

other knowledge of their application. The figures show: RRF (�(p=1)) as discussed

in section 2.4.3, RSSI (∗(p=1), ∗(p=2), ∗(p=3)) as specified by algorithm 5, and

algorithm 10 labeled by matrix updates: NS (⊗) as specified by Algorithm 1; SS1

(•) as specified by Algorithm 2; SS2 (�) as specified by Algorithm 3. Runs were

terminated when the relative residual norm fell below 10−3 or a maximum amount of

n2 output entries were sampled.

The RRF and RSSI methods from [16] are not iterative. To give fair comparison,

methods of [16] were run with an increasing over-sampling parameter q. Recall, meth-

ods from [16] construct rank r = l + q approximations. The total number of output

entries computed is determined by the number of power iterations p and sampling size

r. To indicate this, non-iterative methods from [16] are shown with distinct points

indicating individual approximations being constructed. Additionally, rank r = l+ q

approximations were reduced to rank l using the SVD to give fair comparison in norm

to the sub-sampled methods which reduce the rank every iteration.

67

0 1 2 3 4 5 6 7

·104

1

0.9

0.8

Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Approximation of A ∈ Rn×n, n = 256, γ = 0.2.

RRF RSSI(p=1) RSSI(p=2) RSSI(p=3)

NS SS1 SS2

Figure 4.1: (n = 256) Approximation of A = XXT where X ∼ N (0, 1)n×n

with s = 16, γ = 0.2. The low rank algorithm 2 performs poorly while the
low rank versions of algorithms 1 and 3 perform well. Low rank accelerated
algorithm 4 shows acceleration compared to algorithms 1 and 3 and is com-
petitive with the algorithms from [16]. All methods approach the best rank
16 approximation of A.

4.4.2 Parameter Test

The tolerance based compression described in section 4.2.2 depends on the parameter

γ̂. If γ̂ is too small, the iterates may increase in rank and use considerable storage

during early iterations. If γ̂ is too high, the algorithms may converge more slowly as

they will not be making much progress improving the current best low rank search

directions. In addition, if the user misjudges ‖A − Al‖F when choosing γ̂, the low

68

0 1 2 3 4 5 6 7

·104

10−3

10−2

10−1

100

Samples

‖Ã
−
B

k
‖ F

‖Ã
−
B

0
‖ F

Approximation of Ã ∈ Rn×n, n = 256, γ = 10−3

RRF RSSI(p=1) RSSI(p=2) RSSI(p=3)

NS SS1 SS2

Figure 4.2: (n = 256) Approximation of modified matrix Ã having effective
rank 16 with s = 16 and γ = 10−3. Low rank variants of algorithms 1 to 3
show comparable convergence rates to the optimal theoretical rates of the
un-compressed versions shown in dotted lines. Accelerated variants converge
quickly to the best rank 16 approximation.

rank approximation may miss some of the most dominant space and only converge

on Al−k for some k > 0.

To demonstrate the above discussion algorithm 10 was implemented with updates

from algorithms 1 to 3 and tested on the modified matrix Ã. The methods were run

with values of γ̂ = 10−2, 10−3, 10−4. As predicted the lower values of γ̂ gave early

iterates which have a higher rank and the higher value of γ̂ = 10−2 gave a slightly

slower convergence but only stored a minimum of 16 directions at each iterate.

69

0
0.5

1
1.5

·10
5

10
−
3

10
−
2

10
−
1

10
0

#
S
am

p
les

‖A−Bk‖F
‖A−B0‖F

(a)
γ̂

=
1
0
−
2

0
0.5

1
1.5

·10
5

10
−
3

10
−
2

10
−
1

10
0

#
S
am

p
les

‖A−Bk‖F
‖A−B0‖F

(b
)
γ̂

=
1
0
−
3

0
0.5

1
1.5

·10
5

10
−
3

10
−
2

10
−
1

10
0

#
S
am

p
les

‖A−Bk‖F
‖A−B0‖F

(c)
γ̂

=
10

−
4

50
100

10
−
3

10
−
2

10
−
1

10
0

R
an

k

‖A−Bk‖F
‖A−B0‖F

(d
)
γ̂

=
10

−
2

50
100

10
−
3

10
−
2

10
−
1

10
0

R
an

k

‖A−Bk‖F
‖A−B0‖F

(e)
γ̂

=
1
0
−
3

0
100

200
10
−
3

10
−
2

10
−
1

10
0

R
an

k

‖A−Bk‖F
‖A−B0‖F

(f)
γ̂

=
10

−
4

F
ig
u
re

4
.3
:

C
om

p
arison

of
storage

w
h

ile
ap

p
rox

im
atin

g
th

e
m

o
d

ifi
ed

m
a-

trix
Ã

u
sin

g
γ̂

=
10
−
2,10

−
3,10

−
4.

