
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2020 

DEMAND-DRIVEN EXECUTION USING FUTURE GATED SINGLE DEMAND-DRIVEN EXECUTION USING FUTURE GATED SINGLE 

ASSIGNMENT FORM ASSIGNMENT FORM 

Omkar Javeri 
Michigan Technological University, oujaveri@mtu.edu 

Copyright 2020 Omkar Javeri 

Recommended Citation Recommended Citation 
Javeri, Omkar, "DEMAND-DRIVEN EXECUTION USING FUTURE GATED SINGLE ASSIGNMENT FORM", Open 
Access Dissertation, Michigan Technological University, 2020. 
https://doi.org/10.37099/mtu.dc.etdr/987 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Computer and Systems Architecture Commons, Hardware Systems Commons, Programming 
Languages and Compilers Commons, and the Systems Architecture Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/323915484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/987
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.mtu.edu%2Fetdr%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.mtu.edu%2Fetdr%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.mtu.edu%2Fetdr%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.mtu.edu%2Fetdr%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.mtu.edu%2Fetdr%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages


DEMAND-DRIVEN EXECUTION USING FUTURE GATED SINGLE

ASSIGNMENT FORM

By

Omkar Ulhas Javeri

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2020

© 2020 Omkar Ulhas Javeri





This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Engineering.

Department of Electrical and Computer Engineering

Dissertation Advisor: Dr. Soner Önder
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Abstract

This dissertation discusses a novel, previously unexplored execution model called

Demand-Driven Execution (DDE), which executes programs starting from the out-

puts of the program, progressing towards the inputs of the program. This approach is

significantly different from prior demand-driven reduction machines as it can execute

a program written in an imperative language using the demand-driven paradigm while

extracting both instruction and data level parallelism. The execution model relies on

an executable Single Assignment Form which serves both as the internal representation

of the compiler as well as the Instruction Set Architecture (ISA) of the machine. This

work develops the instruction set architecture, the programming language pragmatics,

and the microarchitecture for the demand-driven execution paradigm.
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Chapter 1

Introduction

Existing models based on the Von-Neumann program execution model are not scal-

able, limited by the compiler’s ability to identify dependencies at compile time as well

as the cost of analyzing these dependencies at run-time. Currently, extracting paral-

lelism is achieved by using architectures based on Multiple Instruction Multiple Data

(MIMD) architectures such as Multi-core Central Processing Units (CPU) and Single

Instruction Multiple Data (SIMD) architectures such as Graphics Processing Units

(GPU), as well as accelerators such as Digital Signal Processors (DSP)s, Field Pro-

grammable Gate Arrays (FPGA), or a combination of more than one. The SIMD and

MIMD parallel architectures execute a program based on the control-flow paradigm.

Under this paradigm, the extracted parallelism is limited by how well a given program

can be analyzed at compile time and mapped to a architecture. Further complexity

1



involves writing a parallel program to extract the desired parallelism in a machine

dependent manner. An alternative approach includes data-flow architectures that

allow the execution of instructions depending on operand availability [10, 16]. Data-

flow architectures naturally provide synchronization of parallel activities, but these

architectures have primarily been designed for functional languages and they cannot

naturally handle data-flow through memory for imperative programming languages.

Thus, data-flow architectures have not been commercially viable.

This dissertation explores and develops a previously unexplored execution model

called Demand-Driven Execution (DDE). In DDE, the evaluation of an instruction

is carried out only when its value is needed. The program execution starts from the

outputs of the program which triggers the first instruction to be evaluated. This

instruction demands other instructions that are required to generate its operands.

Those instructions eventually demand other instructions which are required to gener-

ate their results, hence creating a demand tree of instructions. As a result, instructions

at the leaves of the tree will have all their operands available and will be among the

first ones to be executed. An instruction in DDE is executed when all its operands are

available. In DDE, an instruction according to its classification is capable of demand-

ing up to two instructions and an additional instruction if it is predicated. Thus,

this model leads to significant levels of parallelism. The demand-driven nature of the

approach explicitly represents dependencies, allowing for better scalability in terms of

both synchronization and communication. We build and explore architectures based
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on the DDE paradigm using the Future Gated Single Assignment [8, 9] (FGSA) form.

The DDE architecture is designed keeping general purpose programming in mind.

We are able to run programs written in imperative languages such as C which are

mechanically translated into the FGSA form and the FGSA code is directly executed

by the architecture. Doing so, the DDE paradigm exploits instruction and data level

parallelism with the goal of achieving higher Instructions Per Cycle (IPC) compared

to running the same imperative program on an equivalent superscalar processor.

Generally speaking, we should compare the complexity of a DDE processor in terms

of performance and power, to that of control-flow architectures. It takes a similar

amount of power to execute any arithmetic, logical, and memory instruction like

ADD, AND, MUL, LW, SW, whether such instructions are executed in a conven-

tional superscalar processor or a data-flow processor. The DDE paradigm completely

eliminates all branch instructions since synchronization is embedded in the paradigm.

The difference in performance and power comes in the way instructions are evaluated,

scheduled, and executed. In a superscalar processor, an instruction is evaluated when

the Program Counter (PC) points to it. In a data-flow processor, an instruction is

evaluated when another instruction generates an operand for that instruction. In a

DDE processor, an instruction is evaluated when another instruction demands a value

from that instruction. In a superscalar processor, it is assumed the operands of an

instruction are available, or, will be shortly available when the Program Counter (PC)

3



points to it. In a data-flow processor, an instruction is asynchronously scheduled for

execution when both of its operands are available, which has its own operand match-

ing mechanism. DDE processors use a unique dynamic operand matching mechanism

to asynchronously schedule an instruction when all its operands are available. The

paradigm achieves this by dynamically generating a data-flow graph, starting at the

output (i.e., the root) of the graph and initiates execution as soon as any of the leaf

nodes are reached.

In summary, the primary goal of this dissertation is to develop the instruction set

architecture, the programming language pragmatics, and the microarchitecture mech-

anisms necessary for realizing this type of execution efficiently.

Currently, the FGSA form developed by Ding et al. [7] can properly represent im-

perative programs. Ding’s dissertation which developed the FGSA form has also laid

out the theoretical framework necessary for automatic translation of imperative pro-

grams into the FGSA form, demonstrated how the form can be used as the internal

representation of the compiler and how various forms of optimizations can be per-

formed using the representation. A subsequent publication [8] laid the fundamentals

and showed that in a theoretical sense, the form can support all three known execu-

tion models, namely, control-flow execution (CFE), data-flow execution (DFE), and

demand-driven execution (DDE).

As discussed above, among the three execution models, the DDE paradigm is very

4



promising in terms of extracting large amounts of instruction and data parallelism.

However, before the paradigm can be practically used, many issues need to be ad-

dressed and these issues are the focus of this dissertation. In other words, the goal of

this dissertation is to develop the DDE paradigm from a theoretical framework into

a practical and usable implementation.

In order to develop this paradigm into a practically realizable design, we make the

following contributions as we approach the problem as follows:

1. The theoretical FGSA specification lacks the necessary pragmatics, particularly

how memory is represented and is accessed. We therefore develop the necessary

pragmatics including the program layout, function, and loop representations.

2. We define a memory model and machine model to run an executable demand-

driven code.

3. We develop an understanding of any additional fundamental issues towards con-

structing an actual DDE machine.

In order to achieve these goals, we develop:

1. The necessary addressing modes for the DDE machine. Addressing modes are

necessary to have systematic and efficient access to instructions and data;

5



2. The procedure calling mechanism for the DDE machine, namely, passing of argu-

ments and return of values from procedures;

3. Efficient transformations to enable the translation and parallel execution of loops

in DDE;

4. A demand-driven ISA representation suitable for efficient execution on such a

machine for arithmetic, logical, memory, synchronization, data transfer and special

instructions in DDE;

5. A multiple-issue of the microarchitecture for efficient, parallel execution of DDE

programs.

6. Necessary simulation infrastructure for evaluating the resulting architecture.

In the rest of the dissertation, we discuss our approach to each of these elements.

Chapter 2 gives the basic knowledge necessary to understand the rest of the disser-

tation. We introduce the new paradigm and connect concepts with the prior art.

The section also gives a detailed description of FGSA [8, 9]. Chapter 3 gives a brief

description of control-flow assembly representation and shows how control-flow inter-

mediate representation of FGSA is converted into control-flow assembly representa-

tion. Chapter 4 introduces an abstract view of the memory model and elaborates on

instruction synchronization envisioned for the demand-driven processor. Chapter 5

6



describes the memory model and its layout for generating demand-driven programs.

The section also describes a formal method to support high-level language features,

such as, procedure calls, loops, and parameter passing conventions. Chapter 6 de-

scribes the microarchitecture developed for the demand-driven processor. Chapter 7

describes the simulator infrastructure used to develop the demand-driven processor

and presents an evaluation of the designs.

7





Chapter 2

Background

This work builds on prior work which includes the design of the Future Gated Single

Assignment (FGSA) form by Ding et al. [7, 8, 9] which is summarized in Section 2.2.

Contributions of the dissertation include the control-flow assembly program represen-

tation of the FGSA form, demand-driven intermediate representation, the concept of

environments and frames, environment and frame addressing, various synchroniza-

tion primitives in DDE, parameter passing between environments, the development

of the instruction set architecture for the demand-driven execution paradigm, and

naturalized sequential loop unrolling for exploiting loop-level parallelism under this

paradigm.
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2.1 Execution Paradigms

Execution paradigms can be broadly classified into three different models of execu-

tion based on the flow of control and data. The first model is based on sequential

computation or the traditional Von-Neumann program execution model based on

incrementing and modifying a program counter and is known as Control-flow com-

puting. The second model is based on the availability of data to derive instruction

execution. In this model, an instruction computes as soon as its data operands are

available. As the computation in this model is driven by the availability of data, it

is known as Data-flow computing. The third model is driven by the availability of a

result and demands computation required to generate its result. As the computation

in this model is driven by a demand for the result and its computation, it is referred

to as Demand-driven computing.

2.1.1 Control-Flow Computing

Control-flow computing has been the dominant form of computing for decades. The

execution model for a control-flow machine is based on updating a Program Counter

(PC) which decides the execution flow. In this model, the PC holds the address of the
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instruction to be executed and usually is incremented sequentially. The flow of pro-

gram execution is controlled and modified using transfer of control instructions like

branch and jump instructions. These transfer of control instructions modify the PC to

accomplish a different execution flow instead of the sequential incrementing of the PC.

Transfer of control instructions can be conditional or unconditional. Unconditional

jump instructions allow the execution of a different control path by unconditionally

modifying the PC with a new target address, thus transferring the control to a differ-

ent part of the code. The conditional branch instructions embed a comparison to gate

the flow of control. The comparison conditions like less-than, greater-than, equal-to,

not-equal-to, less-than-equal-to, greater-than-equal-to are used to activate a control

transfer with the help of branch instructions.

2.1.2 Data-Flow Computing

The execution in a data-flow machine is data-driven. An instruction in a data-flow

machine is enabled for execution when it receives all the required operands (i.e. all

the required data is available). Data-flow programs are represented using a directed

graph. The nodes in the directed graph act as an operator or a link. These nodes

are connected by arcs. The data values in the form of tokens are placed on the arcs

and transported from one node to another. The instruction at a node is enabled

when tokens on all the input arcs of the node are available. An enabled operator can
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fire at any time when all the input tokens are available. The operator consumes all

the input tokens, performs the required operation and places the result output token

on its output arc. A link can be used to send the result token to more than one

destination. The link consumes the token at its input arc and places copies of the

token on all its output arcs. In static data-flow architectures, an operator or link can

execute only when there is no token present on the output arc of that operator or

link.

Data-flow computers are classified depending on their communication topology as

direct communication and packet communication. In direct communication, the pro-

cessing elements are directly connected to each other. The Data-Driven Machine #1

(DDM1) is an example of a direct communication machine [20, 21]. The packet com-

munication can be further classified as static packet communication machines and

dynamic packet communication machines. We visit a few notable data-flow architec-

tures in this chapter.

2.1.2.1 MIT Data-Flow Processor

We summarize the description of the MIT Data-Flow Processor written by Dennis

et al. and Treleaven et al. [5, 6, 20]. The MIT Data-Flow Computer uses a packet

communication architecture with token storage. There are two types of packets,

control packets and data packets. The Data-flow processor consists of five major
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segments. An asynchronous protocol is used to transmit packets between these five

segments. The five major segments of the Data-flow processor are:

1. The memory of the processor is formed of instruction cells consisting of three

registers to hold the instruction and its two operands.

2. The arbitration network routes multiple operation packets which are ready with

their instructions and operands from instruction cells to the appropriate processing

section by decoding the instruction part of the packet.

3. The processing section consists of operation units to perform the required operation

on the available operands and generate one or more computed values and its target

address in the memory.

4. The control network directs control packets from the processing section to the

appropriate cells in the memory section.

5. The distribution network section directs the data packets from the processing

section to the appropriate cells in the memory section.

Each instruction cell consists of an instruction composed of an operator of the data-

flow code, several destination addresses, and three registers, one to hold the instruc-

tion and two other to hold the operands. The instruction cells in the memory sec-

tion are enabled for execution when the cell has the instruction and all the required
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operands. The operands are received via the distribution network and are written

to respective registers in the instruction cell. Similarly, the instruction is received as

a control packet via the control network and is made available as an instruction by

writing to the register in the instruction cell. The enabled instruction along with its

operands are sent as an operation packet to the processing section via the arbitration

network. The arbitration network directs the packet from the instruction cell to the

respective processing units by decoding the operation code of the instruction. The

processing units compute one or more result packets that are sent to the instruction

cells via the control network and distribution network. The result packet is composed

of the result value and the destination address derived from the instruction processed

by the processing unit. The result packet generated is classified into two types, either

a control packet or a data packet. The control packet contains a boolean value or

an acknowledgment signal and is delivered via the control network. The data packet

contains an integer or complex value and is delivered via the distribution network.

The result packet is delivered to the instruction cell denoted by its destination address

via the control network and distribution network. The result packets received by an

instruction cell can be an operand or an acknowledgment signal. If all the required

result packets by an instruction cell are received, then it can enable that instruction

and can generate a new operation packet to be sent to the processing unit.
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2.1.2.2 Monsoon: An Explicit Token-Store Architecture

We summarize the description and working of the Monsoon machine written by Pa-

padopoulos and Culler [4, 19]. The Monsoon machine is a dynamic packet commu-

nication data-flow machine which uses the Explicit Token Store (ETS) mechanism

that was developed at MIT Laboratory for Computer Science. Explicit token store

architecture uses a dynamic storage of fixed size called a “frame”. Frames are allo-

cated dynamically during function invocation and are used to store the tokens of the

function. These frames are released on completion of function invocation. Each loca-

tion in the frame is associated with a presence bit which is initially empty. Dynamic

data-flow execution triggering is achieved when the presence bit is set for a particu-

lar location. The ETS is capable of directly executing dynamic data-flow graphs. A

token in a Monsoon machine consists of a tag and a value. The tag holds the informa-

tion for the instruction pointer and the frame pointer where the instruction pointer

points to the location of an instruction to be executed and the frame pointer points

to an activation frame. The instruction pointed by the instruction pointer holds the

information about the instruction to be executed, the offset location in the activation

frame allocated for token matching, one or more destination instruction pointers for

the result token and additional information for the input port, as “left” or “right” for

each destination. A token on arrival checks the presence bit of its allocated location

in the activation frame. If the location is empty, the token is stored in the location by
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setting the corresponding presence bit as full and no further execution is performed.

If the presence bit for the location is full the token is read from the location and

the presence bit is set to empty. The instruction is executed generating one or more

result tokens.

