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Abstract

Given any bounded linear operator T : X → Y between separable Hilbert spaces
X and Y , there exists a measure space (M,A, µ) and isometries V : L2(M) → X,
U : L2(M) → Y and a nonnegative, bounded, measurable function σ : M → [0,∞)
such that

T = UmσV
†,

with mσ : L2(M)→ L2(M) defined by mσ(f) = σf for all f ∈ L2(M). The expansion
T = UmσV

† is called the singular value expansion (SVE) of T .

The SVE is a useful tool for analyzing a number of problems such as the computation
of the generalized inverse T † of T , understanding the inverse problem Tx = y and,
regularizing Tx = y using methods such as Tikhonov regularization. In fact, many
standard Tikhonov regularization results can be derived by making use of the SVE.

The expansion T = UmσV
† can also be compared to the SVE of a compact operator

T : X → Y which has the form

T =
∑
n

σnun ⊗ vn

where the above sum may be finite or infinite depending on the rank of T . The set
{σn} is a sequence of positive real numbers that converge to zero if T has infinite
rank. Such σn are the singular values of T . The sets {vn} ⊂ X and {un} ⊂ Y are
orthonormal sets of vectors that satisfy Tvn = σnun for all n. The vectors vn and
un are the right and left singular vectors of T , respectively. If the essential range,
denoted Ress(σ), forms a sequence of positive real numbers converging to zero (or is
merely a finite set of nonnegative real numbers) and for each nonzero s ∈ Ress(σ),
the essential preimage of the singleton set {s}, denoted σ−1

ess({s}), is finite, then the
bounded operator T = UmσV

† is in fact compact. The converse of this statement is
also true.

If the operator T is compact, the singular values and vectors of T may be approx-
imated by discretizing the operator and finding the singular value decomposition of
a scaled Galerkin matrix. In general, the approximated singular values and vectors
converge at the same rate, which is governed by the error (in the operator norm) in
approximating T by the discretized operator. However, when the discretization is ac-
complished by projection (variational approximation), the computed singular values
converge at an increased rate; the typical case is that the errors in the singular values
are asymptotically equal to the square of the errors in the singular vectors (this state-
ment must be modified if the approximations to the left and right singular vectors
converge at different rates). Moreover, in the case of variational approximation, the
error in the singular vectors can be compared with the optimal approximation error,
with the two being asymptotically equal in the typical case.

xiii





Chapter 1

The singular value expansion

1.1 Introduction

In this chapter, we derive the singular value expansion (SVE) for a bounded operator
between two separable Hilbert spaces. Before we do this, we will discuss two special
cases of the SVE that should be familiar to the reader: the singular value decompo-
sition (SVD) of a rectangular matrix and also the SVE of a compact operator from
one separable Hilbert space to another. We will then derive the SVE for an operator
that is not necessarily compact. The principal aim in discussing these three cases, is
to demonstrate the relationship between a version of the spectral theorem and the
SVE in all three contexts. Although a derivation of the SVE of a bounded operator
can be found in the literature, this derivation relies on the polar decomposition the-
orem. We seek to derive the SVE in a way that mimics the logic of the derivations
for the SVE in the matrix and compact operator cases and doesn’t rely on the polar
decomposition theorem.

It is assumed the reader is already familiar with most topics in undergraduate linear
algebra, including the spectral theorem for a symmetric matrix. The reader is also
expected to be familiar with the basics of Hilbert space theory.

1.1.1 The matrix case

We start this section by stating the spectral theorem for a real symmetric matrix, a
result that can be found in most introductory linear algebra courses.

Theorem 1.1 (Spectral theorem for a real symmetric matrix) Let
A ∈ Rn×n be a symmetric matrix. Then each of the n eigenvalues λ1, λ2, ..., λn of
A (counted according to multiplicity) are real numbers, there are n corresponding
eigenvectors v1, v2, ..., vn of A that form an orthonormal basis for Rn, and A may be
written in the form A = V DV T , where V is the orthogonal matrix V = [v1|v2|...|vn]
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and D = diag(λ1, λ2, ..., λn).

The proof of the spectral theorem may be found in many linear algebra textbooks,
such as [19] or [9], and will be omitted here. This theorem is then used to derive the
singular value expansion (SVD) for a rectangular matrix A ∈ Rm×n. A sketch of the
proof is below.

Theorem 1.2 (SVD of a rectangular matrix) Let A ∈ Rm×n. Then A may be
written as A = UΣV T where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and
Σ ∈ Rm×n is a diagonal rectangular matrix with nonnegative diagonal entries.

Proof: We start by assuming m ≥ n. If n > m we can apply the below proof to
AT and then take the transpose of the resulting SVD.

Consider the symmetric matrix ATA. By the spectral theorem, we know there ex-
ist n orthonormal eigenvectors v1, v2, ..., vn of ATA, corresponding to eigenvalues
λ1, λ2, ..., λn, such that

ATA = V DV T ,

where V = [v1|v2|...|vn] and D = diag(λ1, λ2, ..., λn). Note that

λi = λi〈vi, vi〉 = 〈λivi, vi〉 = 〈ATAvi, vi〉 = |Avi|2 ≥ 0.

This allows us to define the singular values σ1, σ2, ..., σn by σi =
√
λi for i = 1, 2, ..., n.

We also define vectors u1, u2, ..., ur, where ui = σ−1
i Avi for i = 1, 2, ..., r and r is

defined by the property σr > σr+1 = ... = σn = 0. Note that {ui}ri=1 forms an
orthonormal set because

〈ui, uj〉 = 〈σ−1
i Avi, σ

−1
j Avj〉 = σ−1

i σ−1
j 〈vi, ATAvj〉 = σ−1

i σ−1
j σ2

j 〈vi, vj〉 = δij,

where δij denotes the Kronecker delta. Extend {ui}ri=1 to an orthonormal basis for all
of Rm to form the set {ui}mi=1, and define the orthogonal matrix U = [u1|u2|...|um] ∈
Rm×m. Then

UTAV = UT [Av1|Av2|...|Avn] = UT [σ1u1|σ2u2|...|σnun] = UTUΣ = Σ,

where we have used the fact that Avi = σiui for each i. Applying U to the left and
V T to the right yields A = UΣV T . �

The vectors u1, u2, ..., um and v1, v2, ..., vn are referred to as the left and right singular
vectors, respectively, for A. The values σ1, σ2, ..., σr are called the singular values of
A.

Using matrix multiplication, one can also write the singular value decomposition of
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the matrix A as a sum of rank one matrices:

A =
r∑
i=1

σiuiv
T
i . (1.1)

The above expansion for A is similar in form to the singular value expansion (SVE)
of a compact operator, which we will discuss in the next section.

1.1.2 The compact operator case

We now consider the infinite-dimensional case, where a pair of theorems similar to
Theorems 1.1 and 1.2 hold for compact operators. A compact operator is defined
below

Definition 1.3 (Compact operator) The linear operator T : X → Y , where X,
Y are Hilbert spaces, is compact if the image under T of any bounded set in X has
compact closure.

A compact operator is necessarily bounded. There are a number of equivalent formu-
lations of a compact operator; in particular, T is compact if for any bounded sequence
{xn} ⊂ X, the sequence {Txn} ⊂ Y has a convergence subsequence.

Every finite rank operator is compact. The most important class of compact operators
is formed by integrals operators that are defined as follows. For M , a subset of Rn,
and with kernel k : M ×M → R that is square integrable over M ×M , an integral
operator T : L2(M)→ L2(M) is defined by the equation

(Tx)(s) =

∫
M

k(s, t)x(t) dt.

Such operators come up in a number of applied math problems.

In deriving the SVE of a compact operator, we will start by stating the spectral
theorem for a compact, self-adjoint operator T on a separable Hilbert space X. We
will then use this theorem to derive the SVE of a compact operator T : X → Y . Just
as we did for the matrix case, we will omit the proof of the spectral theorem and
provide a sketch of the derivation of the SVE.

Before stating the spectral theorem, we define the spectrum of a self-adjoint linear
operator on a Hilbert space X. The spectrum is a generalization of the set of eigen-
values.

Definition 1.4 (Spectrum) Given a self-adjoint linear operator T : X → X the
spectrum of T is the set of all real numbers λ such that T −λI is not invertible, where
I denotes the identity operator on X.
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Often the spectrum of an operator T is denoted by σ(T ). To avoid this notation
clashing with future uses of the letter σ, we will use Λ(T ) to denote the spectrum of
the operator T .

Theorem 1.5 (Spectral theorem for compact self-adjoint operators) Let
T : X → X be a compact, self-adjoint operator. Then every nonzero element
λ ∈ Λ(T ) is an eigenvalue of T whose eigenspace is finite-dimensional. There also
exists an orthonormal sequence {vn} of eigenvectors and a corresponding sequence of
eigenvalues {λn} such that

T =
∑
n

λnvn ⊗ vn

where ⊗ denotes the outer product defined by (vn ⊗ vn)x = 〈x, vn〉Xvn for x ∈ X. In
particular,

Tx =
∑
n

λn〈x, vn〉Xvn for all x ∈ X

These sequences {λn} and {vn} may be finite or infinite. If they are infinite, then
λn → 0 as n→∞ and the series converges to T in the operator norm.

For a proof of this theorem, the reader may consult [10].

Just as we did in the matrix case, we use the spectral theorem for compact self-
adjoint operators to derive the singular value expansion (SVE) for a compact operator
T : X → Y . The proof below can be also be found in [10].

Theorem 1.6 (SVE of a compact operator) Let T : X → Y be a compact op-
erator. Then there exist (finite or infinite) orthonormal sequences {vn} ⊂ X and
{un} ⊂ Y and positive numbers σ1 ≥ σ2 ≥ ... such that

T =
∑
n

σnun ⊗ vn. (1.2)

If the series is infinite, then it converges in the operator norm to T and σn → 0 as
n→∞. Also,

Tvn = σnun for all n

and
Tx =

∑
n

σn〈vn, x〉Xun for all x ∈ X.

Proof: We use an argument similar to the one used in the Theorem 1.2. We note
that T ∗T is compact and self-adjoint. So the spectral theorem for compact operators
gives us

T ∗T =
∑
n

λnvn ⊗ vn,
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where {vn} is an orthonormal sequence in X, |λ1| ≥ |λ2| ≥ ... > 0 and, if the above
sum is infinite, λn → 0 as n→∞. Note that

λn = λn〈vn, vn〉X = 〈λnvn, vn〉X = 〈T ∗Tvn, vn〉X = 〈Tvn, T vn〉X ≥ 0,

which means we may define σn =
√
λn and un = σ−1

n Tvn. Next, note that

〈un, um〉Y = 〈σ−1
n Tvn, σ

−1
m Tvm〉Y = σ−1

n σ−1
m 〈vn, T ∗Tvm〉X = σ−1

n σ−1
m 〈vn, σ2

mvm〉X
= σ−1

n σ−1
m σ2

m〈vn, vm〉X
= δnm,

which shows {un} is an orthonormal sequence. It is easily shown that N (T ) =
N (T ∗T ) = sp{v1, v2, ...}⊥, which implies

Tx = T
(
projN (T )⊥x

)
= T

(∑
n

〈x, vn〉Xvn

)
=
∑
n

〈x, vn〉XTvn =
∑
n

σn〈x, vn〉Xun

=
∑
n

σn(un ⊗ vn)x

=

(∑
n

σnun ⊗ vn

)
x.

This shows that
T =

∑
n

σnun ⊗ vn

in the pointwise sense. If the above sum is finite, the proof is complete. Otherwise,
we finish the proof by proving that this sum converges to T in the operator norm.
Let x ∈ X with ‖x‖X = 1. Then

Tx−

(
N∑
n=1

σnun ⊗ vn

)
x =

∞∑
n=N+1

σn〈x, vn〉Xun.

Thus,∥∥∥∥∥Tx−
N∑
n=1

σn〈x, vn〉Xun

∥∥∥∥∥
2

Y

=

∥∥∥∥∥
∞∑

n=N+1

σn〈x, vn〉Xun

∥∥∥∥∥
2

Y

=
∞∑

n=N+1

σ2
n|〈x, vn〉X |2

≤ σ2
N+1

∞∑
n=N+1

|〈x, vn〉X |2

≤ σ2
N+1‖x‖2

X = σ2
N+1.

The facts that σN+1 → 0 as N → ∞ and that this result holds for all unit vectors
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x ∈ X implies that the sum converges to the operator T in the operator norm. �

1.2 The spectral theorem

In reading through the proofs in the previous section, one should detect a pattern
in the derivations. We start with the spectral theorem for a self-adjoint operator
and then use that to produce the SVD or SVE of a non-self-adjoint operator. This
same principle may be applied to a bounded (perhaps non-compact) linear operator
T : X → Y , where X and Y are real, separable Hilbert spaces. Much of the derivation
in this section comes from results discussed in [16] starting on page 49. Because this
version of the SVE is both less well known and less accessible than the previous
theorems, we will devote more time going through it. To get started, we first need
several preliminary results.

Given a bounded, self-adjoint linear operator A on the separable Hilbert space X,
and a continuous function f defined on a compact subset of R, we want to define the
operator f(A) : X → X in a sensible manner. For f(x) = x, it makes sense to define
f(A) = A, for f(x) = x2, f(A) = A2, and so forth. Using this kind of reasoning, if
p(x) =

∑n
k=0 αkx

k is a polynomial, then p(A) =
∑n

k=0 αkA
k is the obvious definition

for p(A). We then extend this idea to defining f(A) for continuous functions f on
a compact subset K of R. To do this, we consider C(K), the space of continuous
functions defined on K. For our purposes, the spectrum Λ(A) of A (which is always
compact and because A is self-adjoint, is a subset of R), will act as our compact set
K. By the Stone-Weierstass theorem, P(K), the set of polynomials defined on K, is
dense in C(K).

Thus, we may define the operator ΦA : P(K) → L(X) where L(X) denotes the
collection of all bounded, self-adjoint linear operators on X, by

ΦA(p) = p(A).

The space P(K) is dense in C(K) and it can be proven that ΦA is bounded, which
follows from the fact that

‖p(A)‖L(X) = ‖p‖C(K). (1.3)

A proof for (1.3) can be found in [16]. Thus, if {pn} is a Cauchy sequence in P(K), then
{pn(A)} is a Cauchy sequence in L(X), which implies that ΦA may be continuously
extended to all of C(K).

Thus, we may define f(A) by
f(A) = ΦA(f). (1.4)

where ΦA denotes the extension of ΦA to all of C(K). For a more rigorous development
on this idea, the reader may consult [16].
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The next result we require is the existence of the spectral measure. In deriving this,
we must first review several definitions.

Definition 1.7 (σ-algebra) Given a set M , a σ-algebra on M is a collection Σ of
subsets of M that contains M and is closed under complements and countable unions.

Definition 1.8 (Borel sets) Given a set M with a known topology, the Borel sub-
sets of M form the smallest σ-algebra of M that contains all the open sets of M .

Definition 1.9 (Measure) Given a set M and A, a σ-algebra on M , a measure
µ is a function from A to the interval [0,∞] that satisfies µ(∅) = 0, and for any
countable collection {Ei}∞i=1 with Ei ∈ A for all i and Ei ∩Ej = ∅ for i 6= j, we have
µ (
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei).

Definition 1.10 (Borel measure) A Borel measure µ is a measure defined on the
Borel subsets of M .

Definition 1.11 (Non-negative functional) Consider a bounded linear functional
` on the space of continuous, real-valued functions on a compact subset K of Rn

(denoted C(K)). We say ` is non-negative if, for all non-negative functions f ∈
C(K), `(f) ≥ 0.

Throughout this chapter, we will be using the standard topology on R. We now state
the Riesz representation theorem for compact subsets of R. See [23, p. 310] for a
proof.

Theorem 1.12 (Riesz representation) Let K be a compact subset of R and let `
be a nonnegative, bounded linear functional on C(K). Then there exists a unique,
nonnegative Borel measure µ on K such that

`(f) =

∫
K

f(x) dµ(x) ∀f ∈ C(K).

For ψ ∈ X, consider the bounded linear functional `ψ : C(K) → R defined by

`ψ(f) = 〈ψ, f(A)ψ〉X . If f is non-negative, we may define
√
f and

√
f(A) by (1.4).

Thus, 〈ψ, f(A)ψ〉X = ‖
√
f(A)ψ‖2

X ≥ 0 so ` is non-negative. Therefore, we can apply
the Riesz representation theorem to `ψ to produce a measure µψ which satisfies

〈ψ, f(A)ψ〉X =

∫
K

f(x) dµψ(x) ∀f ∈ C(K).

This measure µψ is called the spectral measure associated with ψ. This measure is
then used to define the space L2(K,µψ) of square integrable functions on K with
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the measure µψ. For convenience of presentation, we will denote this space L2(K)
rather than L2(K,µψ) and the measure will either be explicitly given or intuited from
context.

We next define a cyclic vector for the operator A, which we will use to prove a version
of the spectral theorem for certain bounded self-adjoint linear operators.

Definition 1.13 (Cyclic vector) Given a separable Hilbert space X and a bounded,
self-adjoint linear operator A : X → X, we say a vector ψ is a cyclic vector for A if
the subspace

Xψ = span{p(A)ψ : p ∈ P} (1.5)

is dense in X.

In general, a self-adjoint operator A need not have a cyclic vector. However, in the
case that it does, we may prove the spectral theorem below.

Theorem 1.14 Let X be a separable Hilbert space and let A : X → X be a bounded,
self-adjoint linear operator. If A has a cyclic vector ψ ∈ X, then there exists a
unitary operator V : L2(Λ(A)) → X (under the spectral measure µψ) such that for
every f ∈ L2(Λ(A)) we have(

V −1AV f
)

(λ) = λf(λ) for almost every λ ∈ Λ(A).

Proof: For f ∈ C(Λ(A)), we define f(A) by (1.4). Let µψ be the spectral measure
on Λ(A) satisfying the equation

〈ψ, f(A)ψ〉X =

∫
Λ(A)

f dµψ ∀f ∈ C(Λ(A)).

We then define V : C(Λ(A))→ X by V f = f(A)ψ for each f ∈ C(Λ(A)). Note that

‖V f‖2
X = 〈f(A)ψ, f(A)ψ〉X = 〈ψ, f(A)2ψ〉X =

∫
Λ(A)

f 2 dµψ = ‖f‖2
L2(Λ(A)),

which implies that V is an isometry. We know that C(Λ(A)) is dense in L2(Λ(A)),
which implies there exists a unique continuous extension V of V from L2(Λ(A)) to X
that satisfies

‖V f‖X = ‖f‖L2(Λ(A)) for each f ∈ L2(Λ(A)).

Because ψ is cyclic, we know Xψ = X. Thus, for x ∈ X, there is a sequence {fn}
of functions such that fn(A)ψ → x as n → ∞ or, equivalently, V fn → x as n → ∞.
Because V is an isometry, fn → f for some f ∈ L2(Λ(A)) and then by continuity
of V , we know V f = x. Thus, V (which we will denote by V for convenience)
maps L2(Λ(A)) onto all of X, which means that V is an isometric isomorphism from
L2(Λ(A)) to X.
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To finish the proof, let p be a polynomial defined on Λ(A) and let q denote the
polynomial defined by q(t) = tp(t). Then

V −1AV p = V −1Ap(A)ψ = V −1q(A)ψ = q. (1.6)

Now note that each f ∈ L2(Λ(A)) may be written as the limit of a sequence of
functions in C(Λ(A)) and each function in C(Λ(A)) may be written as the limit of
a sequence of polynomials defined on Λ(A). Thus, the polynomials defined on Λ(A)
are dense in L2(Λ(A)), which means (1.6) holds for all f ∈ L2(Λ(A)) as well. This
completes the proof. �

The above theorem is inadequate in that not every self-adjoint operator A has a single
cyclic vector. Below is a simple example of this phenomenon.

Example 1.15 Let A : X → X (with X having dimension larger than one) be defined
by Ax = λx for some real number λ. For any ψ ∈ X, the space Xψ defined by equation
(1.5) is one-dimensional. Thus, there is no cyclic vector for A.

The remainder of this section will be devoted to proving the spectral theorem for an
operator that does not have a cyclic vector. To do this, we require more definitions.

Definition 1.16 (Partially ordered set) Given a set P , a partial ordering on the
set, denoted by ≤, is a relation satisfying reflexivity (a ≤ a for all a ∈ P ), antisym-
metry (a ≤ b and b ≤ a implies a = b) and transitivity (a ≤ b and b ≤ c implies
a ≤ c).

Definition 1.17 (Totally ordered set) A totally ordered set (P,≤) is a partially
ordered set where every two elements are related to each other.

Definition 1.18 (Upper bound) Given a subset S of a partially ordered set (P,≤),
an upper bound on S is an element p ∈ P such that s ≤ p for all s ∈ S.

We now state Zorn’s lemma.

Lemma 1.19 (Zorn’s lemma) Suppose a partially ordered set P has the property
that every totally ordered subset has an upper bound. Then the set P contains a
maximal element. That is, there is an element p ∈ P such that q ≤ p for all q ∈ P
comparable to p.

We can now prove the below two lemmas. The arguments presented here are restate-
ments of proofs in [16].

Lemma 1.20 Let X be a real Hilbert space and let A be a bounded self-adjoint linear
operator on X. Let φ, ψ ∈ X. If ψ ⊥ Xφ, then Xψ ⊥ Xφ.
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Proof: If ψ ⊥ Xφ, then, for every n ∈ Z+, 〈Anφ, ψ〉X = 0. Thus, for each n,m ∈
Z+, we have

〈Anφ,Amψ〉X = 〈An+mφ, ψ〉X = 0,

which completes the proof. �

Before the next lemma, we require another definition.

Definition 1.21 Let X be a separable Hilbert space and {Xn}n∈N be a collection of
mutually orthogonal subspaces of X. Then the orthogonal direct sum⊕

n∈N

Xn

denotes the collection of all sums of the form
∑

k∈N xk where each xk ∈ Xk and it is
understood that only finitely many xk are nonzero.

It is easy to see that this direct sum is a subspace of X. Also, if the set N is finite,
the above direct sum is closed. If N is infinite, then it can be shown that the closure,
denoted by ⊕

n∈N

Xn

is the collection of sums of the form
∑

k∈N xk for xk ∈ Xk where we drop the as-
sumption that only a finite number of the xk’s are nonzero and also assume that∑

k∈N ‖xk‖2
X <∞. Note that the fact that X is a separable Hilbert space guarantees

that the set N is at most countably infinite.

Lemma 1.22 Let X be a real separable Hilbert space and let A be a bounded self-
adjoint linear operator on X. Then there exists a collection {ψn}n∈N of nonzero
vectors in X such that for all m,n ∈ N , with m 6= n, we have Xψm ⊥ Xψn and⊕

n∈N

Xψn = X

Proof: Let S = {x ∈ X : ‖x‖X = 1} denote the unit sphere in X. Consider the
collection of subsets

D = {D ⊂ S | ∀φ, ψ ∈ D, φ 6= ψ =⇒ Xφ ⊥ Xψ}.

Note that D is a partially ordered set with respect to inclusion. Further, any totally
ordered subset D0 of D has a upper bound given by the union

⋃
D⊂D0

D. Thus, by
Zorn’s lemma, there exists a maximal element Dmax ∈ D. Now let V be defined by

V =
⊕

φ∈Dmax

Xφ.
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We finish the proof by showing that V is dense in X. Suppose it is not. Then there
exists some ψ ∈ S such that ψ ⊥ V . By Lemma 1.20, this implies that Xψ ⊥ Xφ for
each φ ∈ Dmax. But then Dmax ∪ {ψ} ∈ D and contains Dmax, which contradicts the
fact that Dmax is maximal. �

It should be noted that the collection of cyclic vectors from the above lemma is by
no means unique.

The utility of Lemma 1.22 is that while there exist operators that do not have a
cyclic vector, we can still prove the result in Theorem 1.14 with a collection of cyclic
vectors. To do this, we use Lemma 1.22 to produce a countable collection {ψn}n∈N
of vectors such that ⊕

n∈N

Xψn = X

and ψn is a cyclic vector for the operator An = A|Xψn
. Note we use Xψn instead of

Xψn because An must be defined on a Hilbert space. We then apply Theorem 1.14 to
each An. To produce an expansion for A, we must combine the expansions for each
An. To do this, we will need to introduce the notion of the direct sum of measure
spaces

(M,A, µ) =
⊕
n∈N

(Mn,An, µn)

as well as the direct sum of L2 spaces

L2(M) =
⊕
n∈N

L2(Mn).

We will discuss these two in turn. If the collection of sets {Mn} are each pairwise
disjoint, then the new set M may be taken to be the union of each Mn. However,
in many contexts (such as the case of repeated eigenvalues in Λ(A)) the sets Mn will
not be disjoint. Thus, we define M to be the disjoint union of the sets Mn:

M =
⊔
n∈N

Mn =
⋃
n∈N

{(x, n) |x ∈Mn}.

In our context, each Mn is a subset of R, and we impose the standard topology on R
and the subspace topology on Mn. That is, the open sets of Mn are all sets Mn ∩ U ,
where U is open in R.

We then impose the disjoint union topology on M . That is, if S ⊂ M , then S will
have the form

S =
⋃
n∈N

{(s, n) | s ∈ Sn}

where Sn ⊂ Mn, and S is open if and only if each Sn is open under the topology on
Mn.
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The set of measurable sets A is defined in the following way: a subset S ⊂M with the

form S =
⋃
n∈N

{(s, n) | s ∈ Sn} is in A as long as each Sn ∈ An . Further the measure

µ is defined in terms of the measures µn. That is, for S =
⋃
n∈N

{(s, n) | s ∈ Sn},

µ(S) =
∑
n∈N

µn(Sn).

When taking the direct sum of the L2(Mn) spaces, we regard each L2(Mn) as a
subspace of L2(M) by extending every fn ∈ L2(Mn) to fn ∈ L2(M) by the equation

fn(x, k) =

{
fn(x) k = n

0 k 6= n.

This implies that {L2(Mn)} is a set of orthogonal subspaces. Thus, any function f
in
⊕

n∈N L
2(Mn) can be written as the sum f =

∑
n∈N fn. For convenience, we will

henceforth use fn to denote each extension fn. It is also understood that only a finite
number of these functions are nonzero. Every element in the set

⊕
n∈N L

2(Mn),
however, may be written as

∑
n∈N fn where potentially infinitely many of the fn

functions are nonzero. The norm of f ∈ L2(M) is given by

‖f‖2
L2(M) =

∑
n∈N

‖fn‖2
L2(Mn).

The last thing we must discuss is the topology that is placed on the set M . We place
the standard topology on the subset Mn of R for each n ∈ N and the disjoint union
topology on M . We note that the standard topology on Mn has a countable base,
(that is, a countable collection of open sets U = {Ui}∞i=1 such that any open set E in
Mn may be written as a union of elements in U). Then because there is a countable
number of sets Mn, M itself must also have a countable base. When M has this
property, it is said to be second-countable.

