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Abstract

This report presents an analysis on energy consumption of a Gen II Chevrolet Volt

PHEV and its energy savings potential in Real World Driving scenarios with the

help of vehicle connectivity. The research on the energy consumption analysis and

optimization using connectivity will focus on four main areas of contribution which

includes 1.) vehicle testing on a pre-defined drive cycle and alternative routing near

the Michigan Tech campus and APS research center that is a continuation of previous

students’ works, 2) the energy savings potential of vehicle platooning and various ve-

hicle platoon configurations, 3) the updating of a PHEV implementation of a charge

depleting-charge sustaining energy blending optimization algorithm and 4) the devel-

opment of an IC Engine start-stop prediction algorithm for HEV and PHEV’s using

connectivity data. The first part of the report discusses the development of a Real

World Drive Cycle called Reverse MTU Drive Cycle which is the successor of MTU

Drive Cycle, a drive cycle previously developed local to the Michigan Technological

University. The energy consumption of the PHEV on the R-MTUDC is analyzed

and the baseline characteristics of the drive cycle is setup. A set of baseline drive

cycle characteristics was developed and tests on the drive cycle proved that the en-

ergy consumption on the real-world drive route is consistent with variability less than

3%. The next part of the report investigates the energy savings potential of the cars

when they are travelling in a platoon rather than independently. Various tests have

xxv



been conducted to investigate energy savings under different platoon scenarios, like

variable gap settings, variable speeds, inclusion of a vehicle with aero-modifier and

effect of moving collinearly in a platoon. A platoon wide savings as high as 8.3%

was achieved in the study. After that, the report discusses the on-road implemen-

tation of a Route Based Blended Mode Optimizer, in PHEVs, which comes up with

an optimal control matrix using Dynamic Programming and Cost-To-Go matrix, to

make use of the Hold mode capability of the Volts, to operate the cars in Charge

Sustaining mode at sections of Drive Cycles where it is most efficient to be operated.

Upto, 5% savings in energy was obtained using the optimizer. Some of the runs didn’t

provide the desired results and this is also investigated. Finally, the report presents

the development of two kinds of Engine Start-Stop Optimizers, which utilizes vehi-

cle connectivity and vehicle energy consumption model to come up with an optimal

control map of regions on the predicted driving route where the engine should be

turned On and Off for minimising energy consumption in HEVs and PHEVs. The

first optimizer uses vehicle and route characteristics to predict engine starts and stops

and then optimizes these signals based on decisions made from energy calculations.

The second optimizer uses Dynamic Programming to create a matrix of engine On

and Off signals based on route characteristics. These controllers are shown to provide

energy savings as high as 8% on some routes.

xxvi



Chapter 1

Introduction

In the past couple of decades, since the movement for reducing the human impact on

environment and climate change took off, various regulatory agencies worldwide has

implemented stringent programs and goals to reduce Green House Gas emissions and

dependency on depleting oil reserves. The beginning of the US emissions regulatory

move can be traced back to 1965 with the passing of ‘Motor Vehicle Air Pollution

Control Act’ and the ‘Environment Protection Agency (EPA)’, the primary organi-

zation in the US responsible for emission regulations, was officially set up in 1970

[5].

In US, the EPA and NHTSA has set up a system called Corporate Average Fuel

Economy (CAFE), by which each vehicle manufacturer must meet an average fuel

1



economy for its entire fleet of vehicles or otherwise attract penalties. Figures 1.1

and 1.2 show the emission targets of some of the world’s countries. The European

Union has set goals to reduce CO2 emissions from cars by 37.5% by 2030 compared

to 2021 levels [6]. While, India is also set to adopt the Bharat Stage VI emission

regulations in April of 2020, which will align the country’s emission standards with

that of Europe’s [7].

Figure 1.1: Historical and Target Emission standards for passenger cars of
major countries normalized to CAFE [1]

Most of the agencies responsible for emissions certification tests the vehicle under

different drive cycles. US’s EPA uses different drive cycles to simulate different driving

conditions like the Urban Dynamometer Driving Schedule (UDDS) for city driving

conditions, the Federal Test Procedure (FTP), the Highway Fuel Economy Driving

2



Figure 1.2: Historical and Target Emission standards for Light
Trucks of major countries normalized to CAFE [1](Image Source License:
https://theicct.org/legal, Creative Commons Attribution-ShareAlike 3.0
Unported License.)

Schedule (HWFET) to represent highway driving conditions under 60 mph, the New

York City Cycle (NYCC) for low speed stop and go conditions, the US06 drive cycle

for high speed (above 60 mph) and aggressive driving style and the SC03 drive cycle

to represent driving in hot weather conditions [8]. Since these drive cycles are carried

out on a dynamometer, it does not represent emissions produced on road. The fuel

economy numbers from these test cycles might not be achievable in real world driving

scenarios, since the driving conditions are predefined and vehicles can be prepared for

that. So, a new set of emission testing procedure has been proposed which is called

3



the Real Driving Emissions (RDE) Test. In this method, the vehicle is tested on-

road and is certified only if the emissions are within a threshold. Europe has started

implementing the RDE test along with their traditional New European Driving Cycle

(NEDC) [9][10][11].

All these targets and regulations means that the average energy consumption per mile

for a passenger car or light truck must go up drastically in the near future. In order to

meet these increasing demands, the industry has moved towards electrification of the

vehicle powertrain since electric motors complements the shortcomings of an Internal

Combustion (I.C) Engines. There are mainly two kinds of vehicles with electrified

powertrain in the market – Battery Electric Vehicles (BEVs) and Hybrid Electric

Vehicles (HEVs).

A BEV has a fully electrified powertrain, i.e. it does not have an I.C engine. Com-

pared to I.C engines, an electric motor is more efficient and has a high starting torque

and consumes very less energy during idling. But, these vehicles have lesser range be-

cause of its batteries’ limited energy storage capacity and has to carry around heavy

batteries because of its lesser energy density and once the batteries are depleted, it

would take hours to recharge it. Also, the electric motors’ efficiency starts decreasing

at higher vehicle speeds. Even though solutions to these problems are being devel-

oped, it may not be fast enough to match the regulations of the near future. While,

an HEV is a vehicle that derives power from both an in-house battery as well as an
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I.C engine. It takes the best of a traditional vehicle and a BEV and combines it.

Most of the HEVs are designed such that it can run on its I.C engine alone after the

battery has been depleted, hence it does not have to carry heavy batteries and spend

long hours recharging between trips. At the same time, the electric motors assist in

low speed starting and peak torque demands. The downside of an HEV is its complex

powertrain architecture and cost. Hence, HEVs have the ability to meet the strict

emission regulations without compromising user comfort.

The operation of e-motors and I.C engine in an HEV is governed by control algo-

rithms. These algorithms can be rules-based algorithms, instantaneous optimization

algorithms or Global Optimization algorithms. Rules based algorithms are those in

which a set of operations are executed when a set of pre-defined conditions are met.

These types of algorithms are comparatively easier to implement on a vehicle’s sys-

tem and does not require huge computational power. Instantaneous optimization

algorithms try to optimize the performance of the vehicle at a particular instant

based on the current operating conditions. These algorithms require more time and

computational power to execute. With enough testing and experience, some of these

instantaneous optimization results can be converted to rules-based algorithms. Global

Optimization algorithms uses a look-ahead of what the vehicle is going to encounter

in the future and optimizes the vehicle performance for the entire horizon.

Global Optimization must be done real-time and requires huge computational power
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but these algorithms have the largest potential to save energy. But in order to imple-

ment these commercially, major infrastructure developments are needed which include

V2V (Vehicle to Vehicle), V2I (Vehicle to Infrastructure), and V2C (Vehicle to Cloud)

communication.

1.1 The NEXTCAR Project

The work presented in this report is part of Advanced Research Projects Agency -

Energy’s (ARPA-E) NEXTCAR project (Next-Generation Energy Technologies for

Connected and Automated On-Road Vehicles) funded by the Department of Energy

(DoE). The project’s aim is to reduce the energy consumed by individual, group or

entire fleet of vehicles through the use of vehicle connectivity to optimize powertrain

and vehicle dynamics performance [12]. The ultimate goal of this project is to develop

vehicle technologies that would improve fuel efficiency by 20% and electric range

by 6%. The idea is to use real-time road and traffic data for a foreseeable future,

obtained through V2X communication, and use that data for energy optimization

using Optimal Mode Selection, Eco Approach and Departure at traffic lights and

stops, Optimal Powersplit Mode, Eco Routing, Optimal Engine On/Off Strategies

and Vehicle Platooning.

The Michigan Tech NEXTCAR team is working with General Motors to achieve
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these goals for HEVs and for this, a fleet of four Chevrolet Gen II Volts have been

instrumented with dSpace MicroAutoBox II – “a real-time system for performing

fast function prototyping” [13], to tap into the vehicles’ bus signals for obtaining

real-time data as well as sending control signals. The MicroAutoBox was interfaced

with laptops on-board the vehicles through dSpace ControlDesk – a flexible software

that can be used for synchronized data collection and instrumentation [14].

1.2 Chevrolet Gen II Volt

The Chevrolet Volt II is a Plug-in HEV (PHEV), which has the capability to run

as a BEV with full vehicle capabilities until the batteries are drained. Compared to

the first generation of Volts, the new Volts have a larger battery pack of 18.4 kW-hr

energy which translates to increased EV range.The propulsion system of the Volts

is made up of two motor-generators and an Engine connected to the axle via two

planetary gear-sets. One of the motors and engine is connected to the first planetary

gear and the second motor is connected to the second gear-set. Both these gear-

sets are connected to the axle of the vehicle and there are clutch three clutches –

one of which is used to connect or disconnect the engine from the gear-set. One

is used to ground the ring gear of the second gear-set and the other one is used to

connect or disconnect the sun gear of the 1st set with the ring gear of the second.

This combination of motors, engine and gear-sets allows the vehicle to operate in five
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different modes. Since, the Drive Ratio between the wheels and the engine is not

fixed, the engine is independent of the wheels to operate at an efficient region [2].

Figure 1.3: VOLT II operating modes in Charge Sustaining mode operation
obtained during vehicle testing [2] [3]

The different operating regions of each mode during the Charge Sustaining Operation

are are shown in Figure 1.3 Two of the five modes are EV modes and the rest are

blended modes. Each of these modes are designed to operate the propulsion system

at high efficiency for different driving scenarios. The 1-motor-EV mode is used when

the vehicle is operating under light load conditions. When the load is higher in EV

mode, the second motor will kick in to assist the first one . The rest of the three

modes are reserved for charge sustaining operation when the engine is ON. The Low

Extended Range (LER) Mode is used when a high axle torque is required at lower
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vehicle speeds. One of the motor acts as a generator in this mode. The Fixed Gear

Ratio Mode is selected for moderate axle loads and moderate speed conditions. In

this mode, one of the gears in each planetary gear-set is grounded providing a fixed

gear reduction. One of the motor is grounded and the other can act as a motor or

generator depending on the driving conditions. The last mode is called High Extended

Range (HER), which is used when the axle load demand is low and vehicle which is

typical highway cruising. In this mode,the engine primarily provides the power to the

wheels and the speed of one of the motors can be adjusted to maintain the engine at

an optimal speed and torque [2].

The rest of the report discusses what the major technologies being developed in this

field are and the methods that they follow, the experiments conducted as part of this

research and the setups used, the results of the experiments conducted and conclusions

and opportunity for improvement in this field.

The studies explained in this report can be divided into four.

