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 Preface 

This dissertation includes three multi-authored manuscripts planned for publication. 
Included below are details regarding the status and author contributions for each chapte r: 

Chapter 1 – Climate, snowmelt dynamics and atmospheric deposition interact to control 
dissolved organic carbon export from a northern forest stream over 26 years, this 
manuscript has been submitted and is in review with Environmental Research Letters. 
Robert Stottlemyer and Dave Toczydlowski designed the experiment and collected the 
data. Karl Meingast and Evan Kane conducted the analysis. Karl Meingast wrote the 
manuscript and created the figures. Ashley Coble and Amy Marcarelli provided editorial 
advice. 

Chapter 2 – Seasonal trends of DOM character in leachates, soils, and stream change 
with snowmelt timing, this manuscript is planned for submission in the journal for Water 
Resources Research in the near future. Karl Meingast and Evan Kane conceived the study 
design. Karl Meingast collected the data. Karl Meingast analyzed the data. Karl Meingast 
made the figures and wrote the manuscript. Joseph Wagenbrenner and Amy Marcarelli 
provided editorial advice.  

Chapter 3 – Dissolved organic matter properties and remote sensing reflectance of river-
sourced plumes in Lake Superior, this manuscript is planned for submission in the 
Journal of Great Lakes Research in the near future. Karl Meingast conceived the study 
design and instrumentation setup. Colleen Mouw provided guidance on collection of data 
and assistance on processing of the data. Karl Meingast collected the data, analyzed the 
data, created the figures and wrote the manuscript. Evan Kane provided editorial advice.  
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 Abstract 

Dissolved organic matter (DOM) represents a carbon pool that can be easily translocated 
between ecosystems with the movement of water. This study examines the controls on 
DOM quantity and character delivered to Lake Superior primarily during the snowmelt 
period. We employed long-term stream dissolved organic carbon (DOC) data to 
determine quantity as well as absorption and fluorescence spectroscopy to analyze DOM 
structure. Our results indicate that an increasing trend in DOC concentrations, likely 
driven by decreases in acidity of precipitation, combined with slightly less annual runoff 
have resulted in relatively constant fluxes of DOM to Lake Superior. Additionally, our 
study displayed optical changes in DOM translocated from surface litter to deeper 
mineral soils that changed throughout the progression of snowmelt on different 
geomorphic aspects, but these changes did not reflect simultaneous pulses of snowmelt at 
the watershed scale. To aid in future monitoring of DOM translocated to Lake Superior 
via snowmelt, we developed a relationship between absorbance and dissolved organic 
carbon concentrations (DOC) for coastal Lake Superior and make recommendations for 
satellite retrievals of DOM absorbance as a proxy for DOC concentrations. 
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1 Climate, snowmelt dynamics and atmospheric 
deposition interact to control dissolved organic 
carbon export from a northern forest stream over 26 
years 

Karl M. Meingast 1 

Evan S. Kane1, 2 

Ashley A. Coble3 

Amy M. Marcarelli4 

Dave Toczydlowski4 
 

1 Michigan Technological University; College of Forest Resources and 
Environmental Science; Houghton, MI 

2 U.S.D.A. Forest Service; Northern Research Station; Houghton, MI 

3 National Council for Air and Stream Improvement, Inc.; Corvallis, OR 

4 Michigan Technological University; Department of Biological Sciences; 
Houghton, MI 

1.1 Abstract 

Increasing concentrations of dissolved organic carbon (DOC) have been 

identified in many freshwater systems over the last three decades. Studies have 

generally nominated atmospheric deposition as the key driver of this trend, with 

changes in climatic factors also contributing. However, there is still much 

uncertainty concerning net effects of these drivers on DOC concentrations and 

export dynamics. Changes in climate and climate mediated snowfall dynamics in 

northern latitudes have not been widely considered as causal factors of changes 
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in long-term DOC trends, despite their disproportionate role in annual DOC 

export. We leveraged long-term datasets (1988-2013) from a first-order forested 

tributary of Lake Superior to understand causal factors of changes in DOC 

concentrations and exports from the watershed, by simultaneously evaluating 

atmospheric deposition, temperature, snowmelt timing, and runoff. We observed 

increases in DOC concentrations of approximately 0.14 mg C L-1 year -1 (mean = 

8.12 mg C L-1) that were related with declines in sulfate deposition (0.03 mg SO4 

L -1 year -1). Path analysis revealed that DOC exports were driven by runoff 

related to snowmelt, with peak snow water equivalences generally being lower 

and less variable in the 21st century, compared with the 1980s and 1990s. Mean 

temperatures were negatively related to maximum snow water equivalences (-

0.71), and in turn had negative effects on DOC concentrations (-0.58), the timing 

of maximum discharge (-0.89) and DOC exports (indirect effect, -0.41).  Based 

on these trends, any future changes in climate that lessen the dominance of 

snowmelt on annual runoff dynamics— including an earlier peak discharge— 

would decrease annual DOC export in snowmelt dominated systems.  Together, 

these findings further illustrate complex interactions between climate and 

atmospheric deposition in carbon cycle processes, and highlight the importance 

of long-term monitoring efforts for understanding the consequences of a 

changing climate.  
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1.2 Introduction 

Long-term studies of brown-water fed freshwater bodies have revealed 

increasing concentrations of dissolved organic carbon (DOC) over the last three 

decades across North America and Europe (Roulet and Moore 2006, Stottlemyer 

and Toczydlowski 2006, De Wit et al 2007, Monteith et al 2007a, Erlandsson et al 

2008, Zhang et al 2010, Urban et al 2011, Couture et al 2012, De Wit et al 2016, 

Strock et al 2017). Mechanisms explaining increases in stream DOC 

concentrations have converged on changes in atmospheric deposition (De Wit et 

al 2007, Erlandsson et al 2008, Strock et al 2014), the timing and amounts of 

precipitation (Stottlemyer and Toczydlowski 2006, Erlandsson et al 2008, De Wit 

et al 2016), and responses to changing climate (Tiwari et al 2018). However, 

exactly how increases in DOC concentrations relate to DOC exports from 

watersheds are uncertain, as isolating factors controlling hydrologic connectivity 

within watersheds is difficult (Hood et al 2003, Couture et al 2012).  

Winter snowpack is a dominant source of annual runoff in northern 

regions, and as such determines the dynamics of nutrient and DOC export 

(Buffam et al 2001). Therefore, changes in climate that alter the patterns of 

precipitation are likely to change the timing and amount of melt and runoff in 

snowmelt-dominated systems, potentially changing stream DOC concentrations 

and/or exports (Erlandsson et al 2008, Oni et al 2014). Shorter winters 

accompanied by lower snowmelt runoff peaks and slower spring snowmelt rates 
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are expected to be the largest effects of changing climate on snowmelt dynamics 

(Hayhoe et al 2010, Musselman et al 2017, Byun et al 2018). Given these 

predictions, total runoff is expected to decline as the relative amount of total 

precipitation contributed as snowfall declines. While there could be an increase in 

the frequency of autumn storms (e.g., Small et al 2006), it can also be expected 

that snowmelt will occur earlier with a longer snowmelt runoff hydrograph. 

Exactly how these factors are likely to correspond with changes in solute export 

from watersheds are uncertain.  

Hydrologic flowpath variability has direct and indirect impacts on DOC 

export that may be countervailing under changing climate (Stottlemyer and 

Toczydlowski 2006). For example, if there is extensive and persistent snow water 

equivalent (SWE) contributing to a late onset of melt, this could lead to more 

DOC export through shallow carbon-rich soil flow paths, and higher variation in 

runoff and DOC export (e.g., Sebestyen et al 2008).  Diminished SWE and early 

melt, which is increasingly likely in the future (Ågren et al 2010, Musselmen et al 

2017; Byun et al 2018), should be coincident with less DOC export owing to 

reduced runoff. Moreover, a diminished or variable snowpack results in very 

different soil thermal gradient and decomposition environment, which also affects 

soil DOC concentrations (Li et al 2019). Given these complexities, changes in 

both DOC concentrations and the timing and amounts of runoff are likely to vary 

with peak SWE in ways that make understanding patterns of DOC export difficult.  
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Furthermore, it is unclear how potential changes in DOC concentrations in 

different flow paths could manifest as total DOC export, as disentangling the 

many factors governing hydrologic connectivity between soils and aquatic 

systems are also complex (Stottlemyer and Toczydlowski 1991, 2006). 

Long-term changes in precipitation chemistry are also likely affecting DOC 

concentrations in streams.  For example, sulfate (SO4) deposition in precipitation 

increases the ionic strength in soils, which inhibits the release of organic acids 

(Krug and Frink 1983, Evans et al 2008).  After amendments to air pollution 

legislation in the early 1990’s - 2000’s (e.g., U.S. Clean Air Act (1990); European 

Environment Agency, National Emission Ceilings Directive 81/EC (2001)), the 

rate of SO4 deposition has declined (Strock et al 2014).  The decline in SO4 

deposition and corresponding changes in soil ionic strength provides an 

explanation for the increased DOC concentrations observed in surface waters 

(Monteith et al. 2007a), but does not directly inform mechanisms controlling 

runoff and DOC export dynamics. Moreover, field studies observing interactive 

effects of SO4 deposition and changes in runoff patterns over time are rare for 

snowmelt-dominated watersheds (De Wit et al 2007, Erlandsson et al 2008).   