The topological space M will also be Hausdorff. That is, for any pair of points
(λ1,m1), (λ2,m2) ∈ M , there exist open sets O1 and O2 such that (λ1,m1) ∈ O1,
(λ2,m2) ∈ O2 and O1 ∩ O2 = ∅.
Using all of this, we may now prove the spectral theorem.

Theorem 1.23 (The spectral theorem for bounded self-adjoint operators)
Let X be a real, separable Hilbert space and let A : X → X be a bounded, self-adjoint
linear operator. Then there exists a second countable, Hausdorff measure space
(M,A, µ),an essentially bounded function λ : M → R, and an isometric isomorphism
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V : L2(M)→ X such that
V −1AV = mλ

where mλ : L2(M) → L2(M) is the multiplication operator on L2(M) defined by
mλf = λf for all f ∈ L2(M).

Proof: From Lemma 1.22, there is a countable subset N ⊂ Z+ and a collection of
vectors {ψn}n∈N such that ⊕

n∈N

Xψn = X,

where Xψn is invariant under A and each ψn is a cyclic vector for the operator
An = A|Xψn

. We apply Theorem 1.14 to each An to produce the measure spaces

(Λ(An),An, µn) where µn is the spectral measure given in Lemma 1.12. Theorem
1.14 also gives us the isometric isomorphism Vn : L2(Λ(An)) → Xψn , defined by
Vnf = f(An)ψn for each f ∈ L2(Λ(An)) , such that

V −1
n AnVnf(t) = tf(t)

for almost every t ∈ Λ(An).

We then define the measure space (M,A, µ) as

(M,A, µ) =
⊕
n∈N

(Λ(An),An, µn)

where M and µ are defined per the discussion preceding the theorem. We also let

L2(M) =
⊕
n∈N

L2(Λ(An)).

Now define the operator V :
⊕

n∈N L
2(Λ(An))→ X by

V f =
∑
n∈N

Vnfn.

where f ∈ L2(M) has the form f =
∑
n∈N

fn, where fn ∈ L2(Λ(An)). Using the fact

that Vnfn ∈ Xψn for all n ∈ N and Xψn ⊥ Xψm for m 6= n, we have

‖V f‖2
X =

∑
n∈N

‖Vnfn‖2
X =

∑
n∈N

‖fn‖2
L2(Mn) = ‖f‖2

L2(M),

which shows that V is an isometry. Now continuously extend V to the operator
V : L2(M)→ X that satisfies ‖V f‖2

X = ‖f‖2
L2(M) for all f ∈ L2(M). For convenience,

we will use V instead of V to denote this operator.
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Now let x ∈ X. The vector x may be written as x =
∑

n∈N xn, where xn ∈ Xψn

for all n ∈ N and
∑

n∈N ‖xn‖2
X < ∞. Because R(Vn) = Xψn , there is a function

fn ∈ L2(Λ(An)) such that xn = Vnfn for each n ∈ N . Define f =
∑

n∈N fn and note
that f ∈ L2(M) because

‖f‖2
L2(M) =

∑
n∈N

‖fn‖2
L2(Mn) =

∑
n∈N

‖xn‖2
X <∞.

Also x =
∑

n∈N Vnfn = V
(∑

n∈N fn
)

= V f . So x ∈ R(V ), which implies V is an
isometric isomorphism from L2(M) to X.

Next, note that the operator V −1 : X → L2(M) is such that if x ∈ X, then x =∑
n∈N xn for xn ∈ Xψn and V −1 sends x to the function f =

∑
n∈N fn such that

Vnfn = xn for all n ∈ N ; that is V −1
(∑

n∈N xn
)

=
∑

n∈N V
−1
n xn.

Now define the function λn : Mn → R by the formula λn(t) = t for t ∈ Λ(An). Then
define λ : M → R by λ =

∑
n∈N λn where each λn has been extended to all of M

by setting λn(t,m) = t ∗ δmn for (t,m) ∈ M . This implies that for fn ∈ L2(Mn),
V −1
n AnVnfn = λnfn.

Finally, for f ∈ L2(M), we have

V −1AV f = V −1A

(∑
n∈N

Vnfn

)
= V −1

(∑
n∈N

AnVnfn

)
=
∑
n∈N

V −1
n AnVnfn

=
∑
n∈N

λnfn

= λf = mλf.

This completes the proof. �

Before moving on, we present an example to illustrate the construction proved above.

Example 1.24 Consider for λ ∈ R, the operator A : X → X defined by Ax = λx for
each x ∈ X. The operator A does not have a cyclic vector. However, supposing X is a
separable Hilbert space, we can find an orthonormal basis for X given by {φn}∞n=1 and
let each φn act as a cyclic vector for An = A|sp{φn}. We then construct the measure
space (Mn,An, µn) where Mn = {λ}, An = {∅, {λ}} and µn satisfies µn({λ}) = 1.
The isometric isomorphism Vn : L2(Mn) → sp{φn} is defined as Vnf = f(λ)φn and
satisfies

An = VnmλV
−1
n

where mλ denotes the multiplication by λ on L2(Mn). So for x = βφn ∈ sp{φn}, we
have

VnmλV
−1
n x = VnmλV

−1
n βφn = Vnmλβ = Vnλβ = λβφn = λx = Anx.
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We then construct the set M = {(λ, n) : n ∈ Z+}, which is the disjoint union of
each Mn. The measure µ is defined so that if S = {(λ, n) : n ∈ N} where N is
some subset of Z+, then µ(S) =

∑
n∈N µn({λ}), which reduces to µ(S) = |N | in this

case. We then define V : L2(M) → X by V f = V (
∑∞

n=1 fn) =
∑∞

n=1 fn(λ)φn where
each fn : {λ} → R is a function in L2(Mn). This V defines an isometry. It is also
clear that R(V ) = X so V is an isometric isomorphism. We can write any x ∈ X
as x =

∑∞
n=1 βnφn and let fβ denote the function in L2(M) such that fβ(λ, n) = βn.

Then

V mλV
−1x = V mλV

−1

∞∑
n=1

βnφn = V mλfβ = V λfβ =
∞∑
n=1

λnβnφn = λ
∞∑
n=1

βnφn

= λx = Ax.

Thus A = V mλV
−1.

One last thing we should note about the construction of the SVE is the flexibility
we have in defining the sets Mn for the measure spaces (Mn,An, µn). The spectral
measure µn is defined on the spectrum Λ(An). Thus, the simplest way to define Mn

is by Mn = Λ(An). However, one could also allow Mn to be any subset of R as long
as Λ(An) ⊂ Mn. One then must adjust the definition of the measure µn so that for
Sn ⊂Mn, µn(Sn) = µ(Sn ∩ Λ(An)).

Now that we have constructed the SVE for a self-adjoint operator, we no longer
need to concern ourselves with the exact details of how M and the measure space
(M,A, µ) are constructed. We may simply conclude that M is a set with a topology on
it that is both second countable and Hausdorff and there is an isometric isomorphism
V : L2(M)→ X such that A = V mλV

−1 where λ : M → R is an essentially bounded
function and mλ : L2(M)→ L2(M) is defined by mλf = λf for all f ∈ L2(M).

1.3 The singular value expansion

We will now use the spectral theorem for a bounded self-adjoint linear operator to
derive the SVE for a general bounded linear operator T : X → Y in the same way
we did in the matrix and compact operator case. Before we do this however, we will
need to prove the following two lemmas and theorem. The results below were proven
by Gockenbach in [8].

Lemma 1.25 Let (M,A, µ) be a measure space and let θ : M → [0,∞) be a mea-
surable function that is nonzero a.e. Let {αk} be any sequence of positive numbers
converging monotonically to zero and, for k ∈ Z+, let Ek = {x ∈ M : θ(x) < αk}. If
µ(En) <∞ for some n ∈ Z+, then µ(Ek)→ 0 as k →∞.
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Proof: We first define E =
⋂∞
k=1Ek; then E = {x ∈M : θ(x) = 0}. Then µ(E) = 0

by hypothesis. But then, because Ek+1 ⊂ Ek for all k and µ(En) < ∞, it follows
from a standard theorem of measure theory (see Theorem 1.8 of [7]) that

0 = µ(E) = µ (∩∞k=1Ek) = lim
k→∞

µ(Ek),

which proves the result. �

Lemma 1.26 Let (M,A, µ) be a measure space and let θ : M → [0,∞) be a measur-
able function that is positive and finite a.e. Define

S = {f ∈ L2(M) : θ−1f ∈ L2(M)}. (1.7)

Then S is dense in L2(M).

Proof: Let f ∈ L2(M) be given. For every ε > 0, since f 2 is integrable, there exists
a measurable subset Nε of M such that µ(Nε) <∞ and∫

M\Nε
f 2 < ε.

(To see this, note that Theorems 2.10, 2.14 of [7] imply that there is a simple function
g : M → [0,∞) such that

∣∣∫ g − ∫ f 2
∣∣ < ε. Define Nε to be the support of g. It is clear

that µ(Nε) <∞, because otherwise g could not be integrable.) Now let ε > 0 be given.
For each k ∈ Z+, define Ek = {x ∈M : θ(x) < 1/k}∩Nε/2, Fk = (M\Ek)∩Nε/2, and
fk : M → [0,∞) by fk = fχFk (where χA is the characteristic function of A ∈ A).
We wish to show that fk ∈ S for all k and, for k sufficiently large, ‖fk − f‖L2(M) < ε.
We see that θ−1fk ∈ L2(M) because∫

(θ−1fk)
2 =

∫
θ−2f 2

χFk
=

∫
Fk

θ−2f 2 ≤ k2

∫
Fk

f 2 ≤ k2

∫
f 2 <∞

since θ ≥ 1/k on Fk. This shows that θ−1fk ∈ L2(M), that is, fk ∈ S.

Finally, M = Fk ∪ Ek ∪ (M\Nε/2) and therefore∫
(fk − f)2 =

∫
Fk

(fk − f)2 +

∫
Ek

(fk − f)2 +

∫
M\Nε/2

(fk − f)2

=

∫
Fk

(f − f)2 +

∫
Ek

(0− f)2 +

∫
M\Nε/2

(0− f)2

=

∫
Ek

f 2 +

∫
M\Nε/2

f 2.

The second integral is less than ε/2 by construction of Nε/2. Moreover, A →
∫
A
f 2
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defines a measure on A (a simple result to prove from the definition of measure).
Since Ek+1 ⊂ Ek for all k and each Ek has finite measure, we know that∫

Ek

f 2 →
∫
E

f 2 = 0,

where E = ∩∞k=1Ek = {x ∈M : θ(x) = 0} and µ(E) = 0 by assumption. This implies
that ∫

Ek

f 2 <
ε

2

for all k sufficiently large and hence that∫
(fk − f)2 < ε

for all k sufficiently large. Thus, fk → f in L2(M). Since f was an arbitrary element
of L2(M), this shows that S is dense in L2(M). �

Next, we derive the SVE for a bounded linear operator in the special case that
N (T ) = {0}. As mentioned in Section 1.1, the derivation of the SVE for a bounded
operator follows from applying the spectral theorem for bounded operators to T ∗T
and following steps very similar to those found in Theorems 1.2 and 1.6.

Theorem 1.27 Let X and Y be real separable Hilbert spaces and let T : X → Y
be a bounded linear operator with N (T ) = {0}. Then there exist a measure space
(M,A, µ), isometric isomorphisms V : L2(M) → X, U : L2(M) → R(T ), and an
essentially bounded measurable function σ : M → [0,∞) such that

T = UmσV
−1.

Moreover, σ > 0 a.e.

Proof: By the spectral theorem for bounded self-adjoint operators, there exist a
measure space (M,A, µ), an isometric isomorphism V : L2(M)→ X, and a bounded
measurable function θ : M → R such that

T ∗T = V mθV
−1.

We will first show that θ ≥ 0 a.e., which will follow if we prove that

〈mθf, f〉L2(M) ≥ 0 for all f ∈ L2(M).

We will prove this by first noting that mθ = V −1T ∗TV and hence, for all f ∈ L2(M),

〈mθf, f〉L2(M) = 〈V −1T ∗TV f, f〉L2(M) = 〈TV f, TV f〉Y ≥ 0
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where we’ve used the fact that V −1 = V ∗ because V is an isometric isomorphism. So
we conclude θ ≥ 0 a.e., as desired.

Now we define E = {x ∈ M : θ(x) = 0}. If µ(E) > 0, then χE 6= 0 in L2(M),
which implies that V χE 6= 0 in X and hence that T ∗TV χE 6= 0 (because N (T ∗T ) =
N (T ) = {0}). But

T ∗TV χE = V mθχE = V (θχE) = 0

because θ = 0 on E and χE = 0 on M\E. This contradiction shows that µ(E) must
be zero, that is, θ > 0 a.e. in M . Now we define σ =

√
θ and

S = {f ∈ L2(M) : σ−1f ∈ L2(M)}. (1.8)

By Lemma 1.26, we see that S is dense in L2(M). We then define U : S → Y by
U = TV mσ−1 . Since σ−1f ∈ L2(M) for all f ∈ S, U is well-defined. We also see that
it is linear and densely defined. Next, we have

‖Uf‖2
Y = 〈Uf, Uf〉Y = 〈TV mσ−1f, TV mσ−1f〉Y

= 〈f,mσ−1V −1T ∗TV mσ−1f〉L2(M)

= 〈f,mσ−1mσ2mσ−1f〉L2(M)

= 〈f, f〉L2(M) = ‖f‖2
L2(M).

This shows that ‖Uf‖Y = ‖f‖L2(M) for all f ∈ S. Since U is bounded and densely
defined, it can be extended to a bounded operator whose domain is all of L2(M). For
convenience, we will use U to denote the extension as well (i.e. U satisfies U |S =
TV mσ−1). Then, by continuity, we have ‖Uf‖Y = ‖f‖L2(M) for all f ∈ L2(M). This
shows that U is an isometry from L2(M) to R(U).

Next, we show that T = UmσV
−1. For each x ∈ X, mσV

−1x ∈ S because
mσ−1mσV

−1x = V −1x ∈ L2(M). Therefore, for each x ∈ X,

UmσV
−1x = TV mσ−1mσV

−1x = TV V −1x = Tx.

Therefore, UmσV
−1 = T .

Lastly, we will show that R(U) = R(T ). To do this, let y ∈ R(T ). Then there exists
a sequence {xn} ⊂ X such that Txn → y, that is, UmσV

−1xn → y. This means that
{UmσV

−1xn} is a Cauchy sequence and hence, because U is an isometry, {mσV
−1xn}

is Cauchy in L2(M). So suppose mσV
−1xn → f ∈ L2(M). Then

Uf = lim
n→∞

UmσV
−1xn = y,

which shows that y ∈ R(U). Since R(U) ⊂ R(T ) by definition of U , it follows that
R(U) = R(T ). This completes the proof. �

We will now use the above theorem to derive the SVE of a bounded operator T :
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X → Y without the assumption that N (T ) = {0}. Before we derive this however,
we recall the definition of the Moore-Penrose generalized inverse of an operator.

Definition 1.28 Given, a bounded linear operator T : X → Y , the Moore-Penrose
generalized inverse of T , denoted T † is the unique linear extension of the operator
T̂−1 to D(T †) = R(T )⊕R(T )⊥ with N (T †) = R(T )⊥, where T̂ = T |N (T )⊥.

Theorem 1.29 (SVE of a bounded operator) Let X and Y be real separable
Hilbert spaces and let T : X → Y be a bounded linear operator. Then there exist
a measure space (M,A, µ), isometries V : L2(M)→ X and U : L2(M)→ Y , and an
essentially bounded, measurable function σ : M → [0,∞) that is positive a.e. such
that

T = UmσV
†

with mσ : L2(M)→ L2(M) defined by mσ(f) = σf for all f ∈ L2(M).

Proof: Apply Theorem 1.27 to the operator T̂ = T |N (T )⊥ . This gives us

T̂ = ÛmσV̂
−1,

where V̂ : L2(M)→ N (T )⊥, Û : L2(M)→ R(T̂ ) = R(T ) are isometric isomorphisms
and mσ : L2(M)→ L2(M) is a multiplication operator with σ > 0 almost everywhere.
We can then define U : L2(M) → Y and V : L2(M) → X such that Uf = Ûf and
V f = V̂ f for all f ∈ L2(M). In effect, we are just changing the codomains of Û
and V̂ . Then U and V will be isometries (not necessarily isometric isomorphisms).
Next, let x ∈ X and decompose x as x = x1 + x2 for x1 ∈ N (T )⊥ = R(V ) and
x2 ∈ N (T ) = R(V )⊥. Then

Tx = T (x1 + x2) = Tx1 = T̂ x1 = ÛmσV̂
−1x1 = UmσV̂

−1x1 = UmσV
†(x1 + x2)

= UmσV
†x,

where V † is the generalized inverse of V . Also note that N (V †) = R(V )⊥ = N (T )
and V †|N (T )⊥ = V −1

1 . Thus,

T = UmσV
†. � (1.9)

This expansion for the operator T allows us to find expansions for T ∗ and T † as well.
These expansions will be used prominently in future chapters. To derive expansions
for these operators, we first prove the following lemma.

Lemma 1.30 Let H1, H2 be Hilbert spaces and let V : H1 → H2 be an isometry.
Then V ∗ = V †.

Proof: Let x ∈ H1 and y ∈ H2. Consider the inner product 〈V x, y〉H2 . We can
decompose y = y1 + y2 with y1 ∈ R(V ) and y2 ∈ R(V )⊥. Then y1 = V z for some
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z ∈ H1 and

〈V x, y〉H2 = 〈V x, y1 + y2〉H2 = 〈V x, V z〉H2 = 〈x, z〉H1 = 〈x, V †V z〉H1

= 〈x, V †y1〉H1

= 〈x, V †(y1 + y2)〉H1

= 〈x, V †y〉H1

(V †V = projN (V )⊥ = I because N (V ) is trivial). This proves that V ∗ = V †. �

We now note the following expansions:

T ∗ = V mσU
†

T ∗T = V mσ2V †

TT ∗ = Umσ2U †

T † = V mσ−1U †

(1.10)

The last equation holds by the following lemmas.

Lemma 1.31 Let S be defined as in equation (1.8) and define U(S) = {Us : s ∈ S}.
Then U(S) = R(T ).

Proof: If s ∈ S, then Us = TV mσ−1s ∈ R(T ) by definition. Thus, U(S) ⊂ R(T ).
On the other hand, if y = Tx for some x ∈ X, then y = UmσV

†x and mσV
†x ∈ S.

Therefore R(T ) ⊂ U(S). This completes the proof. �

Lemma 1.32 T † = V mσ−1U †.

Proof: We will begin by proving that D(T †) = D(V mσ−1U †). First suppose y ∈
D(T †) = R(T ) ⊕ R(T )⊥. Write y = y1 + y2 for y1 ∈ R(T ) and y2 ∈ R(T )⊥ and
consider U †y. We can write y1 = Tx = UmσV

†x for some x ∈ X and note that
N (U †) = R(T )⊥ (which follows from the fact that R(U) = R(T ), which we showed
in Theorem 1.27). This implies

U †y = U †y1 = U †UmσV
†x = mσV

†x ∈ S

where we have used the fact that U †U = projN (U)⊥ = I becauseN (U) is trivial. Thus,

U †y ∈ S which implies that y ∈ D(V mσ−1U †) and thus, D(T †) ⊂ D(V mσ−1U †).

On the other hand, suppose y ∈ D(V mσ−1U †). Here, we write y = y1 + y2 where
y1 ∈ R(T ) and y2 ∈ R(T )⊥. Then y being in D(V mσ−1U †) implies that U †y =
U †y1 ∈ S Thus, UU †y1 ∈ U(S) = R(T ) by the previous lemma. The fact that
UU † = projR(U) = projR(T ) implies that UU †y1 = y1. Thus, y1 ∈ R(T ) which implies

that y ∈ R(T )⊕R(T )⊥. SoD(V mσ−1U †) ⊂ D(T †) and hence, D(T †) = D(V mσ−1U †).
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Next, let y ∈ D(T †) and again decompose y as y = y1 + y2 with y1 ∈ R(T ) ⊂ R(U)
and y2 ∈ R(T )⊥ = R(U)⊥. Then x = T †y is the unique element of N (T )⊥ such that
Tx = y1. We can check that x = V mσ−1U †y satisfies this condition. First, note that
x ∈ R(V ) = N (T )⊥. In addition,

Tx = (UmσV
†)(V mσ−1U †)y = UU †y = projR(U)y = projR(T )y = y1,

where we have used the fact that V †V = I = mσmσ−1 on L2(M). Thus, for all
y ∈ D(T †), T †y = V mσ−1U †y. �

As mentioned earlier in the chapter, the SVE is not unique. If T has two different
SVE’s given by T = U1mσ1V

†
1 = U2mσ2V

†
2 , we can prove the below theorem regarding

the spaces L2(M1) and L2(M2).

Theorem 1.33 Let T : X → Y be a bounded linear operator with two distinct SVE’s
given by T = U1mσ1V

†
1 and T = U2mσ2V

†
2 . Then the associated Hilbert spaces L2(M1)

and L2(M2) are isometrically isomorphic.

Proof: Consider the operator V1 : L2(M1)→ X. This operator is an isometry. The
operator V̂1 : L2(M1) → R(V1) = N (T )⊥ with V̂1f = V1f ∀f ∈ L2(M1), however, is
an isometric isomorphism. In addition, V̂ −1

1 : N (T )⊥ → L2(M1), which is equivalent
to V †1

∣∣
N (T )⊥

, is an isometric isomorphism. Using similar reasoning, we know that

V̂2 : L2(M2)→ R(V2) = N (T )⊥ is an isometric isomorphism and so is V̂ −1
2 : N (T )⊥ →

L2(M2). Thus, V̂ −1
2 V̂1 is an isometric isomorphism from L2(M1) to L2(M2). In

addition, V̂ −1
1 V̂2 is an isometric isomorphism from L2(M2) to L2(M1).

Likewise, we could construct isometric isomorphisms Û−1
1 Û2 : L2(M2)→ L2(M1) and

Û−1
2 Û1 : L2(M1)→ L2(M2). �
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Chapter 2

Basic properties of the SVE of a
bounded linear operator

2.1 Introduction

In the previous chapter, we derived the singular value expansion (SVE) T = UmσV
†

of a bounded operator T . Here, we will define and discuss the essential range of a
measurable function and the essential preimage of a set in R under the same function.
This chapter is motivated by the paucity of references in the literature regarding the
essential range as well as the complete lack of references in the literature on the
essential pre-image. In [24], Rudin discusses the essential range only in a few of the
end-of-chapter problems. Because of this, we will prove several basic properties of
the essential range that are difficult to find in the literature. We will also define the
essential pre-image of a set S ⊂ R and derive several of its properties. Later on,
these results will be used to derive conditions on the multiplication operator mσ that
guarantee T is compact.

We start by discussing assumptions and notation. Throughout this chapter, we will
be working with a measure space (M,A, µ). We assume there is a topology T on
the set M and that the collection A is the associated Borel σ-algebra defined on M .
We also assume that T has a countable base B (which means the topology is second
countable). Finally, we assume T is Hausdorff. These assumptions will be used many
times in the proofs of this chapter, but we will avoid explicitly stating them in every
theorem or lemma.

The motivation for defining the essential range of a measurable function f is that the
range of f is not well defined. If f, g are measurable functions and f = g except on
a set of measure zero, then f = g, but R(f) may not be equal to R(g).

The essential range is defined below and does not change when the function is altered
on a measure zero set. The reader can also consult [24] for a definition of the essential
range.
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Definition 2.1 (Essential range) Let f : M → R be a measurable function. The
essential range of f is the set

Ress(f) = {s ∈ R : ∀ε > 0, µ({t ∈M : |f(t)− s| < ε}) > 0}
= {s ∈ R : ∀ε > 0, µ(f−1(s− ε, s+ ε)) > 0}.

(2.1)

We also note that for a measurable function f , the set f−1(s − ε, s + ε) is not well
defined because we may change f on a set of measure zero and thus change the set
f−1(s− ε, s+ ε). However, the measure of this set is well-defined.

Because f−1(S) for some subset S ⊂ R is also not well defined, we next define the
essential preimage of a set.

Definition 2.2 (Essential preimage) Let f : M → R be a measurable function.
Given a measurable subset S ⊂ R, the essential preimage of S under f is defined by

f−1
ess(S) = M \

⋃
{E ∈ T : S ∩Ress(f |E) = ∅} (2.2)

Before exploring the properties of these sets in the next section, we derive two alter-
nate definitions for f−1

ess(S) that we will use in future proofs.

Lemma 2.3 Let f : M → R be a measurable function. If S is a measurable subset
of R, then

f−1
ess(S) = {t ∈M : ∀E ∈ T , t ∈ E =⇒ S ∩Ress(f |E) 6= ∅}. (2.3)

Proof: Define U = {t ∈ M : ∀E ∈ T , t ∈ E =⇒ S ∩ Ress(f |E) 6= ∅}. Let t ∈ U
and E ⊂ M be an open neighborhood of t. Then S ∩ Ress(f |E) 6= ∅, which implies
that

t /∈
⋃
{E ∈ T : S ∩Ress(f |E) = ∅} (2.4)

and thus, t ∈ f−1
ess(S).

Conversely, suppose t ∈ f−1
ess(S). Then (2.4) holds and for any open E ⊂M , we know

S ∩Ress(f |E) = ∅ implies t /∈ E. This is equivalent to saying if E ⊂M is open, then
t ∈ E implies S ∩Ress(f |E) 6= ∅, which implies t ∈ U . This concludes the proof. �

We next wish to prove a simplification of the definition of essential preimage which
makes use of the fact that T is second countable. We will use this result several times
in future sections. Before we can prove this lemma however, we must prove a basic
property about the essential range.

Lemma 2.4 Let f : M → R be a measurable function and let E be a measurable
subset of M . Then Ress(f |E) ⊂ Ress(f).
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Proof: Because {t ∈ E : |f(t)− s| < ε} ⊂ {t ∈M : |f(t)− s| < ε}, then

s ∈ Ress(f |E) =⇒ ∀ε > 0, µ({t ∈ E : |f(t)− s| < ε}) > 0

=⇒ ∀ε > 0, µ({t ∈M : |f(t)− s| < ε}) > 0

=⇒ s ∈ Ress(f).

This completes the proof. �

Lemma 2.5 Let f : M → R be a measurable function. If S is a measurable subset
of R, then

f−1
ess(S) = M \

⋃
{E ∈ B : S ∩Ress(f |E) = ∅} (2.5)

and
f−1
ess(S) = {t ∈M : ∀E ∈ B, t ∈ E =⇒ S ∩Ress(f |E) 6= ∅} (2.6)

where B denotes the countable base of T .