C
h

o
osin

g
toleran

ce
p

aram
eter

γ̂
accord

in
g

to
th

e
k
n

ow
n

d
ro

p
in

sp
ectru

m
of
Ã

com
p

resses
th

e
storage

after
en

ou
gh

it-
era

tio
n

s.
H

igh
er

valu
es

of
γ̂

(left)
sh

ow
m

in
im

al
storage

req
u

irem
en

t
for

th
e

su
b

-sa
m

p
led

m
eth

o
d

s.
L

arger
valu

es
of
γ̂

(righ
t)

sh
ow

large
storage

req
u

ire-
m

en
ts

in
itia

lly
w

h
ich

com
p
ress

faster
for

th
e

ch
oice

closer
to

th
e

d
rop

of
10
−
3

in
th

e
sp

ectru
m

of
Ã

.

70

To further demonstrate the relationship between storage requirement and choosing

the low rank tolerance γ̂ based on the spectral drop, an experiment was run on the

matrix A above whose singular values decay slowly. When γ̂ is chosen systematically

(according to the known distribution) the tolerance based scheme still converges on

a compressed low rank approximation according to γ̂ (see fig. 4.4).

20 40 60 80 100 120

1

0.9

0.8

Rank

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Approximation of A ∈ Rn×n, n = 256, γ = 0.2.

RRF RSSI(p=1) RSSI(p=2) RSSI(p=3)

NS SS1 SS2

Figure 4.4: (n = 256) Approximation of A = XXT where X ∼ N (0, 1)n×n

with s = 16 and γ = 0.2. Graphs show the rank of each iterate being
controlled by the tolerance parameter γ = 0.2 ≈ ‖A − As‖F , matching the
known distribution of A. The methods from [16] require an increasing rank
to converge to a best approximation while the sub-sampled methods only
ever store the s directions desired and s more while the iteration is taking
place giving a fixed (user controlled) computational and storage requirement
per iteration.

71

4.4.3 Compression Test

To demonstrate the performance of the tolerance based low rank compression in

terms of storage, algorithm 10 was implemented: with tolerance compression having

γ̂ chosen according to the known spectrum of the matrices A and Ã described above,

with a tolerance based compression with the addition of a maximum rank rk = 2s

per iteration, and compressed to a fixed rank rk = s at each iteration.

4.5 Heuristic Accelerated Schemes

The heuristically accelerated method SS1A described in algorithm 4 relies on samples

computed in a power method scheme to enrich a representation of the dominant

eigenspace. The final sub-space representation is then used for an accelerated sub-

sampled update.

This approach is similar to that of the randomized power iteration and randomized

sub-space iteration of [16]. The approach taken in this work differs in that the sub-

sampled methods and accelerated variants work on the residual matrix and are able

to iterate freely to a user specified computational limit. Adding a compression step

to this iteration gives low-rank approximations which are competitive with those in

72

0
0.

5
1

1.
5

·1
05

10
−
3

10
−
2

10
−
1

10
0

S
am

p
le

s

‖A−Bk‖F
‖A−B0‖F

(a
)

T
ol

er
an

ce
C

om
p

re
ss

io
n

0
0.

5
1

1.
5

·1
05

10
−
3

10
−
2

10
−
1

10
0

S
am

p
le

s

‖A−Bk‖F
‖A−B0‖F

(b
)

M
a
x

R
a
n

k
C

o
m

p
re

ss
io

n

0
0.

5
1

1.
5

·1
05

10
−
3

10
−
2

10
−
1

10
0

S
am

p
le

s

‖A−Bk‖F
‖A−B0‖F

(c
)

F
ix

ed
R

a
n

k
C

o
m

p
re

ss
io

n

50
10

0
10
−
3

10
−
2

10
−
1

10
0

R
an

k

‖A−Bk‖F
‖A−B0‖F

(d
)
γ̂

=
10

−
3

50
10

0
10
−
3

10
−
2

10
−
1

10
0

R
an

k

‖A−Bk‖F
‖A−B0‖F

(e
)
r k
≤

2
s

50
10

0
10
−
3

10
−
2

10
−
1

10
0

R
an

k

‖A−Bk‖F
‖A−B0‖F

(f
)
r k

=
s

F
ig
u
re

4
.5
:

C
om

p
ar

is
on

of
st

or
ag

e
re

q
u

ir
em

en
ts

w
h

il
e

ap
p

ro
x
im

at
in

g
th

e
m

o
d

ifi
ed

m
at

ri
x
Ã

u
si

n
g

d
iff

er
en

t
co

m
p

re
ss

io
n

sc
h

em
es

.
C

om
p
re

ss
in

g
r k

=
s

a
t

ea
ch

it
er

at
io

n
(r

ig
h
t)

y
ie

ld
s

a
fi

x
ed

st
or

ag
e

m
et

h
o
d

.
C

h
o
os

in
g

to
le

ra
n

ce
p

ar
am

et
er
γ̂

ac
co

rd
in

g
to

th
e

k
n

ow
n

d
ro

p
in

sp
ec

tr
u

m
of
Ã

al
so

co
m

p
re

ss
es

th
e

st
or

ag
e

af
te

r
en

ou
gh

it
er

at
io

n
s

(l
ef

t)
.