We examined the influence of snowmelt dynamics and climate on DOC 

concentrations and exports through analyses of long-term monitoring data for a 

small forested tributary of Lake Superior (Stottlemyer and Toczydlowski 2006). 

Because these factors are not easily isolated, long-term monitoring provides 
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useful insight into the dynamics of DOC concentrations and exports in response 

to climatic forcing and changes in atmospheric deposition. Specifically, we 

investigated changes in snowmelt runoff, temperatures, SO4 deposition, and their 

interactive effects in explaining the variation in DOC concentrations and DOC 

exports over 26 years. We hypothesized that while peak snowpack runoff should 

primarily determine quantity of DOC exports, the timing of snowmelt would 

explain year-to-year variation in DOC export, with later peak melt events driving 

higher levels of DOC export. These analyses address our over-arching question: 

Given that long-term changes in SO4 deposition have likely influenced DOC 

concentrations, do changes in snowmelt patterns explain additional variation in 

DOC concentrations in addition to DOC exports from snowmelt-dominated 

watersheds?   

 

1.3 Methods 

1.3.1 Study site 

The Calumet watershed is a first-order tributary of Lake Superior in the 

Upper Peninsula of Michigan, USA (Latitude: 47.278, Longitude: -88.515), 

previously described in detail by Stottlemyer and Toczydlowski (2006). Briefly, 

the watershed is 176-ha, has uniform slope (5%), moderate topographic relief 

and is vegetated by mixed northern hardwood forest. Soils are Typic Haplorthods 

with an ortstein layer at 1.5 – 2.0 m depth (Stottlemyer and Toczydlowski 1991). 
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The climate is modified by Lake Superior, which moderates autumn and winter 

temperature extremes (Stottlemyer and Toczydlowski 2006). The National 

Atmospheric Deposition Program (NADP) site (MI99) is located 16 km south of 

the watershed, and received a mean of 803 mm in annual precipitation over the 

study period (Supplemental Figure; Figure S1). The annual hydrograph is 

dominated by snowmelt and can be highly variable in timing and duration. The 

transitional spring climate has a large impact on the timing and duration of the 

spring snowmelt hydrograph (Figure 1).  

1.3.2 Field procedures 

Snow cores were measured weekly typically from mid-December to mid-

April across four transects spanning the elevation gradient at Calumet, 1988-

2013 (Stottlemyer and Toczydlowski 1991). The transects consisted of five 

sampling points and were measured weekly using a Federal sampler for snow 

moisture content (Stottlemyer and Toczydlowski 2006). These transects were 

averaged for a watershed SWE estimate. Continuous stream discharge was 

monitored using a 30-cm wide Parshall flume equipped with a Li-Cor datalogger 

and Stevens pressure transducer. Continuous data were integrated by day to 

calculate a daily measurement of runoff. Stream water samples were collected 

approximately weekly except during snowmelt, when samples were collected 

multiple times per week to capture the leading and trailing edges of the 

hydrograph. Water samples were collected in amber polyethylene 500-ml bottles 
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and frozen for later analysis. Precipitation chemical composition data was 

acquired from the NADP monitoring site MI99 in Chassell, MI and was used to 

obtain monthly averages of SO4 deposition (wet deposition) for the study period 

(1988-2013). Daily temperature data was collected from the National Oceanic 

and Atmospheric Administration (NOAA) station 3908 Houghton-Hancock County 

Airport 8 km south of the watershed.   

1.3.3 Laboratory analysis  

Water samples were immediately brought to Michigan Technological 

University for analysis. DOC sample analysis is described in detail by 

(Stottlemyer and Toczydlowski 2006). Briefly, for the period (1988-1997) DOC 

was determined on filtered samples (0.45 m) using a Dohrmann 180 (Teledyne-

Tekmar-Dohrmann, Mason, Ohio) carbon analyzer. Post 1997, DOC 

concentrations were determined using a Shimadzu TOC-5000A analyzer 

(Shimadzu Scientific Instruments, Columbia, Maryland). Laboratory quality 

assurance procedures were previously described in detail (Stottlemyer and 

Toczydlowski 2006), and included analyses of split samples run as part of NADP, 

the Environmental Protection Agency's National Acid Precipitation Assessment 

Program (NAPAP) and continuous participation in the U.S. Geological Survey 

laboratory round robin program. 
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1.3.4 Data analysis 

1.3.4.1 Snowmelt descriptors  

Maximum SWE was calculated for each year. Maximum discharge date 

was defined as the date of the spring hydrograph peak. Traditionally, spring melt 

onset for river and stream discharge has been defined as the center of volume 

date (Hodgkins et al 2003). However, center of volume date does not necessarily 

reflect the onset of increased hydrologic connectivity with soils and snowpack. 

Therefore, we developed a metric based on the leading edge of the stream 

snowmelt hydrograph to identify the critical timing of the initial onset of spring 

(see for example, Contosta et al 2017). For this study, melt initiation was defined 

as the first day when a four-fold increase in stream discharge relative to winter 

baseflow was observed and sustained for a minimum of four consecutive days. 

Early and late melts were defined by the melt initiation date for a given year in 

relation to the median melt initiation date for the study period. To further 

characterize the duration of the spring freshet, we calculated the duration 

between melt initiation and peak runoff, hereafter referred to as steep time 

(days).  

1.3.4.2 Statistical analysis 

Because sampling was not conducted at a constant frequency, linear 

interpolation with respect to time was used to estimate DOC concentrations on a 

daily timestep, matching the temporal resolution of daily discharge 
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measurements. One DOC collection reflected an ephemeral pulse of rain after 

the hydrograph peak, yielding a low value (0.08 mg C L-1) that was not used for 

interpolation (see supplemental online material).  

Linear regression analysis was used to test for significant trends in annual 

hydrologic and snowmelt variables for the time period (1988-2013; n = 26). 

Trends were reported if significant at p < 0.05.  Bartlett tests were performed at 

three-year intervals on annual time series data to test for non-constant variance 

across years (Bartlett, 1937). These trend analyses were conducted in R (version 

3.3.2; R Core Team, 2017). In our 26-year dataset, we examined broader 

changes in atmospheric SO4 deposition, water year, mean annual air 

temperature, maximum winter SWE, and annual runoff, and tested for interactive 

effects on mean annual DOC concentrations and exports.  We used a path 

analysis approach (Wright, 1934) on annual descriptors, which enabled analysis 

of both direct and indirect effects on DOC concentrations and exports.  We used 

the Calis procedure (LINEQS; SAS version 9.4, SAS Institute, Cary, North 

Carolina, USA) with the date of maximum stream discharge, maximum SWE, 

mean air temperature, and mean precipitation SO4 concentration as exogenous 

variables with paths to mean stream DOC concentration and mean DOC export; 

DOC concentration also had a path to DOC export. These exogenous variables 

were chosen to appropriately constrain the model without statistical redundancies 

(i.e., autocorrelation among variables, such as peak SWE and runoff). Error 
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terms (STD statement) were estimated for DOC concentration and DOC export.  

The model was evaluated through examination of Standardized Root Mean 

Square Residual (SRMR) and the Bentler Comparative Fit Index (CFI; model 

accepted at < 0.08 and > 0.99, respectively; Hu and Bentler 1999).  We report 

results from the covariance structure analysis (maximum likelihood estimation) 

for standardized direct and indirect effects (significant at p < 0.05).   

1.4 Results 

1.4.1 Changes in hydroclimate 

Variation in the onset of melt, and hence the duration of winter, as well as 

snowpack depth have changed over time. The occurrences of winters associated 

with high maximum SWE and extended snowmelt through the spring have 

declined over the study period (Bartlett test; p = 0.034; n = 26 years) (Figure 2a). 

Annual cumulative runoff exhibited a marginally significant downward trend of 2.4 

mm Y-1 (S.E. = 1.2 mm Y-1 ) (R2 = 0.11, p = 0.05; Figure 2b). Steep time also 

showed decreasing variation through time, indicating spring climate is becoming 

more homogenous with less frequent extended snowmelt periods (Bartlett test; p 

= 0.023; n = 26 years) (Figure 2c). There were no trends in temperature within 

the range of records reflected in this study (1988-2013). Temperature records 

extend beyond the solute records in this study (1948 – 2018), and there has 

been a long-term increase in air temperatures observed in August and 

September of 0.026 °C Y -1 (S.E. = 0.010 °C Y -1) and 0.034 °C Y -1 (S.E. = 0.009 
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°C Y -1), respectively (Figure S2).  However, annual mean temperature did not 

show a significant warming trend (mean of 4.5 °C).   