Proof: In this proof, we will make use of the assumptions that T , the topology on
M , is Hausdorff and second countable. To prove the result in (2.5), it suffices to show
that ⋃

{E ∈ B : S ∩Ress(f |E) = ∅} =
⋃
{E ∈ T : S ∩Ress(f |E) = ∅}.

If t ∈
⋃
{E ∈ B : S∩Ress(f |E) = ∅} then of course t ∈

⋃
{E ∈ T : S∩Ress(f |E) = ∅}

because B ⊂ T . To prove the converse, if t ∈
⋃
{E ∈ T : S ∩ Ress(f |E) = ∅}, then

there exists E ∈ T such that t ∈ E and S ∩ Ress(f |E) = ∅. But then there exists
some E ′ ∈ B such that t ∈ E ′ ⊂ E and S ∩ R(f |E′) = ∅ (since R(f |E′) ⊂ R(f |E)).
Thus, t ∈

⋃
{E ∈ B : S ∩Ress(f |E) = ∅}. This proves (2.5).

To prove (2.6), we show that the two sets

U1 = {t ∈M : ∀E ∈ T , t ∈ E =⇒ S ∩Ress(f |E) 6= ∅}

and
U2 = {t ∈M : ∀E ∈ B, t ∈ E =⇒ S ∩Ress(f |E) 6= ∅}

are equal. Let t ∈ U1 and E ∈ B satisfy t ∈ E. Because B ⊂ T , E ∈ T as well and t
being in U1 implies S ∩Ress(f |E) 6= ∅. Thus t ∈ U2.

To prove the converse, let t ∈ U2 and let E ∈ T such that t ∈ E. Then there
exists E ′ ∈ B such that t ∈ E ′ ⊂ E. Moreover, t ∈ U2 and t ∈ E ′ imply that
S ∩Ress(f |E′) 6= ∅. Because Ress(f |E′) ⊂ Ress(f |E) by Lemma 2.4, this implies that
S ∩Ress(f |E) 6= ∅, and we have shown that t ∈ U1. This completes the proof. �

In Section 2.2, we will prove some more basic properties of the essential range and
preimage. Section 2.3 will be devoted to proving results regarding isolated points in
the essential range. We will then use all of these results to relate properties of the
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essential range of mσ to the compactness of the operator T in Section 2.4. We will
present several concluding remarks in Section 2.5.

2.2 Properties of the essential range/preimage

In this section, we will prove several basic properties of the essential range and then
one relation between the essential range and essential preimage. Many of these results
are straightforward to prove, but are difficult to find in the literature.

The first two lemmas show that Ress(f) is a closed set and is contained in R(f).

Lemma 2.6 If f : M → R is measurable, then Ress(f) is closed.

Proof: It suffices to show that R \Ress(f) is open. Suppose s ∈ R \Ress(f). Then
there exists ε > 0 such that µ(f−1(s− ε, s + ε)) = 0. For any s′ ∈ (s− ε/2, s + ε/2),
we know

f−1(s′ − ε/2, s′ + ε/2) ⊂ f−1(s− ε, s+ ε)

and thus,
µ(f−1(s′ − ε/2, s′ + ε/2)) = 0.

Thus, if s′ ∈ (s− ε/2, s+ ε/2), then s′ /∈ Ress(f). Hence R \ Ress(f) is open. �

Lemma 2.7 Let f : M → R be measurable. Then Ress(f) ⊂ R(f).

Proof: We prove the contrapositive. Suppose s /∈ R(f). Then there exists some
ε > 0 such that (s− ε, s+ ε)∩R(f) = ∅ and hence f−1(s− ε, s+ ε) = ∅. This implies
that s /∈ Ress(f). �

Our next lemma demonstrates that if the underlying set M has positive measure,
then the essential range is always nonempty.

Lemma 2.8 If f : M → R is measurable and µ(M) > 0, then Ress(f) 6= ∅.

Proof: Note that R =
⋃
n∈Z(n− 1, n] and thus

M = f−1(R) =
⋃
n∈Z

f−1((n− 1, n])

=⇒ µ(M) =
∑
n∈Z

µ(f−1((n− 1, n])),

which implies that µ(f−1((n − 1, n])) > 0 for at least one n ∈ Z. Thus, there exists
an interval [r1, r2] such that µ(E) > 0 where E = f−1([r1, r2]). By Lemma 2.4, it
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suffices to show that Ress(f |E) 6= ∅. We argue by contradiction. Let F = f |E and
assume Ress(F ) = ∅. Then for all s ∈ [r1, r2], there exists some εs > 0 such that

µ({t ∈ E : |F (t)− s| < εs}) = 0.

Since [r1, r2] is compact, there exists a finite sequence s1, s2, ..., sn such that

[r1, r2] ⊂
n⋃
j=1

(sj − εsj , sj + εsj)

=⇒ F−1([r1, r2]) ⊂
n⋃
j=1

{t ∈ E : |F (t)− sj| < εsj}

=⇒ µ(F−1([r1, r2])) ≤
n∑
j=1

µ({t ∈ E : |F (t)− sj| < εsj}) = 0.

But this contradicts the assumption that µ(f−1([r1, r2])) > 0. �

Next, we prove that the intersection of R(f) and Ress(f) cannot be empty.

Lemma 2.9 Suppose f : M → R is measurable and µ(M) > 0. Then

R(f) ∩Ress(f) 6= ∅.

Proof: We will assume that R(f) ∩Ress(f) = ∅ and prove that the measure of M
must be zero. Given s ∈ R(f), the fact that s 6∈ Ress(f) implies that there exists
an open interval (as, bs) containing s and such that µ(f−1(as, bs)) = 0. Moreover,
since the topological space R is second-countable, there exists a countable collection
{(an, bn) : n ∈ N} of open intervals such that

R(f) ⊂
⋃
n∈N

(an, bn)

where N denotes a countable index set and µ(f−1(an, bn)) = 0 for all n ∈ N . But
then

M = f−1(R(f)) ⊂ f−1

(⋃
n∈N

(an, bn)

)
=
⋃
n∈N

f−1(an, bn)

⇒ µ(M) ≤
∑
n∈N

µ(f−1(an, bn)) = 0.

This completes the proof. �
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Corollary 2.10 Let f : M → R be measurable. If U ⊂ M and f(U) ∩ Ress(f) = ∅,
then µ(U) = 0.

Proof: If µ(U) > 0, then Lemma 2.9 implies that

R(f |U) ∩Ress(f |U) 6= ∅.

Since R(f |U) = f(U) and Ress(f |U) ⊂ Ress(f), it follows that

µ(U) > 0 =⇒ f(U) ∩Ress(f) 6= ∅,

which proves the contrapositive. �

We end this section by proving that the essential preimage of the essential range is
equal to all of M save for a set of measure zero.

Lemma 2.11 If f : M → R is essentially bounded, then

µ
(
M \ f−1

ess(Ress(f))
)

= 0.

Proof: By Lemma 2.5,

M \ f−1
ess(Ress(f)) =

⋃
{E ∈ B : Ress(f) ∩Ress(f |E) = ∅}

=
⋃
{E ∈ B : Ress(f |E) = ∅}.

By Lemma 2.10, Ress(f |E) = ∅ implies that µ(E) = 0. Thus, M \ f−1
ess(Ress(f)) is a

countable union of open sets of measure zero and hence is itself a set of measure zero.
�

2.3 Isolated points

We now turn our attention to points s ∈ Ress(f) that are isolated from all other
points in Ress(f). We say a point s ∈ Ress(f) is an isolated point of Ress(f) if there
exists an open interval (a, b) such that Ress(f) ∩ (a, b) = {s}. We will eventually
prove that such points are eigenvalues of the multiplication operator mf . We will
also prove that in order to guarantee that T = UmσV

† is a compact operator, that
the Ress(σ) must consist of either a finite collection of isolated points, or a countably
infinite collection of isolated points whose only limit point is zero.

In this section, we will derive a number of properties of the set f−1({s}), given that
s in an isolated point of Ress(f). These results will then be used in the next section.

Lemma 2.12 Let s be an isolated point of Ress(f). Then t ∈ f−1
ess({s}) if and only

if for all open E ⊂M containing t, we have µ(E ∩ f−1({s})) > 0.
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Proof: Start by choosing an ε > 0 such that Ress(f) ∩ (s − ε, s + ε) = {s}. Let
t ∈ f−1

ess({s}) and choose an E ∈ T containing t. Then from the definition of the
essential preimage, we have

t ∈ f−1
ess({s}) =⇒ ∀E ∈ T , t ∈ E =⇒ s ∈ Ress(f |E)

=⇒ ∀E ∈ T , t ∈ E =⇒ (∀ε′ > 0, µ ({t′ ∈ E : |f(t′)− s| < ε′}) > 0)

Thus, we have µ({x ∈ E | |f(x)− s| < ε}) > 0. Then write

{x ∈ E | |f(x)−s| < ε} = (E∩f−1({s}))
⋃

(E∩f−1(s−ε, s))
⋃

(E∩f−1(s, s+ε)).

Suppose the set E ∩ f−1(s − ε, s) has positive measure. Then for some n ∈ Z+, the
set Sn defined by Sn = E ∩ f−1 [s− ε+ 1/n, s− 1/n] must have positive measure.
Consider f |Sn . Clearly, R(f |Sn) ⊂ [s − ε + 1/n, s − 1/n]. Also, the assumption that
µ(Sn) > 0 along with Lemma 2.10 imply that R(f |Sn) ∩ Ress(f |Sn) 6= ∅. But this
contradicts the fact that Ress(f)∩ (s− ε, s+ ε) = {s}. Thus, µ(E∩f−1(s− ε, s)) = 0.
A similar argument holds for the set E ∩ f−1(s, s + ε). Thus, the set E ∩ f−1({s})
must have positive measure.

To prove the converse, suppose for some t ∈ M , every E ∈ T containing t satisfies
µ(E ∩ f−1({s})) > 0. Then of course 0 < µ(E ∩ f−1({s})) ≤ µ(E ∩ f−1(s− ε, s+ ε))
for any ε > 0. Thus, t ∈ f−1

ess({s}). �

Lemma 2.13 Let f : M → R be a measurable function. If s is an isolated point of
Ress(f) with

Ress(f) ∩ (s− ε, s+ ε) = {s}

for some ε > 0, then µ(f−1({s})) > 0 and f(t) = s for almost every t ∈ f−1(s−ε, s+ε)

Proof: Let U = f−1(s−ε, s+ε) and let V = U\f−1({s}). Since s ∈ Ress(f), µ(U) >
0. Also, since f(V ) ⊂ (s− ε, s+ ε) and s /∈ f(V ), it follows that f(V ) ∩Ress(f) = ∅
and hence µ(V ) = 0 by Lemma 2.10. But then

U = f−1({s}) ∪ V =⇒ µ(U) = µ(f−1({s})) + µ(V ) = µ(f−1({s})).

This shows that µ(f−1({s})) > 0 and also that f(t) = s for almost every t ∈ U as
desired. �

This lemma immediately gives us the below theorem.

Theorem 2.14 Let f : M → R be a measurable function. If s is an isolated point of
Ress(f), then s is an eigenvalue of the multiplication operator mf on L2(M) and the
characteristic function χf−1({s}) is a corresponding eigenvector.

Proof: Follows immediately from Lemma 2.13. �

Next, we prove that f−1(S) \ f−1
ess(S) is a set of measure zero.
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Lemma 2.15 Let S ⊂M be measurable. Then µ(f−1(S) \ f−1
ess(S)) = 0.

Proof: Define N = f−1(S) \ f−1
ess(S). For each t ∈ N , there exists an open set Et

containing t such that S ∩ Ress(f |Et) = ∅. Now define the open set E =
⋃
t∈N Et.

Clearly, S ∩ Ress(f |E) = ∅ and thus, because Ress(f |N) ⊂ Ress(f |E), we know S ∩
Ress(f |N) = ∅ as well. But R(f |N) ⊂ S and thus R(f |N) ∩Ress(f |N) = ∅, which by
Lemma 2.9 implies that µ(N) = 0. �

Corollary 2.16 For any measurable set S ⊂M , µ(f−1(S)) = µ(f−1(S) ∩ f−1
ess(S)).

Proof: Note that f−1(S) = (f−1(S) ∩ f−1
ess(S))∪(f−1(S) \ f−1

ess(S)). The result then
follows immediately from the Lemma 2.15. �

Corollary 2.17 Let f : M → R be a measurable function and s be an isolated point
of Ress(f). Then t ∈ f−1

ess({s}) if and only if for all open sets E ⊂ M containing t,
we have µ(E ∩ f−1({s}) ∩ f−1

ess({s})) > 0.

Proof: We already know from Lemma 3.7 that t ∈ f−1
ess({s}) if and only if for all

open sets E ⊂M containing t, we have µ(E ∩ f−1({s})) > 0. Now note that

f−1({s}) = (f−1({s}) \ f−1
ess({s}))

⋃
(f−1({s}) ∩ f−1

ess({s}))

and f−1({s})\f−1
ess({s}) is a measure zero set by Lemma 2.15. Thus, µ(E∩f−1({s})) =

µ(E ∩ f−1({s}) ∩ f−1
ess({s})). �

Now we wish to prove a relation between isolated points s ∈ Ress(f) and isolated
points t ∈ f−1

ess({s}). Before we do this, we prove the following lemma.

Lemma 2.18 Let f : M → R be a measurable function and let S be a subset of R.
Then for any open E ⊂M ,

(f |E)−1
ess(S) = f−1

ess(S) ∩ E.

Proof: We have

t ∈ (f |E)−1
ess(S) ⇐⇒ (∀E ′ ⊂ E,E ′ open and t ∈ E ′ =⇒ S ∩Ress(f |E′) 6= ∅) (2.7)

and

t ∈ f−1
ess(S) ∩ E ⇐⇒

t ∈ E and ∀E ′′ ⊂M,E ′′ open and t ∈ E ′′ =⇒ S ∩Ress(f |E′′) 6= ∅.
(2.8)

We will show that (2.7) and (2.8) are equivalent; it will then follow that

(f |E)−1
ess(S) = f−1

ess(S) ∩ E.
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Suppose first that t ∈ (f |E)−1
ess(S) and let E ′′ be an open neighborhood of t. Then

E ′ = E ′′ ∩ E is an open subset of E such that t ∈ E ′ and hence (2.7) implies that
S ∩ Ress(f |E′) 6= ∅. Since Ress(f |E′) ⊂ Ress(f |E′′) and t obviously belongs to E, it
follows that the right-hand condition of (2.8) is satisfied and hence t ∈ f−1

ess(S) ∩ E.
Conversely, suppose t ∈ f−1

ess(S) ∩ E and let E ′ be an open subset of E containing t.
Since E ′ is also an open subset of M , it follows from (2.8) that S∩Ress(f |E′) 6= ∅ and
we see that the right-hand condition of (2.7) is satisfied. Therefore t ∈ (f |E)−1

ess(S).
This completes the proof. �

Lemma 2.19 Let f : M → R be a measurable function. If s ∈ R is an isolated point
of Ress(f) and t ∈ M is an isolated point of f−1

ess({s}), then µ({t}) > 0. Moreover,
f(t) = s.

Proof: By assumption, there exists an open subset E ⊂M such that

f−1
ess({s}) ∩ E = {t}.

By definition of f−1
ess({s}), we know s ∈ Ress(f |E) and also that s is an isolated point

of Ress(f |E). Hence, there is an ε > 0 such that

Ress(f |E) ∩ (s− ε, s+ ε) = {s}.

It follows from Lemma 2.13 and Corollary 2.16 that

µ((f |E)−1
ess({s})) ≥ µ((f |E)−1

ess({s}) ∩ (f |E)−1({s})) = µ((f |E)−1({s})) > 0.

Next, Lemma 2.18 implies that

(f |E)−1
ess({s}) = f−1

ess({s}) ∩ E = {t},

and hence, µ({t}) > 0. We know from Lemma 2.13 that f(t) = s for almost every
t ∈ (f |E)−1(s− ε, s+ ε). But Lemma 2.15 implies that

(f |E)−1(s− ε, s+ ε) = (f |E)−1
ess(s− ε, s+ ε) ∪ V = {t} ∪ V,

where V is a set of measure zero. It follows that f(t) = s, and the proof is complete.
�

We have already shown that isolated points s ∈ Ress(f) are eigenvalues of mf . We
now prove a result regarding the associated eigenvectors.

Lemma 2.20 Let f : M → R be a measurable function. If s ∈ R is an isolated point
of Ress(f), then s is an eigenvalue of mf and any eigenvector g : M → R of mf

corresponding to s is equal to χS for some subset S ⊂ f−1({s})∩ f−1
ess({s}) of positive

measure.
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Proof: Define Sg = {t ∈M | g(t) 6= 0} and U = f−1({s}) ∩ f−1
ess({s}). Then

Sg = (Sg ∩ (M \ f−1({s})))
⋃

(Sg ∩ (f−1({s}) \ f−1
ess({s})))

⋃
(Sg ∩ U)

and the set Sg ∩M \ f−1({s}) must have measure zero (otherwise g would not be an
eigenvector). The set Sg ∩ (f−1({s}) \ f−1

ess({s})) also has measure zero by Lemma
2.15. This completes the proof. �

2.4 Compact operators and the SVE

In this section, our goal is to derive a set of conditions on the multiplication operator
mσ that guarantees that the operator T = UmσV

† is compact. To do this, we start
by proving several results about measurable sets that will be important for us later.

Lemma 2.21 If U ⊂M has positive measure, then there exists t ∈ U such that

∀E ∈ T , t ∈ E =⇒ µ(E ∩ U) > 0.

Proof: Because T is second countable with countable base B, it suffices to prove
that for all E ∈ B, t ∈ E implies µ(E ∩ U) > 0. By contradiction, assume for all
t ∈ U , there exists some Et ∈ B containing t such that µ(Et ∩ U) = 0. Now notice
U =

⋃
{Et ∩U | t ∈ U}. Because B is countable, the set {Et ∩U | t ∈ U} will also be

countable. Thus, µ(U) ≤
∑
µ(Et ∩ U) = 0. This contradiction completes the proof.

�

Next, we consider a measurable set U such that U cannot be partitioned into two
disjoint sets U = U1 ∩ U2 with both U1 and U2 having positive measure.

Lemma 2.22 Let U ∈ A be a set with positive measure such that

∀ U1, U2 ∈ A, ((U1 ∩ U2 = ∅ and U = U1 ∪ U2) =⇒ (µ(U1) = 0 or µ(U2) = 0)) .

Then there exists some t ∈M such that U = {t}∪U0, where U0 ∈ A, µ({t}) = µ(U),
and µ(U0) = 0.

Proof: Let t ∈ U be the element in U guaranteed by Lemma 2.21. Define U0 =
U \ {t}. Then of course U = {t} ∪ U0 and {t} ∩ U0 = ∅. For any open set E ⊂ M
containing t, we know that

U = (U ∩ E)
⋃

(U \ E)

and µ(U ∩E) > 0 by Lemma 2.21, and by assumption, µ(U \E) = 0. Then because
T is second-countable, there exists a countable collection of open sets {Fj}∞j=1 with
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t ∈ Fj ∀j ∈ Z+ such that for all t′ ∈ U with t′ 6= t, there exists at least one Fj′ such
that t′ /∈ Fj′ . Now define the sequence of sets {Ej}∞j=1 by

Ej =

j⋂
k=1

Fk

Then each Ej, being a finite intersection of open sets, is open and each Ej contains
t. Also, En+1 ⊂ En for all n ∈ Z+ and it is clear that

⋂∞
j=1Ej = {t}.

We thus, conclude that µ(U) = µ(U ∩ Ej) for all j ∈ Z+ and apply a well known
theorem from measure theory to conclude

µ({t}) = µ

(
∞⋂
j=1

(U ∩ Ej)

)
= lim

j→∞
µ(U ∩ Ej) = lim

j→∞
µ(U) = µ(U)

Thus, µ(U \ {t}) must be equal to zero. This concludes the proof. �

Our next result requires us to define a positive partition of a measurable set.

Definition 2.23 (Positive partition) Let U be a measurable subset of M with
µ(U) > 0. The set {Pk}nk=1 is called a positive partition of U if U =

⋃n
k=1 Pk,

Pk ∩ Pm = ∅ for 1 ≤ k 6= m ≤ n and µ(Pk) > 0 for all k.

We also define a partial ordering on the set of positive partitions of U .

Definition 2.24 (Partial ordering) The partial ordering on the set of positive par-
titions of a measurable set U ⊂M is defined as

{Pk}nk=1 ≤ {Q`}m`=1 ⇐⇒ m ≥ n and ∀` ∈ {1, 2, ...,m}, ∃k ∈ {1, 2, ..., n}, Q` ⊂ Pk.

A chain of positive partitions is a collection of the form {Pk}nk=1 ≤ {Q`}m`=1 ≤
{Ri}pi=1 ≤ .... which may be infinite or finite.

Using these concepts, we prove the below lemma which demonstrates an important
relationship between the cardinality of the set f−1

ess({s}) and the dimension of the
eigenspace corresponding to the eigenvalue s.

Lemma 2.25 Let f : M → R be a measurable function. If s ∈ R is an isolated point
of Ress(f), then s is an eigenvalue of mf with eigenspace Emf (s), and

dim(Emf (s)) = n ⇐⇒ f−1
ess({s}) contains exactly n points.

Proof: If s is an isolated point of Ress(f), then by Corollary 2.16, s must be an
eigenvalue of mf . Suppose f−1

ess({s}) consists of exactly n elements. Then each t ∈
f−1
ess({s}) will be an isolated point of f−1

ess({s}) because M is a Hausdorff space. By
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Lemma 2.19, this means µ({t}) > 0 and f(t) = s. Thus, if f−1
ess({s}) = {t1, t2, ..., tn},

then {χ{t1}, χ{t2}, ..., χ{tn}} is an orthogonal collection of eigenvectors associated with
s. Thus, the dimension of the eigenspace for s is at least n. Suppose dim(Emf (s)) > n.
Then there exists an eigenvector g associated with s that is orthogonal to χ{ti} for
i = 1, ..., n. Also, by Lemma 2.20, g must be defined on f−1

ess({s}) ∩ f−1({s}) except
for a set of measure zero. Thus, g = 0 a.e. on the set M . This contradiction proves
the eigenspace for s will have dimension exactly n.

To prove the converse, suppose the eigenspace of mf associated with s has dimension
n. Define the set U = f−1

ess({s}) ∩ f−1({s}), and let Ppos(U) be the collection of all
positive partitions of U . Notice that for any positive partition {Pk}Nk=1 of N subsets
of U , the set of characteristic functions {χP1 , χP2 , ..., χPN} is an orthogonal set of N
eigenvectors of f corresponding to s.

Suppose there exists a chain of positive partitions in Ppos(U) with no upper bound.
Then the chain is an infinite sequence of positive partitions (otherwise the last element
in the chain is an upper bound). If we assume, without loss of generality, that the
elements in the chain are distinct, then the cardinalities of the elements in the chain
form a strictly increasing sequence of positive integers that grow without bound. Then
for any positive partition of the chain, {Pk}Nk=1, the set of characteristic functions
{χP1 , χP2 , ..., χPN} is an orthogonal set of N eigenvectors of f corresponding to s.
Thus, the dimension of the eigenspace cannot be bounded, a contradiction.

Thus, every chain in Ppos(U) must have an upper bound. Zorn’s lemma then implies
there must exist some maximal positive partition {Pk}mk=1 such that each Pk cannot
be partitioned into two subsets of positive measure. That is, for any V1, V2 ⊂ Pk such
that V1 ∩ V2 = ∅ and Pk = V1 ∪ V2, either µ(V1) = 0 or µ(V2) = 0. Thus, by Lemma
2.22, for each k = 1, ...,m there is some tk ∈ Pk such that Pk = {tk} ∪ Pk,0 where
µ({tk}) = µ(Pk) and µ(Pk,0) = 0.

We next prove that the sets {Pk,0} are, in fact, empty. To do this, fix k and let
t ∈ Pk,0 ⊂ U . Then Corollary 2.17 implies that for every open set E ⊂M containing
t, µ(E ∩ U) > 0. But because the topology on M is Hausdorff, we may find an open
set Et containing t such that Et ∩ {t1, ..., tm} = ∅. So then µ(Et ∩ U) = 0 because
U \ {t1, ..., tm} is a set of measure zero. This contradiction shows that each Pk,0 must
be empty.

This implies that U = {t1, ..., tm} and each singleton set {tj} has positive measure.
Thus {χ{t1}, ..., χ{tm}} forms an orthogonal set of eigenvectors, which means m ≤ n.
Next, Lemma 2.20 implies that every eigenvector g associated with s must be equal
to χS for some S ⊂ U = {t1, ..., tm}. This means that n ≤ m and therefore m = n.

Lastly, we must prove that the set f−1
ess({s}) \ f−1({s}) is empty. This will prove

that f−1
ess({s}) consists of exactly n elements. To do this, suppose t ∈ f−1

ess({s}) \
f−1({s}). Then by definition of the essential preimage and range, for all ε > 0, we
have µ(f |−1

E (s− ε, s+ ε)) > 0 for every open set E containing t. Again, select an open
Et such that Et ∩ {t1, ..., tn} = ∅. Lemma 2.13 then implies that the f(r) = s for
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almost every r ∈ (f |Et)−1(s− ε, s+ ε). But that would imply that the characteristic
function of the set (f |Et)−1(s − ε, s + ε) is an eigenvector associated with s that
is orthogonal to {t1, ..., tn} which would contradict the fact that dim(Emf (s)) = n.
Thus, f−1

ess({s}) must consist of exactly n points. �

Now that we have built up the necessary machinery, we can begin to prove several
relationships between T = UmσV

† and the multiplication operator mσ. We start
with an easy result.

Theorem 2.26 The range of T = UmσV
† fails to be closed if and only if the function

σ is not bounded away from zero.

Proof: By Corollary 2.17 of [10], R(T ) will fail to be closed if and only if T † =
V mσ−1U † is unbounded. T † will fail to be bounded if and only if σ−1 fails to be
essentially bounded. This holds if and only if σ is not bounded away from zero a.e.
This completes the proof. �

Next, we relate the spectrum of a self-adjoint operator A : X → X with SVE A =
V mλV

−1 to the essential range of the function λ. As in the previous chapter, to avoid
ambiguity in our notation, we use Λ(A) to denote the spectrum of A rather than the
traditional σ(A) notation.

Theorem 2.27 If A : X → X is a bounded self-adjoint operator with spectral de-
composition given by A = V mλV

−1, then Ress(λ) = Λ(A).