The ETS allows parallel calls for activation frames, hence the caller and callee can run

in parallel. This mechanism allows the allocation of frames for multiple iterations of a

loop to run concurrently. It is the responsibility of the compiler to compile the data-

flow graph in such a way that reusing a frame is possible only after its previous use

is complete. The Monsoon architecture is a multiple processing element architecture

where the processing elements are connected using a multistage packet switch network

and a number of interleaved memory modules. Each processing element has an eight

stage pipeline. The format of the message is uniform through the Monsoon machine

which is nothing but the flow of tokens thus allowing the hardware to have a uniform

inter and intra processor communication. The program compiled to run on a Monsoon

machine is a collection of disjoint data-flow graphs and is called a code block which

consists of a loop body or a function in a high level program. Each code block is

dynamically assigned to a processing element. In case of a loop, every iteration is

allocated its own frame which can be on separate processing elements. An activation

frame and all the tokens within the frame are computed on the same processing

element. This approach allows the inter-processor traffic to be minimized and helps

to keep the processing element pipeline full.

16



Some aspects of the Monsoon architecture and its design principles have been used

in the design of our demand-driven processor models.

2.1.3 Demand-Driven Computing

The execution in demand-driven computing is driven by the availability of the re-

sult. In this model, the demand for a result triggers a demand for the evaluation

of an instruction which computes the result. The evaluated instruction demands its

operands which can be another instruction, or, an operand value might be readily

available. The flow of demand for the result starts from the outputs of the program

and progresses towards the inputs of the program. The output of the program is the

first instruction to be evaluated which demands other instructions required to com-

pute its value. The demand chain continues until an instruction demands the input

values of the program. The instruction demanding the input values which have its

operands readily available will be among the first to be executed. A typical exam-

ple of a computer capable of executing in Demand-driven computation is reduction

machines.
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2.1.3.1 Reduction Machines

Reduction machines were designed for executing functional programs [20]. Treleaven

et al. classify reduction machines into two categories, outermost reduction and inner-

most reduction [20]. In innermost reduction, all innermost arguments of a function

to be executed need to be available before the function can execute. The execution

starts from the innermost operands computing the value required for the outer in-

structions, thus making the value available to the outermost instruction to compute

the result. In outermost reduction, the outermost instruction demands the instruction

which generates its operands which continues to demand other instructions required

to generate their value until the demand reaches the innermost instruction which has

all its operands available and will be among the first ones to execute and compute a

value allowing demand-driven execution.

The demand-driven execution paradigm can be considered to be an outermost reduc-

tion engine, where the program to be executed has been translated from an imperative

program into the Future Gated Single Assignment form, as discussed in the next sec-

tion.
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2.2 Future Gated Single Assignment Form

Future Gated Single Assignment (FGSA) form developed by Ding et al. [7, 8, 9]

is a single assignment representation that can be used by a compiler as its internal

representation as well as by a microarchitecture as its instruction set.

In FGSA, every definition is unique and dominates all its uses in a Control-Flow

Graph (CFG). The representation uses two executable gating functions, PSI (ψ) and

ETA (η) controlled by a predicate for two different uses. The ψ function acts as a

gating function to control the flow of data to implement selection and has the form

xdest = ψP(arg1,arg2). The flow of data to xdest is controlled using the gating predicate

P, which if true, allows the value of the first argument arg1 to flow into a subsequent

use of xdest. Otherwise, the value of the second argument arg2 flows into a subsequent

use of xdest. The η function acts as a gating function to control the flow of data out

of loops and has the form xdest = ηP(yarg). This function allows its argument to flow

to subsequent uses when its predicate P is true and controls how loops function.

FGSA form uses future dependencies [17]. An instruction that has an operand defined

by a later instruction in control-flow order is said to have a future dependency. In

Figure 2.1(a), a true data dependence involving the variable z is shown where the

value of z is defined by instruction I1 and is used by instruction I2. When the order of
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the defining instruction and the using instruction is reversed as seen in Figure 2.1(b),

the dependency becomes a future dependency such that the variable z is used in

instruction I1 before it is defined in instruction I2. In other words, a future dependency

allows reversing the data-flow sequence where a true data dependency exists between

the instructions and permits an instruction to be hoisted above the instruction which

defines its operands. As the use of the variable z is hoisted before its definition,

it is written as a future variable zf and the subscript ‘f’ stands for future. Future

dependencies can be employed with control dependencies as well. In Figure 2.1(a)

the instruction I3 defines the predicate P which guards instruction I4. Hoisting I4

before I3 yields Figure 2.1(c) where the guarded instruction uses the predicate P

before its definition by instruction I4. As the guarding predicate use is hoisted before

its definition, it is written as a future predicate, Pf. As it can be seen, using future

dependencies provides us with the freedom of ordering code without being restricted

by data or control dependencies in a control-flow representation. This freedom is

necessary to represent imperative programs in the control-flow execution model using

FGSA as we illustrate shortly through an example how an imperative program is

represented.

I1: z = x + y I1: u = v + zf I1: if Pf then a = a + 1
I2: u = v + z I2: z = x + y I2: u = v + zf
I3: P = (u < z) I3: P = (u < z) I3: z = x + y
I4: if P then a = a + 1 I4: if P then a = a + 1 I4: P = (u < z)
(a) True dependency (b) Future data dependency (c) Future data and control dependency

Figure 2.1: Future data and control dependency

Figure 2.2 shows an example program fragment computing a partial vector sum. The
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loop start value ‘y’ is dependent on the control-flow path taken based on the value of

variable P. Control-flow graph (CFG) FGSA representation of this code is shown in

Figure 2.3.

main ()
{

int x = 0;
int y = 0;
int n = 100;
int a[100];
int P, i;
if (P > 0)
{ y = 50; }
for (i = y; i < n; i++)
{ x = x + a[i]; }
print (x);

}

Figure 2.2: Program fragment to perform scalar addition

The ψ function implements the selection between the value 0 (y1) and 50 (y2) as

seen in Figure 2.3 expressed as y3 = ψP1(y2f,y1). This selection function must be

inserted at a place that dominates all its uses and the only candidate is block B1.

As the definition of the value of y2 falls after the point of use with this only choice,

the dependence needs to become a future dependence and is written as y2f. The

following ψ functions, ψPr2 and ψPr3 , utilize special predicates, Pr2 and Pr3, called

read-once predicates as seen in block B3. A read-once predicate is a special predicate

that returns the value when it is read for the first time and subsequent read returns

a false value. Thus, ψPr2 and ψPr3 will allow the flow of data values from their first

arguments x1 to x2 and y3 to y4 respectively when encountered for the first time as
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Figure 2.3: Scalar addition FGSA in graphical form

the predicates Pr2 and Pr3 are true. The values of the predicates Pr2 and Pr3 will be

false for subsequent instances thus allowing the flow of data values from the second

argument x3 to x2 and y5 to y4 respectively, in subsequent instances.

The η function is used to regulate the data-flow out of the loop as shown in block

B4, and is expressed as x4 = η¬P4(x3). The flow of data is controlled by the value of

the predicate P4. If the value of the gate (¬P4) is true, i.e., when the value of the
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predicate P4 is false, then the loop has terminated and the value of the argument x3

is allowed to flow into the following uses.

L1: x1 = 0
y1 = 0
n1 = 100

B1 Pr2 = 1
Pr3 = 1
y3 = ψP1

(y2f , y1)
if (P1) goto L3

B2 L2: y2 = 50

L3: x2 = ψPr2(x1, x3)
y4 = ψPr3(y3, y5)
z1 = M [y4]

B3 x3 = x2 + z1
y5 = y4 + 1
P4 = y5 < n1

if (P4) goto L3

B4 L4: x4 = η¬P4(x3)
print x4

Figure 2.4: Control-flow 3-address intermediate representation of FGSA

The CFG form of an FGSA program can be converted into a linear 3-address interme-

diate representation for a control-flow processor by following an identical procedure

a typical compiler follows when flattening an SSA-CFG form. This process involves

a topological visiting of CFG nodes. The resulting 3-address intermediate represen-

tation form of the example program is shown in Figure 2.4.

We have provided a brief overview of the background material required to understand

this dissertation.

In the next chapter, we present the control-flow assembly representation for FGSA.
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Chapter 3

Control-Flow FGSA Assembly

Representation

Control-flow assembly program representation for FGSA requires the definition of

assembly language equivalents for the FGSA special functions ψ and η, and special

read-once predicates. The representation also needs to be able to encode future

dependencies. In order to implement the ψ functions, we use two conditional move

instructions found in commercial processors [11]. This is because a conditional move

instruction implements the data motion for only one argument. Using two instructions

with the same destination accomplishes the desired functionality. Although this may

look like a violation of the single assignment property of programs, practically only one

of the two conditional moves can write. The read-once predicates are implemented by

25



having a tagged memory and the location is marked as “read-once” by using a special

instruction such as “load immediate and set read-once” (lir). The processor then

zeroes the location whenever the location is read by any instruction. Alternatively, a

non-tagged memory can also be utilized and an atomic “read and set to zero” (rsz)

instruction can be utilized to read the location’s value. Similar instructions such as

test-and-set have been used in commercial processor implementations.

Future dependencies are represented by appending the suffix ‘.f’ to each operand at

the assembly level, encoded as a single bit associated with the corresponding operand

of the instruction. The processor shelves the instruction with a future operand until

the producer instruction is encountered. FGSA construction guarantees that the

definition will always be encountered due to its construction and the single assignment

property of the representation.

Given these changes, the 3-address intermediate representation of FGSA shown in

Figure 3.1 can be converted into an assembly representation form for a control-flow

processor as shown in Figure 3.2. The program is still in single assignment form

as each definition is unique. Execution starts with the first instruction at label L1.

The ψP1 instruction is represented using two conditional move instructions, move

conditional on not zero (movn) and move conditional on zero (movz), one of which

will write, depending on the value of the predicate P1 which is in register $7. The

ψP1 instruction also uses a future dependency represented using the suffix ‘.f’ as
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$8.f. The control-flow using the predicate P1 is defined by the conditional branch

instruction blez $7, $L3. The label L3 is the loop header. The loop iterates until the

conditional branch bgtz $14, $L3 is not taken (i.e., the predicate P4 becomes false).

The ψ instructions, using read-once predicates ψPr2 and ψPr3 are represented using

two conditional move instructions, movn and movz for each of them. This coding

allows the flow of the initial values x1 to x2 and y3 to y4 respectively in the first

pass through the loop header. The predicates Pr2 and Pr3 become false once read,

allowing the value of x3 to flow to x2 and y5 to flow to y4 in subsequent iterations. The

η function becomes a conditional move instruction movz $15, $14, $12 which moves

the value of x3 to x4 when the predicate P4, i.e. $14 becomes false. Now the value

L1: x1 = 0
y1 = 0
n1 = 100

B1 Pr2 = 1
Pr3 = 1
y3 = ψP1(y2f , y1)
if (P1) goto L3

B2 L2: y2 = 50

L3: x2 = ψPr2(x1, x3)
y4 = ψPr3(y3, y5)
z1 = M [y4]

B3 x3 = x2 + z1
y5 = y4 + 1
P4 = y5 < n1

if (P4) goto L3

B4 L4: x4 = η¬P4(x3)
print x4

Figure 3.1: Control-flow 3-address intermediate representation of FGSA
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$L1: li $1,0 # x1 = 0
li $2,0 # y1 = 0
li $3,100 # n1 = 100
lir $4,1 # Pr2 = 1
lir $5,1 # Pr3 = 1
movn $6,$8.f,$7 # y3 = ψP1=1(y2f )
movz $6,$2,$7 # y3 = ψP1=0(y1)
blez $7,$L3 # if (¬P1) Jump to L3

$L2: li $8,50 # y2 = 50
$L3: movn $9,$4,$1 # x2 = ψPr2=1(x1)

movz $9,$4,$12 # x2 = ψPr2=0(x3)
movn $10,$5,$6 # y4 = ψPr3=1(y3)
movz $10,$5,$13 # y4 = ψPr3=0(y5)
lw $11,M($10) # z1 = M [y4]
addu $12,$9,$11 # x3 = x2 + z1
addiu $13,$10,1 # y5 = y4 + 1
slt $14,$13,$3 # P4 = y5 < n1

bgtz $14,$L3 # if (P4) Jump to L3
$L4: movz $15,$14,$12 # x4 = η¬P4(x3)

jal print x4 # print x4

Figure 3.2: Control-flow assembly representation of FGSA

of x4 is available, and it is printed. As it can be seen, except the outlined additional

instructions and the representation of read-once locations and future dependencies,

translation of FGSA programs to executable control-flow assembly is fairly straight-

forward and follows general compiler mechanisms of reducing 3-address intermediate

form into the assembly language.

Although we do not use the control-flow form of FGSA further in this dissertation it

forms the basis for the demand-driven representation elaborated later. In any case,

it can also be utilized for future control-flow processor implementations which may

require an executable single assignment form.
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In the next chapter, we turn our attention to the demand-driven execution and discuss

a rather abstract view of the memory model as well as instruction synchronization

envisioned for the demand-driven execution.
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Chapter 4

Demand-Driven Execution of

Programs

Before we can discuss the implementation of a demand-driven processor, we need to

revisit demand-driven execution in an abstract manner to facilitate an understanding

behind our approach in designing the architecture. We choose the DDE architecture

to be a Harvard architecture embodying an Instruction Memory (IM) and a Data

Memory (DM). The IM stores the program code and the DM stores computed scalar

values of executed instructions or partially computed values. Similar to P-RISC [16]

and Monsoon [19] models, data structures such as arrays and structures reside in

heap memory. Hence our architecture embodies a conventional memory with the

possibility of incorporating an I-structure [2] like support structure to enable proper

synchronization and communication through memory.
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In our architecture, an instruction i is of the form d ← a op b where d, a, b are

locations in DM. An instruction i in IM has a one to one correspondence with location

d in DM such that location d in IM contains instruction i. In other words, instruction i

at location d in IM writes to location d in DM. Every location in DM has an additional

tag field. This tag field associated with every location in DM is used to represent the

current state of data and the possible transitions during program execution. The tag

field assumes one of three states for a data value. These states are Empty (i.e. data

not available), Partial (i.e., a data value is available for one of the two operands of an

instruction), and Full (i.e. data for all source operands are available and the output

of the instruction is available).

The execute operation for instruction x in control-flow execution is given by :

execute(x) :DM [x].value← DM [IM [x].op1].value

op DM [IM [x].op2].value;

DM [x].tag ← present.

(4.1)

whereas, the execute operation for instruction x in demand-driven execution is given

by :

execute(x) :DM [x].value← evaluate(IM [x].op1)

op evaluate(IM [x].op2);

DM [x].tag ← present.

(4.2)
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In other words, the execution of a dyadic instruction involves two function calls,

one to evaluate the operands and another to perform the operation using the values

returned by the functions.

The evaluate function is defined as :

evaluate(x) :ifDM [x].tag = present

then DM [x].value else execute(x).

(4.3)

Note that, this step recursively evaluates a dependent chain of instructions.

Figure 4.1 illustrates the set of states where each state corresponds to a particular

tag. Initially, all tag fields are Empty. For instructions with only one operand, the

tag field is set to Full whenever data arrives. Partial represents the state when one

of the operands of a dyadic instruction has arrived, but the other operand has not

arrived yet. The first arrived operand is stored by stating the partial availability of

the result. The tag bit is set to L-Partial if the left operand arrives. Otherwise, it

is set to R-Partial. When the other operand arrives, the instruction is sent to the

execution unit alongside with both operands. Finally, the computed result is stored,

the tag field is set to Full and the result is returned to requesting instructions.