1.4.2 DOC concentrations and export 

Stream DOC concentration ranged from 2.61 mg C L-1 to 20.00 mg C L-1 

(mean = 8.12 mg C L -1 over the course of the study). Mean annual DOC 

concentrations increased significantly by 0.14 mg C L-1 Y -1 (S.E. = 0.03 C L-1 Y -

1)  (Figure 2d). SO4 concentrations in precipitation have been decreasing by 

approximately 0.026 mg L -1 Y -1 (S.E. = 0.003 mg L -1 Y -1 ) in Northern Michigan 

(1988 -2013; National Atmospheric Deposition Program; MI99; Figure S3). Path 

analysis indicated that SO4 concentration had a direct negative effect (-0.57, p < 

0.0001) on DOC concentrations in the stream (Figure 3). The path analysis also 

highlighted the negative effect of mean temperature on DOC concentrations (-

0.58, p = 0.016), owing to the strong direct negative effects of mean temperature 

on maximum SWE (-0.71, p < 0.001) and in turn of maximum SWE on DOC 

concentrations (-0.77, p = 0.001).  

Annual runoff showed a significant correlation with maximum SWE (R2 = 

0.57, p < 0.0001; Figure 4a). Annual runoff also correlated with annual DOC 

export (R2 = 0.51, p < 0.0001; Figure 4b).  There was a correlation between 

maximum SWE and annual DOC export (R2 = 0.18, p = 0.02) and maximum 

SWE had a positive direct effect on DOC export in path analysis (Figure 3).  

Because maximum SWE was strongly negatively related to mean temperature, 
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temperature also had a negative indirect effect on DOC export in path analysis (-

0.41, p = 0.002; indirect path data not shown).  Melt onset date and peak 

discharge date correlated strongly with annual DOC export (Figure 5), and as 

such later maximum discharge corresponded to higher DOC exports (significant 

positive direct effect, 0.24, p = 0.038; Figure 3).  In addition, maximum SWE was 

also positively related to the timing of maximum discharge in path analysis (0.82, 

p < 0.001).  Steep time, or the duration of melt, was not significantly related to 

annual mean stream DOC concentration or export (p = 0.5). 

1.5 Discussion 

1.5.1 DOC concentration 

Path analysis indicated that maximum SWE had a negative influence on 

DOC concentrations, likely through dilution effects (Figure 3). However, the 

strength of this effect would be diminished if trends in maximum SWE continue to 

decline and if warming trends extend into the spring season. Mean temperatures 

had a negative effect on DOC concentrations in the path analysis conducted in 

this study. Prior research has observed an increase in DOC release in soils that 

experience freezing conditions, suggesting that the integrated effect of air 

temperature and winter snow cover duration drives soil frost formation and 

subsequently stream DOC concentrations (Haei et al 2010). The mechanism by 

which soil freezing increases DOC concentrations is likely a combination of 

increased solutes from root and microbial mortality (cell lysis) and solute 
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concentration by freezing (Biederbeck and Campbell 1971, Fitzhugh et al 2001, 

Agren et al 2012). In addition to these mechanisms, we highlight here that soils in 

this study region typically do not freeze in the winter, because the depth and 

persistence of the snowpack; this effectively disconnects winter soil and air 

temperatures. It is possible that warmer fall temperatures (cf. Figure S2) could 

attenuate snowpack formation, permitting freezing conditions in soils (Groffman 

et al 2001) and thus promoting the release of DOC (Fitzhugh et al 2001, Haei et 

al 2012).   

Stream DOC concentrations have been steadily increasing over the last 

three decades, while atmospheric SO4 concentrations have declined. The steady 

decline in SO4 deposition offers a parsimonious explanation for the increase in 

observed DOC concentrations. In addition, we highlight here that runoff appears 

to affect DOC concentrations and water delivery that drives export. Future work 

is needed to tease apart the complex role climate plays in mediating runoff, 

particularly in snowmelt dominated watersheds. These findings are in line with 

previous studies that have identified atmospheric deposition as the principal 

driver of increased DOC concentrations in surface waters, while highlighting the 

important influences of climate factors with strong seasonal effects on carbon 

export dynamics (see Clark et al 2010, and references therein). 
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1.5.2 DOC export 

Winter snowpack has the largest direct effect on DOC export through 

runoff (Figure 4). Additionally, snowmelt timing shows a positive correlation with 

annual DOC export for the watershed, which is also influenced by snow water 

equivalences (Figure 3). These results indicate that the amount of water in the 

snow is more significant than the timing of snowmelt in controlling DOC export, 

and temperature appears to have a greater effect on timing than snow water 

equivalence (Figure 3), which could alter the relative magnitudes of these effects 

in the future. The decline in runoff over time (Figure 2b) along with the direct and 

indirect effects of snowmelt and temperature on export (Figure 3) offer 

countervailing effects which result in no time trend for DOC export. Other studies 

of temperate zone streams have also identified an increase in stream DOC 

concentrations with no associated increase in export (Urban et al 2011, Coble et 

al 2018, O’Driscoll et al 2018). Our analysis suggests that slight changes in 

runoff combined with indirect controls of temperature and snowmelt can offset 

effects of increased DOC concentrations and attenuate DOC exports. However, 

this is further complicated by the co-occurrence of slow-melt and low snowpack 

years (denoted by subscript letters (b) and (d) in Figure 1; Table 1), which add 

considerable variation to interannual DOC exports (Figure 5).   

The large proportion of seasonal precipitation falling as snow is a 

distinctive characteristic of watersheds in the northern Great Lakes region like 
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the Calumet watershed, as it consistently provides a baseline minimum amount 

of water in spring runoff capable of flushing a minimum amount of DOC each 

year. While variation in snowpack in the Calumet watershed among years was 

quite high, the record shows there was always at least approximately 180 mm of 

water in peak snowpack (Figure 2a).  As such, runoff contributions from rainfall 

would have to be very large events - around 180 mm of precipitation in a given 

storm - to significantly alter the shape of the snowmelt-dominated hydrograph 

(e.g., Figure 1).  While larger and more variable storms are expected to occur 

more frequently in the Great Lakes region (Kossin et al 2017), the spring freshet 

is likely to remain the largest pulse of DOC export from watersheds in this region. 

Late fall runoff was generally the second largest pulse of DOC from the 

watershed. Late summer baseflow has been related to maximum SWE in 

mountainous regions (Godsey et al 2014; Barnhart et al. 2016). In this study, July 

and August runoff showed significant linear trends with both maximum SWE (R2 

= 0.65; p < 0.0001 and R2 = 0.38; p = 0.0003 respectively; Figure S4; Figure S5) 

and melt initiation (R2 = 0.64; p <0.0001 and R2 = 0.37; p =0.0004 respectively; 

Figure S4; Figure S5). Although speculative, this suggests that snowmelt 

recharge is significant for late summer baseflow conditions and subsequent DOC 

export. This highlights the importance of winter snowpack in these regions on the 

annual hydrograph and subsequent DOC exports.   
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1.5.3 A changing hydrograph 

Given climate change predictions for areas with high snowfall (e.g., 

Musselman et al 2017), we expect changes in the hydrographs of snowmelt-

dominated tributaries, with consequences for solute export (cf. Marcarelli et al 

2019). Most notably, these predictions indicate earlier and slower snowmelt to 

prolong the hydrograph with an earlier melt onset. Although this 26-year study 

period contains more years in the late- than early-season melt scenario (15 and 

11 years, respectively; Table 1), our results indicate that both earlier and slower 

snowmelt may lead to decreased DOC exports. Exactly how climate-induced 

changes in the spring hydrograph affect DOC exports will depend on the 

persistence of increasing DOC concentrations, snowmelt dynamics and 

temperature. While trends to date are best represented as linear processes, we 

stress here that the increasing DOC concentrations and declining peak SWE 

may exhibit non-linear or threshold responses in the future. For example, runoff 

cannot continue to decline at the same rate indefinitely, and the increasing DOC 

concentrations should reach a new stable state over time (Monteith et al 

2007b). As such, long-term monitoring efforts are invaluable for detecting novel 

patterns of DOC export. 
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1.7 Tables and Figures 

 

 

 

 

 

 

Table 1: The 26 snowmelt hydrographs from this study, binned by melt timing and peak 
SWE. There has been large variation in seasonal snowpack and melt dynamics over the 
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last 26 years, with a general trend of high SWE with late melts and low SWE associated 
with early melts.  