Proof: Let s ∈ Ress(λ). We will prove that s is an approximate eigenvalue of A
and hence is contained in the spectrum of A. To show this, define

fn = cnχλ−1(s− 1
n
,s+ 1

n)

where χE denotes the characteristic function for the set E and cn is a normalization
constant such that ‖fn‖L2(M) = 1. It needs to be noted that λ−1

(
s− 1

n
, s+ 1

n

)
is not

well defined because λ can be altered on a set of measure zero. However, χλ−1(s− 1
n
,s+ 1

n)
is well defined in L2(M). Note that it is possible to find a normalization cn because
s ∈ Ress(λ) and hence χλ−1(s− 1

n
,s+ 1

n) 6= 0 in L2(M). We then define the sequence

{xn} ⊂ X by xn = V fn. Note that ‖xn‖X = 1 for all n because V is an isometry.
Then

‖Axn − sxn‖2
X = ‖V mλV

−1xn − sxn‖2
X = ‖V mλV

−1V fn − sV fn‖2
X

= ‖mλfn − sfn‖2
L2(M)

=

∫
((λ− s)fn)2 dµ.
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We then note that the support of this integrand is λ−1
(
s− 1

n
, s+ 1

n

)
, and hence

|λ− s| ≤ 1
n
. This allows us to conclude that∫

((λ− s)fn)2 dµ ≤ 1

n2

∫
f 2
n dµ =

1

n2
→ 0 as n→∞.

Thus, there exists a sequence {xn} ⊂ X with ‖xn‖X = 1 for all n such that
‖Axn − sxn‖X → 0, which means that s is an approximate eigenvalue of A and is
hence contained in the spectrum of A. Thus, Ress(λ) ⊂ Λ(A).

Conversely, suppose s /∈ Ress(λ). Then there exists an ε > 0 such that

µ(λ−1(s− ε, s+ ε)) = 0.

This means that λ is bounded away from s almost everywhere; that is, |λ−s| ≥ ε a.e..
Thus, the operator A − sI = V m[λ − s]V −1 is a composition of invertible operators
and hence, is invertible. It will have an inverse of the form

(A− sI)−1 = V m

[
1

λ− s

]
V −1.

It follows that s is not contained in the spectrum of A, and the proof is complete. �

Corollary 2.28 If T : X → Y is a bounded operator with singular value expansion
given by T = UmσV

†, then Ress(σ) = {s : s2 ∈ Λ(T ∗T )}.

Proof: Apply Theorem 2.27 to the self-adjoint operator T ∗T to obtain Ress(σ
2) =

Λ(T ∗T ). By the construction of the function σ, this means Ress(σ) = {s : s2 ∈
Λ(T ∗T )}. �

We now prove the main result of this chapter, giving conditions on the multiplication
operator mσ that guarantee that T = UmσV

† is compact. We start with the self-
adjoint case.

Theorem 2.29 Let A : X → X be a bounded self-adjoint linear operator with spectral
decomposition A = V mλV

−1. Then A is compact if and only if one of the following
is true.

1. Ress(λ) forms a sequence of nonzero numbers converging to zero (along with zero)
and for each nonzero s ∈ Ress(λ) the set λ−1

ess({s}) is finite. Or

2. Ress(λ) is a finite set of nonnegative numbers and for each s ∈ Ress(λ) the set
λ−1
ess({s}) is finite.

Proof: Suppose A is compact. Then by Theorem 1.5, Λ(A) consists of either a
finite collection of nonnegative numbers or a sequence of positive real numbers that
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converge to zero (along with zero itself). Corollary 2.28 implies that Ress(λ) must
also have this property.

Now let s be a nonzero element in Ress(λ). Because A is compact, s must be an
eigenvalue of A with finite dimensional eigenspace. Lemma 2.25 then implies that
λ−1
ess({s}) must be finite.

To prove the converse, suppose for every s ∈ Ress(λ), the set λ−1
ess({s}) is finite. Then

the set λ−1
ess(Ress(λ)) is a countable collection {en} of values in M , each en is an

isolated point of M (because M is Hausdorff) and thus µ({en}) > 0, and χ{en} is an
eigenvector for mλ with eigenvalue λn = λ(en).

Also by Lemma 2.11, the set M \ λ−1
ess(Ress(λ)) must have measure zero. This means

we may define every function f in L2(M) on the set {en}. That is, we may write

f =
∑
n

f(en)χ{en}

and also
mλf =

∑
n

λnf(en)χ{en} =
∑
n

λn〈f, χ{en}〉L2(M)χ{en}.

Therefore,

mλ =
∑
n

λnχ{en} ⊗ χ{en}

where by assumption, λn is either a finite set of nonnegative values or else a sequence
of positive numbers satisfying λn → 0. This implies that mλ is compact and thus,
that A = V mλV

−1 is also compact. �

We can now easily prove the non-self-adjoint version of this theorem.

Corollary 2.30 Let T : X → Y be a bounded linear operator with singular value
expansion T = UmσV

†. Then T is compact if and only if one of the following is true.
1. Ress(σ) forms a sequence of nonzero numbers converging to zero (along with zero)
and for each nonzero s ∈ Ress(σ) the set σ−1

ess({s}) is finite. Or

2. Ress(σ) is a finite set of nonnegative numbers and for each nonzero s ∈ Ress(σ)
the set σ−1

ess({s}) is finite.

Proof: Apply Theorem 2.29 to the self-adjoint operator T ∗T = V mσ2V †. Then the
given properties hold for the function σ2 : M → R and thus must also hold for the
positive square root σ : M → R. �

2.5 Concluding remarks

We conclude this chapter by first discussing the ambiguity in defining the singular
values of a bounded linear operator T that does not occur when the operator is a
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matrix, or is compact.

The singular values of a matrix A ∈ Rm×n are familiar to the reader. There are two
ways to conceptualize them. The first is to think of them as the square roots of the
eigenvalues of ATA. The second approach is to employ the min-max theorem given
below.

Theorem 2.31 Let A ∈ Rm×n be a matrix with singular values σ1 ≥ σ2 ≥ ... ≥ σn.
Then

σk = min
S⊂Rn

dim(S)=n−k+1

max
x∈S
‖x‖=1

‖Ax‖ (2.9)

and
σk = max

S⊂Rn
dim(S)=k

min
x∈S
‖x‖=1

‖Ax‖, (2.10)

where ‖ · ‖ denotes the Euclidean norm.

Similarly, if T : X → Y is a compact operator, one can think of the singular values
for T as the square roots of the elements in the spectrum of T ∗T or one could use the
following theorem, which is very similar to Theorem 2.31.

Theorem 2.32 Let T : X → Y be a compact operator with singular values σ1 ≥
σ2 ≥ σ3 ≥ .... Then

σk = inf
S⊂X

dim(S)=k−1

sup
x∈S⊥
‖x‖X=1

‖Tx‖Y (2.11)

and
σk = sup

S⊂X
dim(S)=k

inf
x∈S
‖x‖X=1

‖Tx‖Y (2.12)

For the matrix and compact operator cases, these two approaches will each yield the
same set of values we called the singular values of the operator. However, when we
move to the more general, bounded operator case, the two approaches do not produce
the same values. Consider the following example.

Example 2.33 Let M = [0, 1] ∪ {2, 3} and define the measure space (M,A, µ) with
µ being Lebesgue measure on [0, 1] and counting measure on {2, 3}. Let T : L2(M)→
L2(M) be defined by (Tf)(t) = tf(t) for each f ∈ L2(M).

We will now determine the singular values of the operator T using the two approaches
we discussed earlier. It is not hard to see that the spectrum of T ∗T = T 2 is the set
[0, 1] ∪ {4, 9}. Taking the square roots of each value, we obtain the set [0, 1] ∪ {2, 3}.
However, if we attempt to find the singular values using equations (2.11) or (2.12),
we would find the values λ1 = 3, λ2 = 2, and then λn = 1 for n ≥ 3. Thus, the two
approaches for finding singular values of an operator do not produce the same set of
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values in the general setting where T is a bounded linear operator; in particular when
the continuous or residual spectrum of the operator is nonempty.

The example above illustrates that there is not a clear definition of singular values
for a bounded linear operator. But if one wanted to choose one, we would argue that
the essential range Ress(σ), rather than the min-max theorems, would be the more
useful definition. For one, the set Ress(σ) is larger than the set one obtains from the
min-max theorems. In addition, if Ress(σ) is not bounded away from zero, then R(T )
will fail to be closed and Tx = y is an ill-posed problem. The min-max principle may
not reveal that about T .

The last thing we will discuss in this chapter are some potential objections to our
definition of the essential preimage. Our ultimate goal in this chapter was to derive
results like the ones found in Theorem 2.29 and Corollary 2.30. Our definition of
essential preimage was useful in that it allowed us to accomplish this. But whether
or not our definition for the essential preimage is useful in all contexts is another
question.

For instance, in Lemma 2.15 we proved that µ(f−1(S) \ f−1
ess(S)) = 0, but we never

proved that µ(f−1
ess(S) \ f−1(S)) = 0. The reason for this is because f−1

ess(S) \ f−1(S)
need not be a measure zero set. Consider the following example.

Example 2.34 Let M = [0, 1] and (M,A, µ) be a measure space with µ being
Lebesgue measure on (0, 1] and counting measure on {0}. Now define the function
f : M → R by

f(x) =

{
0 x = 0

1 x > 0.

Using our definition of the essential preimage, we find that f−1
ess({1}) = [0, 1]. Then

because f−1({1}) = (0, 1], we have

f−1
ess({1}) \ f−1({1}) = {0}

which is a set of positive measure. In addition, µ(f−1
ess({1})) = 2 and µ(f−1({1})) = 1.

This example illustrates a potentially undesirable property of our definition of the
essential preimage. It also raises the following question: is it possible to produce a
definition of essential preimage where f−1

ess(S) and f−1(S) are the same save for a set
of measure zero? Producing a robust definition of the essential preimage (if there is
one to be found) is a potential topic of future study.
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Chapter 3

Tikhonov regularization

3.1 Introduction

Tikhonov regularization is a popular regularization method for ill-posed problems. In
[14], Groetsch proves many of the standard results regarding Tikhonov regularization.
Some of his proofs rely on the singular value expansion (SVE) of a compact opera-
tor. In [10], Gockenbach derives many of the usual Tikhonov regularization results
without relying on the SVE at all. In this chapter, we demonstrate that the SVE of
a bounded (not necessarily compact) operator may be used to derive many Tikhonov
regularization results similar to those found in [14] or [10].

Before we begin, we recall the setting of Tikhonov regularization. We are interested
in equations of the form Tx = y, where T is a bounded linear operator between two
real, separable Hilbert spaces X and Y . In particular, we are interested in the case in
which R(T ) fails to be closed. When this holds, solving Tx = y for x is an ill-posed
problem because the solution x to Tx = y (if it exists) does not depend continuously
on the data y. To solve such an ill-posed problem, we employ a regularization method
to compute a stable estimate of T †y, where T † denotes the generalized inverse of T
and is an unbounded operator when R(T ) is not closed.

This chapter will be similar in structure to pages 15−52 of [14]. In Section 3.2, we will
derive a condition that guarantees the convergence of regularization methods to the
solution of Tx = y. We will discuss convergence rates of these methods in Section 3.3.
The case of inexact data will then be discussed in Section 3.4. We discuss Tikhonov
regularization as a specific instance of these methods in Section 3.5. In Section 3.6
on converse results, we will prove that the convergence rates from Section 3.3 are, in
fact, optimal. Finally, we will end the chapter by exploring the discrepancy principle
in Section 3.7, which is based on the idea that if the error in the data y is bounded
by some constant δ, then we will only try to make the residual ‖Tx − y‖Y as small
as δ.
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3.2 Convergence

One way to approach an inverse problem of the form Tx = y is to construct operators
Sλ : Y → X, λ > 0, that are bounded and approximate the generalized inverse T †

(which, when R(T ) fails to be closed, is unbounded). These operators Sλ should
satisfy

Sλy → T †y as λ→ 0+ for each y ∈ D(T †) = R(T )⊕R(T )⊥.

For now, we will assume that y is known exactly. The vector x0,y = T †y satisfies
T ∗Tx0,y = T ∗y and x0,y ∈ N (T )⊥. Therefore, we attempt to approximate x0,y with

Sλy = Rλ(T
∗T )T ∗y,

where Rλ is a family of continuous functions defined on [0, ‖T‖2] (which contains the
spectrum of T ∗T ) that approximate f(t) = 1/t. That is, Rλ(t)→ 1/t as λ→ 0+ for
t > 0. Using the SVE, the expression Rλ(T

∗T )T ∗ can be written as

Rλ(T
∗T )T ∗ = V m

[
Rλ(σ

2)σ
]
U †.

Notice from equation (1.10), T † = V mσ−1U †, which underscores the requirement for
Rλ(σ

2) to converge pointwise to 1/σ2. We now prove the following convergence result.

Theorem 3.1 Suppose {Rλ}λ>0 is a family of continuous real-valued functions de-
fined on [0, ‖T‖2] that satisfies

Rλ(t)→
1

t
as λ→ 0+ for each t ∈ (0, ‖T‖2]. (3.1)

In addition, suppose there exists C > 0 such that

|tRλ(t)| ≤ C for each t ∈ (0, ‖T‖2], and for each λ ≥ 0. (3.2)

Then Rλ(T
∗T )T ∗y → T †y as λ→ 0+ for each y ∈ D(T †).

Proof: Let y ∈ D(T †) be given and define y = projR(T )y. Note that T ∗y = T ∗y

because R(T )⊥ = N (T ∗). We have Rλ(T
∗T )T ∗y = V m [Rλ(σ

2)σ]U †y and T †y =
V m [σ−1]U †y. Therefore,

‖Rλ(T
∗T )T ∗y − T †y‖2

X =
∥∥V m [Rλ(σ

2)σ
]
U †y − V m

[
σ−1
]
U †y

∥∥2

X

=
∥∥m [Rλ(σ

2)σ − σ−1
]
U †y

∥∥2

L2(M)

=

∫ (
Rλ(σ

2)σ2 − 1
)2
f

2
dµ,
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where we have defined f = m [σ−1]U †y. We have f ∈ L2(M) by the following
reasoning. We know y ∈ D(T †) which implies that y ∈ R(T ). Then by Lemma
1.31, we know y = Us for some s ∈ S (where S is defined as in (1.7)) and hence,
U †y = U †Us = s ∈ S. Thus, f ∈ L2(M).

Next, Rλ(σ
2)σ2 is uniformly bounded by (3.2) and thus ‖ (Rλ(σ

2)σ2 − 1) f‖2
L2(M) ≤

(C + 1)2‖f‖2
L2(M). Also, (Rλ(σ

2)σ2 − 1)
2
f

2
converges to zero pointwise. So then

‖Rλ(T
∗T )T ∗y − T †y‖2

X =

∫ (
Rλ(σ

2)σ2 − 1
)2
f

2
dµ→ 0

by the dominated convergence theorem. �

This theorem demonstrates that Rλ(T
∗T )T ∗ converges pointwise to T † on D(T †) =

R(T )⊕R(T )⊥. When R(T ) fails to be closed, D(T †) is a proper dense subset of Y
and T † is unbounded. The next lemma and theorem demonstrate that if y /∈ D(T †),
then Rλ(T

∗T )T ∗y is not even weakly convergent.

Lemma 3.2 Let y ∈ R(T ). Then TRλ(T
∗T )T ∗y → y as λ→∞.

Proof: We start by noting

‖ (TRλ(T
∗T )T ∗ − I) y‖Y = ‖Um

[
Rλ(σ

2)σ2 − 1
]
U †y‖Y

= ‖m
[
Rλ(σ

2)σ2 − 1
]
U †y‖L2(M)

=

∫ (
Rλ(σ

2)σ2 − 1
)2

(U †y)2 dµ.

Then by equations (3.1) and (3.2), there exists a constant C such that

(Rλ(σ
2)σ2 − 1) ≤ (C + 1).

By applying the dominated convergence theorem, the above norm goes to zero. �

Theorem 3.3 If y /∈ D(T †), then for any sequence λn → 0, the sequence
{Rλn(T ∗T )T ∗y} is not weakly convergent.

Proof: We will prove the contrapositive. We again use y to denote the orthogonal
projection of y onto R(T ). Suppose there exists a sequence λn → 0 such that

Rλn(T ∗T )T ∗y = Rλn(T ∗T )T ∗y → z ∈ X weakly.

Then, because T is a bounded operator, we know

TRλn(T ∗T )T ∗y → Tz weakly
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as well. However, TRλn(T ∗T )T ∗y → y as n → ∞ by Lemma 3.2. Thus,
TRλn(T ∗T )T ∗y → Tz weakly and TRλn(T ∗T )T ∗y → y strongly. This means that
y = Tz, which implies that y ∈ D(T †). �

Corollary 3.4 If y /∈ D(T †), then lim
λ→0
‖Rλ(T

∗T )T ∗y‖X =∞.

Proof: If the limit does not go to infinity, then there exists {λn} ⊂ (0,∞) such
that λn → 0 and the sequence {Rλn(T ∗T )T ∗y} is bounded. But that would imply
that {Rλn(T ∗T )T ∗y} has a weakly convergent subsequence. Then by the previous
theorem, y ∈ D(T †). This proves the contrapositive. �

3.3 Convergence rates

In this section, we prove convergence rates for the method discussed in the pre-
vious section given certain conditions. For simplicity, we will use the notation
xλ,y = Rλ(T

∗T )T ∗y to denote the approximation of T †y and x0,y to denote T †y itself.
In general, we can not say anything about the rate of convergence of xλ,y → x0,y.
However, if we make the assumption that x0,y is contained in R((T ∗T )ν) for some
ν > 0, then we can derive a rate of convergence.

Before we prove this, we first note that the condition x0,y ∈ R((T ∗T )ν) is equivalent

to y ∈ R(T (T ∗T )ν), where y denotes the projection of y onto R(T ). Groetsch (in
[14]) proves the convergence rate we are about to prove assuming y ∈ R(T (T ∗T )ν).
We will prove the same convergence rate assuming x0,y ∈ R((T ∗T )ν).

Lemma 3.5 x0,y ∈ R((T ∗T )ν) if and only if y ∈ R(T (T ∗T )ν).

Proof: If x0,y ∈ R((T ∗T )ν), then obviously y = Tx0,y ∈ R(T (T ∗T )ν). To prove the
converse, we first note that R((T ∗T )ν) ⊂ N (T )⊥ by the following reasoning:

x ∈ R((T ∗T )ν) =⇒ x = (T ∗T )νw for some w ∈ X
=⇒ x = V m

[
σ2ν
]
V †w for some w ∈ X

=⇒ x ∈ R(V ) = N (T )⊥.

Now suppose that y ∈ R(T (T ∗T )ν). Then Tx0,y = y = T (T ∗T )νw and hence x0,y −
(T ∗T )νw ∈ N (T ). But we know x0,y ∈ N (T )⊥ and (T ∗T )νw ∈ N (T )⊥ so we conclude
that x0,y− (T ∗T )νw ∈ N (T )∩N (T )⊥ = {0}. Thus x0,y = (T ∗T )νw, which completes
the proof. �

We will now prove a convergence rate assuming the condition

tν |1− tRλ(t)| ≤ φ(λ, ν) for all t ∈ (0, ‖T‖2], ν > 0 (3.3)

44



where φ(λ, ν) is called a rate of convergence function and has the property that
φ(λ, ν)→ 0 as λ→ 0 for every ν > 0.

Theorem 3.6 If (3.3) holds and x0,y = (T ∗T )νw for ν > 0 and some w ∈ X, then

‖xλ,y − x0,y‖X ≤ φ(λ, ν)‖w‖X .

Proof: Using the singular value expansion, we obtain

xλ,y − x0,y = V m
[
Rλ(σ

2)σ
]
U †y − V m

[
σ−1
]
U †y = V m

[
Rλ(σ

2)σ − σ−1
]
U †y.

Note that y = Tx0,y = UmσV
†x0,y so the above equation becomes

V m
[
Rλ(σ

2)σ − σ−1
]
mσV

†x0,y = V m
[
Rλ(σ

2)σ2 − 1
]
V †x0,y.

If x0,y = (T ∗T )νw = V m[σ2ν ]V †w for some w ∈ N (T )⊥, the above expression can be
simplified further to

V m
[
Rλ(σ

2)σ2 − 1
]
m[σ2ν ]V †w = V m

[(
Rλ(σ

2)σ2 − 1
)
σ2ν
]
V †w.

We conclude that

‖xλ,y − x0,y‖X =
∥∥m [(Rλ(σ

2)σ2 − 1
)
σ2ν
]
V †w

∥∥
L2(M)

≤ φ(λ, ν)‖V †w‖L2(M)

≤ φ(λ, ν)‖w‖X . �

We conclude this section by mentioning an alternative way to conceptualize the con-
dition y = T (T ∗T )νw:

y = T (T ∗T )νw ⇐⇒ y = Um
[
σ2ν+1

]
V †w ⇐⇒ m

[
σ−2ν−1

]
U †y ∈ L2(M)

⇐⇒
∫
σ−4ν−2(U †y)2 dµ <∞.

That is, y ∈ R(T (T ∗T )ν) is equivalent to σ−2ν−1U †y ∈ L2(M).

3.4 Inexact data

The results from the previous sections hold when y is known exactly. In a more
realistic scenario, we do not know the true data, but rather some noisy approximation
of the data. In this section, we will prove a convergence result when the data is not
known exactly.

We will let y∗ denote the exact data and y, some noisy measurement of y∗. We then
assume that ‖y − y∗‖Y < δ for some δ > 0. We compute xλ,y = Rλ(T

∗T )T ∗y (as
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opposed to xλ,y∗ = Rλ(T
∗T )T ∗y∗) and hope for some choice of λ depending on δ, the

solution xλ,y converges to x0,y∗ = T †y∗ as δ → 0. Thus, in addition to determining
a suitable family of functions {Rλ}λ>0, we also must choose a suitable regularization
parameter λ. For now, we will assume λ is chosen based on the value of δ, i.e.
λ = λ(δ). We say that the approximation xλ,y is regular if there is some choice of the
regularization parameter λ in terms of δ such that xλ,y → x0,y∗ as δ → 0.

In this section, we will make use of the equation

xλ,y − x0,y∗ = (xλ,y − xλ,y∗) + (xλ,y∗ − x0,y∗) (3.4)

where the expression in the first set of parentheses is called the perturbation error and
the expression in the second set of parentheses is called the regularization error. Note
that the regularization error was analyzed in the previous section. In this section,
our attention will be devoted to analyzing the perturbation error.

In order to prove our results regarding the perturbation error, we assume there exists
some positive constant C that satisfies equation (3.2). We also define the function

r(λ) = max{|Rλ(t)| : t ∈ [0, ‖T‖2]}. (3.5)

These allow us to prove the following lemmas.

Lemma 3.7 ‖T (xλ,y − xλ,y∗)‖Y ≤ δC.

Proof: First note that

T (xλ,y − xλ,y∗) = TRλ(T
∗T )T ∗(y − y∗) = Um

[
Rλ(σ

2)σ2
]
U †(y − y∗)

which implies

‖T (xλ,y − xλ,y∗)‖Y =
∥∥Um [Rλ(σ

2)σ2
]
U †(y − y∗)

∥∥
Y

=
∥∥m [Rλ(σ

2)σ2
]
U †(y − y∗)

∥∥
L2(M)

≤ C‖U †(y − y∗)‖L2(M) ≤ Cδ.�

Lemma 3.8 ‖xλ,y − xλ,y∗‖ ≤ δ
√
C
√
r(λ).

Proof: We note that

xλ,y − xλ,y∗ = V m
[
Rλ(σ

2)σ
]
U †(y − y∗) = (V mσU

†)Um
[
Rλ(σ

2)
]
U †(y − y∗)

= T ∗Um
[
Rλ(σ

2)
]
U †(y − y∗).
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So then

‖xλ,y − xλ,y∗‖2
X =

〈
Um

[
Rλ(σ

2)
]
U †(y − y∗), T (xλ,y − xλ,y∗)

〉
Y

≤ ‖m
[
Rλ(σ

2)
]
U †(y − y∗)‖L2(M)‖T (xλ,y − xλ,y∗)‖Y

≤ r(λ)‖U †(y − y∗)‖L2(M)Cδ ≤ r(λ)Cδ2,

where Lemma 3.7 has been used in the last step. Taking a square root completes the
proof. �

With these lemmas, we can now prove sufficient conditions for xλ,y to converge to
x0,y∗ . We have to assume that λ : [0,∞) → [0,∞) is a continuous, increasing, and
nonnegative parameter choice depending on δ, with λ(0) = 0.

Theorem 3.9 If y∗ ∈ D(T †), λ(δ) → 0 and δ2r(λ(δ)) → 0 as δ → 0, then xλ,y →
x0,y∗ as δ → 0.

Proof: Note that

‖xλ,y − x0,y∗‖X ≤ ‖xλ,y − xλ,y∗‖X + ‖xλ,y∗ − x0,y∗‖X .

We know that ‖xλ,y∗ − x0,y∗‖X → 0 as δ → 0 by Theorem 3.1 and, applying Lemma
3.8,

‖xλ,y − xλ,y∗‖X ≤ δ
√
C
√
r(λ(δ)),

which goes to zero as δ → 0 provided δ2r(λ(δ)) goes to zero. �

3.5 Tikhonov regularization

In this section, we will apply the results from previous sections to ordinary Tikhonov
regularization. We start by choosing a regularization parameter λ ∈ Z+ and mini-
mizing the functional

Fλ,y(x) = ‖Tx− y‖2
Y + λ‖x‖2

X

over x ∈ X. We first note that the first two derivatives of Fλ,y with respect to x are
given by

∇Fλ,y(x) = 2 (T ∗Tx− T ∗y + λx) ,

∇2Fλ,y(x) = 2(T ∗T + λI).

For λ > 0, the operator ∇2Fλ,y(x) = 2(T ∗T + λI) is positive definite, which implies
that Fλ,y is strictly convex. Thus, Fλ,y has a unique minimizer which can be found
by solving the equation ∇Fλ,y(x) = 0 for x. That is, the minimizer of Fλ,y is given by
xλ,y = (T ∗T + λI)−1T ∗y. We can express xλ,y in the context of the previous section
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by defining
Rλ(t) = (t+ λ)−1.

Then the Tikhonov solution xλ,y = Rλ(T
∗T )T ∗y will have the form

xλ,y = V m

[
σ

σ2 + λ

]
U †y.

We can also derive the form of φ(λ, ν) from equation (3.3) by finding an upper bound
for tν |1− tRλ(t)| for the given function Rλ(t) where t ∈ [0, ‖T‖2]. We have

tν
(

1− t

λ+ t

)
=

tνλ

λ+ t
(3.6)

and we treat this as a function of a single variable t. To find an upper bound, we first
consider the case where ν > 1. Here we can obtain the following simple upper bound

tνλ

λ+ t
<
tνλ

t
= λtν−1 ≤ Cλ

where C = ‖T‖2ν−2. On the other hand, if ν < 1 we can find an upper bound by
maximizing (3.6) using calculus. We find a critical number t = νλ

1−ν and (3.6) is equal
to

νν(1− ν)1−νλν

at this value of t. If ν is between 0 and 1, then νν(1−ν)1−ν ≤ 1 so we let φ(λ, ν) = λν

for ν ∈ (0, 1]. In summary, φ(λ, ν) may be defined by

φ(λ, ν) =

{
λν 0 < ν < 1

Cλ ν ≥ 1.