1. First, the development and energy consumption analysis of a Real-World Drive

Cycle is reported. I was involved in testing and processing the data collected

from these tests.

2. Next, a preliminary investigation into the energy savings potential of vehicle

platooning is conducted. In this study also, I was involved with conducting the
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tests and processing and analyzing the data collected. A more detailed study

in this section will be conducted in the future.

3. The next part deals with the testing of a route based blended mode optimizer.

The optimizer was developed by students who were previously involved with

the NEXTCAR project at Michigan Technological University. My job was to

extract the Optimal Control Matrix from the optimizer and implement it in the

vehicles as a lookup table with distance travelled and SOC as the breakpoints.

In previous years, the output of the optimizer was input as a 1-D vector with

only distance as the breakpoints. After this task was completed, on-road testing

was conducted.

4. Finally, the report discusses the development of two kind of Engine Start-Stop

Optimizers and its testing on different routes for energy savings.
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Chapter 2

Literature Review

Connected Vehicle Infrastructure and Technologies are developing at a fast rate world-

wide. The greatest advantage of vehicle connectivity is that the vehicle will be aware

of the conditions it is about to encounter and can prepare for that ahead of time.

One of the major application of Connected Vehicle Technology is its use to reduce

the energy consumption of HEVs by coming up with an Energy Management Strategy

using the road conditions and traffic data ahead of it.
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2.1 Blended Mode Optimization in HEVs

Most of the research related to Connected Vehicle Technology focuses on optimal

blended mode operation of engine and e-motors. In case, a look ahead of the driving

conditions is not available, a control strategy of instantaneous optimization has to

be adopted. Such a method is discussed in [15]. In this method, cost function

is developed as a function of the sum of fuel energy and electrical energy. The

electrical energy has a weighting factor called equivalence factor to make it equivalent

to fuel energy. The equivalence factor is modelled as a variable which depends on the

probability of charging or discharging and current driving conditions. The Equivalent

Consumption Minimization Strategy (ECMS) is applied using the equivalence factor

to the find the optimal operating points. If a look ahead of the driving conditions are

available, this method can be extended to a Global Optimization level.

If the vehicle have limited connectivity like GPS location, another type of Energy

Management Strategy can be applied as discussed in the literature [16]. It is to use

Dynamic Programming to find the operating cost of the powertrain at all instances,

when the driving conditions is divided into four kinds on the basis of average speed

of the vehicle and congestion on the road. For each of these condition and based on

the distance to be driven, optimal control strategies are extracted from the output

of DP. The current driving condition is determined using a method called K-means
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clustering and GPS data is used for to find the distance to the end of the trip. With

these two inputs an optimal control strategy is selected which controls the the gear

ratio, engine torque output and motor torque output for maximum efficiency. This

method of optimization can be applied wherever a modern connectivity infrastructure

does not exist. The only external data this algorithm requires is the GPS location

of the vehicle and the distance to its destination. The method does not take in to

account the terrain of the road ahead, which is a major contributing factor.

A forward looking algorithm is described in [17], in which Pontryagin’s Minimum

Principle (PMP) is applied to a global optimization problem to obtain a locally op-

timized solution. The cost function is defined as the sum of CO2 emitted, from I.C

Engine emissions as well as that from electrical energy used from the grid. A Hamilto-

nian function is derived from the cost function and its minimization leads to optimal

solution of the problem. But this method is very computationally demanding and

implementing it real-time will be a challenge. As in other cases, with prior knowledge

of the driving conditions, optimal control maps can be obtained and implemented in

the vehicle.

A different approach to developing an Energy Management Strategy can be found in

[18]. This paper proposes a non-model based development of Energy Management

Strategy using Artificial Neural Network (ANN). It uses the Pontryagin’s Minimum

Principle (PMP) to derive the Equivalent Consumption Minimum Strategy (ECMS).
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The authors used randomly selected velocity profiles of a particular route to train the

neural network with three input variables – the power demand, state of charge and

the ratio of distance to be travelled to the total distance. The network was trained for

different initial SOCs.The neural network came up with a co-state factor that would

determine the power distribution between the motor and the engine. Once, these

networks were trained for a particular route, it could provide the co-state values at

each instant based on the inputs. Once the neural networks are trained, this method

will be faster than Dynamic Programming. The downside of this method is that it

cannot adapt to unforeseen changes in traffic conditions. In this method also, the

road is assumed to be flat and elevation is ignored.

Using the Dynamic Programming Approach to implement real-time optimal control

strategy was considered impractical due to the computational load and lack of pre-

dictability of future driving conditions. But with the recent developments of vehicle

control units and V2X technologies, these restrictions can be overcome. A method

for real-time application of DP to extract optimal control strategy is discussed in [19]

using prior knowledge of the drive cycle. The idea in this paper is to use DP to ex-

tract an SOC trajectory against distance travelled based on future route speeds and

elevation information. Once this SOC trajectory is known, the vehicle’s controller

will optimize the operating points of engine and e-motor to follow the desired SOC

trajectory. The control strategy can be updated real-time if there is a change in the

predicted drive cycle.
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With a preview of the drive cycle available to the controller, another method is

illustrated in [20]. The proposed method is to use the ECMS approach to find the

instantaneous optimal operating points. The equivalence factor used for local ECMS

at each instant will be determined by processing the future driving conditions. Two

methods are proposed to determine the Equivalence Factor. One is to use backward

DP and the other is to use backward ECMS with the final SOC set at desired SOC

and working backwards to find the equivalence factor to follow the desired SOC trace.

The paper [21], describes the development of a real-time control policy using Dynamic

Programming and Linear regression process to come up with optimal operating con-

trols for the engine and two motors for a power-split PHEV like Toyota Prius. The

first part of the study is to use the Dynamic Programming method to come up with

optimal control trajectories so that the combined cost of electrical and fuel energy is

minimized for a given drive cycle. Once, the optimal solution is obtained, the control

states (Torque of engine and the two motors) are formulated as a linear combination

of the demanded force and the system states. The coefficients of these states are then

determined using a process called least squares minimization. In this process, the co-

efficients are adjusted such that the difference between values of the control variables

from the linear regression model and those from the optimal solution obtained from

Dynamic Programming, is minimum. Once, the coefficients are determined this linear

model is used to obtain the near optimal solution based on the demanded power and

system states.
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2.2 Speed Harmonization and Vehicle Platooning

At higher vehicle speeds, aerodynamic drag is the largest contributor to the resistive

forces faced by the vehicle. A major contributing factor to this drag is the shape of

the car. More streamlined cars face lesser aerodynamic drag. If one vehicle is closely

following another vehicle, this aerodynamic drag is greatly reduced for the trailing

vehicle. Also, a region of high pressure is formed between these two vehicles, which

slightly assist the leading vehicle in its motion. This phenomenon is the principal idea

behind vehicle platooning for energy savings. To implement this technology into the

market, the vehicles in the platoon needs to be communicating regularly among each

other about the vehicle status. All the vehicles would also need information about

the driving conditions ahead to prepare for driving maneuvers it will encounter in the

future.

A social problem may also arise during vehicle platooning, which is addressed in

[22]. Since, different cars have different dimensions, the savings may not be equally

distributed. Also, vehicles at different positions in the platoon will have different

savings. [22] describes a method to allocate savings to all vehicles in a platoon equally

in order to avoid conflict of interest.

Since CACC, introduces a level of autonomy into the vehicles, a lot of control problems
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needs to addressed. Protocols and control algorithms are needed for creation of a

platoon, leaving a platoon, preparing for unforeseen scenarios etc. [23]. The literature

[23] presented a two stage controller by which cars can join a platoon by reducing

the gap between vehicles and once the vehicles have approached the desired gap a

gap regulation controller takes control and maintains the gap. Instead of following a

fixed gap for all speeds, a constant time-gap between vehicles is maintained by the

controller. This means that the gap between two vehicles will be a function of speed

and the set time. This system uses vehicle connectivity to communicate between

vehicles in the platoon about the target speeds of the leading vehicle and desired

gaps and the controller ensures platoon stability using this knowledge. The authors

have also implemented and successfully tested these controls on four production cars.

Another study [24], presents a Cooperative Adaptive Cruise Controller based on non-

linear Model Predictive Control approach which optimizes the gap reduction between

vehicles and velocity profile smoothing to minimize the energy consumption. Most

CACCs try to follow a reference trajectory, but, in this literature a trade-off between

following a reference trajectory rigorously and maintaining a less gap between vehicles

are achieved. A rigorous following of a reference velocity trajectory will lead to losses

in the powertrain. The Model Predictive Controller, has a lookup of the lead vehicle

velocity trajectory which is smoothed to reduce transients and but maintains the

vehicle within a safe distance to reduce energy consumption due to aerodynamic

losses.
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A similar study to [24], is found in [25]. In this study, the NMPC model is applied

to 2-vehicle platoon of Battery Electric Vehicles to minimize the energy consump-

tion. This study tries to optimize velocity tracking and gap maintaining to maximize

savings. The authors also investigate the effect of the length of prediction horizon pro-

vided to the controller on savings compared to a global optimal solution obtained from

Dynamic Programming. The results of the study shows that this velocity smoothing

is very effective in reducing energy consumption in low and irregular speed scenarios,

since the target velocity profile is smoothed to avoid sudden transients, while at high

or constant speeds, the reduction in inter-vehicular gap is preferred by the controller.

But the NMPC is still less efficient compared to the Global optimal solution in tran-

sient situation. In high speed, non-transient scenarios the solution of NMPC is closer

to Global Optimality. As the prediction horizon of the NMPC increases the efficiency

also increases. The study suggests that the eco-CACC will be able to provide upto

40% energy savings compared to using traditional Adaptive Cruise Control Systems.

This number should not be confused with the energy savings numbers of other stud-

ies, since the energy savings reported in the other studies are for constant and high

speed maneuvers which does not have large and sudden velocity transients.

When it comes to energy consumption of vehicle platoons, most of the investigation of

energy savings in CACC has been conducted in the case of trucks. Since, aerodynamic

drag is directly proportional to the frontal area of the body in motion, trucks have a

larger potential to save energy in platoons than streamlined cars. One such study is
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presented in [26], where the energy savings of a 3-vehicle truck platoon was investi-

gated under different scenarios. The energy consumption analysis were conducted at

different gaps from as far as 87m to as close as 4m, while travelling at 65 mph. The

tests were conducted on a test track with all the trailing trucks under CACC. The

study found out that the middle truck saved the most, upto 17% at close gaps while

the trailing vehicle saved the most, upto 13% at moderate gaps of 10 to 20m. On a

platoon-wide scale, a maximum savings of 13% was achieved at the closest gap of 4m.

The study also looked into energy consumption during variation of speed and found

upto 2% reduction in energy savings in these cases. Another scenario tested was the

effect of other vehicles entering and leaving the platoon, which was found to have no

considerable effect on energy consumption.

A similar study was conducted in Japan for reducing CO2 emissions [27]. In this study,

a 3-truck platoon under automated control was tested at a gap of 10m travelling at

80 km/h ( 50mph) on an empty expressway. Along with longitudinal control, lane

changing maneuvers were also conducted which led to a 14% reduction in energy

consumption. Another interesting finding in this study is that the CFD simulations

of the trucks travelling at a gap of 4m and 80km/h, the co-efficient of Drag for the

middle vehicle is found to decrease by 50%, which would significantly reduce drag.

This lines up with the findings presented in [26].

