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Abstract 
Spatial variability and uncertainty of continuous variables (grade) and categorical variables 

(rock-types) in mineral evaluation significantly impact the economics of mining 

projects. The conventional approach of simulating grades using deterministic rock- 

types is problematic since spatial variability, and uncertainty of grades at rock-type 

contacts are not well captured in deposits where the grade changes gradually 

between rock-types. Therefore, jointly simulating these variables can improve 

confidence (reduce uncertainty) in a resource model. Also, resource classification and 

recoverable reserve calculation can significantly improve the understanding of the 

deposit and its economic viability. This research utilized the Plural-Gaussian 

geostatistical simulation to jointly simulate rock-types and grade.  A joint 

coregionalized model of random fields via fitting theoretical variograms is 

achieved. Equiprobable realizations of rock-types and grades are generated through a 

co-simulation of these variables. Resource classification of simulations and ultimate 

pit limit calculations are produced and validated using a real gold deposit in Alaska.   

xi 
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Chapter 1: Introduction 

1.1 Overview 

Mineral resource modeling is an intrinsic task that involves extracting information from 

samples (drill-hole data) to estimates how much minerals are locked in a particular deposit, 

and also if they are economical enough to mine. Because of financial constraints during 

exploration drilling programs, a limited number of samples is normally used, making it 

more challenging to answer technical and economic questions. Besides limited 

information, one of the challenging factors is the geological complexity of a deposit in 

which uncertainty springs from. When keeping all factors constant, the homogenous 

deposit which is continuous along geological strike such as some bauxite deposits, are 

easier to model than heterogeneous deposits with multiple mineralized zones such as 

porphyry copper deposits and most gold deposits. In such heterogeneous deposits, 

mineralization is commonly associated with a specific rock-type(s), and therefore, the 

boundaries (contacts) between rock-types within a deposit become an important factor to 

cater for in a resource model. When grade changes gradually along rock-type boundaries, 

they are referred to as soft boundaries and hard boundaries when the transition is sharp or 

sudden. A resource model becomes more useful when it addresses logical estimation and 

provides a way of measuring risk in that estimation.  

In mining, understanding the interplay between continuous (grade) and categorical 

variables (rock-types) is vital because they are the critical inputs in the quantification of 

mineral resources, the definition of mineral reserves and production scheduling which 

determine the success of mining projects (Montoya et al., 2012). The Gaussian Random 

Field, which involves a Gaussian Probability density function of the random variables and 

determined by mean and a covariance function (Journel, 2003; Lantuéjoul, 2012), is 

employed to enable modeling of these two different variables. The spatial variability of 

these variables is, therefore, important as grade models are used to evaluate resource and 

reserve estimates and depict how grade varies across different geological domains or rock-

types (Emery, 2007). Categorical variables are commonly used to map out stationary 
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domains, especially in the mining industry (Pyrcz and Deutsch, 2014; Rossi and Deutsch, 

2014), which act as a host for simulation of continuous variables such as grade. Therefore, 

modeling rock types is vital because these models generate probabilistic descriptions of 

geological domains and also contributes to enhancing geological control for the 

quantitative petro-physical variable such as grade when these variable are homogenous 

within each geological domain, but the layout of the domain boundaries is uncertain 

(Deutsch and Silva, 2016).  

Various methods have been used to model grades and rock types. A common traditional 

method of grade modeling uses a Multi-Gaussian approach where a step-by-step or 

Cascade method is used as described by (Journel and Huijbregts, 1978), at which different 

rock types are selected using a deterministic model based on geological knowledge and 

any other supporting data (Mackenzie and Wilson, 2001). Because these deterministic 

cascade models do not cater to the uncertainty of grades and tonnages, this can lead to 

under-estimation of tonnage and over-estimation of grade which is undesirable in mining 

project (Goodfellow et al., 2012). In less complex deposits, conceptual and deterministic 

models still suffer from the same impediment of uncertainty as only one set of deductions 

is made about the deposit (Jones et al., 2013). The cascade method works under the 

assumption that the spatial correlation between grades and changing rock types is poor and 

therefore ignorable (Kim et al., 2005), but in cases where there is a gradual change of grade 

in changing rock types. this method will not provide the best results as spatial correlation 

might be too significant to ignore (Emery and Silva, 2009). Moreover, mineral resource 

estimation using deterministic models (kriging and its variants) produces the smoothing 

effect of kriging rendered maps biased for any selection; therefore, it fails to account for 

uncertainty in the deposit being estimated (Rossi and Deutsch, 2013). Furthermore, the 

estimation variance, whose minimization defines kriging and, more generally, all 

projection-type estimators, is an incomplete measure of estimation accuracy since it is data 

values-independent (Journel, 2003). 

To address the challenge of uncertainty in reporting tonnages while evaluating ore bodies, 

different stochastic simulation algorithms have been adopted for treating the glitches that 
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come with rock-type models (Osterholt and Dimitrakopoulos, 2007). Methods such as 

Sequential Indicator Simulation (SIS), which uses Indicator Kriging (IK) instead of 

conditional simulation to estimate the probability of categorical variables (Goovaerts, 

1997; Sojdehee et al., 2015) often lack accuracy (Emery, 2004).  Another drawback of 

using SIS is that it fails to reproduce the ordering of categories more so when then deposit 

under evaluation is sparsely sampled (Deutsch and Silva, 2016). Multipoint Geostatistics 

is also an advanced method used for quantifying uncertainty through Training Image, 

instead of the conventional variogram based two point methods (Guardiano and Srivastava, 

1993). Goodfellow et al., (2012) and Paithanker and Chatterjee (2017) applied Single 

Normal Equations Simulation (SNESIM), a multiple-point geostatistical method, to 

determine the uncertainty of tonnages in polymetallic deposit at Coleman MacCreedy 

deposit and a copper deposit in Africa, respectively. The pixel-based of multi-point 

geostatistics method, are found to replicate accurate matches with drill hole data, but in 

complex geological settings provide somehow limited reproduction of structures 

(Tahmasebi, 2018).  

For tackling the smoothing effect and uncertainty issues in estimated resources caused by 

Kriging, Sequential Gaussian Simulation provides a solution through multiple realizations 

capturing uncertainty (Deutsch and Journel, 1998; Pyrcz and Deutsch, 2014). The success 

of this method has been in estimating different heterogeneous deposits in order to capture 

grade boundary problems such as soft or hard boundaries through the use of variogram 

models to quantify uncertainty in both copper grade and geological boundaries (Maleki 

and Emery, 2015). The limitations of Sequential (or cascade) rock-type and grade modeling 

is that multiple realizations for each variable are produced separately which increases the 

compounded error that comes with handling them, while performing a joint simulation 

reduces those errors hence improve the resource model accuracy (Dominy et al., 2004). 

1.2 Goals and objectives 

The goal of the thesis is to jointly simulate (model) continuous variable (grade) with a 

categorical variable (rock-type) to develop a resource model where grades and tonnages 
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are estimated, incorporating uncertainties from both the sources. The importance of 

simulating grades and rock-types together is to reduce compounded error that comes with 

simulating them separately; for mining purposes, such errors result in poor mine planning 

and production losses. Capturing uncertainty is also critical because it provides a measure 

of risk associated with the estimation and therefore provides a financial tool to guide the 

economics of a mining project. The first objective is capture, if present. any spatial 

correlation between grades across rock types (Lui, 2006). The second objective is to assign 

a measure of uncertainty which will be covered by multiple realizations created after 

simulation (Emery and Silva, 2009). Then the last objective is to develop a mineral 

resource classification and reserve calculation based on the realizations generated from the 

joint simulation. To attain the above objectives, previous work done on grade estimation 

and rock-type modeling using various methods are revisited. Then a proposed methodology 

of Pluri-Gaussian simulation and Multi-Gaussian simulation are used to jointly simulate 

rock-types and grade producing multiple equiprobable images of each variable. Measure 

and indicated resources together with proven and probable reserves are estimated using 

relative conditional variance and maximum flow algorithm respectively.  A heterogeneous 

gold deposit is used as a case study for the results and validation of our objectives. 

1.3 Thesis outline 

The thesis is organized in the following manner; 

Chapter 1: An overview of the joint simulation of grades and rock-types for resource 

modeling is presented in this chapter, and the setbacks of conventional methods 

are also presented here. 

Chapter 2:  Joint simulation of grades and rock-types for resource modeling is presented, 

and results are validated through the summary and spatial statistics from a case 

study. Resource classification and reserve calculation are also included for 

analysis. The case study is used as validation and for the method. 

Chapter 3: Overall conclusions and recommendations for future work are presented. 
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2 Joint simulation of continuous and categorical 
variables for mineral resource modeling and 
recoverable reserves calculation 

(The material contained in this chapter will be submitted for possible publication in 

‘Natural Resources Research’ journal) 

Abstract 

Spatial variability and uncertainty of continuous variables (grade) and categorical variables 

(rock-types) in mineral evaluation significantly impact the economics of mining projects. 