T
h

e
p

er
fo

rm
an

ce
(c

en
te

r)
of

th
e

to
le

ra
n

ce
al

go
ri

th
m

w
it

h
a

ca
p

on
th

e
ra

n
k

at
r k
≤

2
s

p
er

fo
rm

s
w

el
l

an
d

h
as

a
fi

x
ed

,
u

se
r

co
n
tr

ol
la

b
le

ov
er

al
l

st
or

ag
e

re
q
u

ir
em

en
t.

73

[16] and enjoy a fixed computational and storage footprint.

To implement this scheme one inserts the accelerated update from algorithm 4 for

the sub-sampled update step in algorithm 10.

4.5.1 Acceleration Convergence Results

The performance of the low rank version of SS1A (with rotationally invariant sampling

and p = 1, 2, 3) is compared to the Randomized Range Finder (RRF) and Randomized

Sub-Space Iteration (RSSI) algorithms from [16]. For the methods of [16], the Hermi-

tian post-processing described in section 2.1 is used to construct the approximation

B. Specifically, the convergence (relative Frobenius residual ‖A − Bk‖F/‖A − B0‖F

against the total number of matrix elements sampled) of the accelerated algorithms

from [16] with increasing over-sample parameters is compared to algorithm 10, the

low rank variant of the accelerated algorithm 4, with s1 = s2 = s on two matri-

ces, A = XXT with X ∼ N (0, 1)n×n and Ã with modified singular values having

a drop factor of 10−3 after l = 32. The figures show: RRF (�(p=1)) as discussed

in section 2.4.3, RSSI (∗(p=1), ∗(p=2), ∗(p=3)) as specified by algorithm 5, SS1A

(D(p=1), D(p=2), D(p=3)) as specified by algorithm 10. Runs were terminated

when the relative residual norm fell below 10−3. or a maximum number of n2 output

elements were sampled.

74

0 0.5 1

·106

0.95

0.85

0.75

Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Approximation of A = XXT , n = 1000, s = 32, γ = 10−3

0 200 400

0.95

0.85

0.75

Rank

RRF RSSI(p=1) RSSI(p=2) RSSI(p=3)
SS1A(p=1) SS1A(p=2) SS1A(p=3)

Figure 4.6: (n = 1000) Approximation of A = XXT where X ∼
N (0, 1)n×n with s = 32 and γ = 0.001. Tolerance based sub-sampled low
rank methods outperform the methods of [14] for matrices with slowly de-
caying spectrum (left). RRF and RSSI methods require increasing rank to
converge to the best rank s approximation while the tolerance based low
rank only ever stores an amount proportional to the parameter γ̂.

75

0 0.5 1

·106

0.25

0.02

0.002

Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Approximation of Ã, n = 1000, s = l = 32, γ = 10−3

0 200 400

0.25

0.02

0.002

Rank

RRF RSSI(p=1) RSSI(p=2) RSSI(p=3)
SS1A(p=1) SS1A(p=2) SS1A(p=3)

Figure 4.7: (n = 1000) Approximation of modified matrix Ã having ef-
fective rank 32 with s = 32 and γ = 0.001. All the methods converge to
the best rank s approximation in similar amounts of samples(left). Low
rank, sub-sampled accelerated methods only require fixed storage indicated
by the nearly vertical line (right) while the methods of [16] require increasing
storage.

76

Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis novel sub-sampled methods to iteratively approximate a matrix by si-

multaneously sampling input and output spaces were developed and analyzed. These

sub-sampled methods have a significantly smaller data-footprint than sampled algo-

rithms which can be tuned by selecting sample sizes s1 and s2. The iterative methods

are self-correcting with computable convergence rates under reasonable assumptions

since they systematically reduce a weighted Frobenius norm of the residual A − Bk.

The analysis demonstrates that rotationally symmetric sampling is desirable.

Experimentally the sub-sampled algorithms match their provable convergence rates

77

(with only weak dependence on the sampling parameters s1 and s2) and have rates

comparable to those of sampled algorithms in the literature.

An accelerated hybrid method (algorithm 4) is developed by combining simultaneous

iteration (to enrich a subspace) with the sub-sampled update algorithm 2. This

accelerated method is shown experimentally to be competitive (in terms of matrix

samples) with current accelerated schemes.

The sub-sampled framework can be used to approximate the inverse of a matrix. Ap-

plying the Sherman-Morrison-Woodbury matrix identity to the sub-sampled updates

give rise to inverse approximations. The methods can be used to provide iteratively

approximate solutions to linear systems or with appropriate filtering quickly con-

struct a pre-conditioner. Their convergence was compared to current methods in

literature. Accelerated variants specific to inverse approximation were described and

tested numerically.

Inserting a rank compression sub-routine into the sub-sampled algorithms allows for

low rank approximations which have fixed computational and storage footprints at

each iteration. Different compression schemes were presented with provable conver-

gence. The methods were compared with those found in the literature and have

various advantages. Specifically, current algorithms improve their rank l approxi-

mations and give bounds to the quality in terms of an over-sampling parameter p.

Implementing this requires storage of more than the desired rank r = l+ p and gives

78

an approximation which is of rank r. Using an iterative approach to over-sample at

each iteration allows the user to control the storage and computation of each step

giving a smaller data and computational footprint at each iteration and over all.