Figure 4.1 illustrates the execution of instruction a = b + c. The demand and memory

states for this instruction are explained in steps s1 to s5 in the figure. In step one,
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Figure 4.1: Data value state transition in DM

a demand is received for the value of location a and the tag field is Empty. In step

two, demands for the values of operands b and c are placed. Note that these demand

requests may arrive at their destinations in any order. In step three, the tag fields of

operand b and c are checked and both are found to be empty. The values of operands

b = 4 and c = 28 are available and the tag fields of both instructions are set to

Full. In step four, the operand values b and c may arrive in any order. Let’s assume

the operand value of c arrives before b. Right operand c, being the first operand to
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arrive, is stored in the location corresponding to a in DM and the tag field is set to

R-Partial. In step five, the other operand arrives. Left operand b received along with

the stored right operand c are now sent to the execution unit. Next, the computed

value of b + c is stored in location a and the tag field is set to Full.

In order to realize this basic execution model, we need to develop the necessary

pragmatics for the demand-driven execution.

In a nutshell, the pragmatics of demand-driven execution means we have a memory

model on which the program layout can be based, as well as any support that is neces-

sary to enable efficient translation of high-level language features, such as, procedure

calls, loops and parameter passing conventions, which are the primary topics of the

next chapter.
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Chapter 5

Programming Language

Pragmatics

Although the abstract view presented in the previous chapter helps us to understand

how the demand-driven execution of programs can be realized, terms such as “de-

mands”, “returns”, “location” remain abstract until we provide actual mechanisms

of achieving each one.

For this purpose, we first discuss the concept of environments, which provide a mech-

anism of representing program building blocks such as functions, loops, and single

data locations. We then show that we can implement efficient addressing modes to

provide the necessary accesses. In this respect, we consider the sequence of code
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(previous iteration)

Environment 3
(current iteration)

(previous iteration)
Environment 4

(current iteration)
Environment 5

foo()

a = 1

b = 10

loop1

y = y + a
{

}

c = 5

loop2

{

}

u = u + b

y = y + a

v = v + c

{

}

Environment 1

Environment 2,3

Environment 1

Environment 0

Environment 4,5

Figure 5.1: Environment illustration

belonging to a functional instance, the code before and after a given loop, the loop

body, and the code’s run-time instances to all be “environments”. Following the ap-

proach in block-structured languages, we lexicographically number each environment

1, as shown in Figure 5.1. Environment-0 represents a function instance in which

the variable ‘a’ has a lifetime through the end of the code. Environment-1 repre-

sents code outside the scope of any loop, such as loop1 or loop2. The variable ‘b’ is

within the scope of loop1 and the variable ‘c’ is within the scope of loop2. Therefore,

the lifetime of these variables coincides with the lifetime of the corresponding loops.

The loop1 environment requires two dynamic instances during the execution, namely,

Environment-2 and Environment-3. This is because loop-carried values need to be

1The block structured control-flow approach does not distinguish loop instances. In DDE we need
to.

38



kept in the previous instance and communicated to the next instance of the loop envi-

ronment. For example, the variable ‘y’ and the variable ‘u’ in a loop instance require

values from the previous iteration. Thus, the two run-time instances are represented

as Environment-2 (i.e., the previous iteration) and Environment-3 (i.e, the current

iteration). Similarly, two run-time instances are required for loop2 and they are rep-

resented as Environment-4 representing the previous iteration and Environment-5 as

the current iteration.

5.1 Addressing Modes Within an Environment

As previously stated, the instructions in IM have a one-to-one relationship with the

locations in DM such that the destination ‘d’ of instruction ‘i’ in IM writes to location

‘d’ in DM. The environments from IM need to have the corresponding environments in

DM. To facilitate efficient implementation of environments, we introduce the concept

of frames.

Similar to paging, we divide an environment into fixed-size continuous blocks of lo-

cations called frames. To illustrate, Figure 5.2 shows an environment consisting of

11 instructions distributed among frames, each with a frame size of 4. Frame 0 and

frame 1 have four instructions in each, whereas frame 2 has three instructions and

one unused location.
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instruction i1

instruction i2

instruction i3

instruction i4

instruction j1

instruction j2

instruction j3

instruction j4

instruction k1

instruction k2

instruction k3

Unused

Frame 2

Figure 5.2: An environment represented using a frame size of four

Table 5.1 illustrates the three different addressing modes used to address a location

within a frame with examples.

5.1.1 Literal Addressing Mode

The literal (immediate) addressing mode is used in arithmetic operations, comparison

operations and to load immediate values. As illustrated in Table 5.1-(1), the literal

addressing mode adds a constant value 8 and the value demanded from location 1 of

a frame from DM and stores the result at location 2 of the same frame in DM.
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Addressing mode Example instruction Meaning When Used
(1) Literal (Immediate) 2: Add 1, #8 loc[2]← loc[1] + 8 for constant
(2) Frame direct 3: Add 1, 2 loc[3] ← loc[1] +

loc[2]
rapid access to a loca-
tion within a frame

(3) Displacement 1: Add 2, 2[3] loc[1] ← loc[2] +
loc[loc[3]+2]

accessing using a
pointer for Env loca-
tion with an offset.

Table 5.1
Addressing mode with example and meaning

5.1.2 Frame Direct Addressing Mode

The frame direct addressing mode is used to directly reference a location within

a frame, thus allowing rapid access by instructions within a frame. Table 5.1-(2)

illustrates the use of the frame direct addressing mode. The example adds the value

demanded from location 1 and the value demanded from location 2 of a frame in DM.

It then stores the result at location 3 of the same frame in DM.

5.1.3 Displacement Addressing Mode

The displacement addressing mode is used to indirectly reference a location from

another frame. The location referenced within the frame holds a pointer to another

frame. An offset value is added to the pointer value to get the final displacement. The

generated displacement gives the pointer to the actual location desired. Table 5.1-(3)

illustrates the use of the displacement addressing mode. The example adds the value

demanded from location 2 with the value demanded indirectly from another frame
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location, the address of which is calculated by adding the displacement to the frame

offset stored at location 3. Both location 2 and location 3 belong to the same frame

in DM. The result is stored at location 1 of the same frame in DM.

5.2 Use of Addressing Modes

Demand-driven execution using the developed addressing modes can be realized by

using two pointers, the Instruction Frame Pointer (IFP) which points at the first

location of an instruction frame and the Data Frame Pointer (DFP) which points

at the first location of the corresponding data frame. All demand requests and re-

turned responses are sent to the DM. Therefore, all transactions use data addresses.

Data frames establish the necessary association between the instructions and data

to fetch the instructions when the frame is created. We represent the DFP for the

target environment receiving the demand request as DFPt and the DFP for the caller

environment receiving the return value as DFPr.

Each demand request is of the form <target address, return address>, where the

address is a DFP and an offset within that frame. In other words, the demand request

is encoded as <DFPt + offset, DFPr + offset>. The demand message also includes

information indicating whether the operand is a left operand or a right operand. A

left operand message is represented as <DFPt + offset, DFPr + offset.left>and a
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Empty
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Full

Empty

4
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Instruction Memory (IM)

b = 4

c = 28
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5:
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8:a = b + c

Data Memory (DM)

IFP: I1 DFP:D1

<D1+4, D1+8.left> & <D1+5, D1+8.right>

Demand messagesValue

28

Figure 5.3: Demand generation and propagation of values

right operand message is represented as <DFPt + offset, DFPr + offset.right>. Let’s

go through an example of how the demand requests are generated and how the data

value is returned. Figure 5.3 illustrates an example executing the simple expression a

= b + c. When a demand request for the variable a is received, two demand requests

are placed simultaneously:

< DFPt + offsetb, DFPr + offseta.left > which is < D1 + 4, D1 + 8.left >

(5.1)

< DFPt + offsetc, DFPr + offseta.right > which is < D1 + 5, D1 + 8.right >

(5.2)

Initially, the tag for variables b and c are Empty in DM. The instructions at offsetb

i.e. location 4 and offsetc i.e. location 5 in IM are fetched. The value of variables

b and c are written to DM and corresponding tags are set to full. Now the values of

variables b and c are returned to a. The operand values b and c may arrive in any
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order. Let’s assume the operand value of c arrives before b. Right operand c, being

the first operand to arrive, is stored in the location corresponding to a in DM and

the tag field is set to R-Partial. Now the other operand arrives. Left operand b is

received and both operand b and the stored operand c are now sent to the execution

unit. Next, the computed value of b + c is stored in a and the tag field is set to Full.

5.3 Synchronization in DDE

The DDE paradigm naturally provides instruction synchronization. Every demand

for a value generated by an instruction returns the value to the demanding instruction

as soon as it becomes available. The paradigm implements the necessary synchro-

nization through tags attached to memory cells. However, in addition to this implicit

synchronization mechanism, we have special cases where we need to control how syn-

chronization occurs. This kind of conditional synchronization is observed when we

need to trigger the demand for two operands but are interested in only the value of

the first operand. Similarly, there are cases where the order of demand is important.

For example, we may need to trigger the demand of two operands in a specific order.

In this case, the first operand is demanded and the second operand is demanded after

the value of the first operand becomes available. Yet another case is when we need

to trigger the completion of two operands but we need to consume only one of them.
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To properly describe the synchronization in DDE, we adapt the programming notation

used by Andrews Gregory et al. [1]. In this notation, the symbol || is used to represent

concurrent operations. The symbol ; is used to represent an ordering. Thus, a

simultaneous demand to a and b is represented as a||b. Similarly, the ordering of b

after a is represented as a;b.

To implement these synchronization primitives, we need to distinguish between the

completion of a demand request and the returned data. Although in most cases they

coincide, for synchronization purposes we may be interested in the completion of

the request separately from the arrival of actual data. As previously described, the

abstract DDE machine sets the tag field to Full when the requested data is computed.

This implies the actual completion of the demand request. However, there are cases

where the data which accompanies the completion signal may be irrelevant. Several

of the synchronization constructs are in this category. To distinguish the completion

of a demand signal from the arrival of actual data, we introduced a new tag, complete,

to provide a means of targeting each separately. Complete means the demand request

is complete, but no data value has been written to the word and the demand request

returns only a completion signal. The demand signal is generated using the eval.s

instruction. This instruction returns the demand completion signal and sets the tag

to Complete. In contrast, a data value is demanded using eval.d instruction. This

instruction returns the actual data and sets the tag field to Full when the data

becomes available.
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Figure 5.4: State transition of data and signals in DM

Figure 5.4 illustrates the state transitions for a DDE machine in terms of data and

signals. We add states to Figure 4.1 to incorporate demand signals alongside the

available data value. Initially, all tag fields are set to Empty. For instructions with

only one operand, the tag field is set to Full whenever the data arrives or set to

Complete if a signal arrives. S-Partial represents the state when one of the completion

signals of a dyadic instruction has arrived, but the other completion signal or data

has not arrived yet. The first arrived signal indicates the partial completion of the

result. The tag is set to LS-Partial if the left signal arrives. Otherwise, it is set to

RS-Partial. If the synchronization involves two signals, when the second completion

signal arrives, the state is changed to Complete. In the case where the synchronization

involves a signal and a value, the arrival of the value for the second operand changes

the state to Full.
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In the following instruction descriptions, we adopt field names and symbols for some

terms: lop for the left operand, rop for the right operand, and dest for the DM

location corresponding to the current instruction. The lop and rop represent frame

locations accessed using one of the previously defined addressing modes. The dest is

implicit and is not encoded with the instruction.

5.3.1 WITH Synchronization Instruction

The WITH instruction is defined as WITH lop, rop. This instruction acts as a syn-

chronization fork instruction by assigning the contents of lop to dest on the completion

of the demand request which is simultaneously issued to both lop and rop :

eval.d (lop) || eval.s (rop) ;

when lop.tag = full & rop.tag = complete: dest ← lop

The WITH instruction is useful when we want to explicitly demand two values where

we are interested in only the first value and completion of computation for the second

value. This makes the computed second value readily available to future demands for

the value and thus can be used to shorten the critical path for other demands.
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5.3.2 THEN Synchronization Instruction

The THEN instruction is defined as THEN lop, rop. This instruction acts as a

synchronization fork instruction by assigning the content of lop to dest on completion

of the demand request for both lop and rop. The demand for lop and rop is an orderly

demand sequence where lop is demanded first and rop is demanded next :

eval.d (lop) ;

when lop.tag = full :

eval.s (rop) ;

when rop.tag = complete: dest ← lop

The THEN instruction is useful when there is a need for an ordered demand between

instructions. For example, in loops, it will be useful to know the loop-carried value

is consumed before the instance of an iteration is freed.

5.3.3 EITHER Synchronization Instruction

The EITHER instruction is defined as EITHER lop, rop. This instruction acts as

a synchronization fork instruction by assigning the content of lop or rop to dest on

completion of the demand request for either one of the two values, i.e., lop or rop.

dest gets the result of the first completed request and the value generated by the

second request is ignored.
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For demanding signal :

eval.s (lop) || eval.s (rop) ;

when lop.tag = complete: dest.tag ← complete

when rop.tag = complete: dest.tag ← complete

For demanding value :

eval.d (lop) || eval.d (rop) ;

when lop.tag = full: dest.tag ← full

when rop.tag = full: dest.tag ← full.

The EITHER instruction is useful when it is required to demand two instructions but

can consume whichever value is received first. This is useful in an instance such as

the dynamically unrolling of loops or an event triggering a side effect.

5.4 Environment, Frames, and Mapping of Frames

As defined previously, an Environment is a sequence of code belonging to a func-

tional instance, the code before and after a given loop, the loop body, or a dynamic

instance of a loop iteration. An environment can contain an arbitrary number of

instructions that are mapped to one or more fixed size frames by the compiler. Fig-

ure 5.5 illustrates an example in which an environment has been mapped to a single
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frame with instructions I1, I2, ..., I64 and DM stores computed scalar values of exe-

cuted instructions or partially computed values represented as D1, D2, ..., D64 by those

instructions.

Demand Signal

Data Memory (DM)

I1

I2

D1

D2

I’1

I’2

Instruction and data

I’64

64 I64 D64

1

2

Main Memory

Instruction Memory (IM)

Code for the

environment

for the environment

Scalar Memory (SM)

Figure 5.5: An environment mapped to a single frame in the frame memory

A frame is allocated in SM by using an explicit instruction, newf, whose syntax is

newf <label, arg blk src, arg blk dest>. In this instruction, the label is an instruction

address pointing at the beginning of the code belonging to that frame. The arg blk src

field specifies the location of the argument block in the current frame as an offset.

The arg blk dest field specifies the offset in the new frame where the address of the

argument block is stored on creation of the new frame. The newf instruction, when

demanded, checks to see if it has already executed. If it has not, it creates a new

frame and writes the start address of the argument block at the indicated location in

the created frame. Creation of new frame copies size many instructions from main

memory starting at the label to IM of a new frame.
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It is possible to introduce an additional tag field, a constant field specifying whether

a new frame should be created or the new frame should be permitted to link to an

existing frame. We can then use a hardware structure to store the information for IM

- DM linked pairs created using a newf instruction. In this case, a newf instruction

with a tag bit set will return the address of an existing frame instead of allocating a

new one. A search in this hardware structure can be performed using the supplied

instruction address to link to an existing frame.

As previously stated, an environment is distributed across multiple frames when the

number of instructions in the environment exceeds the frame size. Figure 5.6 illus-

trates an environment of size 84. For a frame size of 64 locations, the environment

will be allocated as two frames of size 64. The second frame can be allocated for a

smaller size, but for simplicity and efficiency of implementation, frames should pos-

sibly be allocated in fixed sizes. A demand for a value at a location in frame 0 of

the environment will lead to the allocation of a frame in SM. During the allocation,

the instructions I ′1, I
′
2, ..., I

′
64 of frame 0 of the environment are copied from the main

memory to IM. Another reference to a location in frame 1 of the same environment

will lead to the allocation of another frame in SM and the copying of the instructions

I ′65, I
′
66, ..., I

′
84 from the main memory to IM. Locations 85 to 128 are filled with NOPs.