The conventional approach of simulating grades using deterministic rock-types is 

problematic since spatial variability, and uncertainty of grades at rock-type contacts are not 

well captured in deposits where the grade changes gradually between rock-types. 

Therefore, jointly simulating these variables can improve confidence in a resource model 

while reducing the uncertainty at contact boundaries. The resource classification and 

recoverable reserve calculation using multiple equiprobable simulation maps can also 

significantly improve the understanding of the deposit and its economic feasibility to do 

mining. This research proposed the Pluri-Gaussian geostatistical simulation algorithm to 

jointly simulate rock-types and grade, where the variograms and cross variograms 

parameters of the Gaussian random fields are iteratively optimized. A joint model of these 

random fields via theoretical variograms is achieved through a coregionalized model with 

various parameters (coefficients) depending on the model inputs. Equiprobable realizations 

of rock-types and grades are generated through a co-simulation of these variables. Resource 

classification of joint simulations and ultimate pit limit calculations are produced and 

validated using a real gold deposit in Alaska. Average grades from measured and indicated 

resources are 0.6142 and 0.5197 g/mt respectively. Ultimate pit results show recoverable 

reserves with an average grade of 0.6303 g/mt proven and 0.5442 g/mt probable.   
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2.1 Introduction 

In mining, understanding the interplay between continuous (grade) and categorical 

variables (rock-types) is vital because they are the critical inputs in the quantification of 

mineral resources, the definition of mineral reserves, and production scheduling which 

determine the success of mining projects (Montoya et al., 2012). The Gaussian Random 

Field, which involves a Gaussian Probability density function of the random variables and 

determined by mean and a covariance function (Journel, 2003; Lantuéjoul, 2012), is 

employed to enable modeling of these two different variables. The spatial variability of 

these variables is, therefore, important as grade models are used to evaluate resource and 

reserve estimates and depict how grade varies across different geological domains or rock-

types (Emery, 2007). Categorical variables are commonly used to map out stationary 

domains, especially in the mining industry (Pyrcz and Deutsch, 2014; Rossi and Deutsch, 

2014), which act as a host for simulation of continuous variables such as grade. Therefore, 

modeling rock types is vital because these models generate probabilistic descriptions of 

geological domains and also contributes to enhancing geological control for the 

quantitative petro-physical variable such as grade when these variable are homogenous 

within each geological domain, but the layout of the domain boundaries is uncertain 

(Deutsch and Silva, 2016).  

Various methods have been used to model grades and rock types. A common traditional 

method of grade modeling uses a Multi-Gaussian approach where a step-by-step or 

Cascade method is used as described by (Journel and Huijbregts, 1978), at which different 

rock types are selected using a deterministic model based on geological knowledge and 

any other supporting data such as similar deposits already mined (Mackenzie and Wilson, 

2001). Because these deterministic cascade models do not cater to the uncertainty of grades 

and tonnages, this can lead to under-estimation and over-estimation of grade and tonnage 

which is undesirable in mining project (Goodfellow et al., 2012). In less complex deposits, 

conceptual and deterministic models still suffer from the same impediment of uncertainty 

as only one set of deductions is made about the deposit (Jones et al., 2013). The cascade 

method works under the assumption that the spatial correlation between grades and 
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changing rock types is poor and therefore ignorable (Kim et al., 2005), but in cases where 

there is a gradual change of grade in changing rock types. This method will not provide the 

best results as spatial correlation might be too significant to ignore (Emery and Silva, 

2009). Moreover, mineral resource estimation using deterministic models (kriging and its 

variants) produces the smoothing effect of kriging rendered maps biased for any selection; 

therefore, it fails to account for uncertainty in the deposit being estimated (Rossi and 

Deutsch, 2013). Furthermore, the estimation variance, whose minimization defines kriging 

and, more generally, all projection-type estimators, is an incomplete measure of estimation 

accuracy since it is data values-independent (Journel, 2003). 

To address the challenge of uncertainty in reporting tonnages while evaluating ore bodies, 

different stochastic simulation algorithms have been adopted for treating the glitches that 

come with rock-type models (Osterholt and Dimitrakopoulos, 2007). Methods such as 

Sequential Indicator Simulation (SIS), which uses Indicator Kriging (IK) instead of 

conditional simulation to estimate the probability of categorical variables (Goovaerts. 

1997; Sojdehee et al., 2015) often lack accuracy (Emery, 2004).  Another drawback of 

using SIS is that it fails to reproduce the ordering of categories more so when then deposit 

under evaluation is sparsely sampled (Deutsch and Silva, 2016). Multipoint Geostatistics 

is also an advanced method used for quantifying uncertainty through Training Image, 

instead of the conventional variogram based two point methods (Guardiano and Srivastava, 

1993). Goodfellow et al., (2012) and Paithanker and Chatterjee (2017) applied Single 

Normal Equations Simulation (SNESIM), a multiple-point geostatistical method, to 

determine the uncertainty of tonnages in polymetallic deposit at Coleman MacCreedy 

deposit and a copper deposit in Africa, respectively. The pixel-based variant methods of 

Multi-Point Geostatistics, are found to replicate accurate matches with drill hole data, but 

in complex geological settings provide somehow limited reproduction of structures 

(Tahmasebi, 2018).  

For tackling the smoothing effect and uncertainty issues in estimated resources caused by 

Kriging, Sequential Gaussian Simulation provides a solution through multiple realizations 

capturing uncertainty (Deutsch and Journel, 1998; Pyrcz and Deutsch, 2014). The success 
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of this method has been in estimating different heterogeneous deposits in order to capture 

grade boundary problems such as soft or hard boundaries through the use of variogram 

models to quantify uncertainty in both copper grade and geological boundaries (Maleki 

and Emery, 2015). The limitations of Sequential Gaussian Simulation for (or cascade) 

rock-type and grade modeling is that multiple realizations for each variable are produced 

separately which increases the compounded error that comes with handling them, while 

performing a joint simulation reduces those errors hence improve the resource model 

accuracy (Dominy et al., 2004). 

2.2 Methodology 

2.2.1 Grade simulation 

Our ultimate goal is to produce a joint simulation of grades and rock-types for grade 

modeling, so we used the turning bands algorithm for non-conditional co-simulation of 

Gaussian Random Fields followed by conditioning co-kriging (Emery and Lantuéjoul, 

2006). This algorithm is a suitable choice for our purpose because it allows us to cross-

correlate Gaussian Random Fields conditionally to the data. As a way of making sure the 

data provides the best results, the data is declustered if it shows clustering issues and 

normalized if its distribution is skewed. Different kinds of algorithms for declustering can 

be used depending on the data and normal score transformation for normalizing the grades 

(Gaussian data) as shown in Eq. (1). 

Moreover, to determine spatial continuity parameters such as the orientation of maximum 

and minimum continuity (directional anisotropies), variogram map analysis is done 

through a rose diagram. Experimental variograms in the horizontal and vertical directions, 

depending on different lag values, are constructed and fitted with a covariance function 

which best describes spatial variability of grade in the deposit. This variogram model of 

the Gaussian transformed grade data becomes the first Gaussian Random Field (GRF) with 

the appropriate number of nested structures and ranges along with the anisotropic 

directions, it is denoted by 𝑌𝑌0. 
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The model parameters of this GRF become inputs to determine other proposed Gaussian 

Random Fields for the indicator/s.  A non-decreasing function using the turning bands, 

sequential or spectral simulation provided in the code developed by Emery (2009), is used 

for simulating these GRFs (Chiles and Delfiner, 1999). The simulated results are then back-

transformed from normal score grades into original grades, and various grade realizations 

are drawn from the simulation. 

∀𝑥𝑥 ∈  𝑅𝑅3 .𝑍𝑍0(𝑥𝑥) =  ∅(𝑌𝑌0(𝑥𝑥)) (1) 

Where. ∀𝑥𝑥 ∈. ∀𝑖𝑖 ∈ {1. … . .𝑎𝑎}.  ∅ a normal score transformation function  and 𝑍𝑍0 is a 

monotonic function of a Gaussian Random Field 𝑌𝑌0. 

2.2.2 Rock-type simulation 

Categorical data modeling is done by transforming the rock-types into indicator data. The 

rock-types are transformed into indicators (𝐼𝐼𝐾𝐾) using the following relationship;  

𝐼𝐼𝐾𝐾(𝑥𝑥) = �1,  𝑖𝑖𝑖𝑖 𝑥𝑥 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏 𝑡𝑡𝑏𝑏 𝑡𝑡ℎ𝑏𝑏 𝐾𝐾𝑡𝑡ℎ 𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏
0, 𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏

(2) 

According to the contacts in the drill hole data and the proportions of individual rock- 

types, a rock-type rule is chosen to capture the spatial boundaries between the rock-types. 

Following the rock-type rule, the truncation rule determines how many Gaussian random 

fields are needed to fully describe the rock-type model. If the number of Gaussian random 

fields for the indicators is more than two, the model becomes a Pluri-Gaussian model, while 

the former condition of one Gaussian random field, is generally referred to as the 

Truncation Gaussian model (Lantuéjoul, 2002; Dowd et al., 2003; Armstrong et al., 2011). 