19



2.3 Engine Start/Stop Optimization in HEVs and

PHEVs

The third section in this chapter discusses the research activities in the field of op-

timization of the engine starts and stops in an HEV or a PHEV through vehicle

connectivity to maximize efficiency.

The article [28], proposes a control algorithm for optimizing the energy consumption

of a vehicle platoon on a hilly road. The control system is divided into two layers for

computational efficiency since each vehicle has five states - vehicle velocity, travelled

distance, battery energy and engine state. The top layer tries to optimize the vehicle

velocity and SOC trajectory for minimum energy consumption for the entire platoon

on the hilly terrain using convex optimization. The top layer outputs the target

velocity and battery co-state which is like an equivalence factor for battery energy.

The bottom layer deals with the individual vehicles. The bottom layer optimizes the

discrete control variables, which are the engine on/off state, optimal gear selection and

e-motor torque, based on the output of the top layer. The bottom layer is optimized

using Dynamic Programming. The bottom layer formulates a Hamiltonian based on

the power split between the engine and motor. This Hamiltonian will be the cost

function at each state and Dynamic Programming is used to minimize the cost. The
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output of the DP will yield an optimal engine on/off strategy for each vehicle along

with optimal gear selection.

In [29], an engine start/stop control strategy is described as part of a controller used to

optimize the energy consumption of an HEV using Model-Based Predictive Control.

The controller uses a cost function with motor and engine operating points as control

variables. The MPC uses the the future speed trajectory and vehicle gear state to

optimize the operating points of motor and the engine. Based, on the predicted

operating points certain rules are developed to determine whether the engine should

stop or start. If the required torque from an engine is less than a threshold torque for

a preset period of time, the engine would be turned off. Once the engine is turned off

it will remain turned off for preset time period which is determined by the engine’s

idling power requirement and restart energy. Similarly, once the engine is turned on

it will not be turned back off until a preset time. All these control decisions can be

overridden if it affects the safe operation of the vehicle.

Another study, that came out of Colorado State University uses “Nonlinear Autore-

gressive Artificial Neural Network” to predict the future velocity profile of the vehicle

based on current GPS location and previous driving information [30]. Real World

Driving data is used to train the Neural Network. During the optimization process,

the GPS data and past vehicle speeds are inputted into the Neural Network which
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provides a future velocity profile. This profile is inputted into a Dynamic Program-

ming Controller which optimizes the engine operating points for the predicted velocity

period. The DP controller populates a table of optimal engine power demand which

is a function of time and SOC. The vehicle controller uses this table to control the

engine operating points. If the optimal engine operating power demand is zero, the

engine is turned off and it is turned back on only if the demanded power is above

a certain threshold. The literature does not talk about assigning any penalty for

turning on the engine or any time delay between an engine on and off. The time step

for the simulation was one second. There is also a trade-off between the powertrain

controller and the neural network. The longer the prediction horizon, more is the

error in predicted velocity. But a longer prediction horizon provides a better control

output from the powertrain controller. As a trade-off between these two factors, the

authors chose 30 seconds as the optimal prediction horizon for the controller.

Another way of using Dynamic Programming to achieve a optimal solution is de-

scribed in [31]. The authors use SOC and final gear ratio as the state variables and

also assigned penalties for engine starting as a function of rotational engine speed

at two consecutive time-steps. Penalties are assigned for shifting gears as well. The

motor torque and selectable gear ratio is taken as the control variables. In order to

ease the computational demand, the optimal solution only at reachable region of the

SOC, when the initial and final SOC was fixed, was calculated. The results say that

around 15% reduction in fuel consumption can be achieved with this controller.
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Chapter 3

Test Setup

All the tests pertaining to this report were conducted on Gen II Chevrolet Volts.

The Michigan Tech NEXTCAR team has a fleet of four instrumented Volts. These

vehicles were instrumented by Pilot Systems LLC. Each vehicle was equipped with

GPS sensors,four thermocouples (two for the cabin and two for the engine bay),

LIDAR, anemometer and a tri-axial accelerometer for sensing road, vehicle and envi-

ronmental conditions. There was also a provision for measuring the electrical load for

traction and auxiliary load separately. dSpace MicroAutoBox was used for recording

the CAN (Low Speed, High Speed and Powertrain Expansion Bus) signals along with

time synchronous data from all the other sensors and sending it to an on-board lap-

top computer. The on-board laptop computer used dSpace ControlDesk to save the

received data and also could display the desired vehicle parameters in real-time [4].

23



Among the parameters displayed, using a Human Machine Interface (HMI), the driver

was also able to visualize the gap between one’s car and the car infront of it, using

the output from a set of LIDAR sensors. This was utilized for maintaining the vehicle

to vehicle gap during Speed Harmonization Testing. The ControlDesk could also be

utilized to send signals to the MicroAutoBox for switching the vehicle from Normal

Mode to Hold Mode for implementing the Blended Mode Optimizer Controller.

3.1 Reverse MTUDC

Reverse Michigan Technological University Drive Cycle (R-MTUDC) is a Real-World

Drive Cycle designed for the NEXTCAR project local to Michigan Technological

University. This Drive Cycle is a successor to the Michigan Technological University

Drive Cycle (MTUDC), which was developed as a Real World Drive Cycle to encom-

pass different driving characteristics like change in traffic lights, congestion, also for

the NEXTCAR project. The R-MTUDC as the name suggests, traverse the MTUDC

in the reverse direction. Even though the driving route is the same, the road features

encountered by the two drive cycles are different. Figure 3.1 shows the direction and

route used for the R-MTUDC. The color of the route is indicative of the speed limits

at those sections. A colorbar is provided on the right side for speed limit reference.

The R-MTUDC, Figure 3.1, starts off with Highway Driving from the APS Labs on
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Figure 3.1: Reverse MTU Drive Cycle overlaid on a map with directions
and speed limits of each section

to a 45 mph ( 72 km/h) to 55 mph ( 89 km/h) highway route. This route is a route

with rolling hills which eventually ends with a downhill slope. After that, the route

is of 55 mph ( 89 km/h) highway driving which drops down to 40 mph ( 64 km/h).

This Highway phase is about 11 km long. After this the car crosses the lift bridge

into the city of Houghton and then to Michigan Technological University where there

is a traffic signal. The speeds for this region vary from 25 mph ( 40 km/h) to 30

mph ( 48 km/h). From the traffic signal the route proceeds to a residential area at
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25( 40 km/h) mph and then to a commercial area, with two stop signs at 35 mph ( 57

km/h) until it reaches another traffic signal. From this traffic signal the route goes

up a hill at 25 mph and comes back down to another traffic signal on US-41. This

entire urban driving is around the 20.5 km mark.

Table 3.1
Reverse MTU Drive Cycle Route Statistics

Total Distance 38.8 km
Maximum Speed 55 mph
Minimum Speed 25 mph

Maximum Elevation 362.5 m
Minimum Elevation 185.2 m

Maximum Uphill Grade 8 %
Maximum Downhill Grade 15 %

No. of Stop Signs 16
No. of Traffic Lights 5

From the traffic signal, the route goes into another commercial section at 45 mph

( 72 km/h), which has two traffic signals. The speed then drops to 35 mph and then

to 25 mph as it crosses the bridge again, at 23.5 km, to enter the city of Hancock.

On its way to the bridge, the route crosses a loop called Yooper loop which has two

stop signs, once before the crossing and one after the crossing. Once in Hancock, the

route proceeds at 25 mph ( 40 km/h) and then to 30 mph ( 48 km/h) and enters

a residential area with multiple stops and large elevation changes at 25 mph ( 40

km/h). Once out of the residential area, the route continues at 25 mph( 40 km/h)

and then to 35 mph ( 57 km/h) as it reaches the stop sign on US-41 again at the 30

km mark. From there, it is purely highway driving at 55 mph ( 89 km/h), till it has
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to turn to Airpark Boulevard at 36 km. This road has a speed limit of 35 mph ( 57

km/h) which has a stop sign and then ends back at the APS labs.

Figure 3.2: Reverse MTU Drive Cycle elevation trace traced against dis-
tance

Figure 3.3: Reverse MTU Drive Cycle speed trace overlaid with traffic
signals, stop signs and lift bridge gates

The typical drive cycle characteristics of the R-MTUDC is provided in Table 3.1.

From the elevation and grade data, it can be inferred that a considerable amount of
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gradient change occurs on the route which can also be observed in Figure 3.2. The

speed trace, Figure 3.3, also confirms that the drive cycle is an inclusive one, with

numerours stops, highway driving and low speed driving. The only limitation of the

Drive Cycle is that it does not represent very high speed (> 55 mph) highway driving.

This is because none of the roads in the Houghton locality has speed limit greater

than 55 mph.

The energy consumption of the vehicle can be divided into two parts – the energy

consumed from the battery which can be positive (traction) or negative (Regenerative)

and the energy consumed from Fuel energy. The instantaneous power from the battery

can be determined using Equation 3.1.

PBatt = (VBatt × IBatt) (3.1)

where, V Batt and I Batt are the instantaneous bus voltage and current of the High

Voltage Battery.

The instantaneous power derived from fuel can be determined using Equation 3.2.

PFuel = (
.
mf × LHVf ) (3.2)
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where (
.
mf is the instantaneous fuel flow rate and LHVf is 41.28 MJ/kg, which is the

lower heating value of pump gasoline with an octane number of 87 [32].

The total energy consumed by the vehicle will be the sum of the battery power and

the fuel power summed over the entire drive cycle time as given in Equation 3.3.

ETotal =

tf∑
0

(EBatt + EFuel) (3.3)

Finally, the equivalent miles per gallon (MPGe) is calculated using the Equation 3.4.

MPGe =
Distance Travelled in Miles × (31.79 ∗ 3600)

ETotal

(3.4)

where ETotal is the total energy consumed in kJ.

In order to get a baseline energy consumption of the Volts on R-MTUDC and extract

an average velocity profile, 30 runs on the test route was conducted. These 30 runs

had the same start and end location at the APS Labs. Another set of 5 runs were also

conducted, which used the same route but had five different start and end locations

along the route. The different starting locations are shown in Figure 3.4, with numbers

1 to 5.

Among the 30 runs that started at APS labs, ten runs were conducted with an initial
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Figure 3.4: Reverse MTU Drive Cycle overlaid on a map with different
start locations marked on it for Varied Start Tests

SOC between 92% and 55%, so that the car would be able to complete the entire drive

cycle in EV mode. Ten runs were conducted with an initial SOC of around 16.5%, so

that the car would be in Charge Sustaining Mode during the entire vehicle operation

and the rest of the ten runs were conducted with an initial SOC of around 31%, so

that the vehicle would be in Charge Depleting mode, around half of the time, and in

Charge Sustaining Mode, the rest of the time. All the five runs that had five different

starting location had an initial SOC of 31%. Another set of 10 runs were conducted
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in the forward MTUDC direction with an initial SOC of 31% for comparison with

the R-MTUDC CD-CS runs. These tests were conducted between 22nd May and

17th June of 2019, where the ambient temperature was between 8oC and 26oC and

the atmospheric conditions varied between sunny, cloudy or light showers. The cars’

interior and propulsion system were fully warmed up before each day’s testing. The

HVAC system was set to keep the cabin temperature at 22o C (72o F).