Melt 
timing

Peak SWE 

(# in last 26 years) 

Likely future 
change Likely DOC 

export

Early High (1 year) (?) Variable. Fast has 
punctuated export 
whereas slow has 

stormflow 
influences

Low (10 years) (+)

Late High (10 years) (-) Generally high

Low (5 years) (?) Variable
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Figure 1: Four representative hydrographs of the stream at Calumet. (a) Early 
melt with high maximum SWE, (b) early melt with low maximum SWE, (c) late 
melt with high maximum SWE and (d) late melt with low maximum SWE.  These 
four hydrographs correspond with the four melt scenarios proposed in Table 1 
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Figure 2: (a) Variation in snowpack maximum SWE has declined over the study 
period (Bartlett test; p = 0.034; n = 26 years). (b) There has been a marginal 
decline in annual runoff at Calumet Watershed over the last three decades. (c) 
Variation in spring melt duration (steep time) has declined over the study period 
(Bartlett test; p = 0.023). (d) DOC concentrations have been increasing at 
Calumet when plotted continuously and as yearly means (slope = 0.14 mg C L-1 
Y -1).  
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Figure 3: A path analysis used to test the effects of snowmelt dynamics, climate and 
atmospheric deposition on DOC concentrations and export (depicted here are direct 
effects). Bold text indicates significant effects (p value in parentheses; dashed lines are 
non-significant paths). Model Standardized Root Mean Square Residual (SRMR) = 
0.004; Bentler Comparative Fit Index (CFI) = 0.994.  

Timing of Max 
Discharge

Precip. [SO4]
Concentration

Max SWE

Stream [DOC]
Concentration

DOC export

0.82 (<0.001)

0.51 (0.021)

‐0.57 (<0.001)

0.24 (0.038)

0.72 (<0.001)

0.71 (< 0.001)

‐0.77 (0.001)

Mean 
Temperature

‐0.89 (<0.001) ‐0.71 (<0.001)

‐0.58 (0.016)
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Figure 4: (a) Annual runoff (by water year) has been decreasing at the Calumet 
Watershed, which is correlated with changes in maximum SWE.  (b) Runoff in 
turn is a major determinant of annual C export from this watershed.  Grey letters 
correspond to representative water years in Figure 1. 
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Figure 5: (a) Later onset of melt, a scenario which is predicted to occur less often 
in the future, has correlated with a greater export of carbon from Calumet 
Watershed.  (b) The timing of maximum discharge is also correlated with DOC 
export, with later peak discharge resulting in greater carbon export (cf. Figure 3).  
Grey letters correspond to representative water years in Figure 1. 
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1.8 Supplemental material 

Supplementary Information: Meingast et al., The importance of snowmelt 
dynamics on dissolved organic carbon export from a northern forest tributary 
over 26 years

Figure S1: Cumulative annual precipitation at the National Atmospheric 
Deposition Program (NADP) site MI99 located 16 km south of the watershed 
from 1988 - 2013.  
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Figure S2: Mean August (a) and September (b) air temperatures show increasing 
trends from the Houghton County Airport 8 km south of the watershed (1948 – 
2018). No other months displayed significant trends. Black points indicate years 
from this study period, however relationships were calculated for the entire 
record. Relationships limited to this study period were not significant.  
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Figure S3: Mean annual SO4 concentrations declined 0.03 mg L-1 Y-1 at the 
National Atmospheric Deposition Program (NADP) site MI99 located 16 km south 
of the watershed from 1988 - 2013.  
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Figure S4: (a) Cumulative July runoff is positively correlated with maximum SWE 
and (b) Melt initiation date.  
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Figure S5: (a) Cumulative August runoff is positively correlated with maximum 
SWE and (b) Melt initiation date.  
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2.1 Abstract  

Dissolved organic matter (DOM) represents a significant pool of total ecosystem carbon 

with potential to be translocated from plant materials, through soils, and into aquatic 

environments. However, exactly how portions of DOM are selectively removed and 

altered with movement through soils and into streams is not well understood. We studied 

the optical character of DOM as it moved through a forested watershed, across 

contrasting aspects with different snowmelt rates, and into a small northern headwater 

stream. We found significant differences among optical characteristics of leaf leachates, 
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DOM within soil A and B horizons (spodic horizons) and stream DOM. The largest 

differences between A and B horizons occurred on north-facing slopes. We measured a 

seasonal decline in an index of DOM molecular weight and processing (spectral slope, 

S275-295; range = 0.0102 to 0.0214), a seasonal increase in an index of recently derived 

DOM (Biological Index, BIX; range = 0.2 to 1.1), and a seasonal decrease in an inverse 

index of DOM oxidation or diagenesis (ratio of Peak C to Peak A, or C/A; range = 0.59 

to 2.010) through snowmelt. These trends in stream character were not influenced by 

discharge and did not track with hydrograph peaks. The three trends did reflect the 

differences in character in DOM from the north facing soils which had a more persistent 

snowpack than DOM from the south aspect soils. C/A displayed unique trends in soil 

lysimeters and the stream that were not captured with any of the other metrics and were 

likely reflecting the diagenesis of DOM through the system. The stream appeared humic-

like throughout the study period (Humification Index, HIX; mean = 10.9; mean DOC 

concentration = 4.6 mg C L-1). Overall our study displayed optical changes in DOM 

translocated from surface litter to deeper mineral soils that changed throughout the 

progression of snowmelt on different aspects, but these changes did not reflect 

simultaneous pulses of snowmelt at the watershed scale. 

 

2.2 Introduction 

Dissolved organic matter (DOM) represents a significant and mobile carbon pool 

in the earth’s carbon cycle [Battin et al., 2009]. Terrestrial DOM is one of the largest 
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sources of organic carbon delivered to aquatic ecosystems, yet how it is delivered is 

highly complex [Tranvik et al., 2009].  DOM encompasses a broad continuum of organic 

materials formed by the degradation of terrestrial and microbial inputs. Processing by 

microbes, interactions with reactive minerals, and abiotic and biotic degradation as these 

compounds are moved into and through soils can have significant effects on the 

composition of DOM delivered to aquatic environments [Kaiser and Kalbitz, 2012; 

Hutchins et al., 2017].  

Infiltration of precipitation provides a strong mechanism for translocation of 

DOM through soils [Kaiser and Kalbitz, 2012; Rothstein et al., 2018]. In areas where 

snowmelt dominates the annual hydrograph, infiltration is dominated by contributions 

from the spring freshet [Stottlemyer and Toczydlowski, 1991] and in turn, this results in 

the largest flushing of DOM from the watershed owing to the large volume of water 

movement and a high degree of hydrologic connectedness [e.g., Hornberger et al., 1994; 

Boyer et al., 1997]. It is likely that the magnitude of these pulses determines the ability of 

terrestrially sourced DOM to pass into the mineral horizons, with less alteration 

[Rothstein et al., 2018]. In snowmelt dominated systems, warmer winters associated with 

a changing climate may be counterintuitively accompanied by wetter, colder soils owing 

to slower, earlier snowmelt and decreased snow cover to insulate the soil [Groffman et 

al., 2001; Musselman et al., 2017]. As such, changes in the timing of melt will likely 

affect the degree of infiltration into soils, but there is still much uncertainty as to how 
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these processes will in turn affect the movement and transformation of DOM from soils 

to streams.   

Regional differences in snow accumulation largely determine the vertical 

movement of DOM, which in turn influences soil horizon formation in forested 

watersheds [Schaetzl and Isard, 1991; 1996].  The resulting lower incident solar radiation 

and insolation on north facing aspects leads to a higher degree of infiltration relative to 

evaporation [Hunckler and Schaetzl, 1997].  As such, changes in the amounts and timing 

of snowmelt exert considerable control over the infiltration of DOM and its 

transformation and translocation within and among soil horizons.  

To understand DOM on its path through the soil-stream continuum, it is helpful to 

understand the processes involved in soil transformations of DOM.  In Spodosols 

(Podzols), soils formed through illuviation due to infiltration of precipitation, a fraction 

of DOM from plant materials, such as leaf litter, is stabilized in upper mineral soil 

horizons [Kaiser and Guggenberger, 2000]. The degree to which Spodosols develop, in 

turn controlling their ability to alter percolating DOM, is controlled by infiltration of 

precipitation—predominantly snowmelt in north-temperate regions [Shaetzl et al., 2015; 

2018; Rothstein et al., 2018]. The upper soil horizons, particularly the litter layer, contain 

relatively young and less processed DOM. These soil and litter-derived pools of DOM 

are likely the main contributions to streams in forested watersheds and therefore connote 

distinct characteristics to stream DOM [McDowell and Wood, 1984; Qualls and Haines, 

1992; Burns et al., 2016]. However, variability in the input of surface-soil derived DOM 
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to streams can be high depending on the nature of soil flow paths [Abou Najm et al., 

2019] and factors regulating infiltration, such as snowmelt dynamics [Boyer et al., 2000].  

The objective of this study was to investigate changes in the character of DOM 

along continua of formation from leaf litter to different soil horizons, and ultimately its 

export to a stream, with variation in the timing of snowmelt.  We measured DOM from 

north and south facing aspects with different snowmelt dynamics in the same watershed, 

and compared these with seasonal trends in stream DOM character.  We hypothesized 

that peak stream flows during snowmelt would be associated with changes in DOC 

concentrations and optical character in the stream. Furthermore, we hypothesized that 

DOM variation would be evident between A and B soil horizons, between north and 

south aspects, as well as between soils and the stream when analyzed with absorption and 

fluorescence spectroscopy. We also expected to see shifts in the stream DOM quantity 

and character corresponding with seasonal changes in the connectivity of soils and the 

stream on north vs. south aspects, owing to changes in the timing of snowmelt and degree 

of spodic soil horizon development.  