The thresholds which discretize the Gaussian random fields are determined through the 
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proportions of individual rock types through the Standard Gaussian cumulative distribution 

function (Betzhold and Roth, 2000).  

The spatial relationship of the selected categorical GRF is modeled to fit the indicator 

variograms (Emery and Maleki, 2014).  Gibbs sampling technique is then used to simulate 

a set of Gaussian values generated at each data location conditionally to the categorical 

information at this location and the previously simulated Gaussian values (Emery, 2007).  

2.2.3 Parameter inputs 

For fitting the experimental indicator semi-variograms, cross semi-variograms between 

Gaussian (normal score transformed grade) and indicators that complete our 

coregionalization model, an interactive method together with its associated code developed 

by Emery (2009), is used. The primary input parameter is the transformed grade covariance 

function, which is used as the underlying first GRF, with its sills being constants in the 

covariance matrix. The truncation rule in the Pluri-Gaussian model determines how many 

GRF are generated from the indicator variable, and they are brought as inputs into the 

model. Diagonal entries in the coregionalization model represent the direct variogram of 

all determined GRFs while the non-diagonal entries become coefficients depending on 

GRF’s spatial relationships. Eventually, a trial and error modification of the coefficients 

provide the best fit for all the semi-variograms completing the GRFs of the indicator data, 

which will be used with the transformed grade GRF for a joint simulation.  

2.2.4 Joint simulation 

Now that all the underlying GRFs for both the transformed grade and indicators and all 

other input parameters are determined, a joint simulation is the next step (Emery and 

Lantuèjoul, 2006; Emery, 2008). To achieve this, the primary assumption is that our 

coregionalization matrix is a linear model and, therefore, covariance and cross covariances 

are assumed to be within similar nested basic structures (Wachernagel, 2003). For 

representation, the first Gaussian Random Field is denoted by (Y0) for the transformation 

grade and other Gaussian Random Fields for the indicator denoted as (Y₁, Y₂ ...Yn). So, at 
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each location within the rock-type data, a vector Gaussian Random Field (Y) is simulated 

conditionally to the transformed grade data and rock types through the Gibbs sampler. The 

turning bands co-simulates the Gaussian Random Fields (Y0, Y₁. Y₂ ...Yn) through 

decomposing these GRF into non-correlated factors via the coregionalization model 

(Emery, 2008; Maleki and Emery, 2014). Once the joint simulation is complete, a back 

transformation function is employed for transformation grade back into original grades and 

a truncation rule for transforming indicator back to rock-types (Emery and Silva, 2009). A 

summary of the method is shown in Figure 1. 

Figure 1 1 Schematic summary of the Joint Simulation methodology 

2.2.5 Resource classification 

Resource classification is an important step in estimating the quantity of mineral resources 

within a deposit into blocks whereby individual blocks are classified with an increasing 

level of geological confidence (Ortiz et al., 2006). The quality of resource classification is 
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paramount for economic and risk evaluations, and therefore it does not only rely on the 

amount of data (geological confidence) available, but also on the quality of data being used 

(Silva and Boisvert, 2014). There are several types of techniques used for classifying 

mineral resources, which are chosen depending on the orebody being evaluated. Some 

authors have proposed and used classification techniques such as search neighborhoods, 

drill-hole spacing, and kriging variance (Sinclair and Blackwell, 2002). In this thesis, we 

classified our resources based on conditional simulation. The advantage of using this 

technique is that it addresses the issue of heteroscedasticity where true variance and 

covariance are underestimated and therefore impacts accuracy for resource classification 

(Dohm, 2004). Depending on the objective, classification techniques using conditional 

simulation can be carried according to volumes (tonnages), precision, and confidence 

interval. Authors such as Deutsch et al., (2006), Dominy et al., (2002), Snowden (2001), 

and Wawruch and Betzhold (2005) have put forward and used conditional simulation in 

various deposits.  

The realizations generated from the joint simulation were post-processed and an average 

of the realizations (E-type), was determined together with conditional variance generated 

from the realizations conditioned to the data. The inputs for calculating resource classes 

were the mean data (E-type), conditional variance, and thresholds for classifying measured, 

indicated and inferred resources. We also used an option of relative conditional variance 

because it measures relative error and, therefore, does not favor or penalize either high or 

low-grade areas (Ortiz et al., 2006). 

2.2.6 Reserve calculation 

The Canadian Institute of Mining, Metallurgy, and Petroleum (CIM) defines mineral 

reserves as the economically mineable part of a measured or indicated mineral resource 

demonstrated by at least a preliminary feasibility study.  Open pit mining operations 

depend on the proper design of the ultimate pit for optimal production planning (Chatterjee 

et al., 2016).  Our objective is to determine the tonnages of mineable reserves for which 

the ultimate pit determination will take care of (Marcotte and Caron, 2013). We used the 
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maximum flow minimum cut algorithm, which solves the problem of finding a maximal 

closure within a mine graph where a minimum cut determines an optimal pit contour 

(Hochbaum, 2001). This algorithm solves the problem of finding the best combination of 

desirable and non-desirable blocks that result in the maximization of profit. The following 

mathematical   formulation was used for the mineable reserve calculation: 

Objective Function: 

𝑀𝑀𝑎𝑎𝑥𝑥𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑏𝑏 ��  𝑣𝑣𝛾𝛾𝛾𝛾𝑥𝑥𝛾𝛾
𝛾𝛾∈𝐵𝐵𝛾𝛾∈Γ

 (3) 

𝑥𝑥𝛾𝛾 − 𝑥𝑥𝛾𝛾′    ≤ 0,     𝑏𝑏′𝜖𝜖 𝜉𝜉𝛾𝛾 ,   𝑏𝑏 𝜖𝜖 𝐵𝐵 (4) 

𝑥𝑥𝛾𝛾  𝜖𝜖 {0, 1} , 𝑏𝑏 𝜖𝜖 𝐵𝐵 

Where, 𝑣𝑣𝛾𝛾𝛾𝛾 is the economic value of mining block 𝑏𝑏  from simulation 𝛾𝛾 . 𝑥𝑥𝛾𝛾 is the binary 

decision variable, which takes value 1 if mining block 𝑏𝑏 is inside the pit, 0 otherwise, 𝑏𝑏′ is 

the block that needs to mine before mining block 𝑏𝑏  to satisfy slope constraints, Γ  is number 

simulated orebody models, and 𝐵𝐵 is the number of mining blocks present in the orebody 

model. The objective function of Eq. (3) tries to maximize the total cash flow (profits) from 

the deposit; whereas, Eq. (4) is precedence constraints, which ensures respecting the slope 

of the ultimate pit. From resource classification. only the measured and indicated resources 

are satisfying economic and slope constraints within the ultimate pit are classified as 

proven and probable reserves respectively.   

2.3 Results 

2.3.1 Location and geology of case study 

The study area is located in Alaska within the Tintina Gold belt. This region consists of 

Intrusion Related Gold Systems (IRGS), which are characterized by intermediate to felsic 
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composition intrusions near the ilmenite-magnetite series boundary with carbonic 

hydrothermal fluids and, therefore gold mineralization is related to this intrusive system 

(Lang et al., 2000). Gold occurring in this system is associated with Bi, W, As, Mo, Te, 

and low base metal concentrations. Gold mineralization is also associated with 

disseminated arsenopyrite and pyrite in volcanics, sedimentary and intrusive rocks, and in 

quartz veins cutting the more competent lithologies, primarily volcanic rocks, sandstones, 

and to a lesser degree, ultramafic rocks. These gold-bearing quartz veins are associated 

with dikes, sill, and stocks of monzonite, diorite, and syenite in composition (Ebert et al., 

2000). Mineralization of the volcanic section is continuous for at least 600m E-W and 

375m N-S. Detailed isotopic and geochemical studies establish possible sources for the 

hydrothermal fluids and associated molten rock; these results help refines the overall 

genetic exploration model for the epizonal gold deposits in the area (Hart et al., 2002).  

The sequence of the rocks in this particular study area consists of the older Cambrian 

ophiolite mafic and ultramafic rocks that are over-thrust younger sediments and volcanic 

rocks. For this study, the rock-types are identified as Cambrian rocks (CAM), Upper 

Sediments (UPS), Main Volcanics (MVC) and Lower Sediments (LSS) The (CAM) overlie 

(UPS), which form a layer of gold hosting sedimentary formations. The (MVC) can be in 

contact with both the CAM and UPS depending on which location is sampled. This is 

mainly driven by faults, which in turn enable contacts between the UPS and the Lower 

Sediments (LSS), which ideally are beneath the volcanic unit where there faulting is no 

faulting. Structurally, from top to bottom, these rock units are sub-horizontal to 45º dipping 

to the South. Drill hole sampling is mainly located to the South of the Lillian Fault with 

little attention given to the sedimentary and volcanic units into the North of it due to low 

mineralization. Mineralization is mainly hosted in the UPS, LSS, and MVC. 