3.2 Speed Harmonization and Vehicle Platooning

A preliminary investigative study on energy savings potential for electric vehicles was

conducted. For this, three of the four instrumented Volts (Beta 1, Beta 2 and Beta

3),shown in Figure 3.5, were used. Beta 3 had a roof rack installed on it. In order

to minimize the effect of roof rack, Beta 3 was running at the end of the platoon

unless necessary. The study was conducted on a nearly flat, 900 m straight stretch of

road on M-203 near McLain State Park, Michigan.The test route and elevation profile

of the road is shown in Figure 3.6 and Figure 3.7, respectively. The data collected

for the experiments were part of the experiments conducted at the Advanced Power

Systems Laboratory at Michigan Technological University.

It is evident from the map of the route that the section is a straight section and the

maximum difference between the elevation of the lowest point and the highest point
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Figure 3.5: The three instrumented Volts used for Vehicle Platoon testing.
From left: Beta 1, Beta 3 and Beta 2.

Figure 3.6: 900 m long route selected for Vehicle Platoon Testing on M-203
near McLain State Park

on the route is 0.8 m. Data was recorded for the experiment in both directions of

the route - southbound and northbound - as indicated in Figure 3.6. The influence

of various factors on energy consumption during vehicle platooning was investigated.

The effect of vehicle gap, effect of vehicle speed, effect of the lateral position of the

vehicle in a platoon and the effect of an aero-modifier on top of one of the cars were

investigated.
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Figure 3.7: Elevation Trace of the 900 m long route selected for Vehicle
Platoon Testing on M-203 near McLain State Park

The car at the front ran at a pre-defined speed using the vehicle’s cruise control. The

speed of the trailing vehicles were controlled by the drivers in those vehicles, as the

trailing vehicles’ cruise control system was not operational at the vehicle gaps we

required. There were eight LIDAR sensors at the front of each car, which relayed the

vehicle gap between it and the vehicle in front, in real-time through an HMI display

screen visible to the driver. The driver could get a feedback on the vehicle gap and

make necessary corrections to maintain the speed and gap at desired levels. All three

vehicles were under radio communication at all times during testing and the tests

were conducted when no other vehicles were on the route.

All the tests were conducted in Charge Depleting (CD) Mode, between the months

of May and July 2019, with ambient temperatures ranging from 8◦ C to 28 ◦ C. In

order to minimize the effect of this variation in ambient temperature, all the tests

were run with the HVAC system off and the vehicle was sufficiently warmed up before
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the tests. Moreover, an independent vehicle runs and control tests were conducted at

regular intervals for consistency in results.

The vehicles started off at a distance before the actual starting point of the test route.

By the time it reached the route starting point, the vehicles would have lined up at

the required gap and speed. The cars would be maintained at this gap and speed for

the entire test route. Once the test run is complete, the vehicles would separate out

and come to a stop. Data recording was started before the vehicles started moving

and was stopped once it came back to rest. The data for the test route was trimmed

based on the vehicle’s GPS coordinates and analyzed.

3.2.1 Vehicle Platooning Studies

The different investigations in vehicle platooning is explained in this section.
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3.2.1.1 Vehicle Gap Study

Figure 3.8: Figure showing the vehicle configuration in gap study

The energy savings of a vehicle platoon at different vehicle gaps of 6m, 9m, 12m and

15m is investigated in this study. The 6m runs were repeated 4 times.The 12m, 15m

runs were repeated twice in each direction and the 9m run was repeated thrice.Two

independent runs were also run in each direction to set baseline energy consumption

for each vehicle. All the gap tests were run at a constant vehicle speed of 50 mph as

shown in Figure 3.8.
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3.2.1.2 Vehicle Speed Study

Figure 3.9: Figure showing the vehicle configuration in speed study

The energy savings of the vehicle platoon at different vehicle speeds from 30 mph to

60 mph with increments of 10 mph is investigated in this study. Runs at all speeds

except 50 and 60 mph were were repeated twice in each direction. The 60 and 50

mph test was repeated thrice in each direction. One independent run was also run

in each direction at all speeds except 50 mph to set baseline energy consumption for

each vehicle. The independent 50 mph run was repeated twice.
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3.2.1.3 Lateral Offset Study

Figure 3.10: Figure showing the vehicle configuration in lateral offset study

In lateral offset study, the middle vehicle (Beta 2) was offset laterally by 1 ft, 2ft and

3ft from the center-line of the platoon. Each condition was repeated twice in each

direction. Another set of tests with the offset vehicle (Beta 2) shifted to rear of the

vehicle was also conducted with 1 ft offset. This was repeated twice in each direction.

All these tests were conducted at 50 mph and 9m gap. Therefore, the independent

runs of vehicle gap study can be used for comparison.
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3.2.1.4 Location of vehicle with Aerodynamic modifier study

Figure 3.11: Figure showing the vehicle configuration and aero-modifier in
location of vehicle with aero-modifier study

Beta 3 of the platoon was fitted with an aerodynamic modifier on the roof rack. This

test was to see how the energy savings would be affected when items are placed on

roof of a vehicle. Energy consumption analysis was done with Beta 3 at the front,

middle and rear of the vehicle once in each direction. These tests were also conducted

at 9m gap and 50 mph speed.
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3.3 Route Based Blended Mode Optimizer

Most of the PHEVs currently in the market employs a Charge Depleting - Charge

Sustaining (CD-CS) strategy where the engine is started only after the Battery has

been depleted. The blended mode optimizer outputs a new control strategy where

the engine will be turned on before the battery is completely discharged with the aim

of getting the battery SOC to its lowest limit by the end of the trip. The optimizer

is built so as to operate the engine when a lot of transients are not present and at

its peak efficiency point. A detailed explanation of the optimizer and its features can

be found in [33]. The work presented in this report concerning the blended mode

optimizer is a continuation of the earlier work conducted as part of the same project

by Neeraj Rama, Huanqing Wang, Joshua Orlando, Darrell Robinette and Bo Chen.

A brief explanation of the optimizer is made in this report.

The Chevrolet Gen 2 Volts have 4 driver selectable modes – Normal, Sport, Mountain

and Hold. In Normal Mode the vehicle operates under normal CD-CS strategy, in

which the vehicle operates in CD mode when the SOC is between 90% and 16.5%

and operates in CS mode once the SOC drops to around 16.5%. In Sport mode the

vehicle operates under the same strategy but the vehicle will be more responsive to

accelerator pedal changes. In Mountain mode, if the SOC is less than around 25%,

the controller uses the engine to charge the battery back up to around 25%. In Hold
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mode, the controller will try to hold the SOC at which the mode is selected by shifting

to CS operation instantly.

The optimizer makes use of the normal mode and the hold mode to cycle between

CD and CS operation, to turn the engine on whenever it is necessary. The optimizer

uses a Reduced-Order Powertrain Model to estimate the energy consumption of the

vehicle to complete specific velocity and elevation profiles. A detailed explanation

of the reduced-order powertrain model can be found in [3]. The powertrain energy

consumption model takes the velocity and elevation data as inputs and estimates

the energy consumed by the vehicle depending on the starting SOC. The powertrain

energy consumption model utilized actual vehicle data collected under different sce-

narios to come up with rules and mimic the performance of various systems in the

powertrain. The axle torque at the wheels was predicted from velocity profile and

elevation data using a longitudinal vehicle dynamics model using Equation 3.5 [33].

TAxle(t) = (F0 +F1Vkph(t) +F2Vkph(t)2 +mgsin(θ(t)) + IeffαAxle(t) +m
dVm/s(t)

dt
)rtire

(3.5)

In Equation 3.5, TAxle is the axle torque at a particular time, F0, F1, F2 are the

road load coefficients of the vehicle. The Environmental Protection Agency (EPA)

publishes these coefficients for all the cars released in the US. But, as the vehicle is
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put to use, these coefficients is found to change and the accuracy of the axle torque

highly depends on these values. For, this part of the project, the coefficients were

adjusted to make the estimated axle torque data match the actual axle torque data

trace. Vkph is the instantaneous velocity of the vehicle. The next term mgsin(θ(t))

is the force term related to the road grade. θ(t) is calculated from the road elevation

data. m is the mass of the vehicle in kilograms and g is the acceleration due to gravity

in m/s2. The next term IeffαAxle(t) is the force term associated with the rotational

inertia of the car’s wheels. Ieff is the moment of inertia of the wheels and αAxle(t)

is the rotational acceleration. The last term m
dVm/s(t)

dt
is the force associated with

vehicle acceleration, where V is the velocity of the car in m/s. The sum of these

forces when multiplied by the radius of the tire (rtire) is the torque experienced by

the vehicle at its axle.

Once the axle torque is determined, based on the battery SOC, the decision to operate

in CD or CS mode is made. If the vehicle is operated in CD mode, the energy

consumption for that instant is calculated from a response surface equation generated

from actual vehicle data. The general form of the response surface equation is given

in Equation 3.6 [33].

y = b0 +
k∑

i=1

bixi +
k∑

i=1

biix
2
i +

k−1∑
i=1

k∑
j=1+1

bijxixj (3.6)
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If the decision is to operate the vehicle in CS mode, similar response surface equations

are used to determine the mode of operation ( LER, FG or HER) and based on the

mode, the operating points of the engine and e-motors are determined and finally the

energy consumed is calculated from a response surface equation. Once, the energy is

computed the new battery SOC is determined and this SOC value is sent again to

the controller to process the next time step.

In the optimizer, once the velocity profile and elevation data is received, it uses the

powertrain model to estimate whether the trip can be completed in pure EV mode. If

it can, then the entire trip will be completed in Normal mode. If the powertrain model

predicts that the battery is going to be depleted before reaching the trip destination,

then the optimizer divides the entire trip into segments of equal time intervals. For

this study, the trip is divided into 30 second segments. A method called backward

induction algorithm is used to determine the optimum hold mode matrix, which is

a matrix which holds information of whether to force the vehicle to be in normal or

hold mode based on the current SOC and drive segment.

In the backward induction algorithm, the cost-to-go is calculated from the last seg-

ment. The formula used for estimating the cost-to-go is given in Equation 3.7 [33].
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J(n, SOCn) = min
u

[
J

{
n+ 1,

(
SOCn −

Eb(n, un)

Q0

)}
+ E(n, un)

]
u ∈ (Normal,Hold)

(3.7)

subject to

J(nf , SOCf ) =


0 if SOCf = SOC0

∞ if SOCf 6= SOC0

(3.8)

and

SOCn ∈ (SOCmin, SOCmax) (3.9)

In Equation 3.7, J is the minimum energy required to go from the nth segment to the

end of the drive cycle if the SOC at the nth segment is SOCn. The cost-to-go from the

final segment is calculated backwards iteratively till the first segment. For each state

the cost-to-go will be the sum of the energy utilized in that segment and the cost-to-

go of the next segment where the SOC would end up if the control un is applied. The

controller is trying to minimize the energy utilized to go to the end for each segment.

Based on the chosen control un, an optimum control mode matrix is populated for

each segment and SOC level. The whole cost-to-go and optimal mode matrices are

populated such that the constraints in Equation 3.8 and 3.9 are always satisfied. The

constraint in Equation 3.8 forces the final state of the SOC to be near the charge
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sustaining SOC, so that all of the electrical energy in the batteries are used. The

constraint in 3.9, makes sure that the battery SOC stays within its operating range.

3.3.1 Modifications to the Blended Mode Optimizer and Im-

plementing it in MicroAutoBox

Figure 3.12: MTU Drive Cycle Speed and Elevation Inputted into the
Optimizer

In the earlier versions of the optimizer, the Optimal Mode Matrix was inputted into

the vehicle as a function of the distance travelled only. The trouble with this imple-

mentation was that the starting SOC of the car had to exactly match the starting

SOC mentioned in the Optimizer to obtain maximum savings. Also, if there was an

unforeseen variation between the optimal SOC profile generated by the optimizer and

the actual SOC trace of the car, the hold mode vector would be rendered ineffective.