2.3 Materials and Methods 

2.3.1 Study site characterization 

Brooks Gorge Research Watershed (BGRW) is located 6 km northwest of Michigan 

Technological University (47.1601, -88.6273) in the Upper Peninsula of Michigan 

(Figure 1). The region receives an average of 828 mm of precipitation annually (1983 – 
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2018; National Atmospheric Deposition Program; MI99), with an average peak snow 

water equivalent of 271 mm (range of 183 to 444 mm) [Chapter 1]. The watershed is 

predominantly oriented east to west, causing north to south aspect contrasts (Figure 1). 

The lower portion of the stream (L, Gauge) supports year-round flow, while the upper 

portion (U) is intermittent.  The watershed forest cover is mixed northern hardwoods, 

dominated by Acer saccharum (Marsh.), Acer rubrum (L.), Tilia Americana (L.), Betula 

alleghaniensis (Britton), Quercus rubra (L.) and Ostrya virginiana (Mill.). The soils are 

described as a complex of Oxyaguic Fragiorthods (Graveraet Series) and Typic 

Haplorthods (Kalkaska Series). Spodic horizons are more developed on the north facing 

aspects, with B horizons having average thicknesses of 45 cm and 29 cm on north and 

south facing aspects, respectively (Table S1; Figure S1).   
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Figure 1: (a) The location of BGRW study site in the Upper Peninsula of Michigan. (b) 

The location of BGRW in relation to the Portage Shipping Canal and Lake Superior. (c) 

The study site plot layout at BGRW. (d)   BGRW on March 29, 2016, highlighting the 

snowpack differences across aspects.  The south facing slope was nearly snow free while 

the north facing slope held an average snow depth of 25.7 cm. 
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2.3.2 Leaf leachates Study site characterization 

Leaf leachates were collected to establish a fresh DOM endmember signal to the 

analysis. Leaf leachates for three species, Acer saccharum (Marsh.), Betula papyrifera 

(Marsh.) and Quercus rubra (L.) were collected in triplicate, twice in November after leaf 

fall. 5 mg of fresh litter was allowed to steep in 250 ml of MilliQ water for 4 hrs at 4°	C. 

Samples were filtered through 0.7 µm GF/F (Whatman) followed by 0.45 µm nylon 

membrane filters (Whatman).  

2.3.3 Stream and soil water characterization 

Stream samples were collected from just prior to melt onset (March 11, 2016) to 

summer baseflow (June 2, 2016) at three sampling locations along the reach (upper (U), 

lower (L), and gauge). Soil pore-water was collected over the same period using porous 

cup tension lysimeters with approximately 50 centibars of vacuum applied (Soil Moisture 

Corporation; Santa Barbara, CA) corresponding to each of the upper stream sampling 

locations. Two lysimeters were inserted to each depth (15 cm and 30 cm) on each aspect 

corresponding to the two stream sampling locations (Figure 1). These depths were chosen 

to sample lower A horizon and lower B horizon DOM. Pore-water and stream samples 

were immediately filtered through 0.45 m PVDF syringe filters into brown HDPE 

bottles and transported back to the laboratory for further analysis or freezing within 24 

hrs. 
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Stream stage height was measured from March 11 to May 25 with a Solinst 

Levellogger 3001 and barometrically corrected with a Barologger 3001 (Solinst; 

Georgetown, ON). Stage height was converted to discharge through the development of a 

rating curve that was developed by directly intercepting flow with a 26 L container at a 

constrained point [Brooks et al., 2013] (Figure S2). Soil volumetric moisture content 

(VWC) was measured at Lower stations every 30 minutes using ECH20 moisture probes 

(Meter Environment; Pullman, WA).  Soil moisture probes were calibrated with 

gravimetric soil moisture data obtained using fixed-volume corers at the same depths, 

obtained within 10 m of the stations.  Data reported are an average of 15 and 30 cm 

depths. Air temperature was also recorded at Lower stations for both aspects using Onset 

TMC6-HD temperature sensors recorded with 4-Channel External HOBO loggers on 30-

minute timesteps (Onset Corporation; Bourne, MA). Soil moisture and air temperature 

were measured from March 11, 2016 to April 30, 2016. North facing air temperatures 

were only recorded until April 26, 2016. Snow water equivalent (SWE) was measured 

using a Federal Snow Sampler. Snow cores were weighed with a Brecknell 

ElectroSamson scale (Brecknell; Fairmont, MN) until each station was snow free.  

2.3.4 Chemical and optical analyses 

Absorption and fluorescence spectra were analyzed using a Horiba Aqualog fluorometer 

(Horiba–Jobin–Yvon Aqualog C; Horiba Co., Edison, NJ) in 1 cm quartz cells (Starna 

Cells, Inc). Absorption spectra were run from 240 nm to 600 nm at 3 nm resolution. 

Fluorescence spectra were recorded at 3 nm excitation wavelengths from 240 nm to 600 
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nm and emission was recorded at 3 nm resolution from 240 nm to 640 nm (Figure S3). 

Fluorescence spectra were converted to Raman units (R.U.) using Raman scattering from 

a sealed Milli-Q cuvette (Starna) (R.U.) [Lawaetz and Stedmon, 2009]. Absorbance 

values were converted to Naperian absorption coefficients (aλ) [Green and Blough, 

1994]: 

ܽఒ = 2.303 ஺ഊ
௅

                                                                                                                     (1) 

Where Aλ	 is absorbance at wavelength λ, and L is the path-length, in meters.  Inner filter 

effects, Raman scattering, and Raleigh scattering for fluorescence EEMs were accounted 

for using the PLS toolbox (version 782; Eigenvector) in Matlab (r2014a). We derived two 

specific spectral slopes (S275-295 and S350-400) from the absorption spectra as indicators of 

average DOM molecular weight [Helms et al., 2008], and these were calculated as the 

slopes of the linear regressions of log-transformed absorption spectra from 275-295 nm 

and 350-400 nm, respectively. 

We derived three parameters from the fluorescence spectra. The biological index 

(BIX), used to differentiate terrestrial reference standards from phytoplankton derived 

DOM [Osburn et al., 2019] and humification index (HIX), an index of soil humification 

[Zolsnay et al., 1999; Ohno, 2002] and were defined as: 

BIX = 
ிయఴబ
ிరయబ

 (at excitation of 310 nm)                                                                                 (2)    
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Where F380 and F430 are the fluorescence emission intensities at 380 and 430 nm, 

respectively (at excitation 310 nm). 

HIX =  
ஊிరయఱషరఴబ
ஊிయబబషయరఱ

 (at excitation of 254 nm)                                                                        (3)   

Where Σܨସଷହିସ଼଴ is the sum of the fluorescence emission from 435 to 480 nm and 

Σܨଷ଴଴ିଷସହ is the sum of the fluorescence emission from 300 – 345 nm. 

Additionally, the ratio of fluorescence Peak C to Peak A (C/A), which has been 

shown to inversely track photodegradation of DOM [Coble, 1996; Hansen et al. 2016] as 

well as the degree of humic substance degradation or oxidation [Moran et al., 2000; 

Kothawala et al., 2012] was calculated as: 

C/A = 
ி೐ೣయరబ/೐೘రరబ

ி೐ೣమలబ/೐೘రఱబ
                                                                                                              (4)   

All samples were acidified to pH 2 with HCl (VWR) and analyzed for total 

organic carbon with a Shimadzu TOC-V analyzer (Shimadzu;  Kyoto, Japan). We report 

the specific absorbance normalized by DOC concentration of the sample (SUVA254) as a 

metric to quantify the amount of chromophoric DOM in the sample, which has also been 

related to DOM aromaticity [Weishaar et al., 2003].  
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2.3.5 Statistics 

A one-way analysis of variance (ANOVA) with a Tukey’s honest significant 

difference (HSD) test was used to assess mean differences in absorption and fluorescence 

indices between sampling locations. Linear regression was used in conjunction with non-

parametric Mann Kendall trend analysis to analyze trends in stream DOC concentrations 

as well as absorption and fluorescence indices through time in R [v3.0.3; R Core Team, 

2014].  