As explained in Section 5.1, we use displacement (base + offset) addressing mode in

order to refer to a value from another frame location. In the rest of this dissertation,

we use the syntax for displacement addressing mode as offset(base), where the base
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Instruction Memory (IM)
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Code for the

environment

for the environment

for the environment

Scalar Memory (SM)

Figure 5.6: An environment with multiple frame representation in the
frame memory

is a location in the current frame containing a pointer to the start (location 0 ) of

the target frame and the offset is the displacement within that frame from location

0. A value from a different frame can be demanded by using only the displacement

addressing mode.

As seen in Figure 5.6, an instruction in frame 0 of a given environment can access any

location in frame 1 of the same environment by using the newf instruction located

at location 0 of its frame which creates frame 1 for that environment. Similarly, an

instruction in frame 1 of the environment can access any location in frame 0 of the

same environment by using the newf instruction located at location 1 of its frame

which creates a link to an existing frame 0.
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5.5 Deallocating Frames

The frames allocated by the newf instruction need to be deallocated once the

use of those frames is complete. We introduce the delete frame instruction, delf,

which frees a frame. The syntax for delf instruction is delf <leftoperand, rightoperand,

predicateoperand>. The leftoperand demands the necessary computation in the procedure

and the rightoperand is used to locate the frame to be freed. The predicateoperand can

be used to embed additional control decisions. For instance, it can be set when it

is safe to free a previous loop iteration in a loop. A frame must be deallocated only

after all output values of the frame are read.

Typically, the call to a frame location in the main procedure starts with a demand

for frame deallocation instruction. The frame deallocation demands the allocation of

the frame and the output value from the frame to be freed. We illustrate environment

allocation and deallocation with an example as shown in Figure 5.7. The demand

starts with a demand for value of d in the main procedure which is the deallocate

frame instruction. The deallocate frame instruction demands P which is the output

value from the called frame and q(z) which will return the address of the frame to

be deallocated, which is available at offset q of the foo environment. The instruction

at location z will lead to the creation of a new frame for the foo environment. The

evaluation of the instruction at location P will lead to a demand of value at location
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a of the foo environment. The value of a, when available, is returned to P which is

the output value from the foo environment. The value of the instruction at location

q of the foo environment, when available, is returned to d, which is the address of

the frame to be deleted. When both the value of P and q are returned to d, the delf

instruction has both of its operands and can now deallocate the frame for the foo

environment.

Instruction Data

Base address of foo

main()

0xA2

The value of a

foo()

0x00

0x01

0x02

0xA2

0xA3

mn:

Demand Signal

f:

current frame

Address of

P

z

d

a(z)

delf P, q(z)

a

q

...

...

newf f,  ..., ...

Figure 5.7: Environment deallocation in DDE

5.6 Passing Arguments to Functions

Arguments to called functions are grouped into an argument block such that instruc-

tions computing an argument value are in consecutive locations in the procedure
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argument order. For example, for the call foo(a,b), the two instructions a=... and

b=... which compute the argument values are grouped together and form an argument

block. The argument values now can be demanded by any instruction from another

environment by using a pointer to the argument block through the displacement

addressing mode. The callee and caller environments can be separately compiled.

Therefore, a function environment should be able to consume different arguments

used at different call sites. This may necessitate the use of copy instructions to

generate the proper argument order.

5.7 Procedure Calls

An example procedure call is shown in Figure 5.8. For simplicity, we do not include

the delf instruction in our example. The execution begins upon receiving a demand

for the value at location d of the main procedure. This demand in turn triggers the

demand of the value at location z in the main procedure. Being the first demand for

z, the value of z is not available and the newf instruction is evaluated. The execution

of the newf instruction leads to the creation of an environment for foo and a pointer

to the first instruction of the argument block ab is stored at the supplied offset n in

the frame created for foo environment.

Once the environment is created, the newf instruction demands the return value of
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foo(a,b)

if  (a>10)

return a+1;

else

return a+b;

0x10

0x12

0x13

0x00

0x01

Demand Signal mn:

ab:

f:

0xA2

0xA3

0x14

0x15

0x11

The value of b

The value of a

argument block

Instruction Data

0x10
Base address of foo

foo()

main()

Address of argument
block ab = 0xA2

a

b

y

x

0(5) > 10

nopn

0(5) + 1(5)

i

0(5) + 1

newf f, ab, n

...

...

p

(x, y)ψp

d i(z)

z

Figure 5.8: Procedure call

that function. The return value in this example is produced by the instruction at

location i of the foo environment. Demanding the return value at location i results

in the evaluation of ψp(x, y). The ψ instruction evaluates the predicate p = 0(5) > 10.

The value of argument a is read by using the base address stored at location n of

foo environment with an offset zero, which is the address of argument a. Once the

value of a is available, the value of the predicate p is computed. Depending on the

value of the predicate p either value of x or value of y will be demanded. When the

demanded value returns, the result of ψ is computed and returned to d.
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Procedure calls in DDE selectively demand only the computation which is required

for the execution as opposed to conventional procedure calls in an imperative pro-

gramming language such as C. In a conventional procedure call, the value of both

arguments a and b are forwarded to foo without considering whether these argu-

ments will be used in foo. In our example, the value of b will be demanded only if

the predicate p is false.

A new function call to the foo environment which uses different argument values such

as g and h can be performed by passing the instruction address of a second argument

block, say gh. The instruction for the new call will be another newf instruction which

will look like newf <foo, gh, offset>.

5.8 Memory Ordering

The memory dependencies which are not resolved statically at compile time are rep-

resented using predicates. Let’s see through an example how predicated memory

dependencies can be used to order the accesses to memory. In our example, the ad-

dresses of sw z, sw y, lw x are not known at compile time. It is possible that the two

store and the load instructions can reference the same memory location. The execu-

tion order between these memory instructions can be maintained by using predicates

to represent dependencies between them.
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b sw y, mem, a

sw z, mem, true

lw x, mem, b 1

1

1a

c

present

demanded/

Address

Instruction Memory Data Memory

Scalar Memory

available

Predicate

Figure 5.9: Memory dependencies representation using predicate

The memory dependencies represented using predicates are illustrated with an exam-

ple as seen in Figure 5.9. The lw x uses the predicate b to maintain dependency with

sw y. The sw y uses the predicate a to maintain dependency with sw z.

We illustrate the execution of memory instruction and the resolution of their dynamic

dependencies in Figure 5.10. The demand for lw x at location c triggers the compu-

tation of the address for load and the demand for predicate b. The sw y demands its

operands and predicate. This leads to the computation of the address of sw y. The

operands for sw y lead to the return of the value which will be committed by sw y to

memory later when the store is ready to commit when its predicate is available. This

leads to the demand for location a. The sw z demands its operands and predicates.
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b sw y, mem, a

sw z, mem, true

lw x, mem, b 1

1

1a

c
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demanded/
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Scalar Memory

available
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a

true

b

Figure 5.10: Memory dependencies representation with available predicate
values

It computes its address and demands it value. It has its predicate true and is read to

store the value as soon as it has its address and value available. When sw z stores its

value to the memory, the predicate a is made available to sw y. The sw y can now

go ahead and store the value to memory and then make the predicate b available to

lw x. The lw x can now go ahead and load the value from the memory.
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5.9 Representation of Loops

In DDE, loops are treated as tail recursive procedure calls with a modification that

only the last procedure call in the chain returns the computed value directly to the

very first called procedure. The loop iterations in DDE are executed forward and the

execution within a loop iteration progresses in a demand-driven manner.

The environment for a dynamic instance of a loop iteration is allocated dynamically

using a newf instruction and can be freed when the use of the iteration is completed.

The necessary instructions in the loop iteration environment will be triggered and

executed to compute information such as loop-carried values or internal iteration

results. A single demand for a value in a loop iteration environment is received from

another environment which initiates the evaluation of an instruction and triggers a

chain of demands in the iteration environment. We refer to every instruction in a

loop environment as a node. The exit node in a loop iteration environment is defined

as the initiator node. The initiator node initiates the evaluation of an instruction

and demands the root node which triggers a chain of demand for other nodes in the

loop iteration environment. An instruction in DDE is capable of demanding up to

two other instructions and an additional instruction if the current instruction has a

predicate operand. The chain of demand starting from the root node expands by

demanding up to two other instructions (nodes). This expansion can differ for every
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loop, but always starts from the root node. One such random expansion is shown in

Figure 5.11. The demand for nodes initiated by the initiator node demands the root

node which expands into a tree structure. This virtual tree structure conceptually

shows how the demand sequence expands and propagates for a loop body starting

from the root node. We refer to this virtual tree structure as Loop Body Tree (LBT).

As the root node in an LBT converges the triggering of all the computation in a loop

to a single node, we refer to this root node as Root of Loop Body Tree (RoLBT).

Node

Root

I2

I5

I8

I1
I10

I4
I7

I6

I3

I9

Node Node

Node Node

Node Node

Node

NodeNode

Node

Node

RoLBT

Initiator

Figure 5.11: Virtual loop body tree
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Figure 5.12: Loop unrolling by demanding initiator node

A loop in DDE is initiated by an initiator node which expands by demanding the

RoLBT. Every iteration environment has its own RoLBT. A demand for an initiator

node from an outside environment triggers the computation for the first iteration

environment of the loop. In order to sequentially unroll the loop, the loop environment

demands the value of the initiator node in a new instance of an iteration environment.

Figure 5.12 illustrates a sequential loop unrolling in DDE by a demand for an initiator

node. A Demand for initiator node at location x is received from the main procedure
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environment which triggers RoLBT triggering all the computation for loop iteration

1 environment. The initiator node of the current iteration environment demands its

own instance of the initiator node in a new environment. The recursive demand of

the initiator node by itself in a new environment allows sequential unrolling of loops

in DDE.

5.9.1 Sequential Unrolling of Loops

We first discuss sequential unrolling of loops in DDE without speculation. RoLBT

converges the triggering of all the computation in a loop to a single root node and

forms a tree structure. DDE tries to explore fine granularity at each iteration level

by a demand place for an initiator node which demands RoLBT. DDE dynamically

allocates an iteration environment and is self-contained in freeing the iteration envi-

ronment when the use of the iteration is completed.

We introduce several new instructions, called next, first and delf to aid with the loop

unrolling in DDE. The next instruction is used to implement the FGSA η function us-

ing recursion. It’s of the form next lop, rop, pop, where the lop argument corresponds

to η argument, pop corresponds to η predicate and rop is used to recursively unroll

the loop. Hence, the next instruction demands lop and pop at the same time just the
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way η does. If the pop is true, which indicates loop termination, then the instruc-

tion stores lop into its location and returns the value to the demanding instruction.

Otherwise, it demands rop, i.e. demanding the RoLBT in a new environment. While

demanding rop it also appends the return address of the demand as the address of

the instruction which demanded next instead of its own return address. The first

instruction demands all its operands but selectively uses only its first operand and is

of the form first lop, rop. The first instruction simultaneously places a demand for

both of its operands lop and rop but waits and uses the value of only its first operand

lop and discards the second operand rop. The delf instruction deletes/frees a frame

in which it is contained. The delf instruction is of the form delf lop, rop, pop, where

lop is used to demand the necessary computation, rop points at the address of the

environment to be deleted/freed, and pop can be used to embed additional decision

making information.

A static instance of code in main memory unrolls into a dynamic instance of code

in SM for execution of loops in DDE. We use Figure 5.13 to illustrate the sequential

loop unrolling in DDE. The main memory holds the static instance of code. The

creation and allocation of environments in SM for static environments of the main

procedure and loop from the main memory is done dynamically during execution. An

instruction from the main procedure demands the initiator node of the loop to trigger

sequential loop unrolling. A dynamic instance of the main procedure and iteration

1 of the loop is created in SM, represented by labels L9 and L1 respectively. The
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loop()
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iteration 1
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iteration 2

L0:

L1:

L2:

Main Memory

L8: L1L9:

L2 

c: then f, d(x)

c: then f, d(x)

then f, d(x)

add ..., r(m)

next c, r(b), i

r: next c, r(b), i

n: add ..., r(m)

r: next c, r(b), i

newf L0, ..., ...

newf L0, ..., ...

m: newf L0, ..., ...

b: newf L0, ..., ...

b: newf L0, ..., ...

Figure 5.13: Sequential loop unrolling in DDE

locations in SM are labeled as r, b, c, .... The instruction next at location r is the

initiator node of the loop. The instruction next being the initiator node demands

RoLBT, which is its operand c. RoLBT triggers a chain of computations for an

iteration environment by demanding its operands. The instruction next on receiving

its predicate i as false performs a call to itself in a new environment by demanding

its operand r(b). The operand r(b) uses displacement addressing mode and with

the help of a newf instruction at location b, demands a value at location r in a

new iteration environment. Thus instruction next at location r performs a recursive

call to itself in a new iteration environment leading to sequential unrolling of loops.

Two such instances of iterations of the loop are represented using labels L1 and
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L2 in SM. As the main procedure has created loop iteration 1 environment and

the loop iteration 1 has created loop iteration 2 environment, the DM for the main

procedure and loop iteration 1 holds labels L1 and L2 of the created environment.

The instruction at location c is RoLBT, which uses a then instruction. It triggers a

delf instruction by demanding its operand d(x) carried from the previous environment

after the availability of its operand f, indicating all loop values from the previous

iteration have been used and it is safe to free the previous iteration environment.

//Loop exit condition

//Trigger chain of demand for results

//Compute result

//Compute result

main() loop()

f: with g, h

i: slt ..., ...

g: result x 

h: with result y, result n,...

L0:

//Evaluate RoLBT or if predicate false

//recursive call to its next instance

//Create new iteration environment

ii: Address of caller

q: ..., ..., ...

d: nop

//deletion of previous environment

//Evaluate results and then trigger

n: add q, r(m) r: next c, r(b), i

c: then f, d(ii)

m: newf L0, ..., ...

b: newf L0, ..., ...

d: delf value, addr //Delete previous environment

Figure 5.14: A static instance of loop code for DDE in main memory

We illustrate a loop example in Figure 5.14. Only the static instance of the code in

the main memory is used to illustrate the example. We show how a demand sequence

propagates through the code and how environments are created and freed dynamically

during the execution of the code. The execution starts when the demand for value

n in the main procedure is received. The value of n being unavailable triggers the

66



demand for its operands q and r(m), where q is a location in the main procedure and

r(m) is a location in the loop at label r. A new iteration environment is dynamically

created for iteration 1 of the loop by using newf instruction specified at location m.

The demand received for location r for iteration 1 of the loop is the initiator node

which demands RoLBT. RoLBT triggers the evaluation of all the computation in an

iteration. The instruction r triggers the demand for the result via c and loop exit

predicate i. The instruction c is the then instruction which demands the results in the

iteration by demanding f. When the value of f is available, it is certain that all loop-

carried dependencies have been used. It then triggers the demand sequence for the

deletion of the previous environment by demanding d(ii). This allows deleting/freeing

individual iteration environments dynamically as soon as the use of an iteration is

completed. The instruction c returns the result to r when it becomes available. The

value of the predicate i is also returned to r. If the value of the predicate returned

is false, r will demand its own instance r from the next iteration. The instruction at

location r is a next instruction that only waits for the value of the predicate to be

returned before it demands its rop, if the value of the predicate returned is false. A

new iteration environment is created for the next iteration using a newf instruction

specified at location b. Location r being the initiator node of the next iteration, it

will trigger a chain of computation by demanding RoLBT in the next iteration. The

process of dynamic creation of a new iteration environment for every iteration of a

loop continues for n iterations by the instruction at location r, by recursively calling
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its own instance in the next environment until the predicate returned is true. In

iteration n, the value of the predicate i becomes true and the value of r from the nth

iteration is returned to the location n in the main procedure.