5.2 Future Works

The methods described, analyzed, and tested in this thesis are built from the usage

of sub-sampled data, eq. (1.1). The iterations given are constructed in a minimum

Frobenius norm setting, eq. (2.6). We posit that one can derive the solution or a

computationally feasible approximate solution to minimum change problems using

different norms. For instance, similar rank s updates can be derived by enforcing

UT AV = UT B V and UT AU = UT B U , instead of the two-step approach as in

algorithm 3. The solution of the minimum change in that case requires solving certain

s× s Sylvester type equations, but is an effective update in terms of the metric used

in section 2.3.

The convergence of the sub-sampled matrix approximations was analyzed theoreti-

cally and verified with a wide range of numerical experiments. To adapt this the-

oretical basis to other settings required inserting sub-routines into the iteration for

inverse approximation and low rank approximations. Other special types of matrix

properties could be inserted such as a mechanism of enforcing a particular sparsity

79

pattern or compressing to other matrix factorizations.

Another interesting research direction is to explore computational efficiency of the

algorithms. Specifically if the computation of the sub-samples is not feasible for the

way the matrix A is represented, one could incorporate ideas from [8, 9, 10, 11]. In

that work, the authors (adaptively) sample the rows, columns, or both to reduce the

computation. Sub-samples of the reduced set of rows and columns could be used after

they are selected.

The sub-sampled matrix approximation algorithms give a solid theoretical foundation

for many future works. The insertion of the inverse and low rank subroutines are an

example of how the iterations can be modified and tuned for various applications

and due to the nature of the random sampling have great approximation power. The

inverse approximations are useful as iterative linear system solvers, pre-conditioners,

and could be adopted for pseudo-inverses. The low rank approximations could be used

for non-square data analysis, sparse approximations, or compressed storage formats

for internal computations in algorithms like newtons method for solving non-linear

systems or quasi-newton methods in the numerical optimization setting for approxi-

mating Hessian or inverse Hessian matrices.

80

References

[1] Caliciotti Andrea, Fasano Giovanni, and Roma Massimo. Novel precondition-

ers based on quasi–newton updates for nonlinear conjugate gradient methods.

Optimization Letters, 11(4):835–853, Apr 2017.

[2] Michele Benzi and Miroslav Tůma. A comparative study of sparse approximate

inverse preconditioners. In Proceedings on the on Iterative Methods and Precon-

ditioners, IMACS’97, page 305–340, USA, 1999. Elsevier North-Holland, Inc.

[3] Luca Bergamaschi, Rafael Bru, Angeles Martinez, and Mario Putti. Quasi-

newton preconditioners for the inexact newton method. Electronic transactions

on numerical analysis ETNA, 23:76–87, 01 2006.

[4] R.H. Bryd, R.B. Schnabel, and G.A. Schulz. Parallel quasi-newton methods for

unconstrained optimization. Mathematical Programming, 42:273–306, 04 1988.

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-

chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,

81

2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] Edmond Chow and Yousef Saad. Approximate inverse preconditioners via sparse-

sparse iterations. SIAM Journal on Scientific Computing, 19(3):995–1023, 1998.

[7] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collec-

tion. ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[8] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algo-

rithms for matrices ii: Computing a low-rank approximation to a matrix. SIAM

Journal on Computing, 36(1):158–183, 2006.

[9] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo

algorithms for matrices. III. Computing a compressed approximate matrix de-

composition. SIAM J. Comput., 36(1):184–206, 2006.

[10] Petros Drineas, Ravindran Kannan, and Michael Mahoney. Fast monte carlo

algorithms for matrices i: Approximating matrix multiplication. SIAM J. Com-

put., 36:132–157, 01 2006.

[11] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms

for finding low-rank approximations. J. ACM, 51(6):1025–1041, November 2004.

[12] Wenbo Gao and Donald Goldfarb. Block BFGS Methods. SIAM J. Optim.,

28(2):1205–1231, 2018.

82

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[13] Robert Gower, Filip Hanzely, Peter Richtarik, and Sebastian U Stich. Accel-

erated stochastic matrix inversion: General theory and speeding up bfgs rules

for faster second-order optimization. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural

Information Processing Systems 31, pages 1619–1629. Curran Associates, Inc.,

2018.

[14] Robert M. Gower and Peter Richtárik. Randomized quasi-Newton updates are

linearly convergent matrix inversion algorithms. SIAM J. Matrix Anal. Appl.,

38(4):1380–1409, 2017.

[15] Robert M. Gower and Peter Richtárik. Randomized iterative methods for linear

systems. SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690,

2015.

[16] N. Halko, P. Martinsson, and J. Tropp. Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Review, 53(2):217–288, 2011.

[17] Wolfram Research, Inc. Mathematica, Version 12.1, 2020.

[18] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.3.0.713579

(R2017b), 2017.

[19] José Morales and Jorge Nocedal. Automatic preconditioning by limited memory

quasi-newton updating. SIAM Journal on Optimization, 10:1079–1096, 06 2000.

83

[20] Cameron Musco and Christopher Musco. Randomized block krylov methods for

stronger and faster approximate singular value decomposition. In Proceedings of

the 28th International Conference on Neural Information Processing Systems -

Volume 1, NIPS’15, pages 1396–1404, Cambridge, MA, USA, 2015. MIT Press.