2.3.2 Drill hole data 

Drill holes were collected through an exploration program with more than 90% of the holes 

drilled in the northerly direction. Diamond drilling core samples are collected at a spacing 

of 75 m inclined at about -50º and reverse circulation holes ranging between 0 and 30 m 
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spacing inclined at about -60º. Because of the dip of the mineralization, these inclinations 

are intended to intercept these south-dipping ore bodies closer to 90º. From the drill hole 

data, the proportions of these four rock-types show thin layers such as in UPS and LSS. 

Therefore, for compositing, a down the hole within rock-type method of 2m length is 

considered to capture enough data points for further analysis. The average rock density was 

2.7 mt/m³ with an estimated block size of 15 m x 15 m x 10 m. with 140, 120, and 50 

blocks along the X, Y, and Z directions. respectively. Because of mineralization anomalies, 

drilling is mainly focused on the southern part of the deposit, and therefore, data clustering 

is evident from the drill holes, as shown in Figure 2 and is summarized in table 1. A cell 

declustering algorithm is used to address clustering in the data. 
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Figure 2 1 Rock- types and gold composite (g/mt) data plot 

Table 1 1 Summary statistics of clustered total composite gold grade (g/mt) 

Data # 8730 
Mean 0.4598 
Variance 0.9416 
STDV 0.9704 
Range 24.8667 
CV 2.1106 
Median 0.1834 

2.3.3 Basic statistics 

A total of 8716 data points are determined from the 2m composite data covering all the 

drill holes represented in the study domain. Gold concentrations summary statistics in each 

rock-type are represented in table 2. The histograms in Figure 3 indicate positive skewness 

for the grades within each of the four rock types. Variability within the CAM unit is less 

compared to the other three rock types, even though it’s extremely skewed. It is also evident 
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that the low gold concentrations are mainly found in the CAM Unit, while the other three 

rock-types have varying concentrations of gold above the total grade average within the 

deposit. These statistics are in line with geological interpretations of mineralization in this 

study area where pockets of quartz gold-bearing veins cross-cut mainly the UPS, MVC, 

and LSS rock-types. For spatial analysis, because of the positive skewness of the grade 

within the deposit, a transformation using normal scores is used to normalize the data 

(Templeton, 2011). 

Figure 3 1 Histograms showing composite gold grade(g/mt) in rock-types 
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Table 2 1 Summary statistics of declustered gold grade in individual rock-types and total 

composite gold grade (g/mt) 

Rock 
Type 

Data 
# 

Prop. 
(%) 

Mean Variance STDV Median Range CV 

CAM 3891 45 0.1952 0.2917 0.5402 0.0318 8.4460 2.7674 
UPS 507 6 0.7554 0.4211 0.8372 0.6300 6.5650 1.1082 
MVC 3885 44 0.6279 0.7600 0.8712 0.4114 17.207 1.3874 
LSS 433 5 0.5398 0.7008 0.6489 0.3000 8.5988 1.2021 
Total 
Grade 

8716 100 0.4377 0.5769 0.7595 0.1820 17.2095 1.7352 

2.3.4 Spatial statistics 

2.3.4.1 Grade modeling parameters 

Normal score transformed grade data variograms analysis show major direction along NE 

140o, semi-major along NE 50o. and minor direction along the vertical. Experimental 

variograms in the horizontal directions were calculated at a lag of 30 m, which is almost 

half the spacing of the drill holes, while in the vertical direction a lag of 2m was used 

because of some of the thin rock-types such as the UPS and LSS in this deposit. The fitted 

model has a nugget and two exponential nested structures portraying Geometric and Zonal 

anisotropies, as shown in Figure 4. The high nugget value is a common phenomenon in 

gold deposits, and the quartz vein mineralization cross-cutting the rock-types could be 

suspect of this variability in the vertical direction. Moreover, the variogram model agrees 

with the exploration observation of mineralization being continuous for at least 600m in 

the horizontal directions. 

𝛾𝛾₀₀ = 0.40 𝑎𝑎𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 +  0.40 𝑏𝑏𝑥𝑥𝑡𝑡 (307,202,120) 𝑀𝑀 

+ 0.20 𝑏𝑏𝑥𝑥𝑡𝑡 (750,750,165) 𝑀𝑀  (5)
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Figure 4 1 Variogram model in three main directions of anisotropy. 

2.3.4.2 Pluri-Gaussian parameters 

From the drill hole data, the CAM, UPS, and MVC can be in contact with each other 

depending on their spatial location in space. Another visible contact is between the MVC, 

UPS, and LSS rock-types. Furthermore, contact analysis indicates there is no contact 

between the CAM and LSS rock-types. These contact observations are used in the Pluri-

Gaussian model. For simulation, indicator variables are used to decide which point lies 

within which rock-type. In the domain space of the deposit, the indicator variable is 

assigned a value of 1 where a specific rock-type is present and assigned 0, where it is not. 

Figure 5 shows how this relationship is captured so as to utilize the rock-type rule for all 

the rock-types. If x represents the position in 3-D space, the indicator representation of four 

rock-types are described in the following way: 

𝐼𝐼𝑟𝑟𝑎𝑎𝑀𝑀(𝑥𝑥) =    � 1 𝑖𝑖𝑖𝑖 𝑥𝑥 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏 𝑡𝑡𝑏𝑏 𝐶𝐶𝐶𝐶𝑀𝑀 
0  𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏 

 (6)
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𝐼𝐼𝑛𝑛𝑡𝑡𝑏𝑏(𝑥𝑥) =    �1 𝑖𝑖𝑖𝑖 𝑥𝑥 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏 𝑡𝑡𝑏𝑏 𝑈𝑈𝑈𝑈𝑈𝑈
0  𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏 

(7) 

𝐼𝐼𝑀𝑀𝑣𝑣𝑟𝑟(𝑥𝑥) = � 1 𝑖𝑖𝑖𝑖 𝑥𝑥 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏 𝑡𝑡𝑏𝑏 𝑀𝑀𝑀𝑀𝐶𝐶 
0  𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏 

 (8) 

𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥) =    �1 𝑖𝑖𝑖𝑖 𝑥𝑥 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏 𝑡𝑡𝑏𝑏 𝐿𝐿𝑈𝑈𝑈𝑈
0  𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏 

(9) 

From global proportion statistics of individual rock-types shown in Table 2, the proportions 

statistics must be preserved in the realizations after simulation. Because of the spatial 

characteristics evident from the rock-type contacts and proportions, two dependent 

Gaussian Random Fields (𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂)  were selected to best describe the rock-type 

interactions within the deposit as indicated in Figure 5.  

These Gaussian Random Fields allow thresholds to be decided, which in turn, the 

thresholds truncate these fields according to the contacts while the proportions are 

determined from the standard probability statistics. Gaussian random field (𝑌𝑌1) was 

defined by truncating one threshold ( 𝑡𝑡₂) while Gaussian Random Field (𝑌𝑌2)  was defined 

by truncating two thresholds (𝑡𝑡₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡₁′). 
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Figure 5 1 Truncation rule with thresholds along (𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂) fields 

With the thresholds included to fully define the spatial characteristics of all the rock-types, 

the relationship between the indicators and these GRFs can be expressed as: 

𝐼𝐼𝐶𝐶𝐶𝐶𝑀𝑀(𝑥𝑥) = �1 𝑖𝑖𝑖𝑖 𝑌𝑌₂(𝑥𝑥)  < 𝑡𝑡₁ (𝑥𝑥)
0  𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏 

(10) 

𝐼𝐼𝑈𝑈𝑈𝑈𝑈𝑈(𝑥𝑥)

= �1 𝑖𝑖𝑖𝑖 𝑌𝑌₂(𝑥𝑥) ≥ 𝑡𝑡₁(𝑥𝑥) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂(𝑥𝑥) < 𝑡𝑡₁′(𝑥𝑥) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₁(𝑥𝑥) < 𝑡𝑡₂(𝑥𝑥)
0  𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏     

(11) 

𝐼𝐼𝑀𝑀𝑀𝑀𝐶𝐶(𝑥𝑥) = �1 𝑖𝑖𝑖𝑖 𝑌𝑌₂(𝑥𝑥) ≥ 𝑡𝑡₁(𝑥𝑥) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₁(𝑥𝑥) ≥ 𝑡𝑡₂
0  𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏 

(12) 

𝐼𝐼𝐿𝐿𝑈𝑈𝑈𝑈(𝑥𝑥) = �1 𝑖𝑖𝑖𝑖 𝑌𝑌₂(𝑥𝑥) ≥ 𝑡𝑡₁′(𝑥𝑥) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₁(𝑥𝑥) < 𝑡𝑡₂(𝑥𝑥)
0  𝑏𝑏𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝑖𝑖𝑏𝑏𝑏𝑏 