In order to tackle this problem, the optimum control matrix was extracted from the

44



optimizer as a function of SOC and Distance travelled. Now, the hold mode vector

generated from this matrix will automatically account for any variation in the initial

SOC or SOC change along the route. The optimum control matrix was stored as a

function of SOC and drive segments. In order to implement it in the vehicle, the

matrix had to be interpolated with respect to distance. The distance travelled by the

vehicle at each of the segment time was assigned to that segment number. After that,

the optimum control matrix was interpolated to include the distances in between the

segment distances. A figure depicting the Optimal Mode Control Matrix interpolated

this way is shown in Figure 3.13, along with the velocity and elevation data inputted

into the optimizer represented in Figure 3.12. The interpolated matrix was large

in size and had difficulty in compiling it into C code. This matrix then had to be

decimated based on distance while accounting for the transfer time it took to change

the mode in the car. Then, the decimated optimal control matrix was input into

a 2-D Lookup table in a vehicle controller model with SOC and Distance as break-

points. The output of the table will be a Hold or Normal mode signal, based on the

distance travelled and current SOC. This model was then built into the ControlDesk

environment, where it would run real-time during vehicle operation.
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Figure 3.13: Optimal Mode Control Matrix that was inputted into the
vehicle overlaid with the predicted optimal SOC trace

3.3.2 Vehicle Testing

Once, the controller was set up, the cars went out for testing. Testing was done on

Forward MTUDC and R-MTUDC. In the first five test runs on Forward MTUDC,

the cars went out in pairs. One car was in normal CD-CS mode and the other was

running the Optimizer. In the rest of the tests, the car ran in blended strategy after it

completed one run in normal mode. Both the vehicles started off with an initial SOC

of 31%. Figure 3.14 shows the MTUDC overlaid on a map. The route characteristics

of MTUDC is provided in Table 3.2 [4]. The route characteristics of the R-MTUDC

is described in Section 3.1.
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Figure 3.14: MTU Drive Cycle route overlaid on a map with directions,
stop signs and traffic signals

3.4 Engine Start-Stop Optimizer

In Gen II Volts, even in Charge Sustaining mode, based on the vehicle driving con-

ditions and battery SOC level, the controller can choose to turn off the engine to

save energy. The possible conditions for turning off the engine is when the required
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Table 3.2
MTU Drive Cycle Route Statistics [4]

Total Distance 38.6 km
Maximum Speed 55 mph
Minimum Speed 25 mph

Maximum Elevation 362.5 m
Minimum Elevation 185.2 m

Maximum Uphill Grade 7 %
Maximum Downhill Grade 8 %

No. of Stop Signs 13
No. of Traffic Lights 6

axle power is low or when the battery SOC is at a higher level. Since, the vehicle

controller does not have a look ahead of the velocity profile, the controller can make

decisions to turn the engine on or off based on calibration tables, but it may have

to reverse its decision soon because of a change in velocity profile or elevation about

which the controller did not have prior information. Such a case is shown at the top of

Figure 3.15, where the controller decided to turned the engine off but had to restart it

within seconds and at the bottom of Figure 3.15, where the controller turned on the

engine for only a short while. With availability of prior knowledge about the route

and traffic, these situations can be avoided using an Engine Start-Stop Optimizer.

Two kinds of Engine Start-Stop Optimizers are discussed in this section. One is

based on predicting the engine start/stop from the actual vehicle controller and the

other one is based on finding a path of least cost using Dynamic Programming using

Backward Induction algorithm similar to the Route Based Blended Mode Optimizer
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described in Subsection 4.3. The two kinds of Optimizers are discussed in detail.

3.4.1 Engine Start-Stop Optimizer using Predicted Engine

Start and Stops

Figure 3.15: A trace of Engine Speed showing the short-coming of the
vehicle controller, where the engine is turn off and then suddenly turned
back on (top) and the engine being turned on for a short-interval (bottom)

The control flowchart for the proposed Engine Start-Stop Optimizer is shown in Fig-

ures 3.17 and 3.18. The Optimizer has two parts. The part to be executed depends

on the status of the Engine Start-Stop signal of the vehicle controller. When the

vehicle controller gives a signal that the engine needs to be turned off, the controller

referred in Figure 3.17 is executed. The cost function associated with each instance

of signal to turn on engine is given in Equation 3.10. The SOC is the state variable in

equation which changes based on the control variables which are Engine ON, Engine
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OFF and DEFCO.

Figure 3.16: A snip of the predicted engine ON-OFF signal zoomed in to
show the optimizing horizon

The optimizer uses a model to predict the engine ON-OFF signal using the route

velocity profile and elevation data. A rudimentary rule based model was developed

which used the Axle Torque profile from the route characteristics and future battery

SOC trace to predict when the engine would turn ON and OFF. An example of such

a predicted Engine ON-OFF signal is shown in Figure 3.16. Whenever an Engine ON

event comes up, the engine ON-OFF signal predictor predicts the next Engine OFF.

This period is marked as Engine ON Prediction horizon in Figure 3.16.The optimizer

chooses the control for this period based on energy comparison. Similarly, whenever

an Engine OFF event comes up, the engine ON-OFF signal predictor predicts the
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next Engine ON. This period is marked as Engine OFF Prediction horizon in Figure

3.16. The prediction horizon does not have a constant time or distance horizon but

varies depending on the engine ON-OFF signal.
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Figure 3.17: Engine Start-Stop Control Flowchart when the vehicle con-
troller signals the engine to turn OFF
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J(n) = min
u

[
k∑

i=1

Eui

]

u ∈ (Engine Off, Engine On, DEFCO)

(3.10)

subject to

J(n) =∞ if SOCk < SOCLB and u = Engine Off

J(n) =∞ if SOCk < SOCLB and u = DEFCO (3.11)

and

SOCn ∈ (SOCLB, SOCUB) (3.12)

Once the signal to turn OFF the engine is received, the controller uses a model

to predict when the engine would need to turn on later, using the route velocity

profile and elevation data. Once, the period of predicted engine off is available, the

controller uses the Reduced-Order Powertrain model [3] to predict the energy that

would be needed by the vehicle to operate during the period. The look ahead horizon

for this optimizer is the period between the time at which the Engine ON signal

is generated to the predicted Engine OFF instant. Energy needed for this period
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for EV only mode, Engine On mode and DEFCO mode are calculated. DEFCO

stands for Deceleration Fuel Cut Off, where the fuel supply to the engine is cut off

but the engine is kept spinning by the motor until it needs to draw power from the

engine again. A response surface was used to predict the energy needed to keep

the engine running based on the engine speed. To calculate the energy consumed in

EV mode, the axle torque, velocity and current SOC data is sent to a model which

uses a response surface to predict the energy consumed. This energy consumed is

then used to predict the SOC at the end of the period. To calculate the Engine

On energy, the same axle torque and velocity profile is sent to another model which

predicts the mode (LER, FG or HER) to operate the vehicle using response surfaces.

Once the mode is selected, the engine operating points are determined using response

surfaces and these operating points are used to determine the energy consumed by the

vehicle when engine is On.The motor operating points are determined based on the

engine operating points and gear ratios of planetary gearsets. From this, the energy

drawn or sent to the battery is determined and thus the SOC at the end of period is

determined. If the engine has to be turned off, whenever it needs to be turned back

on again, a fuel penalty is added to the energy consumed. This fuel penalty depends

on the Axle Power, vehicle velocity and battery SOC at the time of engine start. A

response surface, whose form is provided in Equation 3.16, was fitted with available

engine start data to predict the engine start penalty. In Equation 3.16,EstartKJ is

the energy required to start the engine in kJ, Paxle is the axle power in kW, SOC
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is the SOC of the vehicle and Vkph is vehicle velocity in km/h. Once, the energy in

the three control modes have been determined, the control with the least energy is

selected, which is the cost, represented in Equation 3.10, subject to the constraints

given in Equations 3.11 and 3.12. The constraint in Equation 3.11, makes sure that

the Engine off or DEFCO decision is not taken if the final SOC (SOCk) of the section,

is less than allowed lower limit of SOC (SOCLB (15.3%)). This part of the controller

helps remove the scenario where the engine turns off and then suddenly turns back

on.

55



Figure 3.18: Engine Start-Stop Control Flowchart when the vehicle con-
troller signals the engine to turn ON
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J(n) = min
u

[
k∑

i=1

Eui

]

u ∈ (Engine Off, Engine On)

(3.13)

subject to

J(n) =∞ if SOCk < SOCLB and u = Engine Off (3.14)

and

SOCn ∈ (SOCLB, SOCUB) (3.15)

The second part of the controller, shown in Figure 3.18, is executed when the con-

troller decides to turn the engine on. Another model is used to predict when the

engine will turn off. Once, the period of engine on is available, the energy needed

to operate the vehicle in both EV mode and Engine on mode are calculated and the

control with the minimum energy is selected as shown in Equation 3.13, as long as

the constraints in Equation 3.14 and 3.15 are satisfied. The look ahead horizon for

this optimizer is the period between the time at which the Engine OFF signal is gen-

erated to the predicted Engine ON instant. This part of the controller helps remove

the scenario where the engine turns on for a short period and then suddenly turns

back off.
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3.4.1.1 Determining the Engine Start Penalty

During engine start, the e-motor of the car cranks the engine upto the required speed

and once the speed is reached, fuelling starts. Figure 3.19 shows the engine speed

profile and the fuel flow rate during an engine start. A slight delay in fuelling and

start of engine speed can be observed. The engine is cranked up to speed during

this delay period using battery energy. To calculate this energy, the output power at

the axle of the vehicle is subtracted from the total energy drawn from the battery.

To account for the accessory loads and powertrain losses, the same energy drawn

from the battery for the same period as the engine start period is determined. The

difference between the calculated energies during engine start period and the same

time period just before the engine start should be the energy required to start the

engine. It is assumed that the accessory loads and the powertrain losses during the

engine start period and the period just before engine start remains a constant. The

axle power, SOC and vehicle speed are recorded at the start of different engine starts

and these values are used to create a response surface equation shown in Equation

3.16, that would predict the engine start penalty.
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Figure 3.19: Plot showing the relative difference between instant of engine
cranking and start of fuelling

EstartKJ = 681 + 1.87 Paxle − 2.31 Vkph − 76.6 SOC + 2.13 SOC2 + 0.14 VkphSOC

(3.16)
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3.4.2 Engine Start-Stop Optimizer using Dynamic Program-

ming

The main difference between this optimizer and the one mentioned in Section 3.4.1,

is that this optimizer optimizes the entire drive cycle by dividing it into segments,

while the one mentioned in section 3.4.1, optimizes a section based on the predicted

engine start and stop. Once the optimizer receives the proposed route velocity and

elevation data, it splits the entire drive cycle into 10 second segments. The optimizer

selects the optimal control for this 10 second period. Each drive segment is divided

into different SOC levels from the lower SOC limit to the upper charge sustaining

SOC limit with increments of 0.1%. The SOC is the state variable and the Engine

ON and Engine OFF are the control variables. The optimizer calculates the energy

required by the last segment for both the Engine On and Engine Off condition using

the same Reduced Order Powertrain model as explained in Subsection 3.4.1. Once

the energy values are calculated, the optimizer chooses a mode which has the least

cost subject to the constraints mentioned in Equation 3.18. After that the optimizer

does the same for the drive section before the last section and computes the path

with the lowest energy to go to the end of the drive cycle.
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J(n, SOCn) = min
u

[
J

{
n+ 1,

(
SOCn −

Eb(n, un)

Q0

)}
+ E(n, un)

]
u ∈ (Engine On, Engine Off)

(3.17)

subject to

SOCn ∈ (SOCLB, SOCUB) (3.18)

In Equation 3.17, J is the minimum energy required to go from the nth segment to

the end of the drive cycle, if the SOC at the nth segment is SOCn. The cost-to-go

from the final segment is calculated backwards iteratively till the first segment. For

each state the cost-to-go will be the sum of the energy utilized in that segment and

the cost-to-go of the next segment where the SOC would end up if the control un is

applied. The controller is trying to minimize the energy utilized to go to the end for

each segment. Based on the chosen control un, an optimum Engine On/Off matrix is

populated for each segment and SOC level. The whole cost-to-go and Engine On/Off

matrices are populated such that the constraints in Equation 3.18 are always satisfied.