[21] S. Nash. Newton-type minimization via the lanczos method. SIAM Journal on

Numerical Analysis, 21(4):770–788, 1984.

[22] S. Nash. Preconditioning of truncated-newton methods. SIAM Journal on Sci-

entific and Statistical Computing, 6(3):599–616, 1985.

[23] U. Naumann. The Art of Differentiating Computer Programs. Society for Indus-

trial and Applied Mathematics, 2011.

[24] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathe-

matics of Computation, 35(151):773–782, 1980.

[25] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer Series

in Operations Research and Financial Engineering. Springer, New York, second

edition, 2006.

[26] Albert S. Berahas, Raghu Bollapragada, and Jorge Nocedal. An investigation of

Newton-sketch and subsampled Newton methods. PrePrint, 05 2017.

[27] R.B. Schnabel. Quasi-newton methods using multiple secant equations. Com-

puter Science Technical Reports, 244:41, 06 1983.

84

[28] G. Stewart. The efficient generation of random orthogonal matrices with an appli-

cation to condition estimators. SIAM Journal on Numerical Analysis, 17(3):403–

409, 1980.

[29] Max A. Woodbury. Inverting Modified Matrices. SRG Memorandum report; 42.

Princeton University, first edition, 1950.

85

Appendix A

Sub-Sample Appendices

A.1 Weight Matrix Interpretation

The fixed non-rotationally symmetric weight matrices on which classical sampled

methods are based (BFGS W = A and DFP = W−1) produce an enhanced initial

drop in the appropriate residuals. Implementing algorithms algorithms 1 to 3 with

W = A would produce the same temporary effect but as noted before algorithms with

W = A are automatically sampled algorithms which require significantly more access

to A than sub-sampling. Moreover, the enhancement is transitory and despite the

additional cost of each step such weighted algorithms ultimately converge at the rates

in theorems 7, 9 and 10 as Bk resolves A. This is to be expected since the algorithms

87

sample and correct the residual A − Bk. Weights tuned to A become irrelevant as

Bk → A. The heuristic underlying the accelerated algorithm, algorithm 4, is that

non-constant weighting based on the residual Wk = A−Bk should sample directions

that are not yet well resolved: as noted in the discussion of algorithm 4 such dynamic

weighting requires samples AU .

A.2 Minimum Change Solutions

The KKT equations [25] for constrained minimum change formulations eqs. (2.1)

and (2.2) are solved analytically using a change of variables. Substitute

Â = W
−1/2
1 AW

−1/2
2 , B̂ = W

−1/2
1 BW

−1/2
2 , B̂k = W

−1/2
1 BkW

−1/2
2 ,

and

Û = W
1/2
1 U, V̂ = W

1/2
2 V,

into eq. (2.1) to get the unweighted problem,

B̂k+1 = arg min
B̂

{
1

2
‖B̂ − B̂k‖2F | ÛT B̂ V̂ = ÛT Â V̂

}
.

88

This reduces to

arg min
E

{
1

2
‖E‖2F | ÛTE V̂ − Z = 0

}
, (A.1)

where E = B̂ − B̂k and Z = ÛT (Â − B̂k)V̂ . Writing Λ for the matrix of Lagrange

multipliers, the Lagrange condition is obtained by setting the derivative of L(E,Λ)

with respect to the matrix argument E to 0, giving

0 = E + ÛΛV̂ T .

Substituting into eq. (A.1) gives

ÛT (ÛΛV̂ T)V̂ + Z = 0,

which gives the multiplier matrix

Λ = −(ÛT Û)−1ÛT (Â− B̂k)V̂ (V̂ T V̂)−1.

Substituting and converting back to the original variables gives eq. (2.7). Equa-

tion (2.2) can be solved in a similar fashion.

89

A.3 Additional Non-Accelerated Computational

Results

The convergence test from section 2.3.1 was performed on the remaining matrices

tested in [14]. As before, these figures show: BFGS(�) as specified by eq. (2.5); DFP

(�) as specified by eq. (2.4); NS (⊗) as specified by Algorithm 1; SS1 (•) as specified

by Algorithm 2; SS2 (�) as specified by Algorithm 3. All numerical experiments

indicate that the non-accelerated sub-sampled algorithms converge predictably and

consistently. Tests were carried out on the following matrices:

† Figure A.1 the LibSVM matrix Aloi of size n = 128;

† Figure A.2 the LibSVM matrix Protein of size n = 357;

† Figure A.3 the LibSVM matrix Real-Sim of size n = 20958;

† Figure A.4 the Sparse Suite matrix ND6K of size n = 18000;

† Figure A.5 the Sparse Suite matrix ex9 of size n = 3363;

† Figure A.6 the Sparse Suite matrix Chem97ZtZ of size n = 2541.

† Figure A.7 the Sparse Suite matrix Body of size n = 17556.

† Figure A.8 the Sparse Suite matrix bcsstk of size n = 11948.