(13)
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The thresholds values depend on the proportions of each rock-type, and in each Gaussian 

random field range from -3 to 3. Because the sum of the indicators is equal to one, at any 

point within the fields, the sum of all the four rock-types should be one, meaning the 

proportions should be CAM (0.45), UPS (0.06), MVC (0.44) and LSS (0.05). The variance 

of an indicator is a function of its mean because the square of an indicator is equal to itself 

and therefore the spatial averages of the indicators is the average probability which 

represents each rock-type (Betzhold and Roth, 2000). To calculate the thresholds, for 

example, if we want to determine the threshold (𝑡𝑡₁) in Eq. (10) for truncating Cambrian 

rocks, the relationship can be expressed as; 

𝐸𝐸(𝐼𝐼𝑟𝑟𝑎𝑎𝑀𝑀) = 𝑡𝑡𝑟𝑟(𝑌𝑌₂(𝑥𝑥) < 𝑡𝑡₁ = 𝑖𝑖(𝑡𝑡₁)   (14) 

𝑡𝑡₁ = 𝑖𝑖−1(P 𝑟𝑟𝑎𝑎𝑀𝑀) = 𝑖𝑖⁻¹(0.45) (15) 

Where 𝑡𝑡𝑟𝑟(𝑌𝑌₂(𝑥𝑥) denotes the mean of the Cambrian rock indicator and 𝑖𝑖 is the standard 

cumulative distribution functions and P 𝑟𝑟𝑎𝑎𝑀𝑀 is the probability of the proportion of 

Cambrian rocks. The means of the other indicators are calculated the same way and the 

determined threshold (𝑡𝑡₁) is used together with inverted Eq. (11-13) to calculate the other 

thresholds ( 𝑡𝑡₁′  𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡₂). 

The following thresholds which represent the truncation rule are then determined at 𝑡𝑡₁ =

−0.1348, 𝑡𝑡₁′  = 0.6588 and 𝑡𝑡₂ = −0.8600. Figure 5 indicates two axes of underlying

Mutli-Gaussian fields (𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂) with each axes having a mean of 0 and a variance of 1.

The four rock-types are truncated according the rock-type rule presented in the Eq. (10 -

13). Eq. (10) shows that Cambrian rocks are truncated along 𝑌𝑌2  and should belong to

values less the threshold 𝑡𝑡₁ while the other three rocks-types depend on the interaction

between both (𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂) , and their thresholds. Therefore, this relationship enables

simulations of these rocks types once their spatial variograms are determined because the

position in space of individual rock-types is already determined through this Pluri-Gaussian

model.
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2.3.5 Variogram analysis and spatial dependence modeling 

With the truncation rule governing the spatial relationship between the rock-types 

evaluated, modeling their GRFs variograms is the next step. This is achieved through 

modeling the proposed Gaussian Random Fields (𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂), by trial and error fitting of 

the experimental indicator and experimental cross variograms between indicator and grade 

with the desired covariance model. In our case, we assumed the Gaussian random fields to 

be dependent, and therefore their cross variograms parameters are also defined together 

with other model parameters. To fully map out the cross-correlation between the GRF(𝑌𝑌₀) 

and the other two GRF’s (𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂), the assumption is that the two exponential structures 

of 𝑌𝑌₁ are present in both 𝑌𝑌0 and 𝑌𝑌₂ and the same for 𝑌𝑌₂. These two underlying GRFs are 

both influenced by the first GRF (𝑌𝑌0 ), hence adopt its basic nested structures; eventually 

we determined the variograms shown in Figure 6 that define the Pluri-Gaussian model as 

shown below. 

𝛾𝛾₁₁ = 0.00 𝑎𝑎𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 + 0.20 𝑏𝑏𝑥𝑥𝑡𝑡 (307,202,120) 𝑀𝑀 

+ 0.80 𝑏𝑏𝑥𝑥𝑡𝑡 (750,750,165) 𝑀𝑀 (16) 

𝛾𝛾22 = 0.00 𝑎𝑎𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 + 0.70 𝑏𝑏𝑥𝑥𝑡𝑡 (307,202,120)𝑀𝑀 

+ 0.30 𝑏𝑏𝑥𝑥𝑡𝑡 (750,750,165)𝑀𝑀  (17)
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Figure 6 1 Indicator variograms in three anisotropy directions (circles are experimental 

variograms & solids are models) 

With all the GRFs (𝑌𝑌₀,𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂) determined, their spatial dependence is addressed 

through identifying their model structures. The exponential structure is common to all 

GRF, and the cross-correlation between all the fields is investigated through a linear model 

of the GRF’s coregionalization, as indicated in Eq. (16-17). In the coregionalization 

matrices, diagonal entries represent the direct variograms of 𝑌𝑌₀,𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂, and the off-

diagonal entries reflect the cross variograms between 𝑌𝑌₀,𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂ which results in Figure 

7 variograms. The cross variogram between 𝑌𝑌₀ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₁  is captured by coefficients d and 

a. 𝑌𝑌₀ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂ by coefficients e and c and 𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂  by coefficients l and j. The structure

of GRF 𝑌𝑌₁ is characterized by entries c1 and b1 which represent its sills and a nugget of 0

while GRF 𝑌𝑌₂ is characterized by entries c2 and b2  which are sills also with a 0 nugget.

Both these fields are supposed to sum up to one and also all the coregionalization matrices

should be positive semi-definite since their eigenvalues are nonnegative (Wachernagel,

2003). The results of the coefficients while doing the trial and error method are summarized

in Table 3.
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Figure 7 1 Cross variograms between indicator and grade in three anisotropy directions 

(circles are experimental variograms & solids are models) 

As we have already discussed in the truncation rule (Pluri-Gaussian model), we have 

completely determined which Gaussian Random Fields and thresholds are responsible for 

modeling which rock-type, and we have also determined their spatial contribution 

(dependence) in modeling rocks-types with grades. The CAM was found to be truncated 

along the GRF 𝑌𝑌₂, for which the sill contribution of its first nested structure (0.70) has a 

higher variability in shorter distances along the main anisotropies as compared to its second 

nested structure (0.30) with lower variability in longer ranges along the same anisotropies. 

Moreover, the auto-correlation of the CAM and grades is found to be stronger in shorter 

distances. The same is observed for the other three-rock-types but their variability is mainly 

determined by all the thresholds since they depend on both GRF 𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂. These rock-

types spatial auto-corroletion grade will be controlled by the coefficients in 

coregionalization model.  
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(18) 

Table 3 1 Parameters from trial and error coregionalization model 

Model Nugget Structure 1 Structure 2 

Parameter 

a1 0 c1 0.20 b1 0.80 
a2 0 c2 0.70 b2 0.30 

d 0.25 a 0.35 
e 0.05 c 0.01 
j 0.15 l 0.20 

2.3.6 Joint simulation results 

2.3.6.1 Co-simulation & realizations 

From the coregionalization model, all the Gaussian Random Fields can be simulated 

together since they are in one format-structure. Data locations of the two GRF (𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂) 

are then simulated conditionally to the grade and rock type data via a Gibbs sampler 

algorithm. This enables joining all these GRF’s (𝑌𝑌₀,𝑌𝑌₁ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌₂),  through a Multi-Gaussian 

simulation algorithm such as the turning bands which is used. Eventually, a back 

transformation algorithm is used to back transform normal score data to gold grade; the 

truncation rule, defined in Eq. (10-13), is used to transform indicator data back to rock-

type, thus creating multiple realizations of each variable as in Figure 8 and 9. A set of 25 

realizations are produced for continuous (grade) variable together with corresponding 25 

realizations for the categorical variable (rock-types). 
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Figure 8 1 Random grade realizations generated from the joint simulation 
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The joint simulation enabled us to determining how the grades change with changing rock-

types. While looking at the realization maps, the joint simulation produces gradual or rather 

smooth transitions of gold grades across rock-types. The observation from multiple 

realizations of grade indicated various probabilities of gold concentration within the 

deposit as shown by changing high grade areas in the random realizations in Figure 8. This 

is important because it provides a level of uncertainty since each image show unique grade 

distributions within the deposit for which the true grade can fall within. 



31 

Figure 9 1 Random rock-type realizations generated from the joint simulation 

 Another observation from the rock-types realizations is that there are various possibilities 

of rock-type distribution which will be vital for evaluating tonnages (volumes) especially 

if mineralization prefers as certain rock-type. This is a scenario in our case study deposit 

where grade is hosted mainly in UPS, MVC and LSS rock-types and not in CAM. Tonnage, 

grades and metal content uncertainty are critical in evaluating resources and reserves and 

therefore the multiple simulations can be used to provide a measure of uncertainty within 

a resource model. 

2.3.6.2 Validation of the Joint Simulation Models 

For validating the continuous variable (grade) simulation, histograms and experimental 

variograms from generated simulations are plotted and compared with the composite gold 

grade from the drill hole data. The histogram distributions for the realizations indicates that 

they reflect the original data reasonably as shown in figure 10. The experimental 

variograms in the three principal axes, also indicate the spatial nature of the original data 

is preserved in the simulation as shown in figure 11.  
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Figure 10 1 Histograms of simulated gold grades and composite grade from drill-hole 

data 
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Figure 11 1 Variograms of simulated gold grades in X-direction, Y-direction and Z-

direction compared with composite gold grades 
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For the simulated rock-types, the generated realizations are validated through a box plot 

and conditioning drill hole data in a three-dimensional space shown in Figures 13. 