In the next chapter, we present our work on the microarchitecture of single issue and

multi-issue demand-driven processor designs.
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Chapter 6

Microarchitecture

The microarchitecture describes the core-architecture of the demand-driven proces-

sor. The core-architecture performs three major tasks for demand-driven instruction

execution: (1) An instruction is evaluated by a demand for its result; (2) The in-

struction is executed when it has all its available operands; (3) The generated result

is then returned to all the consumer instructions which are waiting for the result.

This basic functionality of demand-driven execution forms the basic building blocks of

a demand-driven processor. A demand-driven processor can then be constructed using

these functional blocks. The amount of parallelism that can be extracted is dependent

on how these blocks are used and organized. The two primary questions are: (a) How

are the processor internal blocks timed, and (b) How is the communication between

each of the blocks constructed?
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Given how these questions are answered, it is possible to realize a demand-driven pro-

cessor as a simple in-order core, a pipelined implementation, a multi-issue pipelined

processor, a multi-core processor and as well as a many core processor. We illustrate

a pipelined implementation of a demand-driven processor in this chapter. We further

demonstrate a multi-issue pipelined implementation of our demand-driven processor.

6.1 Pipeline Overview

The Demand-Driven Execution paradigm functions based on a demand for the result

of an instruction, leading to the evaluation and execution of additional instructions

that are required to produce the result. Hence, we divide the DDE pipeline into

three separate pipelines, namely the evaluation pipeline, the execution pipeline, and

the send-back-and-commit pipeline. The communication among these pipelines may

be provided using “tokens” implemented through message passing. For example,

the evaluation pipeline may send a message to the execution pipeline embodying

the operand of an instruction. An illustration of a general demand-driven execution

pipeline is shown in Figure 6.1. We refer to various points in Figure 6.1 to illustrate

the functioning of various blocks in this section.

In this design, the evaluation pipeline (*1) facilitates the demand process. This

process includes demanding the value at a location, issuing subsequent demands for
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Figure 6.1: Demand-driven execution pipeline overview
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the operands of the corresponding instructions if that value is not available, and

storing the return address. If the value is available, the value is sent instead to the

execution pipeline.

The execution pipeline (*2) is responsible for computing the demanded value by

executing the corresponding instruction. If the receipt of a data value does not

enable the execution of a new instruction, then this instruction is still awaiting some

other data value to be returned to it. The data value received from the evaluation

pipeline is stored into the scalar memory while waiting for the other data or operand

to arrive and the instruction at this location is effectively shelved until that time.

This pipeline also commits store values to the memory.

The send-back-and-commit (*3) pipeline generates return tokens for the result value,

returning it to all the addresses waiting for that value. As a result, new operand

tokens may trigger new instructions to be executed.

Communication between the pipelines is one-way and it proceeds from evaluation

to execution and then to the send-back-and-commit pipeline. In a message-driven

pipeline, the rate at which messages are generated and consumed may differ signif-

icantly. Therefore, we introduce queues at the beginning of each pipeline to buffer

messages. The queue at the beginning of the evaluation pipeline is referred to as the

(*4)evaluation queue (ev-queue), and the queues in the other pipelines are named sim-

ilarly. The incoming demand requests in the form of evaluation tokens (EV-tokens)

are buffers by the ev-queue and are consumed every cycle.
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An evaluation token <D, R, Lrp, I > consists of the location being demanded (D),

the location of the requester along with its port information (R, Lrp) and demand

information including an indirect demand (I). The destination of a returned value is

referred to as a port and can be the left, or right operand of a dyadic instruction,

or, the predicate operand of a predicated instruction. Similarly, an operand token

(OP-token)<Ov, Ora, Lrp > consists of the operand value being returned (Ov) and

the address and the port of the target instruction (Ora, Lrp). A Write-back token

(WB-token)<Cv, Cr, Ro > consists of the computed value being returned (Cv) and

the location to which it is being returned (Cr) along with the information if the value

being returned is read-once (Ro). If the demanded location can be directly referenced

and is in the vicinity of the returning instruction, it is referred to as a direct demand.

If an address computation using a pointer value is necessary in order to demand a

location, we refer to this demand as an indirect demand. Naturally, the pointer value

in this case needs to be accessed using a direct demand.

A pipelined implementation is capable of handling one demand request every cycle and

may issue up to two new demands by constructing and placing new EV-tokens back

into the ev-queue. If the demanded location already has the computed value available,

then the data value is packaged into an OP-token and sent back to the requester by

inserting this token into the (*5)op-queue. If the corresponding instruction loads

only an immediate value, then the data value is packaged into an WB-token and sent

back to the requester by inserting this token into the write-back queue (*6)(wb-queue).
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Similarly, the execution pipeline can consume one OP-token every cycle. This pipeline

removes one OP-token from the operand queue and either executes the corresponding

instruction or shelves the available data value if the instruction is not yet ready to

execute. If the instruction is able to execute, then a new WB-token is generated and

inserted into the wb-queue. Similarly, the send-back-and-commit pipeline consumes a

WB-token every cycle from the wb-queue. This pipeline will generate return tokens for

all the consumers waiting for the computed value. Either an OP-token or an EV-token

is generated using the information available for the waiting consumer. Multiple tokens

needed by multiple requests may take multiple cycles depending on the number of

consumers for the computed value and the organization of the send-back-and-commit

pipeline.

6.2 Scalar Memory

In order to exploit a larger amount of parallelism, the demand-driven processor needs

to rapidly access a large amount of instructions and data. For our processor, we

envision a very fast memory that can store both instructions and data. We refer to

this memory as the Scalar Memory (SM). As illustrated in Figure 6.2, SM is used to

store scalar values with their states and the instructions to be executed. SM is divided

into an Instruction Memory (IM) which stores the instructions, and a Data Memory

(DM) to store the computed scalar values. It also provides additional fields to store
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Figure 6.2: Scalar memory

a tag, and a return link. The return link can be used to distinguish the instance

stating the end of the execution for a DDE machine. The in-use field specifies if the

current location is valid and is usable. The tag field holds the information about the

state of the data and its evaluation. This field is divided into two separate fields, one

that keeps track of the evaluation state of an instruction and the second one keeps

track of the execution state of an instruction. The former is called the Evaluation tag

(Evtag). The latter is called the Operand tag (Optag). Tables 6.1 and 6.2 summarize

the states of the Evtag and Optag which are explained in the rest of this paragraph.

If a data value is not available for an instruction being evaluated, then the state of

the Evtag is Empty & Unlocked. If the evaluation of the operands required for the

generation of data is in progress, then the state in the Evtag is Empty & Locked.

If the computed data value is available, then the state of the Evtag is Full. If the

operand value required for the computation of the data is not available, then the

state in the Optag is in Empty. For a dyadic instruction, if one of the operand values
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required for the computation of the data is available, then the state in the Optag

is Partial. Similarly, for a predicated instruction, if the predicate operand value is

available, then the state in the Optag is Predicate-Partial.

Empty & Unlocked The data is not available
Empty & Locked The data is in process of being computed
Full The data is available

Table 6.1
States of EV-tag

Empty The data is not available
Partial The data is in process of being computed
Predicate-Partial The data is available

Table 6.2
States of OP-tag

6.2.1 Return Address Storage

Return addresses can be stored using a linked list of all the addresses to which the

computed value must be returned. A pointer in SM, the Return link field, can serve

as the head of the linked list. Additional entries need to be assigned to a dynamically

allocated area, Return Address Storage (RAS) as seen in Figure 6.3. We need to

expand the Return link field in SM accordingly to accommodate the address space to

access the RAS. Each RAS entry is nothing but a return token concatenated with a

next-link and an in-use bit as shown in Figure 6.3.
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Figure 6.3: Return address storage

6.2.2 Reservation Station Storage

An alternative approach to a linked list of return addresses is to use a Content-

addressable memory (CAM) storage, similar to reservation stations in conventional

architectures. In a CAM implementation, the CAM storage would have a layout

identical to the RAS, with the exception that there would not be a need for the next-

link field. Instead, a tag field that is the CAM key is used to search for all the entries

requesting this data.
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6.3 Pipeline Details

We present two demand-driven pipeline implementations, one based on return queue

storage, and another that is based on reservation station storage. These two microar-

chitecture implementations use the same pipeline functionality, the only difference

being the storage used to store the return request.

As previously described, the DDE pipeline is composed of three pipelines and ad-

ditional frame allocation stage. There are three types of tokens generated for the

pipelines classified as: (1) EV-token for demands and additional frame allocation

stage; (2) OP-token for execution; (3) WB-token for committing values to SM and

returns.

The evaluation pipeline, which is the first pipeline, facilitates the handling of a de-

mand request. Depending on the availability of the requested data value, different

tokens are generated. An available data item or an instruction with no operands will

immediately generate an OP-token, whereas an unavailable data value will demand

the operands of the instructions at that location, hence generating new EV-tokens.

Such is the case with indirect instructions. Instructions with only immediate operands

generate a WB-token.

The second pipeline, the execution pipeline is responsible for the execution of an
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instruction when all of its operands are available, temporarily storing an operand

when only one of two operands of a dyadic instruction or predicate operand for a

predicate instruction is available, and committing store values after execution.

The third pipeline, namely the send-back-and-commit pipeline, is responsible for writ-

ing back the results to SM, and generating return tokens.

The frame allocation stage has its own queue where it buffers EV-tokens designed for

frame creation. The frame allocation stage is designed for processing frame creation

instructions and accessing the instruction cache. Each token embeds the necessary

information to be consumed by the pipeline or the frame allocation stage.

6.3.1 Evaluation Pipeline using RAS

The evaluation pipeline is divided into four stages as shown in Figure 6.4. The

major functionality of each of the stages is as follows. (1) s Eval stage evaluates an

instruction and makes a decision based on reading the necessary Evtag related to that

instruction. (2) s Fetch stage fetches the instruction from IM and a decision is taken

based on the current state of the Evtag. An entry is made in return queue storage for

the return address to return the value when it becomes available. The instruction will

be allowed to proceed to the next stage if it is being evaluated for the first time. (3)

s Decode stage decodes the instruction and decides about how to proceed with the
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Figure 6.4: Evaluation pipeline using RAS

instruction. (4) If the instruction reaches to the s Demand stage, then it generates

one or more EV-tokens or OP-tokens, based on the availability of the operand value

depending on the reference to current instruction including an indirect reference.
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Let us look at a detailed flow of instructions in the evaluation pipeline. Demand

requests are queued in the evaluation queue. A new EV-token can be taken out every

cycle from the ev-queue. In the s Eval stage the Evtag and data are read from the

location in SM pointed by the demanded address. The token is passed to the s Fetch

stage of the pipeline or a new OP-token is generated according to the value of the

Evtag. If the state of the Evtag is Full, then the data value is available and has

become ready at an earlier stage. An OP-token is generated using the available data

value, return address and the return port information. The token is then inserted

into the op-queue.

In s Fetch, if the state of the Evtag is Empty & unlocked, then the necessary instruc-

tion is read from IM and the Evtag is updated to become Empty & locked. A new

link is created with the head of the linked list storing the return address, so the value

can be returned when it is available. If the state of the Evtag is Empty & locked, then

the demand for the operand of the current instruction has already been generated

by another demand. Instead of generating another demand, the current token retires

after appending its return address to the head of the return address linked list for the

value being demanded.

If the instruction proceeds to s Decode stage, then it is decoded. Instructions with

only an immediate value create new WB-tokens. This process essentially bypasses the

execution pipeline and results in a direct insertion into wb-queue. If the instruction is
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a new frame creation instruction, then the token is sent to the frame allocation queue.

All other instruction types are sent to s Demand stage.

s Demand stage generates up to two new EV-tokens if the operand value is not

available or if the demand address type is indirect. It creates up to two new OP

tokens when the operand value is available with a direct demand address, or, if the

instruction has no operands.

6.3.2 Execution Pipeline

The execution pipeline is divided into three stages as shown in Figure 6.5. The major

functionality of each of the stages is: (1) Read SM stage reads a decoded instruction

from IM along with OP-token. (2) Pre EX stage makes a decision based on the

OP-token and the available operand about how to proceed with the execution of the

current instruction; (3) EX stage performs the actual execution. This pipeline has

four types of execution units to handle simple arithmetic and logical instructions,

load instructions, multiply and divide instructions, and store instructions.

Let us look at a detailed flow of instructions in the execution pipeline. An available

OP-token is removed every cycle from the operand queue. In the Read SM stage,

Optag and IM are read from the corresponding location in SM pointed by the return

address. The instruction is passed to the next stage of the pipeline.
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Figure 6.5: Execution pipeline

The Pre EX stage then decides how to proceed with the execution. It accounts for

the number of operands needed and how many operands are currently available based

on information of decoded instruction and the Optag value. The following decisions

are made: (a) For a uni-operand instruction, the token is sent to the execution unit;

(b) For a dual operand instruction, if the state of the Optag is Empty, then this is

the value of one of the operands and is stored in DM for later use. The Optag is

updated to become Partial ; (c) For a dual operand instruction, if the state of Optag

is Partial, then the stored operand from DM is read and is sent to the execution unit

along with the available value in OP-token; (d) If the available operand is a predicate

value for a predicated instruction, then the predicate value is stored in DM and Optag

is updated to Predicate Partial ; (5) The entry of the return address can be freed if

required.
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If the EX stage receives the required operands, then the instruction is allowed to

execute. Once the value is computed, the execution unit sends the data to the wb-

queue by generating a WB-token. If an instruction is a store instruction, then the

value computed is also stored in the memory.

6.3.3 Send-back-and-commit Pipeline using RAS

The send-back-and-commit pipeline is divided into three stages as shown in Figure 6.6.

The major functionality of each of the stage is: (1) WB update stage writes back the

available result in SM and updates the corresponding tag; (2) RL stage reads a linked

list associated with the list of return address waiting for the available value; and

(3) Gen token stage generates an EV-token or an OP-token based on the available

information.

Let us have a closer look at each of the stages of this pipeline. A WB-token can

be read every cycle from the wb-queue. The WB update stage commits the available

result value from the token to DM and updates the Evtag to Full. The value is then

sent to the Read Link stage.

The Read Link stage reads head of the linked list, which points to a list of frame

addresses to which the value needs to be returned. A linked list entry is consumed

every cycle which provides the information for a token generation and is sent to the
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Figure 6.6: Send-back-and-commit pipeline using RAS

next stage. Finally, the list is freed after the last entry in the list is read.

The Gen token stage generates a new OP-token or a new EV-token by combining

the result value and the address information available from the previous stage. The

information about the indirect bit is used to decide whether an OP-token or EV-token

needs to be created. If the indirect bit is false, it will lead to generation of a new

OP-token. If the indirect bit is true it will lead to generation of a new EV-token by

using the result value as the demand address.
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6.3.4 Frame Allocation Stage

The frame allocation stage shown in Figure 6.7 is responsible for processing frame

creation instructions. The stage accesses the instruction cache and reads instructions

in burst mode. A frame allocation queue buffers tokens consisting of instruction

designed for frame allocation. A token can be read from the frame allocation queue

every cycle if the current frame allocation stage is not busy. The token read is decoded

and broken down into individual elements. This information is used to access the

instruction cache. The number of instructions equivalent to the frame size of the

architecture are read from the instruction cache in burst mode. A free frame location

in the scalar memory is consumed and the instructions read from the instruction cache

are written in the IM segment of the scalar memory. The information available from

the token is used to store the argument pointer at a specific location in the allocated

frame. This information is stored in the specific data memory location and can be

later used by other instructions in the frame to demand the required arguments from

other frames.
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Figure 6.7: Frame allocation stage

6.3.5 Loop Level Frame Allocation Stage

In order to control the achievable parallelism in a demand-driven machine, we imple-

ment separate pool of frames for function calls, loops, and innermost levels of nested

loops. In this design, one pool of frames serves procedure calls which are simple

functions as well as the outer level of nested loops. The design uses a second pool

of frames assigned for the innermost loops in nested loops. This approach allows

us to control the number of active procedures and active innermost loop iterations

running at a given time on the machine. Loop level frame allocation stage has the

same functionality as the frame allocation block. It has its own separate queue called

frame allocation queue level 1. As of now, we only control the dynamic unrolling of

innermost loop iterations using a separate pool of frames. It is also possible to control

other levels of multilevel nested loops by having an individual pool of frames for each

level, and each of them having individual queues.
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6.3.6 Evaluation Pipeline using CAM

The evaluation pipeline is divided into four stages as shown in Figure 6.8. This

pipeline has a similar functionality as the evaluation pipeline based on the return

queue storage described in Section 6.3.1. The only difference is in the s Fetch stage

as described below.