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·105

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Aloi

BFGS

DFP

NS

SS1

SS2

Figure A.1: Approximation of the Hessian matrix from the LibSVM prob-
lem, Aloi (n = 128) [5] with s = 12 = d

√
128e. The DFP and BFGS updates

perform well. Algorithms 1 to 3 match their theoretical convergence rates
(shown in dotted lines).

† Figure A.9 the Sparse Suite matrix wathen of size n = 30401.

A.4 Additional Accelerated Computational Re-

sults

The convergence test from section 2.4.1 was performed on the remaining matrices

tested in [14]. The experiments illustrate the relative performance of the following

algorithms: (�) BFGS, eq. (2.5), (�) DFP, eq. (2.4) (◦) S1, eq. (2.3) with W = In, (∗)

BFGSA, eq. (2.5) with adaptive sampling described in [14], (D) SS1A+, Algorithm 4

91

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Protein

BFGS

DFP

NS

SS1

SS2

Figure A.2: Approximation of the Hessian matrix from the LibSVM prob-
lem, Protein (n = 357) [5] with s = 19 = d

√
357e. The DFP method per-

forms well while the BFGS method shows poor performance. Algorithms 1
to 3 match their theoretical convergence rates (shown in dotted lines).

on the following matrices:

† Figure A.10 the LibSVM matrix Aloi of size n = 128;

† Figure A.11 the LibSVM matrix Protein of size n = 357;

† Figure A.12 the LibSVM matrix Real-Sim of size n = 20958;

† Figure A.13 the Sparse Suite matrix ND6K of size n = 18000;

† Figure A.14 the Sparse Suite matrix ex9 of size n = 3363;

† Figure A.15 the Sparse Suite matrix Chem97ZtZ of size n = 2541.

† Figure A.16 the Sparse Suite matrix Body of size n = 17556.

92

0 0.5 1 1.5 2

·109

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Real-Sim

BFGS

DFP

NS

SS1

SS2

Figure A.3: Approximation of the Hessian matrix from the LibSVM prob-
lem, Real-Sim (n = 20, 958) [5] with s = 145 = d

√
20, 958e. The DFP

method performs well eventually matching the theoretical convergence rates
for algorithms 1 to 3. The BFGS method fails. Algorithms 1 to 3 methods
match their theoretical rates shown in dotted lines but are terminated after
a maximum run-time.

† Figure A.17 the Sparse Suite matrix bcsstk of size n = 11948.

† Figure A.18 the Sparse Suite matrix wathen of size n = 30401.

The accelerated method algorithm 4 performs well on all matrices including those

with large n ≈ 104 (see figs. A.12, A.13 and A.16 to A.18).

93

0 0.5 1 1.5 2 2.5 3 3.5 4

·109

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - ND6K

BFGS

DFP

NS

SS1

SS2

Figure A.4: Approximation of ND6K matrix (n = 18, 000) from [7] with
s = 135 = d

√
18, 000e. The DFP and BFGS updates show fast initial con-

vergence which slows over time. Algorithms 1 to 3 methods match their
theoretical rates shown in dotted lines but are terminated after a maximum
run-time.

94

0 0.2 0.4 0.6 0.8 1 1.2

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - ex9

BFGS

DFP

NS

SS1

SS2

Figure A.5: Approximation of ex9 matrix (n = 3363) from [7] with s =
58 = d

√
3363e. The DFP update performs consistently while the BFGS

update fails early in the iteration. Algorithms 1 to 3 methods match their
theoretical rates shown in dotted lines.

0 1 2 3 4 5 6 7

·107

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - Chem97ZtZ

BFGS

DFP

NS

SS1

SS2

Figure A.6: Approximation of Chem97ZtZ matrix (n = 2541) from [7]
with s = 51 = d

√
2541e.The DFP update performs consistently while the

BFGS update fails early in the iteration. Algorithms 1 to 3 methods match
their theoretical rates shown in dotted lines.

95

0 0.5 1 1.5 2 2.5 3

·109

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - Bodyy4

BFGS

DFP

NS

SS1

SS2

Figure A.7: Approximation of Body matrix (n = 17, 546) from [7] with
s = 133 = d

√
17, 546e. The DFP update performs well while the BFGS

update fails. Algorithms 1 to 3 methods match their theoretical rates shown
in dotted lines but are terminated after a maximum run-time.

0 1 2 3 4 5 6 7 8

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - Bcsstk

BFGS

DFP

NS

SS1

SS2

Figure A.8: Approximation of bcsstk matrix (n = 11, 948) from [7] with
s = 110 = d

√
11, 948e. Algorithms 1 to 3 methods match their theoretical

rates shown in dotted lines but are terminated after a maximum run-time.

96

0 0.5 1 1.5 2 2.5

·109

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - wathen100

BFGS

DFP

NS

SS1

SS2

Figure A.9: Approximation of wathen matrix (n = 30, 401) from [7] with
s = 175 = d

√
30, 401e. The DFP and BFGS methods perform consistently.

Algorithms 1 to 3 methods match their theoretical rates shown in dotted
lines but are terminated after a maximum run-time.