The constraint in Equation 3.18, makes sure that the battery SOC stays within its

operating range (15.3% to 17.65%). If the battery SOC falls below the lower bound of

SOC, the optimizer is programmed keep the engine ON until the SOC goes above the

lower bound. Also, if the shortest path includes going from an engine OFF section

to an engine ON section, an Engine Start Penalty is added to the engine off section.
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Since, the segments were 10 seconds long, the control of DEFCO was not added to

the optimizer because the penalty for being in DEFCO for 10 seconds would be more

than the Engine start penalty.
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Chapter 4

Results and Discussions

This chapter presents the results and discussions of the different tests mentioned in

Chapter 3.

4.1 Reverse MTUDC

4.1.1 Charge Depleting Mode Tests

Figure 4.1 shows the instantaneous power consumption of the car at each point on

the route. It can be observed that most of the route draws only a moderate amount

of power from the motors. The high power demand sections and sections that allow
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maximum regeneration can also be identified from the map.

Figure 4.1: The Instantaneous power consumption of the Volts plotted at
each point on the route.

The results of the ten Charge Depleting Mode runs are provided in Table 4.1. A

comparison of the summary of results with forward MTUDC is shown in Table 4.2.The

drive cycle is 38.8 km long. The Volts on average uses up 21.3 MJ of energy with

0.6 MJ of standard deviation to complete the R-MTUDC. This standard deviation

in energy adds up to 2.9% of the total energy. The drive cycle also uses up 31.7%

of SOC to drive all-electric on the R-MTUDC with a standard deviation of 1.4. The

R-MTUDC took any time between 46 and 52 minutes to complete with an average

cycle time of 49.3 minutes. Finally, the equivalent fuel consumption came up to be

129.7 MPGe, which was higher than the EPA rated MPGe of 106.
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Table 4.1
Reverse MTU Drive Cycle Charge Depleting Mode Result Summary

Figure 4.2 shows the evolution of energy consumption as the drive cycle progresses

along the route. It can be observed that all the energy traces for the individual runs

follow the mean energy trace quite closely, even though various factors can affect the

car during a real world drive cycle. The normalized SOC trace shown in Figure 4.3,

also show a similar trend with each individual runs closely following the mean SOC

trace.

In comparison to the data collected from MTUDC, the R-MTUDC, on average, takes

2.8 minutes more than MTUDC to complete the cycle and is 400 m longer. This
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Figure 4.2: Average Energy Consumption and its standard deviation in
CD mode on R-MTUDC with individual energy traces

difference in distance is only 1% of the total distance of the route but the tests on R-

MTUDC,on average, used up 9.8% more energy than those on MTUDC. This could

be attributed to more number of stop signs on the route. Between the MTUDC

and R-MTUDC, the standard deviation in the energy consumption is 2.9% for both,

which points to the fact that the variation in energy consumption of Real World

Drive cycles can be predicted with some level of confidence. The equivalent fuel

consumption showed an 8% decrease in R-MTUDC, compared to MTUDC.
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Figure 4.3: Normalized SOC trace and its standard deviation in CD mode
on R-MTUDC with individual SOC traces

4.1.2 Charge Sustaining Mode Tests

The charge sustaining mode tests were conducted with an initial SOC of around 16%.

The results of the tests in Charge Sustaining mode is given in Table 4.3.The average

time taken to complete the route is 50.5 minutes with a standard deviation of 2.1

minutes, which is similar to the CD case. The mean SOC used is positive (0.9%),

which means that the battery gained some energy when compared to the start of

the drive cycle. On an average 0.7 MJ of energy is stored in the battery after a

cycle. The total energy used for the entire trip is 61.1 MJ, almost three times the
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Table 4.2
Comparison of statistics summary of R-MTUDC and MTUDC in CD mode

CD energy usage, with a standard deviation of 1.7 MJ, which comes out to be 2.7%

of the average. This 2.7% of standard deviation in energy lines up closely with the

standard deviation of 2.9% for CD mode. The equivalent energy consumption for the

route came up to be 45.2 MPGe, which is higher than the EPA rated MPGe of 42.

Figure 4.4 shows the evolution of energy consumption over distance on the R-

MTUDC. As with the CD runs, all the individual energy traces are closely spaced to

the mean energy trace, which is also reflected in the energy standard deviation.The

variation in energy gets larger as the drive cycle approaches its end. The SOC traces,

shown in Figure 4.5 also follows a similar trend showing that the drive cycle can be

repeated without a lot of variability.
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Figure 4.4: Average Energy Consumption and its standard deviation in
CS mode on R-MTUDC with individual energy traces

Figure 4.5: Normalized SOC trace and its standard deviation in CS mode
on R-MTUDC with individual SOC traces
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Table 4.3
Reverse MTU Drive Cycle Charge Sustaining Mode Result Summary

Table 4.4, compares the MTUDC and the R-MTUDC in charge sustaining mode. The

R-MTUDC took 4.8 minutes more than the MTUDC in CS operation. In CS mode

also, the variability in time to complete the R-MTUDC (4.1%) is lesser than that of

MTUDC (6.6%). The average energy used by R-MTUDC is only 0.49 % greater than

that used up by the MTUDC, while it was 9.8% in CD mode. One of the reasons for

the decreased usage of energy in R-MTUDC could be that, the initial battery SOC

for R-MTUDC runs (16.4%) were at a higher value than those for the MTUDC runs

(15.7%). Another reason for the increased consumption of energy in forward MTUDC

can be attributed to a 7% uphill gradient towards the end of the drive cycle. On this
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uphill gradient, a considerable amount of battery energy is used up by the car to

accelerate and drive uphill. This will lower the battery SOC considerably. When

the SOC level drops considerably, the vehicle controller tries to actively recharge the

battery to bring the SOC back to its normal level. For this, the vehicle is operated

in Fixed Gear Mode. This would cause considerable increase of energy in forward

MTUDC making the energy consumption similar to R-MTUDC. This problem is not

encountered in CD mode operation as the engine won’t be trying to recharge the

battery. The equivalent fuel consumption for R-MTUDC is 45.2 MPGe compared to

44.9 MPGe of MTUDC.

4.1.3 Charge Depleting - Charge Sustaining Mode Tests

The Charge Depleting - Charge Sustaining Test (CD-CS) runs were carried out with

a starting SOC of around 31%, so that the vehicle will be in EV mode for half of

the drive cycle and in Charge Sustaining Mode for the other half. The results of

these tests are provided in Table 4.5. The average time taken for these tests are 48.3

minutes with a standard deviation of 2.6 which is consistent with the other tests.

The average starting SOC is 30.8 % with a standard deviation of 0.2. The percent

of SOC used is also consistent with an average of -13.5% with a standard deviation

of 0.2. The total energy consumption is 42.8 MJ with a 3.7% standard deviation is

higher than the 2.9% of CS and CD runs. This can be expected due to the variability
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Table 4.4
Comparison of statistics summary of R-MTUDC and MTUDC in CS Mode

in drive cycle where the engine starts because of the CD-CS operation. The CD-CS

mode puts the equivalent fuel consumption for R-MTUDC at around 64.6 MPGe.

On looking at the Total Energy Consumption trace along the distance of R-MTUDC

in Figure 4.6, it is seen that the energy traces are closely bound in EV mode. Once, the

vehicle changes to EV mode, the variability increases, with the maximum variability

near the point where the mode changes from CD to CS. This is because, in every run,
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Table 4.5
Reverse MTU Drive Cycle Charge Depleting - Charge Sustaining Mode

Result Summary

the mode doesn’t change from CD to CS at exactly the same point in the Drive cycle.

In some runs, the mode change happens later, which will keep the cars running in

CD mode longer, using up less energy. We can see that this variability decreases after

some time and after that, most of the energy traces are near the standard deviation

trace. The same is also true for the SOC trace, Figure 4.7, which diverge from each

other near the mode shift region but converges towards the end of the drive cycle.

Since the CD-CS runs were not conducted on Forward MTUDC, this study also

conducted 10 runs on MTUDC in CD-CS strategy. The results of those runs are
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Figure 4.6: Average Energy Consumption and its standard deviation in
CD-CS mode on R-MTUDC with individual energy traces

Figure 4.7: Normalized SOC trace and its standard deviation in CD-CS
mode on R-MTUDC with individual SOC traces
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summarized in Table 4.6

Table 4.6
Forward MTU Drive Cycle Charge Depleting - Charge Sustaining Mode

Result Summary

The Forward MTUDC CD-CS runs’ average time of 44.6 minutes aligns with the

that of the CD and CS runs. For the reverse CD-CS runs, the time taken was more

than this. The average initial SOC of the MTUDC CD-CS runs were 30.8% which

is the same as that of R-MTUDC, but with a greater variability of 0.4. The R-

MTUDC consumed 10% more energy than MTUDC, but MTUDC also used up 6%

more battery energy on average than R-MTUDC. This can account for a slightly

higher than normal energy usage for R-MTUDC. The equivalent fuel consumption

from MTUDC is 70.3 MPGe, while for R-MTUDC it is 64.6 MPGe. This justifies
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argument that the usage of energy from the battery was more during the forward

MTUDC runs.

4.2 Speed Harmonization and Vehicle Platooning

The vehicle platooning experiments were conducted with three cars, Figure 4.8 and

the Figure 4.9, shows the speed profile of three cars travelling at 50 mph with 6m

gap in between them. The front car was on cruise control and the trailing cars were

controlled using the accelerator pedal. The cars were tried to be held at ±2 km/h.

Figure 4.8: The three instrumented Volts used for Vehicle Platoon testing.
From left: Beta 1, Beta 3 and Beta 2.

The results of various studies are presented below.
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Figure 4.9: The Speed vs Distance of the three Volts running on M-203 at
50 mph and 6m gap

4.2.1 Vehicle Gap Study

The cars were run at 50 mph under gaps of 6m, 9m, 12m and 15m, the results of

which are given in Table 4.7 and plotted in Figure 4.10. The rows in the table are

color coded to be similar to the color of the respective cars and the BETA 1, BETA

2 and BETA 3 are abbreviated as B1, B2, B3 respectively. In the table, the left

most column shows the gap at which the vehicles were running. ‘INDEPENDENT’

represents the data collected when the vehicles were running independently. The

average energy consumption of each vehicle in that particular configuration for both

northbound and southbound are shown in column three. The final column shows the

energy savings of each car while running in a platoon to when it ran independently.

In Figure 4.10, the bars represents the average energy consumption of each vehicle
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and the number on top of each bar represents the percent energy savings of each car

while in a platoon when compared to running independently.