The above derivation implies (when the data y is known) that first order convergence
is the fastest possible convergence given by these results. In Section 3.6, we will see
that first order convergence is the best possible rate for Tikhonov regularization.

In addition, the constant C from (3.2) is 1 and r(λ) from (3.5) is λ−1. With these
values, we quickly obtain the following convergence results for Tikhonov regulariza-
tion.

Lemma 3.10 Let y ∈ D(T †). If x0,y = T †y ∈ R(T ∗T )ν) for some ν ∈ (0, 1], then

‖xλ,y − x0,y‖X = O(λν).

Proof: This lemma is just a special case of Theorem 3.6. �

The lemma below will allow us to give another convergence condition.
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Lemma 3.11 R((T ∗T )1/2) = R(T ∗).

Proof: Let x ∈ R((T ∗T )1/2). Then x = V mσV
†w for some w ∈ X. Note that U †U

is the identity on L2(M) so x = V mσU
†(UV †w) = T ∗(UV †w) ∈ R(T ∗). Conversely,

if x ∈ R(T ∗), then x = V mσU
†y for some y ∈ Y . Because V †V = I on L2(M), we

have x = V mσV
†(V U †y) = (T ∗T )1/2(V U †y) ∈ R((T ∗T )1/2). �

Corollary 3.12 Let y∗ ∈ D(T †). If x0,y ∈ R(T ∗), then ‖xλ,y − x0,y‖X = O(λ1/2).

Proof: The result follows trivially from the previous two lemmas. �

For the case of inexact data, we again let y∗ denote the true data and y a noisy
approximation of y∗ satisfying ‖y − y∗‖Y ≤ δ for δ > 0. We analyze the convergence
of xλ,y to x0,y∗ using

‖xλ,y − x0,y∗‖X ≤ ‖xλ,y − xλ,y∗‖X + ‖xλ,y∗ − x0,y∗‖X . (3.7)

By Lemma 3.8, we know the perturbation error, ‖xλ,y−xλ,y∗‖X , is bounded by δλ−1/2

and if we assume x0,y∗ ∈ R(T ∗), Corollary 3.12, implies that the regularization error
‖xλ,y∗ − x0,y∗‖X , is bounded by Cλ1/2 for some constant C > 0. Thus, a convergence
rate for Tikhonov regularization can be obtained by choosing λ in such as way as to
minimize the quantity δλ−1/2 + Cλ1/2. Using calculus, it can be shown that λ ∝ δ
will give you such a minimum.

Lemma 3.13 If x0,y∗ ∈ R(T ∗) and λ = mδ for some constant m > 0, then

‖xλ,y − x0.y∗‖X = O(
√
δ).

Proof: The proof follows from (3.7), Lemma 3.8 and Corollary 3.12. �

In a more general setting where we assume x0,y∗ ∈ R((T ∗T )ν), Lemma 3.10 implies
that the regularization error is O(λν) and thus, we can obtain a rate of convergence
by choosing λ to minimize δλ−1/2 + Cλν for some constant C > 0. Using calculus,
choosing λ ∝ δ2/(2ν+1) gives us a minimum.

Lemma 3.14 If x0,y∗ ∈ R((T ∗T )ν) for some ν ∈ (0, 1] and λ = mδ2/(2ν+1), then

‖xλ,y − x0.y∗‖X = O(δ2ν/(2ν+1)).

Proof: This follows from equation (3.7), Lemma 3.8 and Lemma 3.10. �

To conclude this section, we note that when the data is not known exactly, the fastest
possible convergence rate of xλ,y to x0,y∗ given by these lemmas is δ2/3, which occurs
when x0,y∗ ∈ R(T ∗T ) and λ ∼ δ2/3. In the next section we will show this rate is
optimal.
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3.6 Converse results

In the last section we derived a rate of convergence for ordinary Tikhonov regular-
ization. The error ‖xλ,y − x0,y∗‖X was proportional to, at best, δ2/3. This rate turns
out to be the best possible rate of convergence for Tikhonov regularization, as we will
show in this section.

We will first show that the rate at which the regularization error goes to zero, which
we proved in Theorem 3.6, is in fact optimal.

Theorem 3.15 Suppose y ∈ D(T †) and ‖xλ,y − x0,y‖X = o(λ). Then x0,y = 0 and
xλ,y = 0 for all λ.

Proof: Consider
(T ∗T + λI)(xλ,y − x0,y).

We note that V V † is the projection onto R(V ), xλ,y = V m
[

σ
σ2+λ

]
U †y ∈ R(V ), and

x0,y = V m[σ−1]U †y ∈ R(V ). Next note that (T ∗T + λI)xλ,y = T ∗y and also that
T ∗Tx0,y = T ∗y because x0,y is the least squares solution of Tx = y. Thus, we obtain

(T ∗T + λI)(xλ,y − x0,y) = T ∗y − T ∗y − λx0,y = −λx0,y.

This implies that

λ‖x0,y‖ ≤ ‖T ∗T + λI‖‖xλ,y − x0,y‖X ≤ (‖T‖2 + λ)‖xλ,y − x0,y‖X = o(λ).

But the above equation is only possible if x0,y = 0. Now let y denote the projection

of y onto R(T ). Then of course 0 = Tx0,y = y. This implies

xλ,y = (T ∗T + λI)−1T ∗y = (T ∗T + λI)−1T ∗y = 0

which completes the proof.�

Theorem 3.16 If y ∈ D(T †) and ‖xλ,y − x0,y‖X = O(λ), then x0,y ∈ R(T ∗T ).

Proof: Again, let y denote projR(T )y. Note that x0,y = V mσ−1U †y and xλ,y =

V m
[

σ
σ2+λ

]
U †y. Therefore,

‖xλ,y − x0,y‖2
X = ‖V m

[
σ

σ2 + λ
− 1

σ

]
U †y‖2

X = λ2

∫
σ−2(σ2 + λ)−2(U †y)2 dµ

But because ‖xλ,y − x0,y‖X = O(λ) by assumption, we know∫
σ−2(σ2 + λ)−2(U †y)2 dµ =

∫
σ−6(1 + λσ−2)−2(U †y)2 dµ
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is bounded as λ→ 0. Note that the expression (1 + λσ−2)−2 increases as λ decreases
and converges pointwise to 1 as λ → 0, so it follows by the monotone convergence
theorem. ∫

σ−6(U †y)2 dµ <∞.

Thus, mσ−3U †y ∈ L2(M). For convenience of notation, let f = mσ−3U †y. Note that
V †V is the identity on L2(M), so mσ−3U †y = V †V f . This means y = Umσ3V †(V f) ∈
R(TT ∗T ). Thus, x0,y = T †y = V mσ−1U †

(
Umσ3V †(V f)

)
= V mσ2V †(V f) =

T ∗T (V f) ∈ R(T ∗T ). This completes the proof. �

We can also prove converse results for inexact data. Let y∗ and y be defined as before
and assume λ : [0,∞) → [0,∞) is a continuous, strictly increasing function with
λ(0) = 0.

Lemma 3.17 If x0,y∗ 6= 0, then λ(δ) = O(‖x0,y∗ − xλ(δ),y‖X) +O(δ).

Proof: For convenience, we write λ for λ(δ) throughout this proof. Note that

(T ∗T + λI)(x0,y∗ − xλ,y) = T ∗Tx0,y∗ + λx0,y∗ − (T ∗T + λI)(T ∗T + λI)−1T ∗y

= λx0,y∗ + T ∗(Tx0,y∗ − y)

= λx0,y∗ + T ∗(y∗ − y),

where y∗ denotes the projection of y∗ onto R(T ). Thus,

‖λx0,y∗ + T ∗(y∗ − y)‖X = ‖(T ∗T + λI)(x0,y∗ − xλ,y)‖X .

By the reverse triangle inequality, we have

λ‖x0,y∗‖X − ‖T ∗(y∗ − y)‖X ≤ ‖(T ∗T + λI)(x0,y∗ − xλ,y)‖X .

From this, we obtain,

λ‖x0,y∗‖X ≤ ‖(T ∗T + λI)(x0,y∗ − xλ,y)‖X + ‖T ∗(y∗ − y)‖X
≤ (‖T‖2 + λ)‖x0,y∗ − xλ,y‖X + ‖T ∗‖‖y∗ − y‖Y
≤ (‖T‖2 + λ)‖x0,y∗ − xλ,y‖X + ‖T ∗‖δ.

The result follows after division by ‖x0,y∗‖X . �

We will use this lemma to prove the following theorem.

Theorem 3.18 Suppose R(T ) fails to be closed. If ‖x0,y∗−xλ,yn‖X = o(δ
2/3
n ) for any

sequence {yn} ⊂ Y such that yn → y∗ and ‖y∗ − yn‖Y ≤ δn for some sequence {δn}
with δn → 0, then x0,y∗ = 0.

Proof: By Theorem 2.26, the range of T failing to be closed implies there exists a
sequence {sn} ⊂ Ress(σ) such that sn → 0. Define {δn}∞n=1 by δn = s3

n. We note
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that σ
σ2+λ

is a continuous function in σ for each fixed λ. So for all n ∈ Z+, there

exists some εn > 0 such that if |sn − σ| ≤ εn, then
∣∣∣ σ
σ2+λ

− sn
s2n+λ

∣∣∣ < 1
n
. This condition

implies (by the reverse triangle inequality) that for all σ ∈ (sn − εn, sn + εn),∣∣∣∣ σ

σ2 + λ

∣∣∣∣ ≥ ∣∣∣∣ sn
s2
n + λ

∣∣∣∣− 1

n
and

∣∣∣∣ σ

σ2 + λ

∣∣∣∣ ≤ ∣∣∣∣ sn
s2
n + λ

∣∣∣∣+
1

n
. (3.8)

Now define fn = cnχσ−1(sn−εn,sn+εn), where cn is a normalization constant chosen so
that ‖fn‖L2(M) = 1. Such a constant is possible because sn ∈ Ress(σ) and thus,
χσ−1(sn−εn,sn+εn) 6= 0 in L2(M). Then define the sequence {yn} ⊂ Y by

yn = y∗ − δnUfn.

It follows that ‖y∗ − yn‖Y ≤ δn. Now let λn = λ(δn). Then

x0,y∗ − xλn,yn = x0,y∗ − xλn,y∗ + xλn,y∗ − xλn,yn
= (x0,y∗ − xλn,y∗) + (T ∗T + λnI)−1T ∗(y∗ − yn)

= (x0,y∗ − xλn,y∗) + V m

[
σ

σ2 + λn

]
U †(δnUfn)

= (x0,y∗ − xλn,y∗) + δnV m

[
σ

σ2 + λn

]
fn.

Therefore,

‖x0,y∗ − xλn,yn‖2
X = ‖x0,y∗ − xλn,y∗‖2

X + 2δn

〈
x0,y∗ − xλn,y∗ , V m

[
σ

σ2 + λn

]
fn

〉
X

+ δ2
n

∫ (
σ

σ2 + λn

)2

f 2
n dµ

≥ −2δn‖x0,y∗ − xλn,y∗‖X
∥∥∥∥m [ σ

σ2 + λn

]
fn

∥∥∥∥
L2(M)

+ δ2
n

∫ (
σ

σ2 + λn

)2

f 2
n dµ,

where we have used the Cauchy-Schwartz inequality and the fact that V is an isometry.
We then use the fact that the two L2(M) integrals above are supported on the set
σ−1(sn − εn, sn + εn), which implies

‖x0,y∗ − xλn,yn‖2
X ≥ −2δn‖x0,y∗ − xλn,y∗‖X

(
sn

s2
n + λn

+
1

n

)
+ δ2

n

(
sn

s2
n + λn

− 1

n

)2

,
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where we’ve used the fact that ‖fn‖L2(M) = 1. By definition sn = δ
1/3
n ; thus

‖x0,y∗ − xλn,yn‖2
X ≥ −2δn‖x0,y∗ − xλn,y∗‖X

(
δ

1/3
n

δ
2/3
n + λn

+
1

n

)
+ δ2

n

(
δ

1/3
n

δ
2/3
n + λn

− 1

n

)2

.

Multiplication by δ
−4/3
n gives us

δ−4/3
n ‖x0,y∗ − xλn,yn‖2

X ≥ −2‖x0,y∗ − xλn,y∗‖X

(
1

δ
2/3
n + λn

+
δ
−1/3
n

n

)

+

(
δ

2/3
n

δ
2/3
n + λn

− δ
1/3
n

n

)2

= −2‖x0,y∗ − xλn,y∗‖X

(
δ
−2/3
n

1 + λnδ
−2/3
n

+
δ
−1/3
n

n

)

+

(
1

1 + λnδ
−2/3
n

− δ
1/3
n

n

)2

≥ −2δ−2/3
n ‖x0,y∗ − xλn,y∗‖X

(
1

1 + λnδ
−2/3
n

+
1

n

)

+

(
1

1 + λnδ
−2/3
n

− δ
1/3
n

n

)2

≥ −4δ−2/3
n ‖x0,y∗ − xλn,y∗‖X

+

(
1

1 + λnδ
−2/3
n

− δ
1/3
n

n

)2

,

where we have used the fact that δ
−1/3
n ≤ δ

−2/3
n for small δn, also 1

1+λnδ
−2/3
n

< 1 and
1
n
< 1. Now assume that x0,y∗ 6= 0 and consider the equation

δ−4/3
n ‖x0,y∗ − xλn,yn‖2

X ≥ −4δ−2/3
n ‖x0,y∗ − xλn,y∗‖X +

(
1

1 + λnδ
−2/3
n

− δ
1/3
n

n

)2

. (3.9)

We will compute the limit supremum of both sides of the inequality in (3.9) and
obtain a contradiction. If we consider the left side of (3.9), we obtain,

δ−4/3
n ‖x0,y∗ − xλn,yn‖2

X → 0

by assumption. We now consider both terms on the right side of the inequality in (3.9).
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For the first term, −4δ
−2/3
n ‖x0,y∗ − xλn,y∗‖X , we note that ‖x0,y∗ − xλn,yn‖X = o(δ

2/3
n )

for any yn such that ‖y∗ − yn‖Y ≤ δn. So in particular, it holds for yn = y∗. Thus,

‖x0,y∗ − xλn,y∗‖X = o(δ
2/3
n ) and hence −4δ

−2/3
n ‖x0,y∗ − xλn,y∗‖X → 0 as δn → 0. For

the second term, we know (
1

1 + λnδ
−2/3
n

− δ
1/3
n

n

)2

→ 1

because λnδ
−2/3
n → 0 as δn → 0 (by Lemma 3.17, which uses the fact that x0,y∗ 6= 0).

Thus, the right side of (3.9) converges to 1. This contradiction shows that x0,y∗ = 0.
�

This theorem shows that δ2/3 is in fact the optimal rate of convergence of Tikhonov
regularization with inexact data. Our next theorem is the converse of Lemma 3.14
and shows that the rate δ2/3 will only occur when x0,y∗ ∈ R(T ∗T ).

Theorem 3.19 Suppose λ(δ) = cδ2/3 for some constant c 6= 0. If ‖x0,y∗−xλ(δn),yn‖ =

O(δ
2/3
n ) for any sequence {yn} ⊂ Y such that yn → y∗ and ‖y∗ − yn‖Y ≤ δn for some

sequence {δn} with δn → 0, then x0,y∗ ∈ R(T ∗T ).

Proof: Let {δn} be a sequence with δn → 0 and let λn = cδ
2/3
n . Define yn =(

1 + δn
‖y∗‖Y

)
y∗; then ‖y∗ − yn‖Y = δn for each n ∈ Z+. We have

x0,y∗ − xλn,yn = V m

[
1

σ

]
U †y∗ − V m

[
σ

σ2 + λn

]
U †(1 + δn/‖y∗‖Y )y∗

= V m

[
1

σ
− (1 + δn/‖y∗‖Y )σ

σ2 + λn

]
U †y∗

= V m

[
λ− δnσ2/‖y∗‖Y
σ(σ2 + λn)

]
U †y∗

Thus,

‖x0,y∗ − xλn,yn‖2
X =

∫ (
λ− δnσ2/‖y∗‖Y
σ(σ2 + λn)

)2

(U †y∗)2 dµ

=

∫ (
λ− δnσ2/‖y∗‖Y

1 + λnσ−2

)2

σ−6(U †y∗)2 dµ.

By assumption, there exists a constant M > 0 such that

M ≥ δ−4/3
n ‖x0,y∗ − xλn,yn‖2

X = δ−4/3
n

∫ (
λn − δnσ2/‖y∗‖Y

1 + λnσ−2

)2

σ−6(U †y∗)2 dµ.

54



We then note that λn = cδ
2/3
n , which gives us

M ≥
∫ (

c− δ1/3
n σ2/‖y∗‖Y

1 + cδ
2/3
n σ−2

)2

σ−6(U †y∗)2 dµ.

Now note that the expression
c− δ1/3

n σ2/‖y∗‖Y
1 + cδ

2/3
n σ−2

is such that the numerator increases

as δn → 0 and the denominator decreases as δn → 0. Thus, it must increase mono-
tonically as δn → 0. So we can take the limit as δn → 0 of both sides of the above
expression and apply the monotone convergence theorem to obtain

M ≥ c2

∫
σ−6(U †y∗)2 dµ.

Thus, m[σ−3]U †y∗ = f ∈ L2(M). This implies that y∗ = Um[σ3]V †(V f), where we’ve
used the fact that V †V = I in L2(M). Therefore y∗ ∈ R(TT ∗T ) = R(Umσ3V †) and
hence,

x0,y∗ = T †y∗ = V mσ−1U †(Um[σ3]V †V f) = V m[σ2]V †(V f) = T ∗T (V f).

Thus, x0,y∗ ∈ R(T ∗T ). �

3.7 The discrepancy principle

In this section, we will discuss the discrepancy principle, a method of choosing the
regularization parameter λ based on the noise level δ. We again let y∗ denote the
true data and assume y∗ ∈ R(T ) throughout this section. We consider the problem
Tx = y, where y is a noisy approximation of y∗ satisfying

‖y∗ − y‖Y ≤ δ < ‖y‖Y . (3.10)

The relation ‖y‖Y > δ is reasonable in that if δ ≥ ‖y‖Y , the noise level would be so
high relative to the data y that we couldn’t hope to find a reasonable approximation
to T †y∗ from y. We must assume the noise level is low enough to make some sort of
analysis possible.

The discrepancy principle chooses the parameter λ to satisfy

‖Txλ,y − y‖Y = δ. (3.11)

The main idea behind the discrepancy principle is that if the data satisfies equation
(3.10), then there is no reason to attempt to make the residual ‖Txλ,y − y‖Y any
smaller than δ. That is, the quality of the result can be no better than the quality of
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the input data.

To prove that it is possible to choose δ in this way, we first define the function
dλ,y : Y × [0,∞)→ R+ by

dλ,y = ‖Txλ,y − y‖Y (3.12)

and then prove the following theorem.

Theorem 3.20 Suppose y∗ and y satisfy (3.10). Then the function λ → dλ,y is
continuous, increasing and contains δ in its range.

Proof: We begin by noting that

Txλ,y − y = T (T ∗T + λI)−1T ∗y − y = Um

[
σ2

σ2 + λ

]
U †y − y

= Um

[
σ2

σ2 + λ

]
U †y − UU †y − ŷ,

where ŷ denotes the projection of y onto R(T )⊥ and UU †y is the projection onto
R(U) = R(T ). Thus

Txλ,y − y = Um

[
σ2

σ2 + λ
− 1

]
U †y − ŷ = Um

[
−λ

σ2 + λ

]
U †y − ŷ

and hence,

d2
λ,y = ‖Txλ,y − y‖2

Y =

∥∥∥∥Um [ −λσ2 + λ

]
U †y

∥∥∥∥2

Y

+ ‖ŷ‖2
Y

=

∫ (
λ

σ2 + λ

)2

(U †y)2 dµ+ ‖ŷ‖2
Y ,

where the Pythagorean theorem holds because ŷ ∈ R(T )⊥ = R(U)⊥. The above
expression for dλ,y shows that λ → dλ,y is continuous in λ. Also, the derivative of
λ/(σ2 + λ) with respect to λ is

σ2

(σ2 + λ)2
> 0

which implies that dλ,y also increases with λ. We next note that by the monotone
convergence theorem,

lim
λ→∞

d2
λ,y = ‖U †y‖2

L2(M) + ‖ŷ‖2
Y = ‖UU †y‖2

Y + ‖ŷ‖2
Y = ‖y‖2

Y > δ2

where the last equality comes from the Pythagorean theorem. Now note that y∗ ∈
R(T ) and we can decompose y as y = y + ŷ with y ∈ R(T ) and ŷ ∈ R(T )⊥. Thus,

56



‖y∗ − y‖2
Y = ‖y∗ − y − ŷ‖2

Y = ‖y∗ − y‖2
Y + ‖ŷ‖2

Y . Thus, ‖ŷ‖2
Y ≤ ‖y∗ − y‖2

Y . We now
use the dominated convergence theorem to compute the limit

lim
λ→0

d2
λ,y = ‖ŷ‖2

Y ≤ ‖y∗ − y‖2
Y ≤ δ2.

Thus, λ→ dλ,y defines a continuous, increasing function such that

lim
λ→0

d2
λ,y ≤ δ2 and lim

λ→∞
d2
λ,y > δ2.

Thus, δ must exist in the range of dλ,y. �

We obtain further results by defining the residual

rλ,y = y − Txλ,y. (3.13)

Note that dλ,y = ‖rλ,y‖Y . We also have the relation

T ∗rλ,y = T ∗y − T ∗Txλ,y = V m[σ]U †y − V m
[

σ3

σ2 + λ

]
U †y

= V m

[
σλ

σ2 + λ

]
U †y = λxλ,y.

(3.14)

When we analyze the approximations xλ,y, we are interested in the squared error
between x0,y∗ and xλ,y. Using the above definitions, we find

‖x0,y∗ − xλ,y‖2
X = ‖x0,y∗‖2

X −
2

λ
〈T ∗rλ,y, x0,y∗〉X + ‖xλ,y‖2

X

= ‖x0,y∗‖2
X −

2

λ
〈rλ,y, y∗〉Y + ‖xλ,y‖2

X

= ‖x0,y∗‖2
X −

2

λ
〈rλ,y, y〉Y +

2

λ
〈rλ,y, y∗ − y〉Y + ‖xλ,y‖2

X

≤ Eλ,y

where we’ve used the fact that y∗ ∈ R(T ) and also defined Eλ,y by

Eλ,y = ‖xλ,y‖2
X −

2

λ
〈rλ,y, y〉Y +

2δ

λ
dλ,y + ‖x0,y∗‖2

X . (3.15)

The next theorem will show that the above estimate of the error is minimized when
δ = dλ,y.

Theorem 3.21 If y and y∗ satisfy (3.10), then Eλ,y is a minimum if and only if
dλ,y = δ.

Proof: Note that dλ,y must be positive for all positive λ. To show this, suppose
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rλ,y = y − Txλ,y = 0 for some λ > 0. Then

xλ,y = (T ∗T + λI)−1T ∗y = (T ∗T + λI)−1T ∗Txλ,y;

applying (T ∗T + λI) to both sides gives us λxλ,y = 0. But then xλ,y = 0 and hence,
y = Txλ,y = 0 also. This means (3.10) will fail to hold, a contradiction. Thus, dλ,y
must be positive for all λ > 0. We now take the derivative of Eλ,y defined in (3.15)
with respect to λ:

d

dλ
(Eλ,y) = 2〈xλ,y, ẋλ,y〉X +

2

λ2
〈rλ,y, y〉Y +

2

λ
〈T ẋλ,y, y〉Y

− 2δ

λ2
dλ,y −

2δ

λdλ,y
〈T ẋλ,y, rλ,y〉Y .

(3.16)

We note that ẋλ,y = −(T ∗T + λI)−2T ∗y and ṙλ,y = −T ẋλ,y. We analyze each of the
above terms in (3.16) in sequence. The first term can be written as

2〈xλ,y, ẋλ,y〉X = −2〈xλ,y, (T ∗T + λI)−1xλ,y〉X

= −2

λ
〈xλ,y, (T ∗T + λI)−1T ∗rλ,y〉X

= −2

λ
〈xλ,y, T ∗(TT ∗ + λI)−1rλ,y〉X

= −2

λ
〈Txλ,y, (TT ∗ + λI)−1rλ,y〉Y ,

where the third equality follows from the SVE of T ∗ and (T ∗T+λI)−1. For the second
term,

2

λ2
〈rλ,y, y〉Y =

2

λ2
〈(TT ∗ + λI)−1rλ,y, (TT

∗ + λI)y〉Y

=
2

λ2
〈(TT ∗ + λI)−1rλ,y, TT

∗y〉Y +
2

λ
〈(TT ∗ + λI)−1rλ,y, y〉Y

=
2

λ2
〈T ∗(TT ∗ + λI)−1rλ,y, T

∗y〉X +
2

λ
〈(TT ∗ + λI)−1rλ,y, y〉Y

=
2

λ2
〈(T ∗T + λI)−1T ∗rλ,y, T

∗y〉X +
2

λ
〈(TT ∗ + λI)−1rλ,y, y〉Y

=
2

λ
〈(T ∗T + λI)−1xλ,y, T

∗y〉X +
2

λ
〈(TT ∗ + λI)−1rλ,y, y〉Y

=
2

λ
‖xλ,y‖2

X +
2

λ
〈(TT ∗ + λI)−1rλ,y, y〉Y ,

where we have used the fact that T ∗rλ,y = λxλ,y. For the third equation:

2

λ
〈T ẋλ,y, y〉Y = −2

λ
〈(T ∗T + λI)−2T ∗y, T ∗y〉X = −2

λ
‖xλ,y‖2

X .
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Thus, if we add the expressions for the first three terms of (3.16), we obtain

2

λ
〈(TT ∗+λI)−1rλ,y, y〉Y −

2

λ
〈Txλ,y, (TT ∗+λI)−1rλ,y〉Y =

2

λ
〈(TT ∗+λI)−1rλ,y, rλ,y〉Y .

The fourth term in (3.16) can be written as

−2δ

λ2
dλ,y = − 2δ

λ2dλ,y
〈rλ,y, rλ,y〉Y

= − 2δ

λ2dλ,y
〈(TT ∗ + λI)−1rλ,y, (TT

∗ + λI)rλ,y〉Y

= − 2δ

λ2dλ,y

(
〈(TT ∗ + λI)−1rλ,y, TT

∗rλ,y〉Y + λ〈(TT ∗ + λI)−1rλ,y, rλ,y〉Y
)

= − 2δ

λ2dλ,y

(
〈T ∗(TT ∗ + λI)−1rλ,y, T

∗rλ,y〉X + λ〈(TT ∗ + λI)−1rλ,y, rλ,y〉Y
)

= − 2δ

λdλ,y

(
〈T ∗(TT ∗ + λI)−1rλ,y, xλ,y〉X + 〈(TT ∗ + λI)−1rλ,y, rλ,y〉Y

)
= − 2δ

λdλ,y

(
〈(TT ∗ + λI)−1rλ,y, Txλ,y〉X + 〈(TT ∗ + λI)−1rλ,y, rλ,y〉Y

)
.