 

2.4 Results 

2.4.1 Hydrology 

Snowpack measured at the onset of this study was similar between north and 

south aspects (Figure 2a) with maximum SWE of 170 mm and 140 mm on the north and 

south facing aspects, respectively. Snowpack melted much more rapidly on the south 

facing slopes, rendering them snow free about one month before the north slopes (e.g., 

Figure 1d).  Air temperatures exhibited a wide range, from -12°C to 28°C on the south 

facing aspect and -11 °C to 25 °C on the north aspect. Both aspects followed similar 

diurnal trends in temperature (Figure 2b). Soil VWC of the top 30 cm ranged from 0.30 

cm3 cm-3 to 0.31 cm3 cm-3.  Soil VWC slowly declined over the course of the study period 

for the south aspect (Mann Kendell trend test; p < 0.001) but was relatively constant on 

the north aspect (Mann Kendell trend test; p = 0.13). Stream discharge peaked at 0.180 
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m3 s-1 on April 15 (DOY 106), far exceeding all other runoff events during the study 

period (Figure 2).   
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Figure 2: (a) SWE with the range of five sampling locations represented as error bars (b) 

air temperatures, (c) volumetric water content (VWC) for the top 30 cm of soil and (d) 

stream discharge over the course of the study period. 

 

Figure 3: Stream discharge and stream DOC concentrations over the study period. Error 

bars indicate the range of the three stream sampling locations.  

2.4.2 DOC characteristics 

Stream DOC concentrations ranged from 2.3 to 5.9 mg L-1 with a mean of 4.6 mg 

L-1 (Figure 3). There were no significant trends in stream DOC concentration with time 

or discharge. Soil lysimeter DOC concentrations ranged from 11.0 to 79.3 mg L-1 (S.E. = 

4.5 mg L-1) on the north aspect and 7.6 to 76.1 mg L-1 (S.E. = 4.8 mg L-1) on the south 

aspect. There was not a significant difference in DOC concentrations across aspects. 

Neither aspect displayed a significant trend in DOC concentration.  
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2.4.3 Absorption metrics 

SUVA254, an index of aromaticity, was variable and ranged from 0.62 to 4.86 in 

leaf leachates. SUVA254  ranged from 1.2 to 3.6 in the stream and did not show a 

significant trend through time. Stream SUVA254 was significantly lower than all soil 

lysimeter locations except north-facing 30 cm lysimeters (Table 1).  

S275-295, an indicator of average DOM molecular weight, was most variable in leaf 

leachates where it ranged from 0.0102 to 0.0200. S275-295 ranged from 0.0145 to 0.0189 in 

the stream, 0.0115 to 0.0154 on the south facing aspect and 0.0118 to 0.0214 on the north 

facing aspect (Figure 4a). Leaf leachate S275-295 values were not statistically different from 

north facing 15 cm lysimeters, and were significantly different from all other locations 

(Table 1).  S275-295 in all soil locations except for the north facing 30 cm lysimeters were 

significantly different from the stream values (Table 1). There was a significant increase 

in the stream S275-295 through the study period. S275-295 showed no trend through time for 

lysimeters from either aspect (Figure 4a).  

S350-400, another indicator of average DOM molecular weight, ranged from 0.0139 

to 0.0268 in leaf leachates. S350-400 ranged from 0.0134 to 0.0590 in the stream, 0.0165 to 

0.0363 on the south facing aspect and 0.0161 to 0.0407 on the north facing aspect (Figure 

4b). S350-400 was not significantly different between aspects (Table 1) and showed no time 

trends at any location, though there was an increase on March 28 coincident with a 

hydrograph peak on March 29 (Figure 4b; Figure 3). 
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2.4.4 Fluorescence metrics 

HIX, an index of DOM humification, ranged from 0.5 to 2.0 in leaf leachates. 

HIX ranged from 6.4 to 15.6 in the stream, 6.6 to 34.1 on the south facing aspect and 3.7 

to 25.7 on the north facing aspect (Figure 4c). HIX was similar between north facing 30 

cm lysimeters and stream, however, all other lysimeter locations were significantly 

different (higher) than the stream (Table 1). 15 cm lysimeters were significantly different 

between aspects, however 30 cm south facing lysimeters were not significantly different 

from either 15 cm location. There were no time trends in HIX.  

BIX, an index used to differentiate Suwannee River Fulvic Acid (SRFA) from 

phytoplankton derived DOM [Osburn et al., 2019], ranged from 0.2 to 1.1 in leaf 

leachates. BIX ranged from 0.5 to 0.6 in the stream, 0.4 to 0.6 on the south facing aspect 

and 0.4 to 0.8 on the north facing aspect (Figure 4d). Similar to HIX, BIX values from 

north-facing 30 cm lysimeters were similar to the stream while all other lysimeter 

locations were different (Table 1). The south aspect showed a decrease in BIX through 

time, while BIX in the stream increased (Figure 4d).  

The ratio of fluorescence Peak C to Peak A (C/A), which has been shown to 

inversely relate to photodegradation or degree of biodegradation, ranged from 0.99 to 

2.01 in leaf leachates. C/A ranged from 0.62 to 0.74 in the stream, 0.57 to 0.99 on the 

south facing aspect and 0.59 to 0.89 on the north facing aspect (Figure 4e). C/A in the 

stream was significantly different than all lysimeter locations except 30 cm south facing 
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lysimeters (Table 1). Both the north aspect and stream showed decreasing trends through 

time in C/A.  

Table 1: Absorption and fluorescence indices (mean and standard error) from leaf 

leachates, soil lysimeters and stream water. Letters indicate significant differences 
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between locations. Number of samples (n) for SUVA254 is reported as it varied compared 

to other metrics.  
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Figure 4: Soil lysimeter and stream absorption and fluorescence metrics through the study 

period. Regression lines represent significant trends in time. (a) S275-295; (b) S350-400; (c) 

HIX; (d) BIX; (e) C/A; and (f) Stream discharge over the study period. Error bars 

indicate the range of the three stream sampling stations. Shaded regions represent the 

ranges of lysimeter water from north and south aspects. 

2.5 Discussion 

2.5.1 Aspect influence on snowmelt dynamics 

Snowpack melted quicker on the south facing aspect with no apparent pulse in 

soil moisture (Figure 2). Similarity in air temperatures between aspects indicate the 

importance of solar radiation on the snowmelt rates between aspects (Figure 2b). Soil 

moisture was constant through time with periodic wetting pulses on the north aspect, 

corresponding with stream hydrograph peaks, whereas the south aspect soil moisture 

showed a decline over time (Figure 2c). The varying trends between aspects demonstrate 

the different soil wetting regimes through the melt, which are also manifest in the 

increased podzolization in the north aspect soils [Hunckler and Schaetzl, 1993; Shaetzl 

and Isard, 1996; Shaetzl et al., 2018].  Together, these factors suggest a higher degree of 

hydrologic connectivity between north aspect soils and the stream, and highlight the 

importance of a persistent snowpack for the mobility of DOM.  
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2.5.2 How does stream DOM track with snowmelt? 

Contrary to our hypothesis, stream DOC concentrations did not track the 

snowmelt hydrograph (Figure 3). This is a direct contrast from a previous study in an 

alpine watershed exhibiting a snowmelt-dominated hydrograph with similar magnitude of 

discharge and seasonal DOC concentrations [Burns et al., 2016]. We attribute the 

different responses in DOC concentrations to snowmelt dynamics to the different soil 

types present. In the Burns et al. [2016] study, north aspect soils were Inceptisols (a 

complex of Dystrocryepts and Haplocryepts) and south aspect soils were also poorly 

developed and shallow (lithic). In contrast the Spodosols of our study, which exhibit 

spodic horizons and organic carbon accumulation truncated near the surface, could 

moderate DOC flushing to the stream from deeper within the soil profile.  Moreover, 

surface-litter derived DOM dominates the character of mineral soil horizon DOM in 

Spodosols [Rothstein et al., 2018], which offers a parsimonious explanation for the much 

higher HIX values in our stream (mean HIX = 10.9) compared with the study described 

in Burns et al., [2016] (minimum HIX = 1.80; maximum HIX = 3.85). Taken together, 

these findings demonstrate that streams with very similar snowmelt-dominated 

hydrographs can exhibit quite different DOM composition and export characteristics, as 

determined by soil properties.   

Hydrograph driven changes were not apparent in stream DOM character in this 

study, even when north aspect soil moisture trends strongly resembled the stream 

hydrograph (Figure 3, Figure 4). The exceptions to this were the two spectral slope 
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metrics (S275-295, S350-400) and BIX, which increased and decreased, respectively, in 

conjunction to the second hydrograph peak (Figure 4). These findings indicated a 

consistent degree of processing for the DOM delivered to the stream through snowmelt, 

regardless of soil wetting. Interestingly, metrics concretely associated with DOM 

degradation displayed gradual trends towards increased degradation through time in the 

stream (S275-295, C/A, BIX).  The decline in C/A over time suggests a change in the DOM 

pool to one which is more degraded or oxidized, which is consistent with prior work 

showing the decline in C/A in long-term incubations of lake water [Kothawala et al., 

2012], as well as with the photodegradation of soil and plant leachates [Hansen et al., 

2016].  

These trends in DOM degradation over time do not necessarily follow hydrograph 

peaks or wetting pulses, but could be tracking changes in DOM composition by aspect. 