For tests under all gaps, it can be observed in Figure 4.10 that the middle vehicle

consumed the least power in the platoon, while the rear vehicle consumed more energy

and the front vehicle consumed the most energy. This is because of the aerodynamics

of the platoon, where the middle vehicle does not have a high pressure at the front

because of another car in front and the trailing vehicle gives a kind of push to the

middle vehicle. A slight increase in the energy consumption of Beta 3 (Rear vehicle in

this case) is expected because it was attached with roof rails which could increase the

drag. Still, the energy consumption is lesser than the front vehicle. The rear vehicle

shows more percent energy savings when compared to independent runs at 9m and

15m gaps.

When the entire platoon is considered, the energy savings is presented in Figure 4.11.

Contrary to expectations, the most savings for the platoon is achieved at 9 m gap.

Conventional thinking would make us think that the most savings will be achieved at

6m gap compared to 9m. At 6m gaps some other aerodynamic phenomenon might be

occurring which increases the platoon energy consumption. Another reason could be

that, at very close gap of 6m, the drivers’ instincts might have made them react to

even small changes in gap which would result in speed transients and hence increased

energy consumption. To clear the this question, future tests will have to take the
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Table 4.7
Summary of Results for Gap Study

driver out of the equation and adaptive cruise control systems operable at very close

gaps should be used.
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Figure 4.10: The average energy consumption of the three cars running at
50 mph and gaps of 6m, 9m, 12m and 15m

Figure 4.11: The average energy savings of the whole platoon running at
50 mph and gaps of 6m, 9m, 12m and 15m
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4.2.2 Vehicle Speed Study

In this study, the cars were run at different speeds of 30 mph, 40 mph, 50 mph and

60 mph at a constant gap of 9m. The average results of the study is tabulated in

Table 4.8. Independent runs were also carried out at each speed. The data in the

table is shown in Figure 4.12. As the speed increases the energy consumption also

increases with least amount of energy at 30 mph runs. Similar to the gap study, the

trailing vehicles consume lesser energy, with the middle vehicle consuming the least.

But when percent savings are compared, the middle vehicle saves the most at a low

speed of 40 mph compared to running independently, while the rear vehicle saves the

most at all other speeds.

The savings of the entire platoon is shown in Figure 4.13. The savings should increase

with speed but there is a dip in the savings at 40 mph. This could be due to the

fact that one of the 40 mph run was done on a cooler day. The savings drastically

increases for 50 mph but then decreases again for 60 mph. This dip could be due to

environmental factors or some aerodynamic phenomenon that has a greater effect at

higher speeds. The platoon shows the highest savings of 8.3% at 50 mph.
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Figure 4.12: The average energy consumption of the three cars running at
9m gap and speeds of 30 mph, 40 mph, 50 mph and 60 mph

Figure 4.13: The average energy savings of the whole platoon running at
9m gap and speeds of 30 mph, 40 mph, 50 mph and 60 mph
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Table 4.8
Summary of Results for Speed Study
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4.2.3 Lateral Offset study

The purpose of this study was to investigate how the energy consumption would be

affected if all the vehicles in the platoon were not aligned. For this, one of the Volts

(Beta 2), which ran in the middle of the pack three times out of the four test scenarios,

was offset by a distance on 1 ft, 2 ft and 3 ft. In the last scenario, Beta 2 was shifted

to the rear of the pack and ran at an offset of 1 ft.

The results of the study are provided in Table 4.9 and plotted in Figure 4.14. When

the offset vehicle is in the middle, the energy consumption of the middle vehicle

increases with increasing offset as expected. This is because as the offset of the

vehicle increases, it will have to overcome more aerodynamic drag. There is no large

difference in energy consumption for the rear vehicle when the offset is 1 ft or 2 ft,

but the energy consumption of the rear vehicle also increases when the middle vehicle

is offset by 3 ft. When Beta 2 is at the rear of the platoon, Beta 3 has more energy

savings as it can take full advantage of the vehicle in front.

When it comes to the entire platoon, the savings drop as the offset increases as seen

in Figure 4.15. The maximum savings (7.3%) is when the offset vehicle is at the rear

of the pack, since it does not affect the aerodynamics of the other vehicles in the

platoon. When, the vehicle in middle of the platoon, is offset, the platoon energy
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Table 4.9
Summary of Results for Vehicle Lateral Offset Study

savings vary from 6.6% to 3.4%.
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Figure 4.14: The average energy consumption of the three cars running at
9m gap and Beta 2 offset laterally by 1 ft, 2 ft and 3 ft

Figure 4.15: The average energy savings of the platoon running at 9m gap
with the Beta 2 offset laterally by 1 ft, 2 ft and 3 ft
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4.2.4 Location of vehicle with aero-modifier study

An aero-modifier was fixed to the top of Beta 3 and the variation in energy consump-

tion at different vehicle locations in the platoon were analyzed. All the tests were

carried out at 9m gap and 50 mph. The average energy consumption data for the

study is provided in Table 4.10 and plotted in Figure 4.16. A considerable increase

in energy consumption of Beta 3 is noticed compared to energy consumption with no

aero-modifier. This is indicative of how even a small change in the shape of the car

can increase the energy consumption. There is an energy savings for Beta 3, even

when it runs at the front of the platoon. The reason for this could be that Beta 3 was

running on cruise control when it ran at the front of the platoon, but it was running

on accelerator pedal at all other times, even when running independently.

The savings of the whole platoon shown in Figure 4.17, indicates that the most

energy savings is achieved when the vehicle with the aero-modifier is present at the

front of the platoon. Once the vehicle moves to the middle or rear, the savings of

the platoon remains constant.When Beta 3 is at the front of the platoon, the total

energy consumption of the platoon is 1241 kJ. While for a platoon running in the

same speed and gap configuration but without the aero-modifier, the average total

energy consumption is 1259 kJ. In a platoon wide view, there is not much difference

in energy but the front vehicle in the first case had an additional load on its roof.
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Table 4.10
Summary of Results for location of vehicle with Aero-Modifier Study

These numbers can also be because of the atmospheric conditions, because the tests

were conducted on two different days but it is worth investigating further.
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Figure 4.16: The average energy consumption of the three cars running at
9m gap with the vehicle with aero-modifier running at different locations in
the platoon

Figure 4.17: The average energy savings of the platoon running at 9m
gap with the vehicle with aero-modifier running at different locations in the
platoon
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4.3 Route Based Blended Mode Optimizer

The cars were run under normal CD-CS strategy and also with the optimal control

matrix from the Blended Mode Optimizer. Figure 4.18 shows the fuel power used on

the MTUDC when the vehicle controller is following the Hold Mode matrix gener-

ated from the blended mode optimizer, while Figure 4.19, shows the section of the

route where the engine was ON, when the vehicle was running under normal CD-CS

operation.

Figure 4.18: Energy from fuel used on the section of the MTUDC when
the cars are following the Hold Mode Matrix

It can be seen in Figure 4.18, that, by using the Hold Mode Matrix, the engine turns
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Figure 4.19: Energy from fuel used on the sections of the MTUDC when
the cars are following the Normal CD-CS strategy

on only at sections of the Drive cycle where the power demand is constant and vehicle

is travelling at higher and constant speeds, improving the fuel economy. While, the

fuel energy consumption map of the vehicle in Normal CD-CS strategy, Figure 4.19,

shows that, the engine turns on at sections on the Drive Cycle where the vehicle speed

is low and varying, with stop signs and traffic signals. This will lead to transients in

engine operation and decrease in fuel economy.

Figure 4.20 shows the optimal control matrix inputted into the vehicle before one of

the Forward MTUDC runs. The figure is overlaid with the actual SOC trace the ve-

hicle followed and the Hold Mode signal from the vehicle. This shows that the vehicle
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Figure 4.20: The Optimal Control Matrix input into the vehicle overlaid
with the actual SOC profile of the test run along with the Hold Mode Signal
generated by the car

is able to go into Hold and Normal Mode based on the inputted Optimal Control

Matrix. Since, the optimal control matrix is input as function of SOC and Distance,

the vehicle will follow the path of minimum energy consumption independent of the

starting SOC. Also, because of this, even if some unforeseen circumstances cause the

battery SOC to vary from the optimal SOC path predicted by the optimizer, the

vehicle will follow the path of minimum energy consumption from the new SOC level

to the end of drive cycle.

The results of the test runs are provided in the Table 4.11. The first 5 runs of

the MTUDC test runs were carried out as pairs of cars with one car running under

blended strategy and the other running under normal strategy. The rest of the test

runs were conducted one at a time with the car under blended strategy running after

the test run in normal strategy was completed. The savings obtained from these runs
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Table 4.11
The Results of the Blended Test runs, each test running with a blended

strategy is paired with a test running the normal strategy.

are mixed, with some runs providing a net positive energy savings while some runs

providing a net negative energy savings. This shows that the actual test results are

highly dependent on the testing conditions. The savings were found to be affected by

the distance at which the engine turned on in the Normal runs which occurred within

a 1 km window. The engine On duration and the number of engine starts also varied

from run to run. The duration of engine On was lesser in blended runs compared

to normal ones except for the 4th R-MTUDC run. The maximum savings of 5.2%

is achieved in the 4th MTUDC run. The results of this run is shown in Figure 4.23.

The least savings of -4.2% was achieved in the 5th MTUDC run. Another reason for
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the negative energy savings is the variation in the route characteristics from run to

run. Since, the vehicle connectivity technology has not been implemented on-road,

the vehicles cannot get a real-time look up of the velocity ahead of it and adjust

accordingly. An example of this defect can be seen in Figures 4.21 and 4.22. Figure

4.21 shows the optimal control matrix inputted into the vehicle controller before the

4th R-MTUDC Blended run which had a negative savings of -4.1% and Figure 4.22

shows the optimal mode matrix extracted from the actual blended run made by the

car. Some differences can be observed between the two matrices and the Hold Mode

signals, especially towards the end of the drive cycle. In Figure 4.21, around the 30

km mark, the vehicle SOC misses the Hold region but ideally, for the drive cycle, the

hold region should have extended a bit more towards 29 km. This small difference

caused the SOC to drop below 18% and caused a drop in SOC to around 16% and

the vehicle controller was not able to shift modes because once the SOC drops below

18%, the option to select Hold mode gets disabled and the vehicle runs according

to its own controller, which reduces our chances to operate the vehicle in hold mode

towards the end of the drive cycle. Towards the end the SOC rises back to 17% due

to the engine recharging the battery. So, the run to run variation also plays a major

role in determining the energy savings from blended mode optimization.

In Figure 4.23, it can be seen that the axle torque profile and the vehicle speed profile

for both the normal and blended operation are similar. On looking at the energy

and SOC trace, it can be observed that they diverge from each other at around the
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Figure 4.21: The Optimal Mode Matrix Input into the vehicle controller
for the 4th R-MTUDC run, along with the actual vehicle SOC trace and
Hold Mode Signal

Figure 4.22: The Optimal Mode Matrix extracted from the 4th R-MTUDC
Blended Run along with the predicted SOC and Hold Mode signal
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3 km mark. This is where the car under blended operation turns into hold mode for

the first time. After that, at around the 21 km mark, the energy traces cross over

and from this point onward, the car running the blended strategy is at a net positive

energy savings. The SOC traces of both the runs end at the same value confirming

that the savings in the blended run is not due to more usage of electrical energy.