Lastly, the fifth term in (3.16) is

− 2δ

λdλ,y
〈T ẋλ,y, rλ,y〉Y = − 2δ

λdλ,y
〈ẋλ,y, T ∗rλ,y〉X

= − 2δ

dλ,y
〈ẋλ,y, xλ,y〉X

=
2δ

λdλ,y
〈Txλ,y, (TT ∗ + λI)−1rλ,y〉Y ,

where the last step was done by copying our work on the first expression of (3.16).
Thus, when we add the expressions for all five terms to gether, we obtain

d

dλ
(Eλ,y) =

2

λ

(
1− δ

dλ,y

)∥∥(TT ∗ + λI)−1/2rλ,y
∥∥2

Y
. (3.17)

We note that the norm in the above expression must be positive for all λ > 0. If
the norm was equal to zero, then rλ,y = 0 for some λ > 0 and we would obtain a
contradiction as we did earlier in the proof. Now note that in the proof of Theorem
3.20, we proved that dλ,y increases as λ increases. Thus, (3.17) tells us d

dλ
(Eλ,y) < 0

for dλ,y < δ and d
dλ

(Eλ,y) > 0 for dλ,y > δ. Thus, Eλ,y is minimized if and only if
δ = dλ,y. �

We may now prove the convergence of xλ,y to x0,y∗ , given the choice of λ satisfying
the discrepancy principle.
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Theorem 3.22 If y and y∗ satisfy (3.10) and λ = λ(δ) satisfies (3.11), then xλ,y →
x0,y∗ as δ → 0.

Proof: By definition, xλ,y minimizes the functional Fλ,y(x) = ‖Tx− y‖2
Y + λ‖x‖2

X ,
so then

‖rλ,y‖2
Y +λ‖xλ,y‖2

X = Fλ,y(xλ,y) ≤ Fλ,y(x0,y∗) = ‖y∗−y‖2
Y +λ‖x0,y∗‖2

X ≤ δ2+λ‖x0,y∗‖2
X .

But ‖rλ,y‖Y = δ, so we have
‖xλ,y‖X ≤ ‖x0,y∗‖X

for all δ. Thus, for each sequence {δn} converging to 0, there is a subsequence, which
we’ll also denote {δn} and a vector w ∈ X, such that

xλn,y → w weakly,

where λn is defined by λn = λ(δn). We will prove that w = x0,y∗ and xλn,y → w for
all subsequences {δn}.
Because T is a bounded operator,

Txλn,y → Tw weakly.

But ‖Txλn,y − y‖Y = δn → 0 and by (3.10), we know that y → y∗. Thus,

‖Txλn,y − y∗‖Y ≤ ‖Txλn,y − y‖Y + ‖y − y∗‖Y → 0,

and hence Txλn,y → y∗. Therefore, Txλn,y → Tw weakly and Txλn,y → y∗ strongly,
which together imply Tw = y∗. Because xλ,y = (T ∗T + λI)−1T ∗y = T ∗(TT ∗ +

λI)−1y ∈ R(T ∗), it follows that w ∈ R(T ∗) = N (T )⊥. Thus, Tw = y∗ and w is
contained in N (T )⊥. It then follows that w = x0,y∗ and thus

xλn,y → x0,y∗ weakly as n→∞.

Then, because the norm function is weakly lower semi-continuous, as well as the fact
that ‖xλn,y‖X ≤ ‖x0,y∗‖X , we have

‖x0,y∗‖X ≤ lim inf
n→∞

‖xλn,y‖X ≤ lim sup
n→∞

‖xλn,y‖X ≤ ‖x0,y∗‖X .

This implies that ‖xλ,y‖X → ‖x0,y∗‖X . We conclude the proof by noting that weak
convergence along with convergence in norm implies strong convergence. Thus,
xλn,y → x0,y∗ as δn → 0. �

We will now focus on proving convergence rates of xλ,y → x0,y∗ for λ chosen according
to the discrepancy principle.

Theorem 3.23 If λ = λ(δ) satisfies dλ,y = δ, then λ ≤ δ ‖T‖
2

‖y‖Y −δ
.
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Proof: From (3.11), we have

‖y‖Y − δ = ‖y‖Y − ‖Txλ,y − y‖Y ≤ ‖y‖Y + ‖Txλ,y‖ − ‖y‖Y = ‖Txλ,y‖Y

where we have used the reverse triangle inequality. Then (3.14) implies that

‖Txλ,y‖Y ≤ ‖T‖‖xλ,y‖ = ‖T‖‖T
∗rλ,y‖
λ

≤ ‖T‖2‖rλ,y‖
λ

= ‖T‖2 δ

λ

and thus, we have

‖y‖Y − δ ≤ ‖T‖2 δ

λ

and the result follows directly. �

We are now able to prove a convergence rate, assuming x0,y∗ ∈ R(T ∗).

Theorem 3.24 If x0,y∗ ∈ R(T ∗) and λ is chosen by the discrepancy principle, then

‖x0,y∗ − xλ,y‖X = O(
√
δ).

Proof: Let x0,y∗ = T ∗w for some w ∈ Y . Then, using our assumption that y∗ is in
R(T ), we have Tx0,y∗ = y∗. Therefore,

‖xλ,y − x0,y∗‖2
X = ‖xλ,y‖2

X − 2〈xλ,y, x0,y∗〉X + ‖x0,y∗‖X
≤ 2

(
‖x0,y∗‖2

X − 〈xλ,y, x0,y∗〉X
)

= 2〈x0,y∗ − xλ,y, T ∗w〉X
= 2〈Tx0,y∗ − Txλ,y, w〉Y
= 2〈y∗ − y, w〉Y + 2〈y − Txλ,y, w〉Y
≤ 2‖y∗ − y‖Y ‖w‖Y + 2‖y − Txλ,y‖Y ‖w‖Y
≤ 4δ‖w‖Y ,

where we used the fact that ‖y − Txλ,y‖Y = δ in the last step above. �

Next, we prove that this rate of convergence cannot be improved upon except in the
trivial case.

Theorem 3.25 If λ is chosen by the discrepancy principle and ‖xλ,y − x0,y∗‖X =

o(
√
δ) for all y and y∗ satisfying (3.10), then R(T ) is closed.

Proof: Suppose R(T ) fails to be closed but ‖xλ,y − x0,y∗‖X = o(
√
δ). Then by

Theorem 2.26, there exists a strictly decreasing sequence {sn} ⊂ Ress(σ) such that
sn → 0. Let δn = s2

n and λn denote the parameter chosen by the discrepancy principle.
We then choose a sequence {εn} that satisfies the following properties. Each εn for
n > 1, must be small enough so that (s1 − ε1, s1 + ε1) ∩ (sn − εn, sn + εn) = ∅. Note
also that the function σ → σ

σ2+λn
is continuous in σ for each fixed λn. So we also

61



choose εn for each n ∈ Z+ so that if |sn − σ| < εn, then
∣∣∣ σ
σ2+λn

− sn
s2n+λn

∣∣∣ < 1
n

or, by

the triangle inequality, σ
σ2+λn

> sn
s2n+λn

− 1
n
.

We now define
fn = cnχσ−1(sn−εn,sn+εn)

where cn is a normalization constant such that ‖fn‖L2(M) = 1. Our requirement that
(s1− ε1, s1 + ε1)∩ (sn− εn, sn + εn) = ∅ implies that f1 will be orthogonal to each fn.
We also define y∗ = Uf1 and yn = y∗ + δnUfn. Then ‖y∗ − yn‖Y = δn ≤ ‖yn‖Y . It
follows that

‖xλn,yn − x0,y∗‖2
X =

∥∥∥∥V m [ σ

σ2 + λn

]
f1 − V m[σ−1]f1 + δnV m

[
σ

σ2 + λn

]
fn

∥∥∥∥2

X

=

∫ (
λn

σ(σ2 + λn)

)2

f 2
1 dµ+ δ2

n

∫ (
σ

σ2 + λn

)2

f 2
n dµ

≥ δ2
n

(
sn

s2
n + λn

− 1

n

)2 ∫
f 2
n dµ

≥
( √

δn
1 + λnδ−1

n

− δn
n

)2

,

where the second equality follows from the orthogonality of f1 and fn and the first
inequality follows from the fact that the above integrals are supported only on the
set σ−1(sn − εn, sn + εn). The last inequality follows from the equation δn = s2

n. By
hypothesis, we know that

√
δn

1 + λnδ−1
n

− δn
n

= o(
√
δn).

But this will only hold if λnδ
−1
n → ∞ as n → ∞. But by Theorem 3.23, we know

that

λnδ
−1
n ≤

‖T‖2

‖yn‖Y − δn
≤ ‖T‖2√

1 + δ2
n − δn

→ ‖T‖2 as n→∞

where we used the fact that

‖yn‖2
Y = ‖f1 + δnfn‖2

L2(M) = 1 + δ2
n + 2δn〈f1, fn〉L2(M) ≥ 1 + δ2

n.

This contradiction completes the proof. �
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Chapter 4

Approximating the SVE of a
compact operator

This chapter is an expanded version of our paper [6] that has been accepted for
publication in the SIAM Journal on Numerical Analysis (SINUM). Several proofs
that were cut out of the paper for economy of space are included here.

4.1 Introduction

The singular value expansion (SVE) of a compact linear operator T : X → Y , where
X and Y are separable Hilbert spaces, enables a straightforward analysis of several re-
lated problems: computing the generalized inverse T † of T , understanding the inverse
problem Tx = y (given y ∈ Y , estimate x ∈ X), regularizing the inverse problem
using Tikhonov regularization or another scheme, and so forth. Although the SVE
is used mostly for analysis, it is employed in certain computational schemes, most
notably truncated singular value expansion (TSVE) regularization. In this chapter,
we analyze general schemes for approximating the singular values and vectors of a
compact operator.

The SVE and its analysis have a long history; in the context of integral equations,
this history dates from 1907 [25]. (For even earlier work, the reader can consult
Stewart’s brief history of the SVD [27].) In addition to deriving the basic properties
of the SVE, much of the work focused on clarifying the sense in which the kernel of
the integral operator could be represented in terms of the singular values and vectors
(for example, [21], [26]) and characterizing the singular values, including the rate at
which they converge to zero (for example, [29], [17], [26]). As we discuss below, there
is little work in the literature about computing numerical estimates of the singular
values and vectors of a compact operator.

Throughout this chapter, X and Y denote separable Hilbert spaces and T : X → Y
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denotes a compact linear operator with singular value expansion

T =
∞∑
k=1

σkψk ⊗ φk.

Thus, {φk} and {ψk} are orthonormal sequences in X and Y , respectively, and {σk}
is a sequence of positive numbers decreasing monotonically to zero. (If T has finite
rank, then the SVE contains only finitely many terms. For simplicity of exposition,
we will assume the typical case that T has infinite rank.)

Let {Th : X → Y |h > 0} be a family of compact linear operators with the property
that Th → T in the operator norm as h→ 0; more specifically, we assume that

‖Th − T‖L(X,Y ) ≤ εh → 0 as h→ 0.

Each operator Th has an SVE

Th =
∑
k

σh,kψh,k ⊗ φh,k,

where the sum contains finitely many terms if Th has finite rank and infinitely many
terms otherwise. This notation for Th, its SVE, and εh will be used throughout
the chapter. We wish to analyze how the singular values and singular vectors of Th
converge to those of T .

We will frequently use the fact that the singular values and singular vectors of T are
related to the nonzero eigenvalues and corresponding eigenvectors of T ∗T and TT ∗.
Specifically, for each k ∈ Z+, we have

Tφk = σkψk,

T ∗Tφk = σ2
kφk,

TT ∗ψk = σ2
kψk.

It follows that the subspace of right singular vectors associated with the singular value
σk can be defined as

Ek = {φ ∈ X : T ∗Tφ = σ2
kφ}. (4.1)

Similarly,
Fk = {ψ ∈ Y : TT ∗ψ = σ2

kψ} (4.2)

is the subspace of left singular vectors associated with the singular value σk. We
assume that the singular values are enumerated according to multiplicity. That is, if
dim(Ek) = d > 1, then the value σk appears d times in the list σ1, σ2, σ3, . . . .

By definition, the singular values of T and Th satisfy

σ1 ≥ σ2 ≥ σ3 ≥ · · ·
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and
σh,1 ≥ σh,2 ≥ σh,3 ≥ · · · .

There is therefore no ambiguity in asserting that the singular values of Th converge
to those of T ; it simply means that, for each k ∈ Z+, σh,k → σk as h→ 0, where it is
understood that, for a given k, σh,k is defined for all h sufficiently small.

The convergence of the singular vectors is a more subtle question. If the singular
space Ek has dimension d > 1, then convergence of the singular values implies that
there will be d singular values of Th converging to σk:

σh,ki → σk as h→ 0 for i = 1, 2, . . . , d

(where σki = σk for all i = 1, 2, . . . , d). However, there is no reason to expect that σh,ki ,
i = 1, 2, . . . , d, all have the same value; more typically, the singular space associated
with each σh,ki is one-dimensional. Since the right singular vectors associated with
σk need only form an orthonormal basis for Ek, it need not be the case that φh,ki
converge to any particular φkj . For this reason, we define

Eh,k = sp{φ ∈ X : ∃ ` ∈ Z+, σh,` → σk as h→ 0 and T ∗hThφ = σ2
h,`φ} (4.3)

and

Fh,k = sp{ψ ∈ Y : ∃ ` ∈ Z+, σh,` → σk as h→ 0 and ThT
∗
hψ = σ2

h,`ψ}. (4.4)

We then require that Eh,k converge to Ek in the sense that the gap between Eh,k and
Ek converges to zero, and similarly for Fh,k and Fk.

Definition 4.1 Given subspaces U and V of a Hilbert space H, we define

δ(U, V ) = sup
u∈U
‖u‖H=1

inf
v∈V
‖v − u‖H .

We then define the gap between U and V by

δ̂(U, V ) = max{δ(U, V ), δ(V, U)}.

In the case that V is closed (the only case discussed in this chapter), we could equiv-
alently define δ(U, V ) as

δ(U, V ) = sup
u∈U
‖u‖H=1

‖PV u− u‖H ,

where PV denotes the (orthogonal) projection onto V . It is clear that 0 ≤ δ(U, V ) ≤ 1.
In general, δ(U, V ) and δ(V, U) may differ, but it is known (see, for example, [? , §2])
that the two are equal when both are strictly less than 1. Moreover, this also holds
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if U and V are finite-dimensional subspaces with the same dimension.

Lemma 4.2 Let U and V be k-dimensional subspaces of a Hilbert space H, where k
is a positive integer. Then δ(U, V ) = δ(V, U).

Proof: Without loss of generality, let us assume that δ(U, V ) ≤ δ(V, U). As noted
above, δ(V, U) < 1 implies that δ(U, V ) = δ(V, U). It suffices, therefore, to show that
the assumption δ(U, V ) < δ(V, U) = 1 produces a contradiction.

Since V is finite-dimensional,

δ(V, U) = max
v∈V
‖v‖H=1

‖PUv − v‖H .

Therefore, the assumption that δ(V, U) = 1 implies that there exists v̂ ∈ V such that
‖v̂‖H = 1 and ‖PU v̂ − v̂‖H = 1. This is possible only if PU v̂ = 0, that is, if v̂ ∈ U⊥.
On the other hand, the assumption that δ(U, V ) < 1 implies that ‖PV u−u‖H < 1 for
all u ∈ U and hence that the null space of P = PV |U (PV restricted to U) is trivial.
Since dim(U) = dim(V ) = k, the fundamental theorem of linear algebra implies that
P maps U onto V ; thus, there exists û ∈ U such that Pû = v̂. But then∥∥∥∥P ( û

‖û‖H

)
− û

‖û‖H

∥∥∥∥
H

< 1⇒ ‖Pû− û‖H < ‖û‖H

⇒ ‖v̂ − û‖H < ‖û‖H
⇒ ‖v̂‖2

H + ‖û‖2
H < ‖û‖2

H

(where we used δ(U, V ) < 1 in the first step and v̂ ∈ U⊥ in the last step). Since
‖v̂‖H = 1, the last inequality is impossible, and the proof is complete. �

Convergence of the singular values and vectors of Th to those of T follows from
the theory of Babuška and Osborn [3]; the following result is Theorem 9.1 of [4],
specialized to the self-adjoint case.

Theorem 4.3 Let X be a Hilbert space, let A : X → X and Ah : X → X, h > 0,
be compact self-adjoint linear operators, and assume that Ah → A in the operator
norm as h→ 0. Then, for any compact subset K of ρ(A) (the resolvent of A), there
exists h0 > 0 such that for all h ∈ (0, h0), K ⊂ ρ(Ah). If λ is a nonzero eigenvalue
of A with multiplicity equal to m, then there are m eigenvalues λh,1, λh,2, . . . , λh,m
of Ah, repeated according to their multiplicities, such that each λh,i → λ as h → 0.
Moreover, the gap between the direct sum of the eigenspaces of Ah corresponding to
λh,1, λh,2, . . . , λh,m and the eigenspace of A corresponding to λ tends to zero as h→ 0.

We can use Theorem 4.3 to demonstrate the convergence of the singular values and
singular vectors of Th to those of T by applying it to T ∗T and TT ∗.
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Lemma 4.4 There exists a constant C > 0 such that

‖T ∗hTh − T ∗T‖L(X,X) ≤ Cεh and ‖ThT ∗h − TT ∗‖L(Y,Y ) ≤ Cεh ∀h > 0.

Proof: We have

‖T ∗hTh − T ∗T‖L(X,X) ≤ ‖T ∗hTh − T ∗Th‖L(X,X) + ‖T ∗Th − T ∗T‖L(X,X)

≤ (‖Th‖L(X,Y ) + ‖T‖L(X,Y ))‖Th − T‖L(X,Y ),

and the first result follows (note that {‖Th‖X} is bounded because {Th} converges as
h→ 0; also, ‖T ∗‖L(Y,X) = ‖T‖L(X,Y )). The proof of the second is similar. �

Theorem 4.5 For each k ∈ Z+,

σh,k → σk as h→ 0,

δ̂(Eh,k, Ek)→ 0 as h→ 0,

δ̂(Fh,k, Fk)→ 0 as h→ 0,

where Ek, Fk, Eh,k, and Fh,k are defined by (4.1–4.4).

Proof: The convergence of σh,k to σk and δ̂(Eh,k, Ek) to zero follows from applying

Theorem 4.3 to {T ∗hTh} and T ∗T , while the convergence of δ̂(Fh,k, Fk) to zero follows
from applying Theorem 4.3 to {ThT ∗h} and TT ∗. �

We will not use Theorems 4.3 and 4.5 in the rest of the chapter, preferring to give a
direct analysis that also provides rates of convergence.

We will use the following well-known max-min characterizations of the singular values:

σk = max
S⊂X

dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖X

,

σh,k = max
S⊂X

dim(S)=k

min
x∈S
x6=0

‖Thx‖Y
‖x‖X

(4.5)

(see [13, Theorem 8.6.1] or [18, Chapter 28, Theorem 4]).

A particular discretization (discretization by projection or variational approximation)
is of special interest: We choose families {Xh} and {Yh} of finite-dimensional sub-
spaces of X and Y , respectively, having the property that PXh → IX and PYh → IY
pointwise as h → 0 (where IX and IY denote the identity operators on X and Y ,
respectively), and define Th = PYhTPXh .

It is straightforward to use the max-min formulas to prove the following results:
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Theorem 4.6

1. For each k ∈ Z+, |σh,k − σk| ≤ ‖Th − T‖L(X,Y ) for all h > 0. (This holds
regardless of the form of Th.)

2. If Th = PYhTPXh, then, for each k ∈ Z+, σh,k ≤ σk for all h > 0.

Proof: The first statement has been proved in [12, Chapter IV, Cor. 1.6], but we
will provide our own proof below. Using (4.5), we obtain

σh,k = max
S⊂X

dim(S)=k

min
x∈S
x 6=0

‖Thx‖Y
‖x‖X

≤ max
S⊂X

dim(S)=k

min
x∈S
x 6=0

(
‖Tx‖Y
‖x‖X

+
‖(Th − T )x‖Y
‖x‖X

)

≤ max
S⊂X

dim(S)=k

min
x∈S
x 6=0

(
‖Tx‖Y
‖x‖X

+ ‖Th − T‖L(X,Y )

)

= max
S⊂X

dim(S)=k

min
x∈S
x 6=0

(
‖Tx‖Y
‖x‖X

)
+ ‖Th − T‖L(X,Y ) = σk + ‖Th − T‖L(X,Y ).

Similarly,

σk = max
S⊂X

dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖X

≤ max
S⊂X

dim(S)=k

min
x∈S
x 6=0

(
‖Thx‖Y
‖x‖X

+
‖(T − Th)x‖Y
‖x‖X

)

≤ max
S⊂X

dim(S)=k

min
x∈S
x 6=0

(
‖Thx‖Y
‖x‖X

+ ‖T − Th‖L(X,Y )

)

= max
S⊂X

dim(S)=k

min
x∈S
x 6=0

(
‖Thx‖Y
‖x‖X

)
+ ‖T − Th‖L(X,Y ) = σh,k + ‖T − Th‖L(X,Y ).

Thus, σk − ‖T − Th‖L(X,Y ) ≤ σh,k ≤ σk + ‖T − Th‖L(X,Y ).

To prove the second statement, note that if σh,k = 0, then the statement holds
trivially. Now consider the operator Th : Xh → Yh defined by Th = PYhT |Xh . We will
prove that any nonzero singular value of Th = PYhTPXh is also a singular value of Th.
To show this, note that nonzero any singular value σh,k of Th satisfies T ∗hThφ = σ2

h,kφ
for some φ ∈ X; that is,

(PXhT
∗PYhTPXh)φ = σ2

h,kφ.
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In fact, the above equation implies that φ ∈ Xh and hence, the above equation can
be written as

(PXhT
∗PYhT )φ = σ2

h,kφ.

The adjoint of Th : Yh → Xh is equal to PXhT
∗|PYh and thus, Th

∗
Th = PXhT

∗PYhT |Xh .

This implies that σh,k and φ will also satisfy Th
∗
Thφ = σ2

h,kφ. Thus, σh,k and φ are a

singular value and singular vector respectively, for Th.

We finish the proof by noting that for any singular value σh,k of Th, we have

σh,k = max
S⊂Xh

dim(S)=k

min
x∈S
x 6=0

‖Thx‖Y
‖x‖X

= max
S⊂Xh

dim(S)=k

min
x∈S
x 6=0

‖PYhTx‖Y
‖x‖X

≤ max
S⊂Xh

dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖X

≤ max
S⊂X

dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖X

= σk.�

Note that, in Theorem 4.6, we define σh,k = 0 for k > dim(Xh).

Relatively little work has been done on approximating the SVE of a compact operator.
Hansen [15] analyzed the rate of convergence of the method of moments (equivalent
to variational approximation) for the case that T is an integral operator of the first
kind. Specifically, assume that

(Tx)(s) =

∫
It

k(s, t)x(t) dt, (Thx)(s) =

∫
It

kh(s, t)x(t) dt, s ∈ Is,

where kh is the kernel produced by variational approximation (namely, the projection
of k onto the tensor product space Yh⊗Xh in L2(Is× It)). Hansen’s analysis is based
on

ε̃h = ‖kh − k‖L2(Is×It)

(an upper bound for ‖Th − T‖L(X,Y )), and his Theorem 4 implies that

σk − σh,k ≤
ε̃2h
σh,k
∀ k = 1, 2, . . . , Nh = min{dim(Xh), dim(Yh)}.

As we show below (Theorem 4.16), a more precise estimate can be formulated in
terms of the optimal approximation errors for φk and ψk, which are ‖(I − PXh)φk‖X
and ‖(I − PYh)ψk‖Y , respectively, and εh (rather than ε̃h). (This statement assumes
that the singular spaces corresponding to σk are one-dimensional; see Theorem 4.16
for the general statement.)

Regarding the singular vectors, Hansen’s Theorem 5 implies (under the assumption
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that the singular spaces are one-dimensional) that

max{‖φh,k − φk‖X , ‖ψh,k − ψk‖Y } ≤
√

2
√
ε̃h√

σk − σk+1

∀ k = 1, 2, . . . , Nh.

Our Theorem 4.8 below improves this to an O(εh) upper bound for an arbitrary
approximation Th of T , while Theorem 4.11 improves the estimate for the case of
variational approximation and shows when the error in the singular vectors is asymp-
totically optimal.

Given the paucity of results about approximation of the singular value expansion, it
is natural to look to the literature on eigenvalues and eigenvectors, which is extensive
(see, for example, [3] or [5]). We could aproximate the singular values and right
singular vectors of T by approximating the eigenvalues and eigenvectors of T ∗T as,
for example, described in Babuška and Osborn [2]. They analyze Galerkin methods
for solving self-adjoint eigenvalue problems posed in variational form; the eigenvalue
problem T ∗Tφ = σ2φ would be posed in variational form as

find φ ∈ X, λ ∈ R, such that 〈φ, v〉X = λ 〈Tφ, Tv〉Y ∀ v ∈ X (4.6)

(with σ2 = λ−1). The Galerkin method discretizes this variational problem as

find φ ∈ Xh, λ ∈ R, such that 〈φ, v〉X = λ 〈Tφ, Tv〉Y ∀ v ∈ Xh. (4.7)

It is straightforward to show that (4.7) is equivalent to T ∗hThφ = σ2φ with Th = TPXh
(again, with σ2 = λ−1).

Given any u ∈ Ek (that is, any right singular vector corresponding to the singular
value σk) with ‖u‖X = 1, and not assuming that Ek is one-dimensional, the optimal
approximation error for u is ‖(I − PXh)u‖X , and we obviously have

‖(I − PXh)u‖X ≤ ‖(I − PEh,k)u‖X .