Respectively, the rock-types statistics are well preserved in the simulated realizations and 

also in the drill hole rock-type data. A noticeable difference between CAM and MVC 

proportions could be due to fitting of the indicator variograms where the sill contribution 

in the horizontal direction are weighted more for MVC than the CAM.  
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Figure 12 1 Drill holes conditioned to rock-types (before topographic removal) and box 

plot of all 25 realizations of rock-type proportions 
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2.3.7 Resource classification 

Post-processing of the grade realizations produced E-type (mean), conditional variance and 

relative conditional maps respectively as shown in Figure 13. From the E-type map, the 

high grade areas indicate high values of conditional variance while the low grade areas 

show low values of conditional variance. This observed directly proportional relationship 

between variance and grade in our resource model implies that we have relatively low 

confidence on high grade blocks and vice-versa for low grade blocks. To understand the 

deposit better, relative conditional variance map is generated by dividing the E-type map 

with the square of conditional variance map. This map shows a rather uniform distribution 

of variance on both high and low grade blocks. The relative conditional variance therefore 

provides us with an opportunity to classify the resources more confidently.  
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Figure 13 1 E-type and Conditional Variance and Relative Conditional Variance Maps of 

simulated gold grades 
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To obtain the resource classification scheme of our resource model, relative conditional 

variance is used and is preferred because it doesn’t show any preference to high or low 

grade areas in a deposit because the ratio between the dispersion indicator and the mean 

are found in the intervals (0,1) (Chiles and Delfiner, 1999). Thresholds are then selected as 

inputs to classify the resource into three categories (measured, indicated and inferred). The 

relative conditional variance range is between 0 - 13.07 g/mt and the threshold values were 

selected from this range. For classifying measured resources, the threshold is determined 

on the basis of less than 5% of the range from the relative conditional variance map. The 

indicated resources are classified with a threshold from 5 to 10% of the range also from the 

relative conditional variance map, while anything above 10% of this range is considered as 

inferred resources. 

Table 4 1 Resource classification (Mmt=Million metric tonnes. Koz =thousands of 

ounces) 

Resource 
Classification 

Tonnes (Mmt) Au (g/mt) Metal content 
(Koz) Au 

Measured (M) 294.8 0.6142 5,821.1 
Indicated (I) 518.4 0.5197 8,661.2 
Total M+I 813.2 0.5539 14,482.2 
Inferred 1,076.0 0.4972 17,201.3 
Grand Total 1,889.1 0.5217 31,683.5 

Because the resource classification is only done on an average, for example, E-type, 

uncertainty in this estimation procedure is eminent due to one solution being provided. To 

quantify the overall resources so that we can have an idea of our grades, tonnages and metal 

content, the realizations generated from the joint simulation are used for conditional 

simulation of the grades and therefore for estimating blocks within our resource model. 

This provides a logical approach as each grade realization represents a possible reality of 

the distribution of grades, tonnages and metal content and therefore summarizes the total 

amount of material within the deposit (Emery et al., 2006). Another advantage of using 
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conditional simulation for uncertainty is that various cut-offs can be used without having 

to evaluate the whole deposit, but this was beyond the scope of this thesis.  

Table 5 1 Summary of tonnage, grade and metal content uncertainty using joint 

simulation 

Joint 
Simulation Tonnage (Mmt) Grade g/mt 

Au 
Metal Content 

(Koz) 
Simulation 1 1,889.1 0.5098 30,963.8 
Simulation 2 1,889.1 0.4856 29,495.3 
Simulation 3 1,889.1 0.5364 32,580.5 
Simulation 4 1,889.1 0.5325 32,338.8 
Simulation 5 1,889.1 0.5085 30,885.6 
Simulation 6 1,889.1 0.4914 29,842.7 
Simulation 7 1,889.1 0.4831 29,342.2 
Simulation 8 1,889.1 0.4985 30,276.6 
Simulation 9 1,889.1 0.5926 35,992.6 
Simulation 10 1,889.1 0.4993 30,322.9 
Simulation 11 1,889.1 0.4527 27,496.5 
Simulation 12 1,889.1 0.5284 32,094.5 
Simulation 13 1,889.1 0.4854 29,482.8 
Simulation 14 1,889.1 0.4700 28.543.9 
Simulation 15 1,889.1 0.5335 32,402.7 
Simulation 16 1,889.1 0.5335 32,407.7 
Simulation 17 1,889.1 0.5149 31,271.9 
Simulation 18 1,889.1 0.4986 30,283.6 
Simulation 19 1,889.1 0.5957 36,180.6 
Simulation 20 1,889.1 0.4158 25,253.2 
Simulation 21 1,889.1 0.6479 39,347.9 
Simulation 22 1,889.1 0.4406 26,757.5 
Simulation 23 1,889.1 0.4821 29,277.2 
Simulation 24 1,889.1 0.4821 29,277.2 
Simulation 25 1,889.1 0.5489 33,335.6 

The grades, tonnage and metal content uncertainties are summarized in Table 5. The grade 

estimates from the joint simulation show various average grades in the range of 0.4158 to 

0.6479 g/mt and an average grade of 0.5107 g/mt. The average grade estimate from the 

measured and indicated resources shown in table 4; 0.6142 and 0.5197g/mt respectively, 
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lie within the uncertainty range which provides confidence in the estimation. This is 

important because some resource estimation methods can be less representative of the 

resource and if simulations are available, they can be used as another form of check if the 

results make some sense. 

Figure 14 1 Grade tonnage curve showing  mean, upper limit and lower limit uncertainty 

for tonnage and average grade of all the simulation  

The tonnage curve shown in Figure 14 shows the mean grade uncertainty above cut-off 

grade of all the 25 simulations with upper and lower limits (blue dashed lines) and the mean 

tonnage uncertainty also with upper and lower limits (green dashed lines). From the 

tonnage curve, at lower cut-off grades, the differences between the upper limit and lower 

limit of the average grades is minimal and this difference increases as the cut-off grade 

increases. This observation can be used to analyse risk; at lower cut-off grades, we are 

more confident of our resource model than at higher cut-off grades. Moreover, if we 
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consider a cut-off grade at 0.5 g/mt, we get approximately 700 Mmt at an average grade of 

1.4 g/mt for 31.5 million ounces of gold and compare with a cut-off grade at 0.8 g/mt, for 

approximately 400 Mmt at an average grade of 1.7 g/mt for 21.9 million ounces of gold, 

we can see that our resource model might be sensitive to cut-off grade. At this point, the 

tonnage curve only shows the characteristics of the deposit without economic viability of 

the mineable part of the deposit which is addressed in the next section of recoverable 

reserve calculations. 

2.3.8 Reserve calculations 

The recoverable calculations were based on the multiple grade simulations generated from 

the joint simulation. The selected blocks represent the measured and indicated resources 

determined through resource classification scheme of the resource model. The process of 

pit optimization using the Maximum Flow algorithm is intended to select blocks that can 

or cannot be mined while respecting the slope constraint while providing maximum returns 

on profit. A summary of economic parameters used as inputs for reserve calculation is 

provided in Table 6. These parameters are used to calculate the block economic value for 

each block and the gold price that is used is an average of 3 months while other parameters 

are standardized. For the slope calculation, all the blocks were used including blocks from 

the inferred resources. 

Table 6 1 Economic parameter inputs for calculation of mineable blocks 

Parameter Unit Measured & Indicated 
Resource 

Specific gravity m³/g 2.7 
Recovery % 100 

Selling price of 
metal 

$/oz. 1520 

Selling cost of metal $/oz. 1.7 
Processing cost $/mt 9.03 

Mining Cost $/mt 1.77 
Slope Degrees 45 
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Table 7 reports the estimates from the ultimate pit calculation. For proven reserves, all the 

blocks from the measured resource class which can be mined provided they respected 

economic and technical constraints, are classified as proven reserves and the indicated 

resources which can be mined while also obeying these constraints, are classified as 

probable reserves. The recoverable reserve estimates show proven reserves of 0.6303 g/mt 

and probable reserves of 0.5442 g/mt.  

Table 7 1  Grades and tonnages calculated from the reserves 

Reserve Average of 
Grade (g/mt) 

Sum of 
Tonnage 
(Mmt) 

Sum of Metal 
Content (Koz.) Au 

Proven 0.6303 256.0 5,187.4 
Probable 0.5442 400.6 7,009.2 

Grand Total 0.5778 656.6 12,196.6 

Recoverable reserves tonnages and gold metal content each represent about 37% of the 

whole resource model, and because of uncertainty being captured in the resource model, 

any discrepancies in the tonnages and metal content can be accounted for. Average grade 

of recoverable reserves of 0.5778 g/mt also falls within the uncertainty margins of the 

resource model. 