The s Fetch stage fetches an instruction from IM and a decision is taken based on

the current state of the Evtag. An entry is made in reservation station storage for the

return address to return the value when available. The instruction will be allowed to

proceed to the next stage if it is evaluated for the first time.

In s Fetch, if the state of the Evtag is Empty & unlocked, then the necessary instruc-

tion is read from IM and the Evtag is updated to Empty & locked. A new entry is

allocated in the reservation station storage and information of the demand address is

stored as the tag field. Also, information about the return address, port, and indirect

address is stored. If the state of the Evtag is Empty & locked, then the demand for the

operand of the current instruction has already been generated by another demand.

The current instruction is retired after creating an entry in the reservation station

storage. A new entry is allocated in the reservation station storage and the demand

address is stored as the tag field. Also, the return address, the port, and the indirect

address are stored.
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6.3.7 Send-back-and-commit Pipeline using CAM

The pipeline is divided into three stages as shown in Figure 6.8. The major function-

ality of each of the stage is: (1) The WB update stage writes back the available result

in SM and updates the corresponding tag; (2) The Access res stage reads the return

address by performing an associated search using a key for all the entries waiting for

the available value; (3) The Gen token stage generates an EV-token or an OP-token

based on the available information.

Let us have a closer look at each of the stages of this pipeline. A WB-token can

be read every cycle from the wb-queue. The WB update stage commits the available

result value from the token to DM and updates the Evtag to Full. The value is then

sent to the Access res stage.

The Access res stage compares the tag field of all the locations in the reservation

station storage in parallel. An entry matching the tag provides the information for

the return address required for the generation of a new token. The matching entry is

read and that location in the reservation station is freed. The read data along with

the available value are sent to the next stage. Multiple entries can be read from the

reservation station and sent to the next stage in parallel.
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The Gen token stage is capable of receiving multiple tokens in parallel and can gen-

erate multiple new OP-tokens or new EV-tokens in parallel. Each token is created by

combining the result value and the address information available from the previous

stage. The indirect bit is used to decide whether an OP-token or an EV-token needs

to be created. If the indirect bit is false, it will lead to the generation of a new OP-

token. If the indirect bit is true it will generate a new EV-token by using the result

value as the demand address.

6.4 Multi-issue Pipelined Implementation

We expand the pipelined implementation based on reservation stations from Fig-

ure 6.8 to a DDE multi-issue pipeline. The DDE multi-issue pipeline is also com-

posed of three pipelines and additional frame allocation stages. Each of the individual

pipeline segments, evaluation pipeline, execution pipeline, the send-back-and-commit

pipeline can be “n-wide” and it is possible to have a different width for each of the

three segments. The frame allocation stage can also be expanded to become “n-wide”.

In this design, the evaluation pipeline handles parallel demand requests and generates

new tokens as required. If there is more than one parallel demand request for the same

location in SM, then the stage schedules them by updating the Evtag for this demand

using a methodology similar to the use of test-and-set instructions commonly found
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in processors. This approach allows only one of the demand requests for the same

location to proceed to further computation if the computation was not initiated. The

other demand requests for the same location will be retired after they have created

entries in the reservation station storage.

In addition to the previously explained responsibilities of the execution pipeline, the

execution pipeline also processes multiple operands in parallel. If there is more than

one operand available for the same instruction, then they are consumed one at a time.

If dyadic instructions operands were allowed to proceed in parallel it could lead to a

deadlock. This is because, each operand would see itself as the first, causing it to be

shelved. Hence in order to prevent such deadlocks, we adopt a simple mechanism of

having multiple operand queues for the execution pipeline, which allows operands be-

longing to the same instruction to be inserted in the same queue, effectively serializing

them.

The send-back-and-commit pipeline has the same responsibility as previously ex-

plained. The only extra feature is that it can process multiple WB-tokens in parallel.

All WB-tokens are independent of each other, as they have a computed value for a

unique instruction. The number of WB-tokens which can be processed in parallel is

limited by the physical capabilities of the reservation station storage, in essence, the

number of ports of the reservation station.

We have presented the multi-issue demand-driven execution pipeline. Extending the

92



multi-issue pipeline to a multi-processing element (multi-PE) design can be easily

be done by tagging messages by processing element identifier. Due to several re-

strictions in the ADL compiler, we have not evaluated the multi-PE version of the

microarchitecture.

In the next chapter, we discuss the simulator infrastructure we developed to simulate

our microarchitecture designs.
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Chapter 7

Simulation of Design, Assembly

Language Programming,

Debugging, and Results

We use the Architecture Description Language (ADL) framework designed by Önder

et al. [18] to implement and evaluate our processor design. ADL is a domain-specific

language that allows specification of instruction set architecture, microarchitecture,

assembly language syntax, and binary representation of a new architecture. A descrip-

tion written in ADL is compiled using the ADL compiler to automatically generate

a cycle-accurate simulator. In addition to the simulator the compiler also generates

an assembler and a disassembler. The cycle-accurate simulator respects timing at
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the Register Transfer Level (RTL). ADL also has features for automatic generation

of statistical data which can be used for performance analysis. ADL also supports a

special set of commands to invoke a debugger and display monitoring information.

7.1 Description of Instruction Set Architecture in

ADL

For our demand-driven processor, we developed a description of our instruction set

architecture (ISA) in ADL. In the ISA, we define the instruction, its assembly lan-

guage syntax, and binary representation. Our ISA description encodes the instruction

description for a control-flow processor as well as a demand-driven processor. Control-

flow instructions are 32-bits wide. Since we require more than 32-bits to encode all

the information for our demand-driven machine, the demand-driven instruction set

has a special instruction which act as an extension for all other demand-driven in-

structions to encode the remaining information which cannot fit into a single 32-bit

instruction. As a result, our demand-driven instructions become 64-bits wide. An

instruction encodes an opcode and the mode of execution as control-flow or demand-

driven. The instruction also encodes additional information as required regarding

its operands, immediate values, and floating-point instruction expansion. We define

different attributes for an instruction as follows:
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a) Instruction class (i class) as integer, floating-point, or multi-cycle integer;

b) Number of instruction cycles (i cycles) as single cycle or multi-cycle;

c) Instruction type (i type) as ALU, branch, load, or store;

d) Designated execution unit (exu) as load unit, store unit, integer unit, floating-point

add unit, or floating-point multiply unit;

e) Branch condition category (c what) as equal, not equal, greater than, greater than

or equal to, less than, or less than or equal to;

f) Branch type (c detail) as conditional, unconditional, direct, indirect, direct link,

or indirect link;

g) Destination and operand type (dest type, lop type, rop type) as float register, in-

teger register, double register, special input, cpc register, or lo hi register;

h) Annotation (l annotation) for performing instruction fusion and special features.

7.2 Description of Microarchitecture in ADL

A description of the microarchitecture for our demand-driven processor has been

developed in ADL. For the microarchitecture, we define the demand-driven pipeline

and a control-flow functional implementation. We define different artifacts such as

registers, buffers, and structures to store and process instructions and data. All

of these artifacts are supported by ADL as built-in types. The semantics of each

processing stage has been specified using the schematics of the stage to generate the
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RTL statements. For the demand-driven pipeline we define different processing stages.

Each processing stage has its own context on which it can operate in a given clock

cycle. N processing stages are cascaded to form an n-stage demand-driven pipeline.

There is an ordering among pipeline stages. The context moves from a preceding

processing stage to the next stage at the end of the clock cycle. The context from

stage 1 of the pipeline gradually proceeds towards stage n, which will take n or more

clock cycles. The context is processed by each stage before it is sent to the next

stage. Sometimes a particular pipeline stage takes more than one cycle to operate

on its context. This stalls the current stage and all preceding stages of the pipeline.

It is possible to write a description for more than one pipeline where each pipeline

independently operates.

The defined instruction set architecture and microarchitecture are used to implement

four different simulators. 1) A functional implementation of the demand-driven pro-

cessor using return queue storage structure; 2) A pipelined demand-driven processor

using return queue storage; 3) A pipelined demand-driven processor using reserva-

tion station storage; 4) A multi-issue demand-driven pipeline using reservation station

storage.

A generated description was compiled using the compiler designed for the ADL lan-

guage by Önder et al. [18].
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7.3 Compiling Imperative Programs and Assem-

bly Representation

We use our defined assembly language syntax and binary representation to write

assembly programs. The assembly programs have instructions defined for demand-

driven execution in blocks of frame size. Each block is referenced using a label.

In a single assembly generated program instructions for control-flow and demand-

driven code can be mixed. The instructions for the demand-driven code are always

composed in a pair, where the first instruction provides the opcode information for

the functionality of the instruction and the second instruction acts as an extension

to the first instruction.

Before we can code the program in assembly language, we take the imperative pro-

gram written in C language and convert it into the internal representation of FGSA

for imperative programs. We use the algorithm defined in Section 7.3.1 to convert

the internal representation of FGSA for imperative programs to the functional form

of FGSA. We then use this functional internal representation of FGSA to generate

the demand-driven code in assembly. Since the compiler development progressed

in parallel with the architecture development, we needed to hand-translate several

programs to generate assembly code for our processor. Currently, the modification

to Very Portable Optimizer (VPO) compiler is being undertaken by Florida State

University [3].
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7.3.1 Conversion of Internal Representation of FGSA to

Functional Form of FGSA

We define a loop environment as the set of instructions which are repeatedly executed

until a condition is satisfied. We define the outer environment as the set of instructions

that are not repeatedly executed, but provide some of the operands of instructions

within the loop or consume output values from the loop.

7.3.1.1 Generation of Set for the Loop Environment

The algorithm we use to generate code is defined below. We define USE to be an

array of sets where USE[id] is the set of destination names of the set of instructions

which use the FGSA name id. We define sets for the destinations of η function, ψ

instructions, and read-once predicates.

We first generate a USE set for every unique use of an FGSA name using Algorithm

1. We assume code generation which will have a single USE[R] where R is a

read-once predicate for all ψ instructions in a given loop. We use the USE[R] to

identify the occurrence of a loop for a program. Every element of R will generate a

loop environment using Algorithm 2.
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Data: S
Result: USE[S]
S: set of instructions of the program.
while S 6= ∅ do

i = S.remove();
USE[i.lop] = USE[i.lop] ∪ USE[i.dest];
USE[i.rop] = USE[i.rop] ∪ USE[i.dest];

end
Algorithm 1: Generation of USE set for every unique use of an FGSA name

Data: USE[S], R
Result: elements in a loop environment
E: set of η function destinations.
P: set of ψ instruction destinations.
R: set of read-once predicates.
LE: set of elements in a loop environment.
let wl = worklist of instructions to be traversed
let wl = ∅
let LE = ∅
while R 6= ∅ do

r = R.remove() //process a loop
wl = {r}
while wl 6= ∅ do

op = wl.remove();
foreach use of USE[op] do

if use of USE[op] /∈ E then
wl = wl ∪ USE[op];
LE = LE ∪ op;

end

end

end

end
Algorithm 2: Generation of set for a loop environment
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7.3.1.2 Generation of Set for Outer Environment

We use Algorithm 3 to generate a set for the outer environment. We start with a call

to a loop environment using an η instruction. An η instruction is inserted into the set

of elements for the outer environment group. Using elements of the set for the loop

environment, we identify all other instructions which will be grouped into a set for the

outer environment. We traverse all instructions in the set for the loop environment to

check if the use of each of its operands are defined in the set for the loop environment.

If an operand is not defined in the set for the loop environment, the instruction gen-

erating the operand is placed in the set for the outer environment. Each instruction

in the set for the outer environment checks if its operands are leaf nodes. If not, the

instructions generating these operands are added to the set for the outer environment.
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Data: loop environment
Result: outer environments
E: set of η function destinations.
LE: set of elements in a loop environment.
OE: set of elements in outer environment.
let worklist = set of all instruction to be included in set for outer environment
let worklist = ∅
while E 6= ∅ do

e = E.remove() //process eta
OE = OE ∪ e
if operand of e ∈ {LE} then

foreach instruction i in the LE do
foreach operand o of instruction i do

if Definition(o) /∈ LE then
worklist = worklist ∪ operand o of instruction i;

end

end

end
while worlkist 6= ∅ do

w = worklist.remove() ;
OE = OE ∪ w;
foreach operand o of w do

if operand o 6= leaf node then
worklist = worklist ∪ operand o of w;

end

end

end

end

end
Algorithm 3: Generation of set for outer environment
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7.4 Debugging in ADL for Demand-Driven Pro-

cessor Model

The ADL generated disassembler is used for debugging and monitoring information

in real time. The disassembler automatically disassembles the memory image and

invokes two disassembled windows when an error condition is encountered. The first

window shows the assembly instructions and highlights the current instruction whose

address is in the instruction pointer. The second window gives a detailed view and

the values in (1) all the registers in the current machine cycle; (2) all the pipelines

and their stages and the context of individual stages showing the current instruction

in it, if it has no context, or if there is a pipeline bubble; (3) the current address

in the instruction pointer; (4) user-defined counters; (5) the machine cycle and the

number of useful and stall cycles; and (6) the state of the minor machine cycle dividing

machine cycles into a minor stage as prologue, intermission, or epilogue. It is also

possible to explicitly invoke the disassembler by adding a special attribute when the

user runs the program on the simulator or by having a specific invocation statement

in the simulator itself.

Once the disassembled memory image is generated, it is possible to single step through

machine cycles, including minor machine cycles. A GNU debugger (GDB) can be
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attached to the process running the ADL disassembler. Using GDB along with the

disassembler allows a user to (1) print the details of any variable or an RTL statement

from the simulator; (2) print the errors with a pointer to the simulator code generating

the error and probable cause; (3) add one or more watch points for variables or RTL

statements; (4) single step in the generated simulator code; (5) change the assigned

value for a variable or a register; and (6) many other things which GDB is capable

of.

A user can add print statements in the microarchitecture description written for the

simulator or in the written instruction set architecture. This approach can be used

to print variables, RTL values, register values, memory addresses, or values. This

approach is more useful for debugging while developing the microarchitecture or the

instruction set architecture in ADL.

We also add special print statements and code to generate a graphical layout of an

actual demand sequence among instructions. We print each demand request as a

node when it arrives as a packet in the evaluation queue and generate a dot file as

written in DOT (a graph description language) [22, 24]. The written description of

these nodes are used to generate a graph using graphviz [23]. A visual graph provides

a lot of information about the actual demand sequence and has been found to be very

useful for debugging. We have also written a description to be used by the debugger,

which generates a graph for all the demand requests that are shelved and waiting for a
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value. This description allows us to see a graphical representation of waiting demand

sequences and accordingly allows us to see if a livelock or a deadlock is occurring due

to the dynamic sequences of demands.

We also manually plot the demand graph of the static instance of the assembly code

to verify and validate a hand-written assembly code for our processor. This approach

helps to eliminate possible deadlocks. For example, it is important to see the critical

path for a particular demand sequence and how it is handled in a loop. This infor-

mation can be used to visualize the unrolling of loops. It is also useful to see the

possible allocation of frames from the frame memory for a given sequence of code.