Figure 4.23: Velocity, Axle Torque, Energy and SOC trace of Normal and
Blended MTUDC Run 4 with 5.2% savings
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4.4 Engine Start-Stop Optimizer

4.4.1 Engine Start-Stop Optimizer using Predicted Engine

Start and Stops

Since, the start-stop optimizer could not be tested on the cars, data already collected

from previous tests were used to test the optimizer and obtain the energy consumption

values. To maintain uniformity in the results, the energy values from the Reduced

Order Powertrain Model of the Volt [3], was used to compare the energy savings

from the optimizer. The data presented here for comparison was taken from a test

run made on an 84 km route from Copper Harbor to the Michigan Technological

University. During the run, a large number of engine start and stops were noticed

which led to the development of the optimizer. The velocity and elevation profile for

the route is shown in Figure 4.24, along with the actual Engine Starts and Stops. It

can be seen that, the engine was turned on and off multiple times along the route.

Figure 4.25, shows the optimized results for the inputs shown in Figure 4.24. It can

be seen that the optimizer successfully reduced the number of Engine Starts, and was

also able to reduce energy consumption, as seen from the Energy trace. In the part of

Figure 4.25 pertaining to the SOC, it can be seen that the final SOC of the optimized
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Figure 4.24: Velocity and Elevation profile of Copper Harbor to Michigan
Tech University route, along with the actual Engine Start-Stop profile, used
to analyze the results of Engine Start-Stop Optimizer

result is lower than the predicted final SOC. This is because the optimizer tries to

utilize the maximum electrical energy available to it by the end of the route, while

the normal vehicle controller tries to maintain the SOC at a higher level, to account

for any high power demand maneuvers that may be required by the car since it does
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not have a future look up of the route. In Table 4.12, the optimized energy refers to

the total energy consumption of the route when the optimizer is allowed to end at

a lower SOC. This Optimized Energy consumption has been normalized to account

for the difference in final SOCs and is presented as Normalized Energy along with

savings.

Figure 4.25: Plot of the output predicted by the Optimizer overlaid on top
of Actual Engine ON/OFF, Predicted SOC and Predicted Energy

From Table 4.12, the Route 2 from Copper Harbor to MTU has the most savings

of 3.8%. In all of the runs, the number of engine starts have been considerably
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Table 4.12
Results showing Energy savings from optimizing the Engine Start-Stop by

Engine Start-Stop Optimizer using Predicted Engine Start and Stops

reduced, while the duration of Engine On also decreased except for the MTUDC and

R-MTUDC runs. In these runs, the number of Engine Starts have been considerably

reduced, but due to the increase in the duration of Engine On, there is only very

less savings. For Route 2, the optimizer was able to reduce the number of starts by

almost 41%. The savings are highly dependent on the route as Table 4.12 suggests.

Routes having considerable transients in axle torque requirements, like considerable

elevation changes and rapid speed limit changes, has a huge potential for obtaining

larger savings by using this optimizer.
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4.4.2 Engine Start-Stop Optimizer using Dynamic Program-

ming

The same dataset used in Section 4.4.1 is used to compare the performance of the

Engine Start-Stop Optimizer using Dynamic Programming. The output of the opti-

mizer is an Optimal Control Matrix. The matrix contains information on which mode

(Engine On or Off) will be the optimal mode based on the distance travelled by the

car on the predefined route and current SOC. Figure 4.26 shows the optimal control

matrix for the Route 2 of the Copper Harbor to Michigan Technological University

routes. Based on the optimal control matrix and the initial SOC, the optimizer also

predicts the energy and the SOC trace that will be followed by the car on following

this control matrix. This optimized SOC trace is also overlaid on top of the optimal

control map. Basde on this SOC trace, an engine start stop trace is also shown at

the bottom of the Figure 4.26. It can be seen that the the SOC remains within the

required bounds of SOC.

Table 4.13 tabulates the energy savings from the optimizer when the optimizer was

forced to end at the same final SOC as the final SOC predicted by the Reduced

Order Powertrain model, so as to get a fair comparison. It was possible to force the

optimizer to end at the desired final SOC except for the MTUDC run. This suggests

that the final SOC at which the normal MTUDC run ended might have been very
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Figure 4.26: Optimal Mode Matrix output from the Engine Start-Stop
Optimizer overlaid with the optimal SOC path for the actual starting SOC
and the Optimized Engine Start-Stop profile overlaid on the actual Engine
Start-Stop profile

costly in terms of energy consumed. The results shown in Table 4.14 data corresponds

to the situation where a constraint on the final SOC was not placed and optimizer

was allowed to choose the path with the least energy consumption.

For the Forced Final SOC results, by running pre-recorded routes through this op-

timizer, it is seen that the number of engine starts are reduced in the the Copper

Harbor to MTU runs, but there is no decrease in the number of engine starts for the

MTUDC and R-MTUDC runs. A similar trend is shown for the duration of engine

ON, where the engine ON duration increased for the MTUDC and R-MTUDC runs,

while decreased for all other runs. But, the optimizer was able to achieve a maximum
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Table 4.13
Results showing Energy savings from optimizing the Engine Start-Stop by
Engine Start-Stop Optimizer using Dynamic Programming when the Final

SOC is forced

savings of 6.8% for the Route 2 run compared to normal operation.

When the optimizer was not forced to end at a pre-defined final SOC, the savings

improved, which is seen in Table 4.14. The 6.8% savings shot up to 8.3% when

a restriction on the final SOC was not placed. The number of engine starts and

duration of engine starts also decreased except for MTUDC and R-MTUDC runs.

But, the savings of these runs almost doubled by not setting a target SOC.

The optimized result of the Copper Harbor to MTU Route 2 from the Dynamic
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Table 4.14
Results showing Energy savings from optimizing the Engine Start-Stop by
Engine Start-Stop Optimizer using Dynamic Programming when the Final

SOC is not forced

Programming based optimizer when the final SOC is not set, is shown in Figure 4.27.

A lot of the unnecessary engine starts have been reduced and the optimized SOC

trace shows a lot of oscillations compared to the predicted normal SOC trace. In the

energy trace in Figure 4.27, it is seen that the maximum difference in predicted and

optimized energy occurs at the first half of the drive cycle before 40 km mark. This

is because there is a lot of variation is velocity in the first 40 km, Figure 4.24. This

causes many unnecessary engine On-Offs. After the 40 km mark the velocity is more

stable making the optimizer output similar to the in-built vehicle controller decisions.

In order to make a fair comparison of the two Engine Start-Stop Optimizers presented

in this section, the results of the Dynamic Programming Optimizer when the final
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Figure 4.27: Plot of the output predicted by the Dynamic Programming
based Optimizer when the final SOC is not set, overlaid on top of Actual
Engine ON/OFF, Predicted SOC and Predicted Energy

SOC is forced in Table 4.13 should be compared to the results of the Engine On-

Off Predictor based optimizer in Table 4.12, since the energy values are normalized.

On comparison, even though the predictor based optimizer reduces the number of

engine starts compared to the Dynamic Programming based one, more savings can be

obtained from the Dynamic Programming optimizer in all the cases compared to the

other. This is because the predictor based optimizer does not optimize for the entire

drive cycle but only for the period of engine On or Engine Off predicted, while the

Dynamic Programming based optimizer optimizes performance for the entire drive
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cycle. But, the number of engine starts are considerably reduced in the Predictor

based optimizer.
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Chapter 5

Conclusions and Future Work

5.1 Reverse MTUDC

In the first part of the study, the energy consumption of a PHEV on a Real World

Driving Cycle was analyzed. the Real World Drive cycle presented here has tried to

encompass all of the different driving scenarios encountered by a normal person in

day to day driving. From the 30 runs conducted on the Drive cycle, a baseline energy

consumption map was developed, along with a mean velocity profile with a standard

deviation. These values has been used for comparing the energy savings potential of

a vehicle through vehicle connectivity. These tests also investigated the variability in

energy consumption and found that in pure EV mode and charge sustaining mode, the
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variability in energy consumption for the route is under 3%, while it is under 4% for

Charge Depleting - Charge Sustaining operating strategy. The increased variability

in CD-CS strategy can be attributed to the variation in the instant at which the

mode changes from CD to CS in the drive cycle. From the comparison of MTUDC

and R-MTUDC, it can be concluded that the R-MTUDC requires more energy to be

completed and variability in time to complete the cycle is lesser.

5.2 Speed Harmonization and Vehicle Platooning

The Vehicle Platooning studies investigated the savings potential of travelling as a

cohort of vehicles rather than individually to reduce the aerodynamic drag each vehicle

has to face. From the Gap study, it can be concluded that the trailing vehicles has

the potential to save energy. A clear conclusion as to which vehicle position saves

the more energy could not be made as the vehicles at rear showed more savings at

9m (13.2%) and 15m (9.5%) gaps, while the middle vehicle showed more savings at

6m (10.1%) and 12m (9.2%) gaps. The entire platoon saved most (8.3%) at 9m gap.

In the Speed study as well, the maximum savings for the platoon was achieved at

50 mph. The savings at lower speeds were less than half of the savings at 50 mph.

Therefore, the vehicles need to be at higher speeds to have any considerable savings.

In the study with the aero-modifier on top of a car, it was concluded that the most

savings is achieved when the vehicle with the aero-modifier travels at the front of the
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pack. For the Lateral Offset study, the results obtained shows that if the vehicles

are not co-linear it could drastically affect the savings potential, with the savings of

the entire platoon decreasing by half when the offset distance of the middle vehicle

changes from 1ft to 3ft. If the vehicle needs to be offset, it should be at the rear of

the platoon where it has the least effect. The platooning studies conducted had a lot

of variability because of the human factor in the loop. The driver’s tend to get more

aggressive on the accelerator pedal at really close distance and higher speeds which

could negatively affect the savings potential. For future testing getting all the cars

run under cruise control will help achieve more robust results and obtain a clearer

picture of the savings potential of platooning.

5.3 Route Based Blended Mode Optimizer

The Optimal Control Matrix was successfully implemented in the vehicle and the

Hold Mode Signal was analyzed to make sure the vehicle was following the desired

strategy based on SOC and Distance travelled. The on-road testing of Route Based

Blended Mode Optimizer gave a mixed set of results ranging from positive savings of

5.2% to negative savings of -4.2%. This is because the tests are sensitive to driving

conditions. More tests are needed to create a distribution of energy savings. Another

scope for future work lie in getting the optimizer running automatically in the vehicle

using the route data obtained by V2X communications. For testing, the optimizer was
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run off-line and the optimal matrix was manually compiled into the vehicle controller.

This process needs to be automated.

5.4 Engine Start-Stop Optimizer

The Engine Start-Stop Optimizer, uses the predicted velocity and elevation profile

of the route to come up with an optimal mode at each section of the drive cycle to

maximize efficiency. The first controller predicts the engine starts and stops using axle

power, vehicle speed and SOC and then optimizes the starts and stops based on the

energy consumption at each section and engine start penalty. This optimizer was able

to obtain a maximum savings of 3.8% on a test route, while it was also able reduce

the number of engine starts by almost 41%. The second optimizer tried to operate

the engine in the most efficient sections of the route using Dynamic Programming.

The route was divided into 10 second sections and a maximum savings of 8.3% was

achieved for the same test route. The second optimizer has a superior energy savings

potential than the first one. The second optimizer did not assign any penalty to

changing the mode of engine operation. A model which assigns penalty to changing

modes will provide a more closer approximation of the actual energy savings. This

optimizer could not be implemented in the car as the manufacturer assistance was

needed to make changes to the low level vehicle controller. Tests will have to be

conducted to validate the results of the model on actual drive cycles.
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