The mine value chain from mineral resource estimation, resource classification to reserve 

estimation is completed; the estimation, classification and reserve criteria are limited to the 

Plurigaussian simulation method, the relative conditional variance and maximum flow 

algorithm respectively as they enabled us to understand our resource model better. 
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3 Conclusion and recommendation for future work 

3.1 Conclusion 

Mineral evaluation is key for the success of any mining project. This thesis evaluated 

spatial variability of grades within rock-types because this relationship is important in 

resource modeling, especially in heterogeneous deposits are a common phenomenon in 

most mineral deposits. Also, uncertainty of grades, tonnages and metal content is presented 

in this thesis because it provides a tool to curb risks that are inherent with mine planning 

and production due errors in resource modeling.  Capturing both spatial variability and 

uncertainty in resource modeling is important in the decision making process for economic 

viability and therefore should be understood before mining commences. Because of the 

complexity of dealing with regionalized variables of different nature that are often cross-

correlated, such as grades (continuous variable) and rock-type (categorical variable), a joint 

simulation of grades and rock-types is proposed through simulating Gaussian Random 

Variables. In this method, Pluri-Gaussian geostatistical simulation algorithm is used to 

jointly simulate rock-types and grades, where the variograms and cross variograms 

parameters of the Gaussian random fields are iteratively optimized through trial and error 

fitting of the aforementioned variograms a with coregionalization model. The realizations 

generated from the joint simulation are then used for resource classification and reserve 

calculations providing a realistic mine plan scenario. The benefits of using this approach 

compared to deterministic methods of rock-type and grades modeling is that their spatial 

dependence and correlations can be determined, accounting for grade changes along 

boundaries of rock-types; while reducing the compounded errors of handling multiple 

simulations separately per variable. Another benefit is multiple realizations generated for 

both rock-types and grades provide joint uncertainty in the estimation process.  

A good fitting of indicator and cross-variograms from the results indicate a reliable model 

which implies the simulation parameters inputs reproduce the actual dataset fairly. The 

coregionalized model also indicates presence of spatial dependency and auto-correlation 

between grades and rock-types. The generated multiple simulations provide an uncertainty 
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to the estimates; the average grade varies from 0.4158 to 0.6479 g/mt at an average grade 

of 0.5107 g/mt of composite gold. The resource classification estimates are well within this 

range indicating that true grade estimates also fall within this range. Recoverable reserves 

calculations report almost 656 million metric tonnes of ore at an average grade of 0.5778 

g/mt. The goals and objectives of using a joint simulation of grades and rock-types are 

achieved. 

3.2  Recommendations for future work 

The joint simulation of grades and rock-type uses the Pluri-Gaussian model for estimating 

grades and conditional simulation for uncertainty. The inadequacy in the proposed method 

in this thesis, is the challenge of selecting threshold values in the Pluri-Gaussian model for 

the truncation rule, especially when the number of rock-types increases and therefore also 

their Gaussian Random Fields. Another limitation in our model is its dependence on 

variogram analysis, which is limited in capturing geological domains with curvilinear 

shapes. Multi-point geostatistical tools can alleviate some of the limitations because the 

complex geological features are captured in the training image before further analysis. 

Comparative analysis with a deterministic model could also add some insight on how the 

proposed method performs.  
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	Abstract

	Spatial variability and uncertainty of continuous variables (grade) and categorical variables (rock types) in mineral evaluation significantly impact the economics of mining projects. The conventional approach of simulating grades using deterministic ...

	Chapter 1: Introduction
	1.1 Overview
	Mineral resource modeling is an intrinsic task that involves extracting information from samples (drill-hole data) to estimates how much minerals are locked in a particular deposit, and also if they are economical enough to mine. Because of financial ...
	In mining, understanding the interplay between continuous (grade) and categorical variables (rock-types) is vital because they are the critical inputs in the quantification of mineral resources, the definition of mineral reserves and production schedu...
	Various methods have been used to model grades and rock types. A common traditional method of grade modeling uses a Multi-Gaussian approach where a step-by-step or Cascade method is used as described by (Journel and Huijbregts, 1978), at which differe...
	To address the challenge of uncertainty in reporting tonnages while evaluating ore bodies, different stochastic simulation algorithms have been adopted for treating the glitches that come with rock-type models (Osterholt and Dimitrakopoulos, 2007). Me...
	For tackling the smoothing effect and uncertainty issues in estimated resources caused by Kriging, Sequential Gaussian Simulation provides a solution through multiple realizations capturing uncertainty (Deutsch and Journel, 1998; Pyrcz and Deutsch, 20...

	1.2 Goals and objectives
	The goal of the thesis is to jointly simulate (model) continuous variable (grade) with a categorical variable (rock-type) to develop a resource model where grades and tonnages are estimated, incorporating uncertainties from both the sources. The impor...

	1.3 Thesis outline
	The thesis is organized in the following manner;
	Chapter 1: An overview of the joint simulation of grades and rock-types for resource modeling is presented in this chapter, and the setbacks of conventional methods are also presented here.
	Chapter 2:  Joint simulation of grades and rock-types for resource modeling is presented, and results are validated through the summary and spatial statistics from a case study. Resource classification and reserve calculation are also included for ana...
	Chapter 3: Overall conclusions and recommendations for future work are presented.


	2 Joint simulation of continuous and categorical variables for mineral resource modeling and recoverable reserves calculation
	(The material contained in this chapter will be submitted for possible publication in ‘Natural Resources Research’ journal)
	Abstract
	Spatial variability and uncertainty of continuous variables (grade) and categorical variables (rock-types) in mineral evaluation significantly impact the economics of mining projects. The conventional approach of simulating grades using deterministic ...
	2.1 Introduction
	In mining, understanding the interplay between continuous (grade) and categorical variables (rock-types) is vital because they are the critical inputs in the quantification of mineral resources, the definition of mineral reserves, and production sched...
	Various methods have been used to model grades and rock types. A common traditional method of grade modeling uses a Multi-Gaussian approach where a step-by-step or Cascade method is used as described by (Journel and Huijbregts, 1978), at which differe...
	To address the challenge of uncertainty in reporting tonnages while evaluating ore bodies, different stochastic simulation algorithms have been adopted for treating the glitches that come with rock-type models (Osterholt and Dimitrakopoulos, 2007). Me...
	For tackling the smoothing effect and uncertainty issues in estimated resources caused by Kriging, Sequential Gaussian Simulation provides a solution through multiple realizations capturing uncertainty (Deutsch and Journel, 1998; Pyrcz and Deutsch, 20...

	2.2 Methodology
	2.2.1 Grade simulation
	Our ultimate goal is to produce a joint simulation of grades and rock-types for grade modeling, so we used the turning bands algorithm for non-conditional co-simulation of Gaussian Random Fields followed by conditioning co-kriging (Emery and Lantuéjou...
	Moreover, to determine spatial continuity parameters such as the orientation of maximum and minimum continuity (directional anisotropies), variogram map analysis is done through a rose diagram. Experimental variograms in the horizontal and vertical di...
	The model parameters of this GRF become inputs to determine other proposed Gaussian Random Fields for the indicator/s.  A non-decreasing function using the turning bands, sequential or spectral simulation provided in the code developed by Emery (2009)...
	Where. ∀𝑥 ∈. ∀𝑖 ∈ ,1.…..𝑛..  ∅ a normal score transformation function  and ,𝑍-0. is a monotonic function of a Gaussian Random Field ,𝑌-0..

	2.2.2 Rock-type simulation
	Categorical data modeling is done by transforming the rock-types into indicator data. The rock-types are transformed into indicators (,𝐼-𝐾.) using the following relationship;
	According to the contacts in the drill hole data and the proportions of individual rock- types, a rock-type rule is chosen to capture the spatial boundaries between the rock-types. Following the rock-type rule, the truncation rule determines how many ...
	The spatial relationship of the selected categorical GRF is modeled to fit the indicator variograms (Emery and Maleki, 2014).  Gibbs sampling technique is then used to simulate a set of Gaussian values generated at each data location conditionally to ...

	2.2.3 Parameter inputs
	For fitting the experimental indicator semi-variograms, cross semi-variograms between Gaussian (normal score transformed grade) and indicators that complete our coregionalization model, an interactive method together with its associated code developed...

	2.2.4 Joint simulation
	Now that all the underlying GRFs for both the transformed grade and indicators and all other input parameters are determined, a joint simulation is the next step (Emery and Lantuèjoul, 2006; Emery, 2008). To achieve this, the primary assumption is tha...
	Figure 1 1 Schematic summary of the Joint Simulation methodology

	2.2.5 Resource classification
	Resource classification is an important step in estimating the quantity of mineral resources within a deposit into blocks whereby individual blocks are classified with an increasing level of geological confidence (Ortiz et al., 2006). The quality of r...
	The realizations generated from the joint simulation were post-processed and an average of the realizations (E-type), was determined together with conditional variance generated from the realizations conditioned to the data. The inputs for calculating...