7.5 Performance Results

We use the Livermore loops written by Francis H. McMahon [13, 14, 15], which

are programs written for parallel computers, as our benchmark suite. These kernels

were used to benchmark computers running scientific code at Lawrence Livermore

National Laboratory. Each loop in Livermore loops is written for a mathematical

kernel and measures the numerical computation for a spectrum of structures related

to a processor. Some of the Livermore loops are vectorizable. We use these kernels

to test the fine-grain instruction-level parallelism on our processor as we change the

issue width and the number of ports while keeping the remaining hardware parameters
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constant. For each of the individual kernels, we record the time it takes to run it on

a single-issue demand-driven processor and use it as our baseline for that kernel. We

measure the time it takes to run each of these individual kernels with a different issue

width. Kernel 1 and kernel 12 are vectorizable whereas kernel 3, kernel 5, and kernel

11 are non-vectorizable.

7.5.1 Hand-coded Evaluated Benchmarks Experimental Pa-

rameters

1) Kernel 1 is a hydrodynamics fragment used for computations related to the study

of liquids in motion. The kernel computes vector-vector, vector-scalar multiplication

and vector-vector, vector-scalar addition. The code for the kernel is depicted in Figure

7.1.

for ( l=1 ; l <=100 ; l++ )

{

for ( k=0 ; k<200 ; k++ )

{

x[k] = q + y[k]*( r*z[k+10] + t*z[k+11] );

}

}

Figure 7.1: Livermore kernel 1

2) Kernel 3 is an inner product used in linear algebra, and adds more information

to the collection of vectors. The kernel performs vector-vector multiplication and
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vector-scalar addition operations. The code for the kernel is given in Figure 7.2.

for ( l=1 ; l <=100 ; l++ )

{

q = 0;

for ( k=0 ; k <1000 ; k++ )

{

q += z[k]*x[k];

}

}

Figure 7.2: Livermore kernel 3

3) Kernel 5 is a tri-diagonal elimination, below diagonal is used in numerical linear

algebra to solve a system of linear equations by representing them as matrices. The

kernel computes vector-vector multiplication and a vector-vector subtraction as shown

in Figure 7.3.

for ( l=1 ; l <=100 ; l++ )

{

for ( i=1 ; i <1000 ; i++ )

{

x[i] = z[i] * ( y[i] - x[i-1] );

}

}

Figure 7.3: Livermore kernel 5

4) Kernel 11 is a first sum used in statistics. The kernel computes vector-vector

addition as shown in Figure 7.4.
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for ( l=1 ; l <=100 ; l++ )

{

x[0] = y[0];

for ( k=1 ; k <1200 ; k++ )

{

x[k] = x[k-1] + y[k];

}

}

Figure 7.4: Livermore kernel 11

5) Kernel 12 is a first difference used in statistics. The kernel computes vector-vector

subtraction as shown in Figure 7.5.

for ( l=1 ; l <=100 ; l++ )

{

for ( k=0 ; k<200 ; k++ )

{

x[k] = y[k+1] - y[k];

}

}

Figure 7.5: Livermore kernel 12

7.5.2 Evaluation

DDE is a new paradigm from architecture to program representation to its system

software. Since the compiler infrastructure is still under development, our evaluation

of the paradigm has been limited by the availability of code that can be tested on the

simulated architecture. Currently, several hand-coded kernels and compiler-compiled

kernels make up the benchmark base. Therefore, the evaluation in this section should

109



be taken only as a preliminary evaluation of the paradigm. Furthermore, these pre-

liminary data presented in the section indicate great promise and we still were able

to demonstrate the strengths of the paradigm by comparing it with simple pipelined

MIPS processors as well as a very idealized superscalar processor model.

7.5.2.1 Scalability of DDE Paradigm

The first set of experiments study the scalability of the architecture itself. For this

purpose, we first evaluate the architecture using a model that can process one token

per clock cycle and then vary the width of the architecture using the single token

architecture as the baseline. For every kernel, the time taken to run it on single token

architecture is taken as a baseline 1 for that kernel. We then measure the speedup in

terms of execution time for individual kernels as we vary the width of the architecture.

As mentioned earlier we have a separate pool of frames to control achievable paral-

lelism. One pool of frames is used for simple functions, and the outer levels of nested

loops and a second pool of frames is used for the innermost level of nested loops.

Figure 7.6 illustrates that a maximum pool of 16 frames were available for simple

functions and the outer level of nested loops. A maximum pool of 64 frames were

made available for the innermost loop iterations. This pool is used to dynamically

schedule the innermost level of nested loops as per the availability of frames. As the

figure illustrates, the performance flattens around architecture of 16 token due to lack

of further loop-level parallelism to utilize the machine’s capacity.
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Figure 7.6: 1 token dde processor as the base with max 16 active outer
loop iteration and procedure with max 64 inner loop iterations

Figure 7.7 illustrates that a maximum pool of 64 frames were available for simple

functions and the outer level of nested loops. The innermost pool size was set at

128 frames. It can be seen that there is a significant performance gain compared to

running the same set of benchmarks that were throttled using a maximum pool of 16

frames for simple functions and the outer level of nested loops. These experiments

clearly show that increasing the pool size allows the processor to dynamically spawn

more outer levels of nested loops as per the availability of frames. This allows the

paradigm to exploit the additional available parallelism. Future designs need to con-

centrate on making a large number of frames available, which can only be done using

multiple processing elements due to the large number of ports that will be necessary,

if only the width of the architecture is increased.
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Figure 7.7: 1 token dde processor as the base with max 64 active outer
loop iteration and procedure with max 128 inner loop iterations

7.5.2.2 Control-Flow Single Issue versus DDE

We compare our runs on the demand-driven processor against runs using the same

set of benchmarks on a standard five stage MIPS pipeline with conventional internal

data forwarding as shown in Figure 7.8. The MIPS pipeline uses a gshare branch

predictor, a two-level correlating branch predictor with global history sharing, along

with a pattern history table. In contrast, the demand-driven processor does not

use branch predictions, hence is a non-speculative processor. For our processor, a

maximum pool of 16 frames were available for simple functions and the outer level

of nested loops. A maximum pool of 64 frames were made available for innermost

loop iterations. Similar to our comparison of DDE with itself, DDE this time easily
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outperforms a single issue MIPS processor and can potentially define high speedups

without a need to develop parallel programs. The performance reaches a factor of

four with a 16 token architecture and flattens.

Figure 7.8: MIPS pipelined processor as the base with max 16 active outer
loop iteration and procedure with max 64 inner loop iterations

Figure 7.9 illustrates a run against the baseline of the standard five-stage MIPS

pipeline with conventional internal data forwarding using a gshare branch predictor.

For our processor a maximum pool of 64 frames were available for simple functions

and the outer level of nested loops. The innermost pool size was set at 128 frames.

Figure 7.9 should be taken as an illustration of the scalability of the architecture itself

and the scalability of demand-driven execution compared to conventional control-flow

computing. The key take-away from these experiments is the feasibility of extracting
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large degrees of instruction and loop parallelism without difficult parallel program-

ming.

Figure 7.9: MIPS pipelined processor as the base with max 64 active outer
loop iteration and procedures with max 128 inner loop iterations

7.5.2.3 Superscalar Processor versus DDE

Figure 7.10 compares our processor with an ideal n-issue superscalar processor. The

superscalar processor uses a central window and a gshare branch predictor. The store

set algorithm is employed for memory disambiguation. The superscalar processor has

been allocated 8192 rename registers. The benchmarks were run in an environment

with a maximum pool of 16 frames for simple functions and the outer level of nested

loops. A maximum pool of 64 frames were available for innermost loop iterations. A

single issue DDE processor brings a single operand at a time. Most instructions are
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dyadic and the DDE processor needs to fetch these instructions twice. We therefore

compare a 2*n-issue DDE processor against an n-issue superscalar processor.

Figure 7.10: Superscalar processor as the base with max 16 active outer
loop iteration and procedure with max 64 inner loop iterations

These experiments clearly show the capability of a speculative superscalar processor.

DDE architecture is able to do better than the superscalar processor only on low issue

widths and only kernel 1 and kernel 5. A superscalar processor’s ability to schedule

load instructions early due to its memory disambiguation capability as well as its
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branch prediction mechanism allows it to exploit a large degree of instruction-level

parallelism.

Figure 7.11: Superscalar processor as the base with max 64 active outer
loop iteration and procedures with max 128 inner loop iterations

Figure 7.11 illustrates a run for the demand-driven processor and an n-issue super-

scalar processor. The superscalar processor uses the same configuration as mentioned

above, but the number of frames for DDE has been increased to 64 for outer loop

iterations and 128 for innermost loop iterations.
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Exploring further loop-level parallelism remedies the situation somewhat and at large

issue widths, DDE becomes significantly better. The main conclusion is the signifi-

cance of memory dependence speculation, of which the DDE paradigm is theoretically

capable.

Figure 7.12: Superscalar processor as the base without memory disam-
biguation, with max 16 active outer loop iteration and procedure with max
64 inner loop iterations

In order to further establish this analysis, we remove the disambiguation capability

from the superscalar. Figure 7.12 illustrates a run for the demand-driven processor
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and an n-issue superscalar processor. The superscalar processor uses the same con-

figuration as mentioned previously but does not perform memory disambiguation.

The benchmarks were run in an environment with a maximum pool of 16 frames for

simple functions and the outer level of nested loops. The innermost pool size was set

at 64 frames.

Figure 7.13: Superscalar processor as the base without memory disam-
biguation, with max 64 active outer loop iteration and procedures with max
128 inner loop iterations

Figure 7.13 illustrates a run for the demand-driven processor and an n-issue super-

scalar processor. The superscalar processor uses the same configuration as mentioned
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previously but does not perform memory disambiguation. The benchmarks were run

in an environment with a maximum pool of 64 frames for simple functions and the

outer level of nested loops. A maximum pool of 128 frames was again available for

the innermost loop iterations.

These experiments again confirm our conclusion that the incorporation of dynamic

memory disambiguation is a must for exploiting high degrees of instruction level

parallelism together with loop-level parallelism.

7.5.3 Compiler-Generated Benchmarks

The VPO compiler developed at Florida State University is able to generate code for

a few Livermore kernels [3]. We have compiler-generated assembly code for kernel 1,

kernel 7, and kernel 12 which are vectorizable and kernel 3, kernel 5, kernel 9, and

kernel 10 which are non-vectorizable. Kernels 1, 3, 5, 11, and 12 were described in

Section 7.5.1. The description for the rest of the kernels are as follows:

1) Kernel 7 is an equation of state fragment used in physics and thermodynamics to

study the properties of fluids, mixture of fluids, and solids under different physical

parameters such as pressure, volume, and temperature. The kernel performs vector-

scalar multiplication and vector-vector addition operations. The code for the kernel

is depicted in Figure 7.14.
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for ( l=1 ; l <=100 ; l++ )

{

for ( k=0 ; k<200 ; k++ )

{

x[k] = u[k] + r*( z[k] + r*y[k] ) + t*( u[k+3] + r←↩
*( u[k+2] + r*u[k+1] ) + t*( u[k+6] + r*( u[k+5]←↩
+ r*u[k+4] ) ) );

}

Figure 7.14: Livermore kernel 7

2) Kernel 9 is an integrate predictors. The kernel performs vector-scalar multiplication

and vector-vector addition operations as shown in Figure 7.15.

for ( l=1 ; l <=100 ; l++ )

{

for ( i=0 ; i<200 ; i++ )

{

px[i][0] = dm28*px[i][12] + dm27*px[i][11] + dm26*←↩
px[i][10] + dm25*px[i][ 9] + dm24*px[i][ 8] + ←↩
dm23*px[i][ 7] + dm22*px[i][ 6] + c0*( px[i][ 4]←↩
+ px[i][ 5]) + px[i][ 2];

}

}

Figure 7.15: Livermore kernel 9

3) Kernel 10 implements difference predictors. The kernel performs vector-vector

subtraction operations as shown in Figure 7.16.
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for ( l=1 ; l <=100 ; l++ )

{

for ( i=0 ; i<200 ; i++ )

{

ar = cx[i][ 4];

br = ar - px[i][ 4];

px[i][ 4] = ar;

cr = br - px[i][ 5];

px[i][ 5] = br;

ar = cr - px[i][ 6];

px[i][ 6] = cr;

br = ar - px[i][ 7];

px[i][ 7] = ar;

cr = br - px[i][ 8];

px[i][ 8] = br;

ar = cr - px[i][ 9];

px[i][ 9] = cr;

br = ar - px[i][10];

px[i][10] = ar;

cr = br - px[i][11];

px[i][11] = br;

px[i][13] = cr - px[i][12];

px[i][12] = cr;

}

}

Figure 7.16: Livermore kernel 10

7.5.3.1 Scalability of DDE Paradigm

We now evaluate the scalability of our architecture with the set of Livermore kernel

generated by the compiler. We first evaluate the architecture using a model that

evaluates a single token per cycle. As before, we then vary the width of the archi-

tecture by using the single token architecture as the baseline. For every kernel, the
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time taken to run on single token architecture is taken as a baseline 1 for that kernel.

We then measure the speedup in terms of execution time for individual kernels as we

vary the width of the architecture. The baseline for the same kernel generated using

a hand-coded kernel and a compiler-generated kernel is different.

Figure 7.17: 1 token dde processor as the base with maximum 16 active
outer loop iteration and procedure with maximum 64 inner loop iterations

As mentioned earlier, we have a separate pool of frames to control the achievable

parallelism. One pool of frames is used for simple functions and the outer levels of

nested loops and a second pool of frames is used for the innermost level of nested

loops. Figure 7.17 illustrates that a maximum pool of 16 frames were available for

simple functions and the outer level of nested loops. A maximum pool of 64 frames

were made available for innermost loop iterations. Similar to the hand-coded kernels,
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the performance starts to flatten out around architecture of 16 token due to lack of

further loop-level parallelism to utilize the machine’s capacity.

Figure 7.18: 1 token dde processor as the base with max 64 active outer
loop iteration and procedure with max 128 inner loop iterations

Figure 7.18 illustrates that a maximum pool of 64 frames were available for simple

functions and the outer level of nested loops. The innermost pool size was set at

128 frames. It can be seen that there is a significant performance gain compared to

running the same set of benchmarks which were throttled using a maximum pool of

16 frames for simple functions and the outer level of nested loops. These experiments

clearly show that increasing the pool size allows the processor to dynamically spawn

more outer levels of nested loops as per the availability of frames and the paradigm

can exploit the measured level of available parallelism. Individual runs for the same
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kernel with hand-coded and compiler-generated code will have its own run on single

token architecture as a baseline. So we are not comparing the run for the same kernel

for the code generated for hand-coded and compiler code as a function of scalability.

7.5.3.2 Control-Flow Single Issue versus DDE

The demand-driven processor running the compiler-generated code against a stan-

dard five stage MIPS pipeline with conventional internal data forwarding is shown in

Figure 7.19. We use the same MIPS pipeline as the base when comparing the same

kernels generated using hand-coded code and compiler-generated code. The runs use

a maximum of 16 outermost and 64 innermost loop frames.

Figure 7.19: MIPS pipelined processor as the base with max 16 active
outer loop iteration and procedure with max 64 inner loop iterations
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As with hand-coded kernels, performance for Kernel 3, kernel 10 and kernel 12 starts

to flatten out at 16 token architecture, although compiler-generated kernels in Figure

7.19 are showing a better performance gain compared to hand-coded kernels whose

evaluation is shown in Figure 7.8.