For example, S275-295 and BIX showed significant differences between A and B horizons 

on the north aspect (Table 1). Trends in S275-295, C/A and BIX could be tracking an 

increasing hydrologic disconnection between south aspects and stream as the south aspect 

gradually dried out (Figure 2). On the other hand, BIX and C/A measured in the stream 

tracked BIX and C/A in the north aspect soils throughout the study (Figure 4). These 

trends are consistent with asynchronous snowmelt occurring on different landscape 

positions, and therefore gradual shifts in the timing of DOM contributions from different 

sources to the stream through snowmelt [cf. Boyer et al., 2000]. However, different 
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optical properties of DOM vary in their accurate reflection of these different DOM 

sources to the stream with the progression of snowmelt.   

 

2.5.3 How does DOC vary optically between leaf leachates, A and 
B horizons? 

Leaf leachates displayed unique optical character as compared to soil A and B 

horizons and stream water. However, these differences were not consistently reflected in 

all metrics. For example, SUVA254 was similar between leaf leachates, north facing B 

horizon, and the stream, while S275-295
 displayed significant differences among these 

sample locations.  However, the general trend of low SUVA254 corresponding to high 

S275-295 [Helms et al., 2008] was observed in this study.  

S350-400 was similar in leachates, all soils, and the stream. The decoupling of S350-

400 from S275-295 was likely due to the decreased sensitivity of S350-400 to DOM degradation 

[Helms et al., 2008; Helms et al., 2013]. However, S350-400 showed changes corresponding 

to a snowmelt peak, indicating this metric is responsive to hydrologic changes in this 

system, and indicating its ability to track a specific DOM transformation not as evident 

through S275-295. Overall, the soil-stream interface provides an opportunity to examine 

unique controls on S350-400 and S275-295, as they appear decoupled in this environment 

(Table 1). This is a unique finding as previous studies have reported these two slopes to 

generally track together [Helms et al., 2008; Hansen et al., 2016].  
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HIX was the only fluorescence metric which differentiated A horizon DOM 

between aspects (Table 1). South facing 30 cm lysimeters (B horizon) were not 

differentiated from A horizon soils in any metric, yet B horizons in north facing soils 

displayed significantly different SUVA254, S275-295, HIX and BIX from A horizon 

lysimeters. Because B horizon DOM characteristics were also significantly different than 

leaf leachates for S275-295, HIX, BIX and C/A, we hypothesize that B horizon DOM was 

not simply translocated from surface horizons, but more processed DOM as a result of its 

residence time in the A horizon and preferential removal of aromatic lignin derivatives 

through metal complexing in these soils [Kaiser and Guggenberger, 2000]. In support of 

this, soil HIX increased on both aspects through the snowmelt period, further deviating 

from leaf litter HIX values (Figure 4). Because HIX values diverged from litter sources, 

we hypothesize within soil processing of fresh inputs was likely responsible for these 

high HIX values. 

C/A displayed a unique trend as compared to all other indices (Table 1; Figure 4). 

C/A was the only metric to show a consistently declining trend from leaf leachates, to A 

and B horizons, and finally to the stream. Both C and A peaks are within the humic-like 

region of fluorescence, and the peaks are likely tracking a similar fraction of DOM 

[Coble, 1996; Hansen et al., 2016]. Given this, we postulate that C/A (particularly peak 

C) was tracking a consistent humic-like DOM fraction of compounds through our study 

which was: (1) not easily adsorbed by soils or biologically removed, (2) not strongly 

influenced by processes altering HIX, BIX or spectral slopes, and (3) representing a 
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fraction whose fluorescence was able to directly or indirectly be altered within soils.  

Given these factors, we suggest that C/A in our study was tracking partial oxidation of 

lignin-like derivatives from the humic-like DOM pool which was sourced from inputs 

such as leaf litter and yet not easily adsorbed by soils. Previous research using long-term 

incubations of lake water under dark conditions showed the selective removal of peak C 

relative to peak A, thus suggesting biodegradation and not photooxidation [Kothawala et 

al., 2012]. If C/A were tracking a selective removal of a different DOM fraction, likely 

hydrophobic acids in Spodosols [Dai et al., 1996], we would expect the B horizons of the 

more developed north aspect soils to display the lowest values of C/A. However, B 

horizons on the south aspect displayed the lowest C/A values. Our study suggests that 

C/A may be the most applicable metric for tracking the diagenesis of the translocated 

DOM. We hypothesize C/A is likely tracking hydrophilic acid and/or hydrophilic neutral 

fractions [Qualls and Haines, 1991], which is consistent with Kothawala et al. [2012], 

who found inconsistent changes in incubated DOM character using other spectral indexes 

Indices such as SUVA254 , S275-295, HIX and BIX are likely altered by removal of DOM 

fractions but it is not clear if these indices reflect changes in specific pools of DOM or 

rather are tracking changes in bulk DOM.  Further work examining the extent to which 

these indices track alteration of specific sources of DOM as opposed to selective loss of 

fluorophores is needed to extend the application of these indices as tracers of DOM in the 

terrestrial-aquatic interface.   The varying trends over time through soil profiles and into 

the stream illustrate some of the difficulties of using optical metrics to infer source of 

DOM [cf. Burns et al. 2016]. Overall, this study highlights the utility of fluorescence and 
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absorption spectroscopy in understanding seasonal changes in DOM properties at the 

terrestrial-aquatic interface. We found fluorescence metrics, specifically C/A, to add 

additional insights into DOM diagenesis through soils and into streams which were not 

evident in absorption measurements. Future work combining mass spectroscopy in 

probing the response of these DOM fractions to borohydride reduction of ketone and 

aldehyde functional groups [Andrew et al., 2013; Osburn et al., 2019] could further 

distinguish the source of B horizon DOM, and its diagenesis, by tracking partial 

oxidation of ketones and aldehydes to carboxylic acids. 

2.5.4 What are the implications under a changing climate? 

Anticipated changes in the climate of northern regions are likely to lead to earlier 

and more prolonged snowmelt [Musselman et al., 2017]. In lake effect snow dominated 

areas, which are also coincident with high spodic soil horizon development, it is unlikely 

that winter snowpack will decrease enough to uncouple water in soils and streams during 

snowmelt [Chapter 1]. Perhaps counterintuitively, the north-aspects described in this 

study could be analogous to these earlier, slower and more prolonged melt patterns. 

Earlier snowmelt during periods with lower sun angles and less incident solar radiation 

would increase wetting pulses in soils (e.g. north aspect; Figure 2c). These factors are 

likely to increase the vertical movement of DOM (spodic soil horizon development) as 

well as increase the fraction of less humic-like (lower HIX) and lower molecular weight 

(higher S275-295) character in DOM reaching the stream.   
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2.7 Supplemental material 
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Figure S1. Images of soil profiles described in Table S1. Tape indicated profile depth is 
in centimeters.  

Figure S2. Stream rating curve for BGRW using the direct intercept method. 
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Figure S3. Representative EEMs of end members (snow and leaf litter) as well as north 
and south aspect soil pore water (15 cm depth) and stream runoff. Intensity is reported in 
Raman units. 
 
Table S1. Soil descriptions from different slope locations for south facing and north 
facing aspects. 
 

 

South Facing Summit

Color Consistence

Master Sub. Lower Depth (cm) Distinction Sand % Clay % Textural Class  Hue Value/ Chroma Grade Shape Moist Strength Depletions Concentrations

A ‐ 12 C 85 5 LS 10YR 2/2  2 GR FR ‐ ‐

E ‐ 18 C 88 3 LS 10YR 5/2 1 PL VFR ‐ ‐

B hs 42 C 85 5 LS 7.5YR 3/4 1 SBK VFR ‐ ‐

BC ‐ 46 G 90 3 S 7.5YR 4/4 1 SBK VFR ‐ ‐

C ‐ 80+ ‐ 91 2 S 7.5YR 4/4 0 SG L ‐ ‐

South Facing Backslope

Color Consistence

Master Sub. Lower Depth (cm) Distinction Sand % Clay % Textural Class  Hue Value/ Chroma Grade Shape Moist Strength Depletions Concentrations

A ‐ 19 C 80 6 SL 10YR 2/2 2 GR FR ‐ ‐

B hs 30 C 85 5 LS 7.5YR 2.5/3 1 SBK FR ‐ ‐

B s 41 C 85 5 LS 7.5YR 3/4 1 SBK VFR ‐ ‐

BC ‐ 52 C 88 5 LS 7.5YR 3/4 1 SBK VFR ‐ ‐

C ‐ 70+ ‐ 92 3 S 7.5 YR 4/4 0 L L ‐ ‐

South Facing Toeslope

Color Consistence

Master Sub. NotesLower Depth (cm) Distinction Sand % Clay % Textural Class  Hue Value/ Chroma Grade Shape Moist Strength Depletions Concentrations

A Mucky Mi 21 C 78 12 SL 10YR 2/1 2 SBK FR ‐ ‐

AB Mucky Mi 30 C 75 12 SL 10YR 3/2 2 SBK FR Y Y

B g1 41 C 86 8 LS 10YR 3/1 2 SBK FR Y Y

B g2 52 C 86 8 LS 10YR 3/1 2 SBK FR Y Y

C g 70+ ‐ 90 4 SL 10YR 4/2 0 SG L Y Y

North Facing Toeslope

Color Consistence

Master Sub. Lower Depth (cm) Distinction Sand % Clay % Textural Class  Hue Value/ Chroma Grade Shape Moist Strength Depletions Concentrations