	2.2.6 Reserve calculation
	The Canadian Institute of Mining, Metallurgy, and Petroleum (CIM) defines mineral reserves as the economically mineable part of a measured or indicated mineral resource demonstrated by at least a preliminary feasibility study.  Open pit mining operati...
	Objective Function:
	,𝑥-𝑏.  𝜖 ,0, 1. , 𝑏 𝜖 𝐵
	Where, ,𝑣-𝛾𝑏. is the economic value of mining block 𝑏  from simulation 𝛾 . ,𝑥-𝑏. is the binary decision variable, which takes value 1 if mining block 𝑏 is inside the pit, 0 otherwise, ,𝑏-′. is the block that needs to mine before mining block ...


	2.3 Results
	2.3.1 Location and geology of case study
	The study area is located in Alaska within the Tintina Gold belt. This region consists of Intrusion Related Gold Systems (IRGS), which are characterized by intermediate to felsic composition intrusions near the ilmenite-magnetite series boundary with ...
	The sequence of the rocks in this particular study area consists of the older Cambrian ophiolite mafic and ultramafic rocks that are over-thrust younger sediments and volcanic rocks. For this study, the rock-types are identified as Cambrian rocks (CAM...

	2.3.2 Drill hole data
	Drill holes were collected through an exploration program with more than 90% of the holes drilled in the northerly direction. Diamond drilling core samples are collected at a spacing of 75 m inclined at about -50º and reverse circulation holes ranging...
	Figure 2 1 Rock- types and gold composite (g/mt) data plot
	Table 1 1 Summary statistics of clustered total composite gold grade (g/mt)

	2.3.3 Basic statistics
	A total of 8716 data points are determined from the 2m composite data covering all the drill holes represented in the study domain. Gold concentrations summary statistics in each rock-type are represented in table 2. The histograms in Figure 3 indicat...
	Figure 3 1 Histograms showing composite gold grade(g/mt) in rock-types
	Table 2 1 Summary statistics of declustered gold grade in individual rock-types and total composite gold grade (g/mt)

	2.3.4 Spatial statistics
	2.3.4.1 Grade modeling parameters
	Normal score transformed grade data variograms analysis show major direction along NE 140o, semi-major along NE 50o. and minor direction along the vertical. Experimental variograms in the horizontal directions were calculated at a lag of 30 m, which i...
	Figure 4 1 Variogram model in three main directions of anisotropy.
	2.3.4.2 Pluri-Gaussian parameters
	From the drill hole data, the CAM, UPS, and MVC can be in contact with each other depending on their spatial location in space. Another visible contact is between the MVC, UPS, and LSS rock-types. Furthermore, contact analysis indicates there is no co...
	From global proportion statistics of individual rock-types shown in Table 2, the proportions statistics must be preserved in the realizations after simulation. Because of the spatial characteristics evident from the rock-type contacts and proportions,...
	These Gaussian Random Fields allow thresholds to be decided, which in turn, the thresholds truncate these fields according to the contacts while the proportions are determined from the standard probability statistics. Gaussian random field (𝑌1) was d...
	Figure 5 1 Truncation rule with thresholds along (𝑌₁ 𝑎𝑛𝑑 𝑌₂) fields
	With the thresholds included to fully define the spatial characteristics of all the rock-types, the relationship between the indicators and these GRFs can be expressed as:
	The thresholds values depend on the proportions of each rock-type, and in each Gaussian random field range from -3 to 3. Because the sum of the indicators is equal to one, at any point within the fields, the sum of all the four rock-types should be on...
	Where 𝑝𝑟(𝑌₂(𝑥) denotes the mean of the Cambrian rock indicator and 𝑓 is the standard cumulative distribution functions and ,P-𝑐𝑎𝑚. is the probability of the proportion of Cambrian rocks. The means of the other indicators are calculated the sam...
	The following thresholds which represent the truncation rule are then determined at 𝑡₁=−0.1348,  𝑡,₁-′  .=0.6588 and 𝑡₂=−0.8600. Figure 5 indicates two axes of underlying Mutli-Gaussian fields (𝑌₁ 𝑎𝑛𝑑 𝑌₂) with each axes having a mean of 0 and ...

	2.3.5 Variogram analysis and spatial dependence modeling
	With the truncation rule governing the spatial relationship between the rock-types evaluated, modeling their GRFs variograms is the next step. This is achieved through modeling the proposed Gaussian Random Fields (𝑌₁ 𝑎𝑛𝑑 𝑌₂), by trial and error f...
	Figure 6 1 Indicator variograms in three anisotropy directions (circles are experimental variograms & solids are models)
	With all the GRFs (𝑌₀,𝑌₁ 𝑎𝑛𝑑 𝑌₂) determined, their spatial dependence is addressed through identifying their model structures. The exponential structure is common to all GRF, and the cross-correlation between all the fields is investigated throu...
	Figure 7 1 Cross variograms between indicator and grade in three anisotropy directions (circles are experimental variograms & solids are models)
	As we have already discussed in the truncation rule (Pluri-Gaussian model), we have completely determined which Gaussian Random Fields and thresholds are responsible for modeling which rock-type, and we have also determined their spatial contribution ...
	Table 3 1 Parameters from trial and error coregionalization model

	2.3.6 Joint simulation results
	2.3.6.1 Co-simulation & realizations
	From the coregionalization model, all the Gaussian Random Fields can be simulated together since they are in one format-structure. Data locations of the two GRF (𝑌₁ 𝑎𝑛𝑑 𝑌₂) are then simulated conditionally to the grade and rock type data via a Gi...
	Figure 8 1 Random grade realizations generated from the joint simulation
	The joint simulation enabled us to determining how the grades change with changing rock-types. While looking at the realization maps, the joint simulation produces gradual or rather smooth transitions of gold grades across rock-types. The observation ...
	Figure 9 1 Random rock-type realizations generated from the joint simulation
	Another observation from the rock-types realizations is that there are various possibilities of rock-type distribution which will be vital for evaluating tonnages (volumes) especially if mineralization prefers as certain rock-type. This is a scenario...
	2.3.6.2 Validation of the Joint Simulation Models
	For validating the continuous variable (grade) simulation, histograms and experimental variograms from generated simulations are plotted and compared with the composite gold grade from the drill hole data. The histogram distributions for the realizati...
	Figure 10 1 Histograms of simulated gold grades and composite grade from drill-hole data
	Figure 11 1 Variograms of simulated gold grades in X-direction, Y-direction and Z-direction compared with composite gold grades
	For the simulated rock-types, the generated realizations are validated through a box plot and conditioning drill hole data in a three-dimensional space shown in Figures 13. Respectively, the rock-types statistics are well preserved in the simulated re...
	Figure 12 1 Drill holes conditioned to rock-types (before topographic removal) and box plot of all 25 realizations of rock-type proportions

	2.3.7 Resource classification
	Post-processing of the grade realizations produced E-type (mean), conditional variance and relative conditional maps respectively as shown in Figure 13. From the E-type map, the high grade areas indicate high values of conditional variance while the l...
	Figure 13 1 E-type and Conditional Variance and Relative Conditional Variance Maps of simulated gold grades
	To obtain the resource classification scheme of our resource model, relative conditional variance is used and is preferred because it doesn’t show any preference to high or low grade areas in a deposit because the ratio between the dispersion indicato...
	Table 4 1 Resource classification (Mmt=Million metric tonnes. Koz =thousands of ounces)
	Because the resource classification is only done on an average, for example, E-type, uncertainty in this estimation procedure is eminent due to one solution being provided. To quantify the overall resources so that we can have an idea of our grades, t...
	Table 5 1 Summary of tonnage, grade and metal content uncertainty using joint simulation
	The grades, tonnage and metal content uncertainties are summarized in Table 5. The grade estimates from the joint simulation show various average grades in the range of 0.4158 to 0.6479 g/mt and an average grade of 0.5107 g/mt. The average grade estim...
	Figure 14 1 Grade tonnage curve showing  mean, upper limit and lower limit uncertainty for tonnage and average grade of all the simulation
	The tonnage curve shown in Figure 14 shows the mean grade uncertainty above cut-off grade of all the 25 simulations with upper and lower limits (blue dashed lines) and the mean tonnage uncertainty also with upper and lower limits (green dashed lines)....

	2.3.8 Reserve calculations
	The recoverable calculations were based on the multiple grade simulations generated from the joint simulation. The selected blocks represent the measured and indicated resources determined through resource classification scheme of the resource model. ...
	Table 6 1 Economic parameter inputs for calculation of mineable blocks
	Table 7 reports the estimates from the ultimate pit calculation. For proven reserves, all the blocks from the measured resource class which can be mined provided they respected economic and technical constraints, are classified as proven reserves and ...
	Table 7 1  Grades and tonnages calculated from the reserves
	Recoverable reserves tonnages and gold metal content each represent about 37% of the whole resource model, and because of uncertainty being captured in the resource model, any discrepancies in the tonnages and metal content can be accounted for. Avera...
	The mine value chain from mineral resource estimation, resource classification to reserve estimation is completed; the estimation, classification and reserve criteria are limited to the Plurigaussian simulation method, the relative conditional varianc...
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