97

0 1 2 3 4 5 6 7 8

·104

10−3

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Aloi

BFGS

DFP

S1

BFGSA

SS1A

Figure A.10: Approximation of the Hessian matrix from the LibSVM
problem, Aloi (n = 128) [5] with s = 12 = d

√
128e. All methods show

quick initial convergence. The accelerated BFGSA method adapted from
[14] shows slower performance while the DFP method and algorithm 4 show
performance consistent with other tests.

98

0 1 2 3 4 5 6 7

·105

10−3

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Protein

BFGS

DFP

S1

BFGSA

SS1A

Figure A.11: Approximation of the Hessian matrix from the LibSVM
problem, Protein (n = 357) [5] with s = 19 = d

√
357e. The un-accelerated

BFGS method performs poorly and the accelerated BFGSA method shows
minimal acceleration in comparison to other tests. The DFP method also
shows weak performance compared to algorithm 4.

99

0 0.5 1 1.5 2

·109

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - LibSVM - Real-Sim

BFGS

DFP

S1

BFGSA

SS1A

Figure A.12: Approximation of the Hessian matrix from the LibSVM
problem, Real-Sim (n = 20, 958) [5] with s = 145 = d

√
20, 958e. The

BFGS method fails after initially performing the same as the accelerated
BFGSA method adapted from [14]. The DFP method and algorithm 4
initially perform similarly but algorithm 4 shows acceleration consistent with
other tests.

100

0 0.5 1 1.5 2 2.5 3 3.5 4

·109

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - ND6K

BFGS

DFP

S1

BFGSA

SS1A

Figure A.13: Approximation of ND6K matrix (n = 18, 000) from [7] with
s = 135 = d

√
18, 000e. All the methods perform well. BFGSA shows varied

acceleration over the BFGS update while DFP shows performance consisten
with other tests. Algorithm 4 outperforms other methods with consistent
acceleration seen against the un-accelerated S1 method.

101

0 0.2 0.4 0.6 0.8 1

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - ex9

BFGS

DFP

S1

BFGSA

SS1A

Figure A.14: Approximation of ex9 matrix (n = 3363) from [7] with
s = 58 = d

√
3363e. The BFGS update fails on this matrix but the acceler-

ated BFGSA converges. The DFP method and algorithm 4 show consistent
performance.

0 1 2 3 4 5

·107

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - Chem97ZtZ

BFGS

DFP

S1

BFGSA

SS1A

Figure A.15: Approximation of Chem97ZtZ matrix (n = 2541) from
[7] with s = 51 = d

√
2541e. BFGS method fails while the other methods

converge with similar performance to other tests.

102

0 0.5 1 1.5 2 2.5

·109

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - Bodyy4

BFGS

DFP

S1

BFGSA

SS1A

Figure A.16: Approximation of Body matrix (n = 17, 546) from [7] with
s = 133 = d

√
17, 546e. The BFGS method fails after good initial conver-

gence. Algorithm 4 shows consistent acceleration as in other experiments.

0 1 2 3 4 5 6 7 8

·108

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - Bcsstk

BFGS

DFP

S1

BFGSA

SS1A

Figure A.17: Approximation of bcsstk matrix (n = 11, 948) from [7] with
s = 110 = d

√
11, 948e. The BFGS update fails early in the iteration and was

terminated. Algorithm 4 shows consistent acceleration compared to BFGSA
and S1.

103

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·109

10−2

10−1

100

Total Matrix Element Samples

‖A
−
B

k
‖ F

‖A
−
B

0
‖ F

Convergence Test - SparseSuite - wathen100

BFGS

DFP

S1

BFGSA

SS1A

Figure A.18: Approximation of wathen matrix (n = 30, 401) from [7]
with s = 175 = d

√
30, 401e. All methods perform consistently regardless of

the matrix being very large. The DFP and BFGS methods were terminated
due to maximum run-time while algorithm 4 shows consistent acceleration
and faster run-times.

104

Appendix B

Inverse Matrix Approximation

B.1 Additional Computational Results

The convergence test from section 2.3.1 was performed on the remaining matrices

tested in [14]. As before, these figures show: BFGS(�) as specified by eq. (2.5); DFP

(�) as specified by eq. (2.4); SS1 (•) as specified by Algorithm 2. All numerical experi-

ments indicate that the non-accelerated sub-sampled algorithms converge predictably

and consistently,

† Figure B.1 the LibSVM matrix Aloi of size n = 128;

† Figure B.2 the LibSVM matrix Protein of size n = 357;

105

† Figure B.3 the LibSVM matrix Real-Sim of size n = 20958;

† Figure B.4 the Sparse Suite matrix ND6K of size n = 18000;

† Figure B.5 the Sparse Suite matrix ex9 of size n = 3363;

† Figure B.6 the Sparse Suite matrix Chem97ZtZ of size n = 2541.

† Figure B.7 the Sparse Suite matrix Body of size n = 17556.

† Figure B.8 the Sparse Suite matrix bcsstk of size n = 11948.

† Figure B.9 the Sparse Suite matrix wathen of size n = 30401.

106

0 0.2 0.4 0.6 0.8 1

·104

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

LibSVM - Aloi

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure B.1: Computing an approximate inverse of the Hessian matrix
from the LibSVM problem, Aloi (n = 128) [5] with s = 12 = d

√
128e.