Theorem 4.4 of [2] depends on

ε̂h = ‖T ∗hTh − T ∗T‖L(X,X)

and implies that

‖(I − PEh,k)u‖X ≤ (1 + dk ε̂h)‖(I − PXh)u‖X , (4.8)

where dk is a constant proportional to the reciprocal of the gap between σ2
k and the

closest distinct eigenvalue of T ∗T . (Babuška and Osborn also prove a version of (4.8)
with ε̂h replaced by ‖T ∗hTh−T ∗T‖2

L(X1,X1), where X1 is the completion ofN (T )⊥ under

the inner product defined by 〈u, v〉X1
= 〈Tu, Tv〉Y . For some problems, this provides

a more precise bound, because ‖T ∗hTh − T ∗T‖2
L(X1,X1) can be asymptotically smaller

70



than ε̂h for some problems. We will not discuss this and similar refined bounds any
further.) The bound (4.8) is comparable to the result in our Theorem 4.11:

‖(I − PEh,k)u‖X ≤ (1 +
√

2qkεh)‖(I − PXh)u‖X +
√

2qkεh‖(I − PYh)v‖Y . (4.9)

Our constant
√

2qk is proportional to the reciprocal of the gap between σk and the
closest distinct singular value of T , which implies that

√
2qk is asymptotically smaller

than dk as k → ∞. On the other hand, while ε̂h = O(εh) as h → 0, it could be the
case that ε̂h is asymptotically smaller than εh. Therefore, the two constants, dk ε̂h and√

2qkεh, are not directly comparable. Nevertheless, (4.8) implies that

‖(I − PEh,k)u‖X ∼ ‖(I − PXh)u‖X as h→ 0

and (4.9) yields the same result if εh‖(I−PYh)v‖Y = o(‖(I−PXh)u‖X). We will see by
example that this is not always the case and thus that optimal approximability of the
right singular vectors can be lost due to poor approximability of the corresponding
left singular vectors.

With respect to the singular values, Theorem 4.2 of [2] implies that there exists a
right singular vector u corresponding to σk such that

σ2
k − σ2

h,k

σ2
h,k

≤ (1 + dk ε̂h)‖(I − PXh)u‖2
X .

Since
σ2
k − σ2

h,k

σ2
h,k

=
σk − σh,k
σh,k

· σk + σh,k
σh,k

and (since σh,k ≤ σk)
σh,k

σk + σh,k
≤ σh,k
σh,k + σh,k

=
1

2
,

we obtain
σk − σh,k
σh,k

≤ 1

2
(1 + dk ε̂h)‖(I − PXh)u‖2

X . (4.10)

Our Theorem 4.16 implies that if we estimate the singular values by computing the
SVE of Th = PYhTPXh directly (rather than solving an eigenvalue problem), we obtain

σk − σh,`
σk

≤ 1

2

(
‖(I − PXh)u‖2

X + ‖(I − PYh)v‖2
Y

)
+

Ckεh (‖(I − PXh)u‖X + ‖(I − PYh)v‖Y )2 ∀h > 0 sufficiently small,

where u ∈ X and v ∈ Y satisfy ‖u‖X = 1, ‖v‖Y = 1, and Tu = σkv. If ‖(I−PXh)u‖X
and ‖(I − PYh)v‖Y go to zero at the same rate, this suggests that the error in the
singular values (computed directly) is twice the error in the same quantities computed
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by the eigenvalue approach. However, this ignores the limitations of finite precision
arithmetic, as discussed below.

It is natural to compute the singular values and singular vectors of T directly, rather
than compute the eigenvalues and eigenvectors of T ∗T , for several reasons. First,
given that σk → 0 as k → ∞, we can expect to compute σk directly as long as it is
larger than machine epsilon εmach. By the eigenvalue approach, we expect to be able
to compute σ2

k as long as it remains above εmach, that is, as long as σk is larger than√
εmach. Thus, the eigenvalue approach reduces the range of the singular values than

can be estimated. Second, both approaches require the computation of a Galerkin
matrix. The eigenvalue approach requires Â defined by

Âij = 〈xi, T ∗Txj〉X = 〈Txi, Txj〉X ,

while the direct approach requires A defined by

Aij = 〈yi, Txj〉X

(where {x1, x2, . . . , xn} and {y1, y2, . . . , ym} are the bases for Xh and Yh, respectively).
In the common case that T is an integral operator, Âij is defined by a triple integral,
while Aij is defined by a double integral. Therefore, the direct approach may be more
efficient. Finally, the eigenvalue approach gives no direct estimate of the left singular
vectors.

In the remainder of the chapter, we will analyze the errors in both the singular values
and the singular vectors in both the generic case (Th is assumed only to converge to T
in the operator norm) and the case of variational approximation (Th = PYhTPXh and
the related cases of Th = TPXh and Th = PYhT ). Specifically, Section 4.2 contains
error estimates for the computed singular vectors in the generic case. In Section 4.3,
we present an analysis of the convergence of both the singular vectors and singular
values in the case of variational approximation. Numerical examples are presented in
Section 4.4. In Section 4.5, we show how to compute the singular values and singular
vectors of Th = PYhTPXh from the singular value decomposition (SVD) of a scaled
Galerkin matrix. We present some conclusions in Section 4.6.

4.2 Convergence of singular vectors: the general

case

We have already seen that

|σh,k − σk| ≤ ‖Th − T‖L(X,Y ) ≤ εh for all h > 0.
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We now show that δ̂(Eh,k, Ek) and δ̂(Fh,k, Fk) also converge to zero like O(εh). We
begin by establishing more notation.

We have already defined Ek and Fk in (4.1) and (4.2); let Ik be the corresponding
index set, so that

Ek = sp{φ` : ` ∈ Ik}, Fk = sp{ψ` : ` ∈ Ik}.

Let σh,`, φh,`, ψh,`, ` ∈ Ih, be the singular values and singular vectors of Th, where
Ih = {1, 2, . . . , Nh} or Ih = Z+, according as Th has finite rank or not, and define

Ih,k = {` ∈ Ih : σh,` → σk as h→ 0}.

(Note that Ih,k = Ik for all h > 0 sufficiently small.) Then Eh,k = sp{φh,` : ` ∈ Ih,k}.
Extend {φh,` : ` ∈ Ih} to a complete orthonormal sequence {φh,` : ` ∈ Jh} for X
(Ih ⊂ Jh), and define σh,` = 0 for ` ∈ Jh \ Ih.
We will write gapk for the gap between σk and the nearest distinct singular value of
T . If k > 1 and σk−1 > σk = σk+1 = · · · = σk+nk−1 > σk+nk , then

gapk = min{σk−1 − σk, σk − σk+nk},

while gap1 = σ1 − σt, where σt is the largest singular value not equal to σ1.

Lemma 4.7 Assume that ‖Th − T‖L(X,Y ) ≤ εh for h > 0. Then, for each k ∈ Z+,

max

{
1

|σk − σh,`|
: ` ∈ Jh \ Ih,k

}
≤
√

2

gapk
∀h > 0 sufficiently small.

Proof: Let k ∈ Z+ be given and note that σh,` → σ` as h → 0 for all ` ∈ Z+. It
follows that, for h > 0 sufficiently small, Ih,k = Ik and

|σh,` − σk| ≥
gapk√

2
∀ ` ∈ Jh \ Ih,k.

The result follows. �

In Lemma 4.7, we could obviously replace
√

2 by any constant strictly greater than
1. We will write qk =

√
2/gapk.

Theorem 4.8 Assume that ‖Th − T‖L(X,Y ) ≤ εh for h > 0. Let k ∈ Z+ and let Ek
and Eh,k be defined by (4.1) and (4.3), respectively. Then, for all u ∈ Ek satisfying
‖u‖X = 1 and for all h > 0 sufficiently small, ‖(I − PEh,k)u‖X ≤ 2qkεh.
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Proof: Given u ∈ Ek, we define v = σ−1
k Tu; then T ∗v = σku. We have

u =
∑
`∈Jh

〈φh,`, u〉X φh,`,

PEh,ku =
∑
`∈Ih,k

〈φh,`, u〉X φh,`

and hence
u− PEh,ku =

∑
`∈Jh\Ih,k

〈φh,`, u〉X φh,`.

For each ` ∈ Jh \ Ih,k, we have

σk| 〈φh,`, u〉X | = | 〈φh,`, σku〉X | = | 〈φh,`, T
∗v〉X | = | 〈Tφh,`, v〉Y |,

σh,`| 〈φh,`, u〉X | = | 〈σh,`φh,`, u〉X | = | 〈T
∗
hψh,`, u〉X | = | 〈ψh,`, Thu〉Y |,

σk| 〈ψh,`, v〉Y | = | 〈ψh,`, σkv〉Y | = | 〈ψh,`, Tu〉Y |,
σh,`| 〈ψh,`, v〉Y | = | 〈σh,`ψh,`, v〉Y | = | 〈Thφh,`, v〉Y |.

Subtracting yields

(σk − σh,`)| 〈φh,`, u〉X | = | 〈Tφh,`, v〉Y | − | 〈ψh,`, Thu〉Y |,
(σk − σh,`)| 〈ψh,`, v〉Y | = | 〈ψh,`, Tu〉Y | − | 〈Thφh,`, v〉Y |.

We then add to obtain

(σk − σh,`)
(
| 〈φh,`, u〉X |+ | 〈ψh,`, v〉Y |

)
= | 〈Tφh,`, v〉Y | − | 〈ψh,`, Thu〉Y |+ | 〈ψh,`, Tu〉Y | − | 〈Thφh,`, v〉Y |
= | 〈Tφh,`, v〉Y | − | 〈Thφh,`, v〉Y |+ | 〈ψh,`, Tu〉Y | − | 〈ψh,`, Thu〉Y |,

which yields

|σk − σh,`|
(
| 〈φh,`, u〉X |+ | 〈ψh,`, v〉Y |

)
=
∣∣| 〈Tφh,`, v〉Y | − | 〈Thφh,`, v〉Y |+ | 〈ψh,`, Tu〉Y | − | 〈ψh,`, Thu〉Y |∣∣

≤
∣∣| 〈Tφh,`, v〉Y | − | 〈Thφh,`, v〉Y |∣∣+

∣∣| 〈ψh,`, Tu〉Y | − | 〈ψh,`, Thu〉Y |∣∣
≤
∣∣〈(T − Th)φh,`, v〉Y ∣∣+

∣∣〈ψh,`, (T − Th)u〉Y ∣∣ .
This implies that

| 〈φh,`, u〉X | ≤
∣∣〈(T − Th)φh,`, v〉Y ∣∣+

∣∣〈ψh,`, (T − Th)u〉Y ∣∣
|σk − σh,`|

. (4.11)
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Therefore,

‖u− PEh,ku‖2
X =

∑
`∈Jh\Ih,k

〈φh,`, u〉2X

≤
∑

`∈Jh\Ih,k

(∣∣〈(T − Th)φh,`, v〉Y ∣∣+
∣∣〈ψh,`, (T − Th)u〉Y ∣∣

|σk − σh,`|

)2

≤ 2q2
k

∑
`∈Jh\Ih,k

(∣∣〈φh,`, (T − Th)∗v〉X∣∣2 +
∣∣〈ψh,`, (T − Th)u〉Y ∣∣2)

≤ 2q2
k

(
‖(T − Th)∗v‖2

X + ‖(T − Th)u‖2
Y

)
≤ 4q2

kε
2
h

(since ‖Th − T‖L(X,Y ) = ‖T ∗h − T ∗‖L(Y,X) ≤ εh and ‖u‖X = ‖v‖Y = 1). Therefore,
‖u− PEh,ku‖X ≤ 2qkεh, as desired. �

The previous theorem implies that δ(Ek, Eh,k) ≤ 2qkεh for all h > 0 sufficiently small.
Since Lemma 4.2 shows that δ(Eh,k, Ek) = δ(Ek, Eh,k) for all h sufficiently small (h
must be small enough that dim(Eh,k) = dim(Ek)), we obtain the desired bound on
the gap between Ek and Eh,k.

Corollary 4.9 For each k ∈ Z+,

δ̂(Eh,k, Ek) ≤ 2qkεh ∀h > 0 sufficiently small.

The same analysis, applied to T ∗ and T ∗h , shows that

δ̂(Fh,k, Fk) ≤ 2qkεh ∀h > 0 sufficiently small,

where Fk and Fh,k are defined by (4.2) and (4.4).

4.3 Accelerated convergence

The case of variational approximation deserves special attention because it leads to
increased rates of convergence. Given the families of finite-dimensional subspaces
{Xh} and {Yh} of X and Y , respectively, we define Th : X → Y by Th = PYhTPXh
and

εh = ‖PYhTPXh − T‖L(X,Y ) ∀h > 0.

Under our assumptions on {Xh} and {Yh} (namely, that PXh → IX and PYh → IY
pointwise), it is guaranteed that εh → 0 as h→ 0.

Theorem 4.10 The operator PYhTPXh converges in the operator norm to T as h→
0.
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Proof: Consider

‖PYhTPXh − T‖L(X,Y ) ≤ ‖PYhTPXh − PYhT‖L(X,Y ) + ‖PYhT − T‖L(X,Y )

≤ ‖T (PXh − IX)‖L(X,Y ) + ‖(PYh − IY )T‖L(X,Y ).

The second norm goes to zero by a standard result (see [1] or [11, Theorem 7]), while
the first goes to zero by Theorem 16 of [11]. �

The results of Section 4.2 apply and show that the singular values and corresponding
singular spaces of Th satisfy

|σh,k − σk| ≤ εh,

δ̂(Eh,k, Ek) ≤ 2qkεh,

δ̂(Fh,k, Fk) ≤ 2qkεh,

where the above inequalities hold for all h > 0 sufficiently small. We will now show
that, for Th = PYhTPXh , better rates of convergence are obtained. Recall that {φh,` :
` ∈ Ih} was extended to a complete orthonormal sequence {φh,` : ` ∈ Jh} for X. We
now assume that this is done so that {φh,` : ` ∈ Ĩh} (Ih ⊂ Ĩh ⊂ Jh) is an orthonormal
basis for Xh (Ĩh = Ih ifN (Th)∩Xh is trivial). Similarly, we extend {ψh,` : ` ∈ Ih} to a

complete orthonormal sequence {ψh,` : ` ∈ Kh} for Y and assume that {ψh,` : ` ∈ Îh}
is an orthonormal basis for Yh. These definitions imply that {φh,` : ` ∈ Jh \ Ĩh} is

a complete orthonormal sequence for X⊥h and {ψh,` : ` ∈ Kh \ Îh} is a complete
orthonormal sequence for Y ⊥h .

4.3.1 Singular vectors

Theorem 4.11 Suppose u ∈ Ek and v ∈ Fk satisfy Tu = σkv and Th = PYhTPXh.
Then, for all h > 0 sufficiently small,

‖(I − PEh,k)u‖X ≤ (1 +
√

2qkεh)‖(I − PXh)u‖X +
√

2qkεh‖(I − PYh)v‖Y (4.12)

‖(I − PFh,k)v‖Y ≤ (1 +
√

2qkεh)‖(I − PYh)v‖Y +
√

2qkεh‖(I − PXh)u‖X . (4.13)

Proof: As in the proof of Theorem 4.8,

(I − PEh,k)u =
∑

`∈Jh\Ih,k

〈φh,`, u〉X φh,`,

which yields

‖(I − PEh,k)u‖2
X =

∑
`∈Jh\Ĩh

〈φh,`, u〉2X +
∑

`∈Ĩh\Ih,k

〈φh,`, u〉2X .
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The first term on the right of the equals sign is exactly ‖(I − PXh)u‖2
X . To estimate

the second term, we use the following inequality from the proof of Theorem 4.8:

| 〈φh,`, u〉X | ≤
1

|σk − σh,`|
(∣∣〈(T − Th)φh,`, v〉Y ∣∣+

∣∣〈ψh,`, (T − Th)u〉Y ∣∣) .
We argue as follows:

∑
`∈Ĩh\Ih,k

〈φh,`, u〉2X ≤
∑

`∈Ĩh\Ih,k

(∣∣〈(T − Th)φh,`, v〉Y ∣∣+
∣∣〈ψh,`, (T − Th)u〉Y ∣∣

|σk − σh,`|

)2

≤ 2q2
k

∑
`∈Ĩh\Ih,k

(∣∣〈(T − Th)φh,`, v〉Y ∣∣2 +
∣∣〈ψh,`, (T − Th)u〉Y ∣∣2) .

For any x ∈ Xh,

(T − Th)x = Tx− PYhTPXhx = Tx− PYhTx = (I − PYh)Tx ∈ Y ⊥h ,

and therefore
〈(T − Th)φh,`, v〉Y = 〈(T − Th)φh,`, (I − PYh)v〉Y

because (T − Th)φh,` ∈ Y ⊥h and PYhv ∈ Yh. Similarly, for y ∈ Yh,

(T − Th)∗y = T ∗y − PXhT ∗PYhy = T ∗y − PXhT ∗y = (I − PXh)T ∗y ∈ X⊥h ,

which yields

〈ψh,`, (T − Th)u〉Y = 〈(T − Th)∗ψh,`, u〉X = 〈(T − Th)∗ψh,`, (I − PXh)u〉X .

Therefore,∑
`∈Ĩh\Ih,k

(∣∣〈(T − Th)φh,`, v〉Y ∣∣2 +
∣∣〈ψh,`, (T − Th)u〉Y ∣∣2)

=
∑

`∈Ĩh\Ih,k

(∣∣〈(T − Th)φh,`, (I − PYh)v〉Y
∣∣2 +

∣∣〈(T − Th)∗ψh,`, (I − PXh)u〉X
∣∣2)

=
∑

`∈Ĩh\Ih,k

(∣∣〈φh,`, (T − Th)∗(I − PYh)v〉X
∣∣2 +

∣∣〈ψh,`, (T − Th)(I − PXh)u〉Y
∣∣2)

≤
(
‖(T − Th)∗(I − PYh)v‖2

X + ‖(T − Th)(I − PXh)u‖2
Y

)
≤ε2h

(
‖(I − PYh)v‖2

Y + ‖(I − PXh)u‖2
X

)
.

The conclusion is

‖(I − PEh,k)u‖2
X ≤ ‖(I − PXh)u‖2

X + 2q2
kε

2
h

(
‖(I − PYh)v‖2

Y + ‖(I − PXh)u‖2
X

)
.
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Inequality (4.12) follows immediately.

The proof of (4.13) is exactly analogous. �

Inequality (4.12) suggests that the approximation error for a given right singular
vector u is affected by the optimal approximation error for that singular vector and
also the optimal approximation error for the corresponding left singular vector. As
long as

εh‖(I − PYh)v‖Y = o (‖(I − PXh)u‖X) as h→ 0,

it follows that
‖(I − PEh,k)u‖X ∼ ‖(I − PXh)u‖X as h→ 0,

that is, the error in the approximation to u is asymptotically optimal. However, it is
not difficult to construct an example in which

‖(I − PXh)u‖X = o (εh‖(I − PYh)v‖Y ) as h→ 0,

in which case the error in the approximation to u is suboptimal. Examples are
presented in later sections.

The situation with respect to optimal approximation of the left singular vectors is
exactly analogous.

The bound (4.12) is not directly comparable to the result (4.8) of Babuška and Os-
born. When we approximate both the right and left singular vector simultaneously,
it is not guaranteed that we obtain an optimal rate of convergence for both, although
Theorem 4.11 shows that at least one of the left or right singular vectors will exhibit
an optimal rate of convergence. The examples given below verify that suboptimal
convergence is observed in some cases. If, for some reason, it were desired to approx-
imate just the singular values and either the right singular vectors or the left singular
vectors, we could (at least in principle) proceed with Th = TPXh or Th = PYhT .

Theorem 4.12

1. Let the family {Xh} of subspaces of X be given and, for each h > 0, define
Yh = T (Xh), Th = TPXh. Let u ∈ Ek be given and define v = σ−1

k Tu. Then,
for all h > 0 sufficiently small,

‖(I − PEh,k)u‖X ≤ (1 +
√

2qkεh)‖(I − PXh)u‖X , (4.14)

‖(I − PFh,k)v‖Y ≤ ‖(I − PYh)v‖Y +
√

2qkεh‖(I − PXh)u‖X . (4.15)

2. Let the family {Yh} of subspaces of Y be given and, for each h > 0, define
Xh = T ∗(Yh), Th = PYhT . Let v ∈ Fk be given and define u = σ−1

k T ∗v. Then,
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for all h > 0 sufficiently small,

‖(I − PEh,k)u‖X ≤ ‖(I − PXh)u‖X +
√

2qkεh‖(I − PYh)v‖Y , (4.16)

‖(I − PFh,k)v‖Y ≤ (1 +
√

2qkεh)‖(I − PYh)v‖Y . (4.17)

Proof: The proofs of (4.14–4.17) are similar to the proofs of (4.12–4.13) and will
not be given in detail. The difference between (4.12) and (4.14) is that, for x ∈ Xh

and T = TPXh , (T − Th)x = 0 (rather than just (T − Th)x ∈ X⊥h , as in the case of
Th = PYhTPXh). The difference between (4.13) and (4.17) is similar. �

Therefore, if we approximate T with Th = TPXh , we are guaranteed that the error in
the approximations of the right singular vectors is optimal and of the same quality
as obtained in (4.8). Similarly. with Th = PYhT , we are guaranteed optimal approx-
imation of the left singular vectors. In Section 4.5, we show how to compute the
SVE of PYhTPXh by computing the SVD of a suitably scaled Galerkin matrix. The
numerical computation of the SVE of Th = TPXh or Th = PYhT is problematic; we
also comment on this in Section 4.5.

4.3.2 Singular values

We continue to discuss the case of Th = PYhTPXh . To start, we require a bound on
‖Th(I − PEh,k)u‖Y for u ∈ Ek. We will use the following technical results.

Lemma 4.13 If {sk} is a strictly decreasing sequence of positive real numbers that
converges to zero, then

sk−1

sk−1 − sk
<

2sk
min{sk−1 − sk, sk − sk+1}

∀ k > 1.

Proof: Given k > 1, we consider two cases.

1. If sk−1 − sk ≤ sk − sk+1, then it follows that sk−1 − sk < sk and hence that
sk−1 < 2sk. Therefore,

sk−1

sk−1 − sk
=

sk−1

min{sk−1 − sk, sk − sk+1}
<

2sk
min{sk−1 − sk, sk − sk+1}

.

Thus the result holds in this case.

2. If sk − sk+1 < sk−1 − sk, define

θ1 =
sk
sk−1

, θ2 =
sk+1

sk−1
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and note that θ1 ∈ (0, 1), θ2 ∈ (0, θ1). We must show that

sk−1

sk−1 − sk
<

2sk
min{sk−1 − sk, sk − sk+1}

=
2sk

sk − sk+1

⇔ sk−1(sk − sk+1)

sk(sk−1 − sk)
< 2 ⇔ θ1 − θ2

θ1(1− θ1)
< 2.

Note that sk − sk+1 < sk−1 − sk is equivalent to θ1 − θ2 < 1 − θ1. It is now
an easy exercise to prove that (θ1 − θ2)/(θ1(1 − θ1)) < 2 for θ1, θ2 satisfying
0 < θ2 < θ1 < 1 and θ1 − θ2 < 1− θ1. This completes the proof. �

Lemma 4.14 For a given k ∈ Z+, there exists h0 > 0 such that

σh,`
|σk − σh,`|

≤ 2σk
gapk

=
√

2qkσk ∀ ` 6∈ Ih,k ∀h ∈ (0, h0).

Proof: We will assume that σk = σk+1 = · · · = σk+nk−1 > σk+nk and either k = 1
or σk−1 > σk. If we prove the result in this case, it obviously follows for any other
value of k. Suppose first that ` ≥ k + nk. Then σh,` ≤ σ` ≤ σk+nk < σk. Therefore,

σh,`(σk − σk+nk)

σk(σk − σh,`)
≤ σk+nk(σk − σk+nk)

σk(σk − σk+nk)
< 1⇒ σh,`gapk

σk(σk − σh,`)
< 1

⇒ σh,`
σk − σh,`

<
σk

gapk
.

This proves the desired result in the case ` ≥ k+nk. If ` < k, then there exists h′0 > 0
such that σh,k−1 > σk for all h ∈ (0, h′0). For such h,

σh,`
|σk − σh,`|

=
σh,`

σh,` − σk
≤ σh,k−1

σh,k−1 − σk

(using the fact that s/(s− σk) increases as s decreases toward σk). Since

σh,k−1

σh,k−1 − σk
→ σk−1

σk−1 − σk
as h→ 0

and
σk−1

σk−1 − σk
<

2σk
gapk

by Lemma 4.13, it follows that there exists h0 ∈ (0, h′0) such that

σh,k−1

σh,k−1 − σk
≤ 2σk

gapk
∀h ∈ (0, h0).

Thus the desired results holds in the case that ` < k, and the proof is complete. �

We can now prove the desired bound on ‖Th(I − PEh,k)u‖Y for u ∈ Ek.
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Theorem 4.15 Let k ∈ Z+ be given, suppose Th = PYhTPXh, and let u ∈ Ek, v ∈ Fk
satisfy Tu = σkv. Then, for all h > 0 sufficiently small,

‖Th(u− PEh,ku)‖Y ≤ 2σkqkεh (‖(I − PYh)v‖Y + ‖(I − PXh)u‖X) .

Proof: We will assume that σk = σk+1 = · · · = σk+nk−1 > σk+nk and either k = 1
or σk−1 > σk. We have

u =
∑
`∈Jh

〈φh,`, u〉X φh,`,

PEh,ku =
∑
`∈Ih,k

〈φh,`, u〉X φh,`,

and therefore
(I − PEh,k)u =

∑
`∈Jh\Ih,k

〈φh,`, u〉X φh,`.

This yields

Th(u− PEh,ku) =
∑

`∈Jh\Ih,k

σh,` 〈φh,`, u〉X ψh,`

⇒ ‖Th(u− PEh,ku)‖2
Y =

∑
`∈Jh\Ih,k

σ2
h,` 〈φh,`, u〉

2
X .

Now we use the upper bound (4.11) and Lemma 4.14 to obtain

‖Th(I − PEh,k)u)‖2
Y

≤
∑

`∈Jh\Ih,k

σ2
h,`

|σk − σh,`|2
(∣∣〈(T − Th)φh,`, v〉Y ∣∣+

∣∣〈ψh,`, (T − Th)u〉Y ∣∣)2

≤ 2σ2
kq

2
k

∑
`∈Jh\Ih,k

(∣∣〈(T − Th)φh,`, v〉Y ∣∣+
∣∣〈ψh,`, (T − Th)u〉Y ∣∣)2

,

where the last inequality holds for all h > 0 sufficiently small. Proceeding as in the
proof of Theorem 4.11, we obtain

‖Th(I − PEh,k)u)‖2
Y ≤ 4σ2

kq
2
kε

2
h

(
‖(I − PYh)v‖2

Y + ‖(I − PXh)u‖2
X

)
.

The desired result follows. �

We can now give our main result on the convergence of the singular values.

Theorem 4.16 Let k ∈ Z+ be given and suppose Th = PYhTPXh. For each ` ∈ Ik,
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there exist u ∈ Ek, v ∈ Fk, and a constant Ck > 0 such that

0 ≤ σk − σh,`
σk

≤ e2
X

2
+
e2
Y

2
+ Ckεh (eX + eY )2 ∀h > 0 sufficiently small,

where eX = ‖(I − PXh)u‖X and eY = ‖(I − PYh)v‖Y .