Figure 7.20 illustrates the performance with maximum 64 outer and 128 innermost

loop frames. The scalability of the architecture can be further seen as we are able

to achieve even further speedups. When comparing compiler-generated code from

Figure 7.20 to hand-coded kernels in Figure 7.9, kernel 1 and kernel 3 have better

speedups for compiler-generated code whereas kernel 5 and kernel 12 show better

speedups in hand-coded programs.

Figure 7.20: MIPS pipelined processor as the base with max 64 active
outer loop iteration and procedures with max 128 inner loop iterations
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7.5.3.3 Superscalar Processor versus DDE

In this section, we compare compiler-generated code with an ideal n-issue superscalar

processor. The superscalar processor configuration is the same as before. Figure 7.21

shows the performance with maximum 16 outer and 64 innermost loop frames.

Figure 7.21: Superscalar processor as the base with max 16 active outer
loop iteration and procedure with max 64 inner loop iterations

Again, the DDE architecture does better than the superscalar on low issue widths

with just kernel 7, and on high issue width for only kernels 5 and kernel 7.

Figure 7.22 illustrates a run with a maximum 64 outer and 128 innermost frame

configuration.
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Figure 7.22: Superscalar processor as the base with max 64 active outer
loop iteration and procedures with max 128 inner loop iterations

With this set-up, the superscalar processor does better only on kernel 9 and kernel

12.

Evaluation with respect to a superscalar processor without load speculation is shown

in Figure 7.23. The runs use 16 innermost and 64 outermost frames.

Most of the kernels are doing better than the superscalar processor at higher token

architecture and issue width. The superscalar processor is doing better only on kernel

3 and kernel 12.
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Figure 7.23: Superscalar processor as the base without memory disam-
biguation, with max 16 active outer loop iteration and procedure with max
64 inner loop iterations

Figure 7.24 shows the result for maximum 64 outer and 128 innermost frame config-

uration.

In this configuration, all the kernels are doing better than the superscalar processor

at higher token architecture and issue width.

We compare the kernels for compiler-generated code in Figure 7.24 with the hand-

coded kernels as shown in Figure 7.13. Table 7.1 shows the number of instructions

generated for individual kernels with hand-coded and compiler-generated code. We
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Figure 7.24: Superscalar processor as the base without memory disam-
biguation, with max 64 active outer loop iteration and procedures with max
128 inner loop iterations

use HC and CG in the table to represent hand-coded and compiler-generated code.

The table displays the number of instructions generated for procedure call, the out-

ermost loop, and the innermost loop for individual kernels. All these kernels spend

most of the time executing the innermost loops.

This is a preliminary comparison between hand-coded and compiler-generated code.

The performance for an individual kernel is dependent on the critical path of the

chain of instructions to spawn a new loop iteration. The number of instructions in

the innermost loop of a kernel will significantly impact the overall execution time of
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Kernels Procedure call Outermost loop Innermost loop
Kernel 1 HC 42 31 46
Kernel 1 CG 72 75 56
Kernel 3 HC 42 31 36
Kernel 3 CG 62 54 31
Kernel 5 HC 42 33 39
Kernel 5 CG 69 65 44
Kernel 12 HC 42 30 30
Kernel 12 CG 62 55 37

Table 7.1
Number of instruction in a kernel

the kernel. We see from Table 7.1 the number of instructions generated for kernel

1, kernel 5, and kernel 12 is less for hand-coded programs versus compiler-generated

code for the outermost loop as well as innermost loop. For kernel 3 there are more

instructions generated in the hand-coded program for the innermost loop. Kernel

1 is giving overall better performance for hand-coded programs as we scale the ar-

chitecture increasing the number of tokens. Only at the architecture with 32 token

is the compiler-generated code able to match the performance of hand-coded code.

Kernel 3 has almost the same performance for both the hand-coded kernel and the

compiler-generated kernel, but the compiler-generated code generates better perfor-

mance at architecture of 16 token and 32 token. Kernel 5 and kernel 12 give better

performance for hand-coded programs compared to compiler-generated programs as

we scale the DDE architecture from 2 token to 32 token.
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Chapter 8

Conclusion

This dissertation explores a new execution paradigm for imperative programming lan-

guages. One of the significant contributions towards this goal is the development of

the necessary programming language pragmatics, which allows imperative programs

to be executed on a demand-driven processor. Important contributions towards the

developed programming language pragmatics are (1) A method showing represen-

tation of imperative programs for the demand-driven paradigm; (2) The addressing

modes (a) Literal, (b) Frame direct, (c) Displacement with respect to frames; (3)

Procedures for dynamic creation and mapping of frames using static frame creation

instructions; (4) Procedures for dynamic deallocation of frames when the use of a

frame is complete; (5) A policy to pass arguments to a called function; (6) A formal
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method to call procedures; (7) Implementation of memory ordering between mem-

ory instructions; (8) A method to represent loops for demand-driven paradigm and a

policy to dynamically unroll loops.

Another major contribution towards the development of demand-driven paradigm is

the development of a unified instruction set architecture, with instructions capable

of running on a control-flow as well as demand-driven processor. This ISA is capable

of handling arithmetic, logical, memory, gated, synchronization, and data transfer

instructions.

The third major contribution is the design of microarchitectures for multiple-issue

pipelined demand-driven processors. These designs elaborated in the earlier sections

are realistic and can serve as a starting point for actual implementation of the pro-

cessor.

During the course of this work, it has become clear that speculative processing and

execution of demand-driven programs, and returning of multiple values from func-

tions, and parallel expansion are critical for competitive performance. We leave these

aspects as future work.
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Appendix A

Instruction Set Architecture

Our instruction set design is guided by our need to explore the new paradigm. The

compiler work necessary to compile complete programs for the paradigm is nothing

but simple. Yet, the promise of the paradigm can be explored by compiling parts

of the given program for the demand-driven execution while leaving the rest of the

code in control-flow style is a feasible option. These design requirements call for an

instruction set that can support both paradigms at the same time. We therefore

design our instruction set as an extension of widely used MIPS instruction set, such

that special instructions permits changing of the paradigm.

As previously described, we have three major addressing modes: 1) Literal addressing

mode allowing the use of immediate value; 2) Frame direct addressing mode to directly
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refer to any location in the frame; 3) Displacement addressing mode to indirectly refer

a location from another frame using a pointer to another frame available at a location

in the current frame along with a suitable offset.

The information about the addressing modes and the memory model which uses

frames are used to design the instruction set architecture for the paradigm. The en-

coding of the instructions embeds the information for the opcode, upto two operands,

an additional predicate operand, an immediate value, a signal/data bit, an execution

mode bit, and a floating point instruction expansion.

We use MIPS 32 instruction set as our reference instruction set. We use this to

develope our own customized 32-bit instruction set with added functionality and

features to run control-flow programs. For the demand-driven execution, we encode

considerable amount of information compared to control-flow instructions in order to

support a modest frame direct and displacement addressing.

In order to use a unified instruction set where control-flow instructions are encoded

with 32-bits, we spread the encoding information for a demand-driven instruction

between two 32-bit instructions. In short, we fuse two 32-bit instructions to make a

64-bit wide demand-driven instruction. In our ISA, every instruction has one execu-

tion mode bit which indicates if the instruction is a control-flow or a demand-driven

instruction. Demand-driven instructions always need to occur in a pair where a first

instruction opcode provides the information about the actual functionality of the
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instruction and a second instruction opcode serve as an extension to the first, thus

making a 64-bit demand-driven instruction. Fusing the instructions allowed us to save

considerable amount of time compared to redesigning and developing an optimized

instruction set where each instruction would have been 48-bit wide for control-flow

and demand-driven instructions.

Each 64-bit instruction encodes sufficient information for different addressing modes.

For instance, using the displacement addressing mode, an instruction can encode two

operands and an additional predicate operand, where each of them are 12-bits long.

The instruction set also makes it possible to hold an absolute 32-bit immediate value

which can serve as a 32-bit memory address. We have two flavors of the instruction

set for demand-driven execution. 1) ISA based on 6-bit base + 6-bit displacement for

operands. 2) ISA based on extended frame support with 1 bit indirect addressing +

upto 11-bit displacement for operands.

ISA based on 6-bit base + 6-bit displacement allows demanding a location from an-

other frame using a pointer which is read using a base field and adding a suitable

displacement provided by the displacement. The ISA supports frame size of 64 loca-

tion.

ISA based on extended frame support uses indirect addressing which uses the 11-bit

displacement field to point to a location that provides the absolute frame address for

a location in another frame. The location being pointed has an address computation
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instruction. The ISA allows large frames, upto 2048 locations but requires an addi-

tional address computation instruction to compute a pointer used to demand value

from another frame.

The rest of this appendix gives a description of the instruction categories for the

demand-driven machine, the encoding used and the definition of each field used for

encoding each of this instruction category.

We classify DDE instructions into three major instruction formats:

1. Data Memory location format (D-format)

The D-format instructions are capable of operating on two operands along with a

predicate operand.

2. Constant format (C-format)

The C-format instructions are capable of operating on one operand and one immediate

value along with a predicate operand.

3. Memory format (M-format)

The M-format instructions are capable of operating on upto two operands along with

a predicate operand to read or store a value from or to the memory.
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We have additional two minor format of instructions:

4. New Frame format (N-format)

The N-format instruction handles two operands along with an address label to assist

in mapping of dynamically allocated frame and its arguments.

5. Frame address and NOOP format (FN-format)

The FN-format instructions do not have any operands. They assist in referencing of

frames and the availability of data shared by a control-flow register.
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We use the following terms to represent DDE ISA as available in DDE-ISA technical

report by Javeri et al. [12]:

Opcode : Operation code for the machine.

sdoperand : Signal or Data field for an operand

ropbase : Right operand base field.

*ropbase : *ropbase provides the base address for M-formate instructions for

a functional implementation.

ropdisp : Right operand displacement field.

funcfloat : Opcode extension for floating point instructions.

FMT : Format field defines single and double precision floating point

format.

reserved : Reserved for future use.

cf : Control-Flow (cf=1) or Demand-Driven Execution (cf=0) ma-

chine mode selection field.

lopbase : Left operand base field.

lopdisp : Left operand displacement field.

*lopbase : Act as a pointer to the source location of the argument block for

functional implementation.

*lopdisp : Provides the location at which the argument block pointer will

be stored in the target frame for functional implementation.

popbase : Predicate operand base field.
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popdisp : Predicate operand displacement field.

*popdisp : *popdisp is the higher 11-bit of a signed 32-bit constant for C-type

instructions in pipelined implementation with large frame support.

constant l21 : Constant l21 is the lower 21-bit of a signed 32-bit constant.

op2base : Base address location for a memory instruction.

opargsrc : Pointer to the source location of the argument block.

opargtrg : Location at which the argument block pointer will be stored in

the target frame.

constant l25 : Constant l25 is the lower 25-bit of a signed 32-bit constant.

constant h5 : Constant h5 is the higher 5-bit of a signed 32-bit constant.

constant l20 : Constant l20 is the lower 20-bit of a signed 32-bit constant.

constant h6 : Constant h6 is the higher 6-bit of a signed 32-bit constant.

constant m6 : Constant m6 is the middle 6-bit form bit 26 to bit 21 of a signed

32-bit constant.

constant : Constant is of the form constant = (constant l21 concatenate

*popdisp) for pipelined implementation with large frame support.

constant : Constant is of the form constant = (constant h6 concatenate con-

stant m6 concatenate constant l20) for functional implementation.

unused : Unused implies currently unused fields.

unused c : unused c implies currently unused fields.

unused noop : unused noop implies currently unused fields.
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displacement : Displacement is a 16-bit signed offset.

DEP : Data Environment Pointer.

rop : rop is of the form ropdisp for pipelined implementation with large

frame support.

lop : lop is of the form lopdisp for pipelined implementation with large

frame support.

preop : preop is of the form popdisp for pipelined implementation with

large frame support.

rop : rop is of the form ropdisp(ropbase) = ropbase + ropdisp for functional

implementation.

lop : lop is of the form lopdisp(lopbase) = lopbase + lopdisp for functional

implementation.

preop : preop is of the form popdisp(popbase) = popbase + popdisp for func-

tional implementation.

dest : An location in Data Memory(DM) used to store a value as a

destination location.

Table A.1
Instruction fields
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Demand-Driven Execution (DDE) instruction format as described by Javeri et al.

[12]:

Data Memory location format (D-format)(pipelined large frames):

Opcode Mnemonic

31 - 26 25 24 23 - 13 12 - 7 6 - 3 2 1 0

opcode sdrop ropbase ropdisp funcfloat FMT sdpop reserved cf

DDE extension

31 - 26 25 24 23 - 13 12 11 - 1 0

opcode sdlop lopbase lopdisp popbase popdisp cf

Data Memory location format (D-format)(functional):

Opcode Mnemonic

31 - 26 25 24 - 19 18 - 13 12 - 7 6 - 3 2 1 0

opcode sdrop ropbase ropdisp funcfloat FMT sdpop reserved cf

DDE extension

31 - 26 25 24 - 19 18 - 13 12 - 7 6 - 1 0

opcode sdlop lopbase lopdisp popbase *popdisp cf

Note: *popdisp provides 11 most significant bits for the immediate value.
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Constant format (C-format)(pipelined large frames):

Opcode Mnemonic

31 - 26 25 -5 4-2 1 0

opcode constant l21 unused c reserved cf

DDE extension

31 - 26 25 24 23 - 13 12 11 - 1 0

opcode sdlop lopbase lopdisp popbase *popdisp cf

Note: *popdisp provides 11 most significant bits for the immediate value.

Constant format (C-format)(functional):

Opcode Mnemonic

31 - 26 25 -6 5-2 1 0

opcode constant l20 unused reserved cf

DDE extension

31 - 26 25 24 - 19 18 - 13 12 - 7 6 - 1 0

opcode sdlop lopbase lopdisp constant h6 constant m6 cf
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Memory format (M-format)(pipelined large frames):

Opcode Mnemonic

31 - 26 25 24 - 19 18 - 3 2 1 0

opcode sdrop op2base displacement sdpop reserved cf

DDE extension

31 - 26 25 24 23 - 13 12 11 - 1 0

opcode sdlop lopbase lopdisp popbase popdisp cf

Memory format (M-format)(functional):

Opcode Mnemonic

31 - 26 25 24 - 19 18 - 3 2 1 0

opcode sdrop *ropbase displacement sdpop reserved cf

DDE extension

31 - 26 25 24 - 19 18 - 13 12 - 7 6 - 1 0

opcode sdlop lopbase lopdisp popbase popdisp cf

Note: *ropbase provides the base address for M-formate instructions.
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New Frame format (N-format)(pipelined large frames):

NEWF

31 - 26 25 -1 0

opcode constant l25 cf

DDE2 extension

31 - 26 25-15 14 - 6 5 - 1 0

opcode opargsrc opargtrg constant h5 cf

New Frame format (N-format)(functional):

NEWF

31 - 26 25 -6 5-2 1 0

opcode constant l20 unused reserved cf

DDE

31 - 26 25 24 - 19 18 - 13 12 - 7 6 - 1 0

opcode sdlop *lopbase *lopdisp constant h6 constant m6 cf

Note: *lopbase act as a pointer to the source location of the argument block.

*lopdisp provides the location at which the argument block pointer will be stored in

the target frame.
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Frame address and NOOP format (FN-format)(pipelined large frames):

Opcode Mnemonic

31 - 26 25 - 2 1 0

opcode unusednoop reserved cf

DDE

31 - 26 25 24 23 - 13 12 11 - 1 0

opcode sdlop lopbase lopdisp popbase popdisp cf

Frame address and NOOP format (FN-format)(functional):

Opcode Mnemonic

31 - 26 25 - 2 1 0

opcode unusednoop reserved cf

DDE

31 - 26 25 24 - 19 18 - 13 12 - 7 6 - 1 0

opcode sdlop lopbase lopdisp constant h6 constant m6 cf
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