AdaRBFGScols method shows slow convergence while AdaRBFGSgauss has
improved performance.

107

0 0.2 0.4 0.6 0.8 1

·104

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

LibSVM - Protein

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure B.2: Computing an approximate inverse of the Hessian matrix
from the LibSVM problem, Protein (n = 357) [5] with s = 19 = d

√
357e.

AdaRBFGScols method shows slower convergence.

108

0 1 2 3 4 5

·108

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

LibSVM - Real-SIM

AdaRBFGS cols AdaRBFGS gauss

SSInv gauss SSInvP gauss

Figure B.3: Computing an approximate inverse of the Hessian matrix
from the LibSVM problem, Real-Sim (n = 20, 958) [5] with s = 145 =
d
√

20, 958e. Plot indicates a maximum run-time was reached for the sub-
sampled methods.

109

0 0.5 1 1.5 2

·109

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

SparseSuite - ND6K

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure B.4: Computing an approximate inverse of ND6K matrix (n =
18, 000) from [7] with s = 135 = d

√
18, 000e. AdaRBFGSgauss shows faster

initial convergence which is outperformed by AdaRBFGScols. Algorithms 8
and 9 were terminated due to maximum run-time but show fast convergence.

110

0 1 2 3 4 5 6

·107

10−3

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

SparseSuite - ex9

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure B.5: Computing an approximate inverse of ex9 matrix (n = 3363)
from [7] with s = 58 = d

√
3363e. Plots indicate slow convergence for

AdaRBFGScols and SSInvP initially which is later corrected.

111

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·107

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

SparseSuite - Chem

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure B.6: Computing an approximate inverse of Chem97ZtZ matrix
(n = 2541) from [7] with s = 51 = d

√
2541e. AdaRBFGScols shows poor

convergence. Algorithm 9 outperforms other algorithms.

112

0 0.2 0.4 0.6 0.8 1 1.2

·109

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

SparseSuite - Body

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure B.7: Computing an approximate inverse of Body matrix (n =
17, 546) from [7] with s = 133 = d

√
17, 546e. AdaRBFGScols performs slowly

while AdaRBFGSgauss and the DFPH update converge. Algorithms 8 and 9
were terminated due to maximum run-time.

113

0 1 2 3 4 5 6 7 8 9

·108

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

SparseSuite - bcsstk

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure B.8: Computing an approximate inverse of bcsstk matrix (n =
11, 948) from [7] with s = 110 = d

√
11, 948e. Note the slow convergence of

the AdaRBFGScols method. For this test matrix algorithm 8 outperforms
algorithm 9.

114

0 0.5 1 1.5 2 2.5 3

·109

10−2

10−1

100

Total Matrix Element Samples

‖I
n
−
H

k
A
‖ F

‖I
n
−
H

0
A
‖ F

SparseSuite - Wathen

AdaRBFGS cols AdaRBFGS gauss

DFPH gauss SSInv gauss

SSInvP gauss

Figure B.9: Computing an approximate inverse of wathen matrix (n =
30, 401) from [7] with s = 175 = d

√
30, 401e. AdaRBFGScols shows slow

performance while AdaRBFGSgauss and the DFPH update perform well.
Algorithms 8 and 9 show consistent initial performance but were terminated
due to exceeding the maximum run-time.

115

	Sub-Sampled Matrix Approximations
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Definitions
	List of Abbreviations
	Abstract
	Introduction
	Work Estimates
	Relationship to Quasi-Newton Algorithms
	Notation

	Matrix Approximation
	Randomized Algorithms for Matrix Approximation
	Sub-Sampled Update (NS)
	Symmetric Sub-Sampled Update (SS1)
	Multi-Step Symmetric Updates (SS2)

	Convergence Analysis
	Mathematical Preliminaries
	Convergence Theorems
	Optimal Fixed Weight Convergence Rates
	Theoretical Lower Bound for Convergence Rates

	Numerical Results
	Convergence Test
	Sample Size Tests

	Heurestic Accelerated Schemes
	Eigenvector Acceleration
	Acceleration Convergence Results
	Relationship to Algorithms in Literature
	Krylov Spaces

	Inverse Approximation
	Introduction
	Relationship to Quasi-Newton Algorithms
	Sub-Sampled Inverse Approximation
	Filtering

	Sub-Sampled Accelerated Inverse Approximations
	Inverse Power method

	Numerical Results

	Low Rank Approximation
	Introduction
	Low Rank Sub-Sampled Approximation
	Generic Low Rank Update
	Compression

	Convergence Analysis
	Mathematical Preliminaries
	Convergence Theorem

	Numerical Results
	Convergence Test
	Parameter Test
	Compression Test

	Heuristic Accelerated Schemes
	Acceleration Convergence Results

	Conclusions and Future Works
	Conclusions
	Future Works

	References
	Sub-Sample Appendices
	Weight Matrix Interpretation
	Minimum Change Solutions
	Additional Non-Accelerated Computational Results
	Additional Accelerated Computational Results

	Inverse Matrix Approximation
	Additional Computational Results