Proof: Let ` ∈ Ik be given, let h > 0 be sufficiently small that ` ∈ Ih,k, and choose
φh,` ∈ Eh,k, ψh,` ∈ Fh,k such that

‖φh,`‖X = ‖ψh,`‖Y = 1 and Thφh,` = σh,`ψh,`.

We note that σh,` ≤ σk by Theorem 4.6. We must derive an upper bound on σk−σh,`.
For h > 0 sufficiently small, δ(Eh,k, Ek) = δ(Ek, Eh,k) < 1, which implies that PEh,k
defines a bijection from Ek onto Eh,k (see the proof of Lemma 4.2). Thus there exists
u ∈ Ek such that ‖u‖X = 1 and PEh,ku = αφh,` for some α ∈ (0, 1]. Define v ∈ Fk by
Tu = σkv and note that ‖v‖Y = 1. As in the statement of the theorem, we will write

eX = ‖(I − PXh)u‖X , eY = ‖(I − PYh)v‖Y .

We have

σk = 〈v, Tu〉Y
=
〈
PFh,kv + (I − PFh,k)v, T (PEh,ku+ (I − PEh,k)u)

〉
Y

=
〈
PFh,kv, TPEh,ku

〉
Y

+
〈
(I − PFh,k)v, TPEh,ku

〉
Y

+〈
PFh,kv, T (I − PEh,k)u

〉
Y

+
〈
(I − PFh,k)v, T (I − PEh,k)u

〉
Y
.

We now consider each of these four inner products. For the first, we have〈
PFh,kv, TPEh,ku

〉
Y

= α
〈
PFh,kv, Thφh,`

〉
Y

= ασh,`
〈
PFh,kv, ψh,`

〉
Y
.

By the Pythagorean theorem and Taylor’s theorem,

α = ‖PEh,ku‖X =
√

1− ‖(I − PEh,k)u‖2
X

= 1−
‖(I − PEh,k)u‖2

X

2
+O(‖(I − PEh,k)u‖4

X)

≤ 1− e2
X

2
+O(‖(I − PEh,k)u‖4

X)

= 1− e2
X

2
+O(e4

X)
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where the bound from Theorem 4.11 is used in the last step. Similarly,

〈
PFh,kv, ψh,`

〉
Y
≤ ‖PFh,kv‖Y ≤ 1− e2

Y

2
+O(e4

Y ).

It follows that〈
PFh,kv, TPEh,ku

〉
Y
≤ σh,`

(
1− e2

X

2
+O(e4

X)

)(
1− e2

Y

2
+O(e4

Y )

)
= σh,` −

(
e2
X

2
+
e2
Y

2
+O(e4

X + e4
Y )

)
σh,`

= σh,` −
(
e2
X

2
+
e2
Y

2
+O(e4

X + e4
Y )

)
σk+(

e2
X

2
+
e2
Y

2
+O(e4

X + e4
Y )

)
(σk − σh,`)

= σh,` −
(
e2
X

2
+
e2
Y

2

)
σk +O(σkεh(eX + eY )2)

(using the fact that σk − σh,` ≤ εh and eX , eY = O(εh) by Theorems 4.6 and 4.8).

To bound the second inner product, notice that
〈
(I − PFh,k)v, ThPEh,ku

〉
Y

= 0 because

(I − PFh,k)v ∈ F⊥h,k and ThPEh,ku ∈ Fh,k. Thus〈
(I − PFh,k)v, TPEh,ku

〉
Y

=
〈
(I − PFh,k)v, TPEh,ku− ThPEh,ku

〉
Y

=
〈
(I − PFh,k)v, (I − PYh)TPEh,ku

〉
Y

=
〈
(I − PYh)v, (I − PYh)TPEh,ku

〉
Y

≤ eY ‖(I − PYh)TPEh,ku‖Y
≤ eY

(
‖(I − PYh)Tu‖Y + ‖(I − PYh)T (I − PEh,k)u‖Y

)
≤ eY

(
σkeY + εh‖(I − PEh,k)u‖X

)
≤ σkeY

(
eY +

εh
σk
‖(I − PEh,k)u‖X

)
≤ σkeY

(
eY + εhqk‖(I − PEh,k)u‖X

)
= σke

2
Y +O

(
σkεh(eX + eY )2

)
(using Theorem 4.11 and the fact that ‖T − PYhT‖L(X,Y ) ≤ ‖T − Th‖L(X,Y ) = εh).

We use similar reasoning to bound the third inner product as follows:〈
PFh,kv, T (I − PEh,k)u

〉
Y
≤ σke

2
X +O

(
σkεh(eX + eY )2

)
.
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Finally, for the fourth inner product, we use Theorem 4.15 to obtain〈
(I − PFh,k)v, T (I − PEh,k)u

〉
Y

=
〈
(I − PFh,k)v, Th(I − PEh,k)u

〉
Y

+
〈
(I − PFh,k)v, (T − Th)(I − PEh,k)u

〉
Y

≤ ‖(I − PFh,k)v‖Y ‖Th(I − PEh,k)u‖Y +

‖(I − PFh,k)v‖Y ‖T − Th‖L(X,Y )‖(I − PEh,k)u‖X

≤ 2σkqkεh‖(I − PFh,k)v‖Y (eY + eX) + σk

(
εh
σk

)
‖(I − PFh,k)v‖Y ‖(I − PEh,k)u‖X

= O
(
σkεh(eX + eY )2

)
.

We thus obtain

σk ≤ σh,` − σk
(
e2
X

2
+
e2
Y

2

)
+ σke

2
X + σke

2
Y +O

(
σkεh(eX + eY )2

)
= σh,` + σk

(
e2
X

2
+
e2
Y

2

)
+O

(
σkεh(eX + eY )2

)
and hence

0 ≤ σk − σh,`
σk

≤ e2
X

2
+
e2
Y

2
+O

(
εh(eX + eY )2

)
,

as desired. �

Since ‖(I − PXh)u‖X and ‖(I − PYh)v‖Y are both O(εh) by Theorem 4.8, Theorem
4.16 implies that the relative error in each computed singular value is O(ε2h) when
Th = PYhTPXh (as opposed to O(εh) for a general approximation Th of T ).

4.4 Numerical experiments

The first example demonstrates the convergence guaranteed by Theorems 4.6 and 4.8.

Example 4.17 Consider the first-kind integral operator T : L2(0, 1) → L2(0, 1) de-
fined by

(Tx)(s) =

∫ 1

0

k(s, t)x(t) dt, 0 < s < 1,

where k(s, t) = sest. We will use the techniques described in this chapter, with Xh

and Yh chosen to be finite-element spaces, to estimate the SVE of T . Since the kernel
is smooth, Chebyshev approximation allows for a sequence of approximations that
converge exponentially quickly (see [20] and [28]). The finite-element approximations
described here do not lead to a competitive algorithm, but they serve to illustrate the
convergence theorems of this chapter.
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To apply the above results, we define Xh = Yh to be the space of continuous piecewise
polynomial functions relative to the uniform mesh on [0, 1] with 1/h elements. We
denote the nodes by t0, t1, . . . , tn (where tj = j/n for each j) and use the standard
nodal basis {x0, x1, . . . , xn} (defined by xi(tj) = δij). Note that n = d/h for piecewise
polynomials of degree d. We discretize the integral operator by interpolating the kernel
k onto the tensor-product finite element space

Yh ⊗Xh = sp{zk` : 0 ≤ k, ` ≤ n},

where zk` is defined by zk`(s, t) = xk(s)x`(t). We then define Th : Xh → Yh by

(Thx)(s) =

∫ 1

0

kh(s, t)x(t) dt, 0 < s < 1,

where kh is the interpolated kernel:

kh(s, t) =
n∑
k=0

n∑
`=0

k(tk, t`)xk(s)x`(t)

Standard finite element approximation results can be used to show that, for piecewise
polynomials of degree d,

‖kh − k‖L2((0,1)×(0,1)) ≤ Chd+1.

It follows immediately that ‖Th − T‖L(L2(0,1),L2(0,1)) ≤ Chd+1 and therefore we expect
σh,k, Eh,k, and Fh,k to converge with an error of O(hd+1).

It is easy to show that the Galerkin matrix A is given by A = MCM , where M is
the Gram matrix for the basis {x0, x1, . . . , xn} and C is defined by Ck` = k(tk, t`). It
follows that it is simple to implement this particular discretization.

Table 4.1 shows the computed values of σh,1, σh,2, σh,3 for h = 2−3, 2−4, . . . , 2−10,
using piecewise linear functions (d = 1). The exact values are unknown, but we
use Richardson extrapolation to estimate an exponent p such that the error appears
to converge to zero like O(hp). As expected, the results suggest that the errors are
O(h2). Although we do not show the results, the same method suggests that the sin-
gular functions {φh,k} and {ψh,k} converge at the same rate. (The singular spaces all
appear to be one-dimensional.) Figure 4.1 shows the first three right and left singular
functions.

The next experiment illustrates the accelerated convergence guaranteed by Theorem
4.16.
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h σh,1(pest) σh,2(pest) σh,3(pest)
1/8 8.95937 · 10−1 4.25077 · 10−2 1.19714 · 10−3

1/16 8.93464 · 10−1 4.26331 · 10−2 1.22087 · 10−3

1/32 8.92847 · 10−1(2.00) 4.26627 · 10−2(2.09) 1.22608 · 10−3(2.19)
1/64 8.92693 · 10−1(2.00) 4.26700 · 10−2(2.02) 1.22734 · 10−3(2.05)

1/128 8.92655 · 10−1(2.00) 4.26718 · 10−2(2.00) 1.22765 · 10−3(2.01)
1/256 8.92645 · 10−1(2.00) 4.26722 · 10−2(2.00) 1.22773 · 10−3(2.00)
1/512 8.92643 · 10−1(2.00) 4.26723 · 10−2(2.00) 1.22775 · 10−3(2.00)

1/1024 8.92642 · 10−1(2.00) 4.26724 · 10−2(2.00) 1.22775 · 10−3(2.00)

Table 4.1
The computed singular values σh,1, σh,2, σh,3 for Example 4.17. Richardson
extrapolation is used to estimate p such that |σh,k − σk| = O(hp) appears

to hold; the estimated exponents pest appear in parentheses.

Figure 4.1: The computed singular functions φh,1, φh,2, φh,3 (left) and
ψh,1, ψh,2, ψh,3 (right). The solid curves represent φh,1 and ψh,1, the dashed
curves φh,2 and ψh,2, and the dotted curves φh,3 and ψh,3.

Example 4.18 We now repeat Example 4.17 but using Th = PYhTPXh to approxi-
mate T . We are required to compute the Galerkin matrix A defined by

Ak` = 〈yk, Thx`〉L2(0,1) = 〈yk, Tx`〉L2(0,1)

=

∫ 1

0

∫ 1

0

k(s, t)x`(t)yk(s) dt ds.

We use a tensor-product Gauss quadrature rule to compute the entries of A to high
accuracy. For an integral operator such as T , it is straightforward to show that Th =
PYhTPXh is the integral operator defined by the kernel k̂h, where k̂h is the projection
(in the L2 inner product) of the true kernel k onto the tensor-product space Yh ⊗Xh

(see [15]). It follows that ‖k̂h− k‖L2((0,1)×(0,1)) is no greater than ‖kh− k‖L2((0,1)×(0,1))

(where kh is the interpolated kernel used in Example 4.17), and numerical evidence
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suggests that the asymptotic rate is the same: ‖k̂h − k‖L2((0,1)×(0,1)) = O(hd+1) if
piecewise polynomials of degree d are used. By Theorem 4.16, then, we expect the
computed singular values to converge at a rate of O((hd+1)2) = O(h2d+2).

Table 4.2 shows the computed values of σh,1, σh,2, σh,3 for h = 2−3, 2−4, . . . , 2−10, using
piecewise linear functions (d = 1). As expected, the errors are consistent with O(h4)
convergence. Table 4.3 shows the analogous results for piecewise quadratic polynomials
(d = 2). In this case, the results are consistent with O(h6) convergence, as predicted
by Theorem 4.16. (With piecewise quadratic functions, the singular values converge
quickly enough that the errors reach the level of round-off error in our computations.
This is reflected in the fact that the estimated exponent is not as close to 2d+ 2 as in
the linear case, and even becomes negative in some cases.)

h σh,1(pest) σh,2(pest) σh,3(pest)
1/8 8.92640 · 10−1 4.26673 · 10−2 1.22572 · 10−3

1/16 8.92642 · 10−1 4.26720 · 10−2 1.22763 · 10−3

1/32 8.92642 · 10−1(4.00) 4.26723 · 10−2(4.00) 1.22775 · 10−3(3.99)
1/64 8.92642 · 10−1(4.00) 4.26724 · 10−2(4.00) 1.22776 · 10−3(4.00)

1/128 8.92642 · 10−1(4.00) 4.26724 · 10−2(4.00) 1.22776 · 10−3(4.00)
1/256 8.92642 · 10−1(4.00) 4.26724 · 10−2(4.00) 1.22776 · 10−3(4.00)
1/512 8.92642 · 10−1(4.00) 4.26724 · 10−2(4.00) 1.22776 · 10−3(4.00)

1/1024 8.92642 · 10−1(4.00) 4.26724 · 10−2(4.00) 1.22776 · 10−3(4.00)

Table 4.2
The computed singular values σh,1, σh,2, σh,3 for Example 4.18 (piecewise

linear functions). Richardson extrapolation is used to estimate p such that
|σh,k − σk| = O(hp) appears to hold; the estimated exponents pest appear in

parentheses.

With both piecewise linear and piecewise quadratic functions, the computed singular
functions are consistent with O(hd+1) convergence; the increased rate of convergence
applies only to the singular values.

We also note that the first nine (that is, the nine largest) singular values of T are
approximately

8.926 · 10−1, 4.267 · 10−2, 1.228 · 10−3, 2.434 · 10−5, 3.685 · 10−7,

4.507 · 10−9, 4.621 · 10−11, 4.076 · 10−13, 3.15 · 10−15.

Using piecewise linear functions and a uniform mesh with 256 elements, we are able
to estimate these values accurately (error approximately 1% in σ9 and much less than
1% for σ1, . . . , σ8) by computing the SVE of Th = PYhTPXh. Using the eigenvalue
approach and the same mesh, it is possible only to estimate the first five singular
values, with the error in σ5 ≈ 3.685 · 10−7 already about 0.6%.
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h σh,1(pest) σh,2(pest) σh,3(pest)
1/8 8.92642 · 10−1 4.26724 · 10−2 1.22775 · 10−3

1/16 8.92642 · 10−1 4.26724 · 10−2 1.22776 · 10−3

1/32 8.92642 · 10−1(5.93) 4.26724 · 10−2(5.91) 1.22776 · 10−3(5.86)
1/64 8.92642 · 10−1(5.98) 4.26724 · 10−2(5.95) 1.22776 · 10−3(5.93)

1/128 8.92642 · 10−1(6.27) 4.26724 · 10−2(5.98) 1.22776 · 10−3(5.96)
1/256 8.92642 · 10−1(1.91) 4.26724 · 10−2(7.38) 1.22776 · 10−3(6.00)
1/512 8.92642 · 10−1(−4.15) 4.26724 · 10−2(−2.39) 1.22776 · 10−3(4.79)

Table 4.3
The computed singular values σh,1, σh,2, σh,3 for Example 4.18 (piecewise
quadratic functions). Richardson extrapolation is used to estimate p such

that |σh,k − σk| = O(hp) appears to hold; the estimated exponents pest
appear in parentheses. With piecewise quadratic approximations, the

errors quickly reach the level of machine epsilon and so the estimates of p
deteriorate as the mesh is refined.

Finally, as we have noted, Theorem 4.11 does not guarantee an optimal rate of con-
vergence for the estimates of the singular vectors, at least not in all scenarios. The
following example, in which we use different finite element spaces for Xh and Yh, sug-
gests that Theorem 4.11 correctly predicts the observed rate of convergence (optimal
or suboptimal).

Example 4.19 Let T : L2(0, 1)→ L2(0, 1) be defined by

(Tx)(s) =

∫ 1

0

k(s, t)x(t) dt, 0 < s < 1,

where k is the discontinuous kernel defined as follows:

k(s, t) =

{
s2 − t, s ≤ t,

sest, t < s.

We use continuous piecewise polynomials of degree p − 1 and q − 1 for Xh and Yh,
respectively, yielding the following rates of convergence:

Right singular vectors: ‖(I − PXh)u‖X = O(hp);

Left singular vectors: ‖(I − PYh)v‖Y = O(hq).

Since k is discontinuous, εh = O(h). Theorems 4.11 and 4.16 suggest that we should
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observe

‖(I − PEh,k)u‖X = O (hr) , r = min{p, q + 1},
‖(I − PFh,k)v‖Y = O (hs) , s = min{q, p+ 1},

σk − σh,k
σk

= O
(
ht
)
, t = 2 min{r, s} = 2 min{p, q}.

Table 4.4 presents the results of our numerical experiments for different values of
p and q; the results are fully consistent with the predictions of Theorems 4.11 and
4.16. For illustration, we use k = 1; specifically, we estimate u = φ1 and v = ψ1 on
uniform meshes with 16, 32, and 64 elements. We then use Richardson extrapolation
to estimate r, s, and t so that

‖(I − PEh,1)u‖X = O(hr), ‖(I − PFh,1)v‖Y = O(hs), and
σk − σh,k

σk
= O(ht).

Although we do not show the results here, we observe the same behavior for various
values of k, except that, as k increases, finer meshes are needed to observe predicted
rates of convergence.

‖(I − PEh,1)u‖X ‖(I − PFh,1)v‖Y
σ1−σh,1

σ1

p q observed r observed s observed t
2 2 2.0213 2.0057 4.0217
2 3 2.0201 2.9772 4.0450
3 2 2.8997 2.0061 4.0117
2 4 2.0201 3.1194 4.0395
4 2 3.0198 2.0061 4.0113
4 3 3.9531 2.9552 5.9103
5 2 3.0194 2.0061 4.0113
3 5 2.8427 3.7315 5.6847
5 3 3.8940 2.9552 5.9096
6 2 3.0195 2.0061 4.0113

Table 4.4
Observed rates of convergence of the first right and left singular vectors for

different discretizations. In each case, the observed rate of convergence
agrees with the prediction of Theorem 4.11. Suboptimal rates of

convergence are indicated in boldface. The last column shows the rate of
convergence for the first singular value; the results agree with Theorem

4.16.
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4.5 SVE Computation

We now show how to compute the SVE of Th = PYhTPXh . It is clear that the right
singular vectors of Th belong to Xh and the left singular vectors to Yh. Therefore,
it suffices to show how to compute the SVE of an operator of the form T̂ : X̂ → Ŷ ,
where X̂ and Ŷ are finite-dimensional subspaces of X and Y , respectively.

The following lemma will be useful.

Lemma 4.20 Let {x1, x2, . . . , xn} be a basis for a finite-dimensional inner product
space X̂, and let M ∈ Rn×n be the Gram matrix for this basis. Then {φ1, φ2, . . . , φn}
is an orthonormal basis for X̂ if and only if

φj =
n∑
i=1

Uijxi, j = 1, 2, . . . , n, (4.18)

where M1/2U is an orthogonal matrix.

Proof: Since {x1, x2, ..., xn} is a basis for Xh, any other basis {φ1, φ2, ..., φn} can be
written in the form of (4.18) for some matrix U ∈ Rn×n. We then have

〈φi, φj〉X =

〈
n∑
k=1

Ukixk,
n∑
`=1

U`jx`

〉
X

=
n∑
k=1

n∑
`=1

UkiU`j〈xk, x`〉X

=
n∑
k=1

n∑
`=1

UkiU`jMk`

=
(
UTMU

)
ij

=
((
M1/2U

)T (
M1/2U

))
ij

It follows that {φ1, φ2, ..., φn} is orthonormal if and only if M1/2U is an orthogonal
matrix. �

We can now state the desired theorem.

Theorem 4.21 Let X̂ and Ŷ be finite-dimensional subspaces of X and Y , respec-
tively, and let {x1, x2, . . . , xn} and {y1, y2, . . . , ym} be bases for X̂ and Ŷ , respectively.
Suppose T̂ : X̂ → Ŷ is linear, and let A ∈ Rm×n be the Galerkin matrix defined by

Ak` =
〈
yk, T̂ x`

〉
Y
.

Let H−1/2AM−1/2 = UΣV T be an SVD of the matrix Â = H−1/2AM−1/2, where M
and H are the Gram matrices for {x1, x2, . . . , xn} and {y1, y2, . . . , ym}, respectively,
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and define V̂ = M−1/2V and Û = H−1/2U . Then an SVE of T̂ is given by

T̂ =
r∑

k=1

σ̂kψ̂k ⊗ φ̂k, (4.19)

where σ̂1, σ̂2, . . . , σ̂r are the nonzero singular values of Â and

φ̂` =
n∑
k=1

V̂k`xk, ` = 1, 2, . . . , n,

ψ̂` =
m∑
k=1

Ûk`yk, ` = 1, 2, . . . ,m.

(4.20)

Proof: By Lemma 4.20, (4.20) defines orthonormal bases

{φ̂1, φ̂2, . . . , φ̂n}, {ψ̂1, ψ̂2, . . . , ψ̂m}

of X̂, Ŷ , respectively. It suffices to prove that (4.19) holds. We see that

T̂

(
n∑
`=1

α`x`

)
=

m∑
`=1

β`y`

⇐⇒

〈
yk, T̂

(
n∑
`=1

α`x`

)〉
Y

=

〈
yk,

m∑
`=1

β`y`

〉
Y

, k = 1, 2, ...,m

⇐⇒
n∑
`=1

〈yk, T̂ x`〉Xα` =
m∑
`=1

〈yk, y`〉Y β`, k = 1, 2, ...,m

⇐⇒ Aα = Hβ

⇐⇒ β = H−1Aα.

We must show that (
r∑

k=1

σ̂kψ̂k ⊗ φ̂k

)(
n∑
`=1

α`x`

)
=

m∑
`=1

β`y`,
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where β = H−1Aα. This can be shown directly:(
r∑

k=1

σ̂kψ̂k ⊗ φ̂k

)(
n∑
`=1

α`x`

)
=

r∑
k=1

n∑
`=1

σ̂k〈φ̂k, x`〉Xα`ψ̂k

=
r∑

k=1

n∑
`=1

(
σ̂k

〈
n∑
i=1

V̂ikxi, x`

〉
X

α`

m∑
q=1

Ûqkyq

)

=
r∑

k=1

n∑
`=1

n∑
i=1

m∑
q=1

(
ÛqkV̂ikσ̂k〈xi, x`〉Xα`yq

)
m∑
q=1

(
r∑

k=1

n∑
`=1

n∑
i=1

ÛqkV̂ikσ̂kMi`α`

)
yq

m∑
q=1

(
r∑

k=1

n∑
i=1

ÛqkV̂ikσ̂k(Mα)i

)
yq

m∑
q=1

(
r∑

k=1

Ûqkσ̂k(V̂
TMα)k

)
yq

m∑
q=1

(
ÛΣV̂ TMα

)
q
yq.

This gives the desired result, because

ÛΣV̂ TM = H−1/2UΣV TM−1/2M = H−1/2H−1/2AM−1/2M−1/2M = H−1A.�

It might be desirable to compute the SVE of T̂ : X̂ → Ŷ , where X̂ is a given finite-
dimensional subspace of X, Ŷ = T (X̂), and T̂ x = Tx for all x ∈ X̂. We suppose
first that {x1, x2, . . . , xn} is a basis for X̂ and that {y1, y2, . . . , yn}, where yi = Txi
for i = 1, 2, . . . , n, is linearly independent and hence is a basis for Ŷ = T (Xh). In this
case, the Galerkin matrix A is defined by

Aij = 〈yi, Txj〉Y = 〈Txi, Txj〉Y

and coincides with the Gram matrix for the basis {y1, y2, . . . , yn}. Since A is likely
to be dense (even if Xh is a finite-element space), the square root A1/2 required by
Theorem 4.21 is expensive to compute when n is large. For this reason, we use the
Cholesky factorization instead (as, indeed, we could have done in Theorem 4.21). Let
A = LLT and M = NNT be Cholesky factorizations of A and M , respectively (so
that L and N are lower triangular). We then define Â = L−1AN−T = LTN−T and
compute an SVD of Â: LTN−T = UΣV T . Defining V̂ = N−TV and Û = L−TU , it is
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easy to show that

T̂ =
r∑

k=1

σ̂kψ̂k ⊗ φ̂k,

where σ̂1, σ̂2, . . . , σ̂r are the nonzero singular values of Â and

φ̂` =
n∑
k=1

V̂k`xk, ` = 1, 2, . . . , n,

ψ̂` =
n∑
k=1

Ûk`yk, ` = 1, 2, . . . , n.

The above scheme is likely to be effective if N (T ) ∩ X̂ is trivial and the singular
vectors of T go to zero slowly enough to allow a sufficiently fine discretization of X
for accurate approximation of the left singular vectors while maintaining the positive
definiteness of A. For many operators T , though, the Galerkin matrix A will be
singular for a reasonable discretization X̂ of X. In this case, a more careful algorithm
is needed.

4.6 Conclusions

The singular values and singular vectors of a compact operator can be estimated using
a variety of discretizations. In the generic case, where the operator T is approximated
by a family {Th : h > 0} of discretized operators, the errors in both singular values
and singular vectors go to zero at least as fast as does ‖Th − T‖L(X,Y ). With the
special choice of Th = PYhTPXh , the error in the computed singular vectors can be
expressed in terms of the optimal approximation errors, but the approximability of
both left and right singular vectors affects the error in either the computed left sin-
gular vectors or the computed right singular vectors. In many cases, the error in the
computed singular vector is asymptotically optimal, but a poor degree of approxima-
bility in the left singular vectors, for example, can cause the error in the computed
right singular vectors to be suboptimal. This is suggested by the bounds in Theo-
rem 4.11 and confirmed by the numerical examples in Section 4.4. Still considering
the case of Th = PYhTPXh , Theorem 4.16 shows that the computed singular values
converge at an increased rate. The typical case is that the error goes to zero like the
square of the optimal approximation error for the singular vectors, but once again the
approximability of both left and right singular vectors must be taken into account.

Although the approximation of the singular values and singular vectors of T is related
to the approximation of the eigenvalues and eigenvectors of T ∗T , the fact that both
left and right singular vectors (which may have different degrees of approximability)
are involved means that the situation cannot be understood by simply transferring
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the results of the eigenvalue theory (due to Chatelin, Babuška and Osborn, and
others) to the singular value problem. Moreover, as discussed in Section 4.1, there
are advantages to computing the singular values and singular vectors directly, rather
than by formulating a related eigenvalue problem, particularly the fact that we can
approximate smaller singular values accurately.
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