A ‐ 19 C 83 5 SL 7.5YR 2.5/2 2 GR FR ‐ ‐

B h1 35 C 88 4 LS 7.5YR 3/3 1 SBK FR ‐ ‐

B h2 40 C 88 4 LS 7.5YR 2.5/3 1 SBK FR ‐ ‐

B s 57 C 86 5 LS 7.5YR 3/4 1 SBK FR ‐ ‐

BC 80+ ‐ 90 3 LS 7.5YR 3/4 1 SBK FR ‐ ‐

North Facing Backslope

Color Consistence

Master Sub. Lower Depth (cm) Distinction Sand % Clay % Textural Class  Hue Value/ Chroma Grade Shape Moist Strength Depletions Concentrations

Oi ‐ 4 C ‐ ‐ Fibric 10YR 2/1 ‐ ‐ ‐ ‐ ‐

AE ‐ 10 C 85 4 LS 10YR 2/3 2 PL FR ‐ ‐

E ‐ 34 G 89 4 LS 7.5YR 4/2 2 PL FR ‐ ‐

B hs 41 C 86 6 LS 7.5YR 3/3 1 SBK FR ‐ ‐

B s1 68 C 88 4 LS 7.5YR 3/3 1 SBK VFR ‐ ‐

B s2 100+ ‐ 89 4 LS 7.5YR 3/4 1 SBK VFR ‐ ‐

North Facing Summit

Color Consistence

Master Sub. Lower Depth (cm) Distinction Sand % Clay % Textural Class  Hue Value/ Chroma Grade Shape Moist Strength Depletions Concentrations

A ‐ 22 C 81 10 SL 10YR 2/2 2 GR FR ‐ ‐

B hs 39 C 86 5 LS 7.5YR 3/4 1 SBK VRF ‐ ‐

B s 60+ ‐ 88 4 LS 7.5YR 4/4 1 SBK VFR ‐ ‐

Key

C Clear S Sand SG Single Grain FR Fiable 

G Gradual LS Loamy Sand SBK Subangular Blocky VFR Very Friable

SL Sandy Loam GR Granular L Loose

PL Platy

Horizonization Boundary  Texture Structure Redoximorphic Features

Distinction Textural Class Shape Moist Strength

Horizonization Boundary  Texture Structure Redoximorphic Features

Horizonization Boundary  Texture Structure Redoximorphic Features

Horizonization Boundary  Texture Structure Redoximorphic Features

Horizonization Boundary  Texture Structure Redoximorphic Features

Horizonization Boundary  Texture Structure Redoximorphic Features
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3.1 Abstract 

Terrestrially-derived dissolved organic matter (DOM) can be a significant driver of 

coastal ecosystem processes. Remote sensing of freshwater coastal environments offers 

promise in understanding DOM inputs, hbut there are unresolved challenges associated 

with remotely sensed measurements of colored DOM (CDOM), particularly for smaller 

tributaries. This study measured DOM characteristics and reflectance spectra in a 

gradient from river to open lake in a region of Lake Superior with limited in-situ 

measurements. We found a gradient of dissolved organic carbon concentrations ranging 

from 17.5 mg L-1 in tributaries to 1.8 mg L-1 in coastal Lake Superior outside of direct 

river inputs (outside of plumes). Absorbance and fluorescence characteristics indicated a 

more humic and higher molecular weight DOM pool in tributaries compared to coastal 

Lake Superior. Reflectance spectra (convoluted Landsat OLI band specific reflectance) 
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were correlated with absorbance at =440 nm (R2 = 0.42, p = 0.02), which was also a 

strong indicator of dissolved organic carbon concentrations (R2 = 0.87, p < 0.001). These 

findings indicate that satellite retrievals of CDOM levels in the near-shore region of Lake 

Superior are highly variable, with unique reflectance properties associated with 

tributaries of different sizes. We demonstrate the ability of spectral surface reflectance 

data to detect higher levels of CDOM associated with river influence, differentiaton of 

CDOM levels among plumes was not possible. 

 

3.2 Introduction 

Terrestrial dissolved organic matter (DOM) strongly influences coastal ecosystem 

production and carbon cycling by regulating nutrient availability, light attenuation and 

temperature (Hopkinson et al. 1998). DOM encompasses a broad continuum of organic 

materials formed by the degradation of terrestrial and microbial material (Thurman et al., 

1985). Changes in biogeochemical processes in soils and rivers, which are susceptible to 

changes induced by climate factors (Tranvik and Jansson, 2002; Roulet and Moore, 

2006), can considerably alter the quantity and character of DOM as it is delivered to large 

lakes and coastal oceans (Peterson et al., 2002; Stedmon et al., 2011). In turn, the 

magnitude of DOM and mechanisms of DOM transport can alter biogeochemical 

processes and carbon cycling in these ecosystems (Cole et al., 2007; Tranvik et al., 2009).    

Systems where a large portion of annual runoff occurs as snowmelt such as the 

Arctic, Sub-Arctic and Northern Great Lakes are especially vulnerable to alterations in 
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DOM delivery induced by climate change (Peterson et al., 2002). In these systems, winter 

snow accumulation, soil temperature and timing of snowmelt govern DOM transported 

during the spring melt. These processes are impacted by subtle changes in temperature 

and winter precipitation (Henry, 2008; Bjerke et al., 2015). Exactly how changes in 

climate are likely to affect the mechanisms of DOM delivery to aquatic environments is 

poorly understood (Raymond et al., 2007).   

When delivered to aquatic ecosystems, the colored portion of terrestrial DOM 

(CDOM) has been shown to have positive feedback effects on decreases in sea ice and 

warming in the Arctic Sea (Pegau, 2002). Similar patterns have been observed in 

freshwater lakes from the Arctic to the Great Lakes (Vincent et al., 1998; Mueller et al., 

2009; Arp et al., 2012; Surdu et al., 2014; Van Cleave et al., 2014). Lake Superior, largest 

of the Laurentian Great Lakes containing 10% of the world’s freshwater, has experienced 

a 79% decrease in ice coverage over recent decades accompanied by increased 

evaporation and lower water levels (Assel et al., 2003; Wang et al., 2012). 

Simultaneously, warmer winters accompanied by more variation in snowfall (Hayhoe et 

al., 2010) have perhaps altered soil biogeochemical processes and their mechanistic 

linkages with terrestrial DOM pools (Stottlemyer and Toczdlowski, 1991; 1996; 2006). 

To date, limited in-situ observations leave much uncertainty in the role of terrestrially 

derived DOM on biological production and increasing water temperatures in Lake 

Superior (Bennington et al., 2012; Van Cleave et al., 2014).  

Remote sensing offers a spatially-explicit tool for monitoring CDOM levels in open 

water. In recent studies, techniques for the remote sensing retrieval of CDOM using 
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spectral reflectance data have been developed specifically for Lake Superior (Shuchman 

et al., 2013; Binding et al., 2012; Mouw et al., 2013). However, remote sensing is limited 

to the detection of CDOM which is only a constituent of the total amount of dissolved 

organic carbon (DOC) in the water. Because the amount and quality of DOC often 

constrain microbial processes in aquatic ecosystems (e.g., Findlay et al., 2003), this 

metric is perhaps more ecologically relevant than an estimate of just the colored fraction. 

CDOM has been shown to directly relate to DOC in a variety of aquatic ecosystems and 

may hence be thought of as a tracer of DOC when a relationship between CDOM and 

DOC is established (Zhu and Yu, 2012). Previous research indicates that due to the 

relatively low amount of human activity in the Lake Superior basin (Macdonald and 

Minor, 2013), it is likely that DOC closely tracks CDOM in this ecosystem (Brezonik et 

al., 2015). However, additional research has noted seasonal and spatial variability in 

DOC quality relating to changes in optical properties of CDOM, most notably spectral 

slope of CDOM (S), in Lake Superior (Effler et al., 2010; Mouw et al., 2013). As such, 

additional work is needed to constrain variability in the optical properties of Lake 

Superior’s coastal environments to refine remote sensing methods estimating CDOM 

levels in open water. 

In this study we measured variability in near shore DOC quality, CDOM optical 

properties, and spectral reflectance in five tributaries of Lake Superior. Our questions 

focused on three issues associated with near-shore CDOM-DOC estimates: 
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1) What are the defining DOC characteristics of river-sourced CDOM plumes in 

Lake Superior, and are they different from their associated rivers? 

2) Is there a constant relationship between CDOM optical properties (a440 nm) and 

DOC concentration across multiple river plumes? 

3) Is there a relationship between CDOM levels and spectral reflectance data in Lake 

Superior river-influenced plumes? 

 

3.3 Methods 

3.3.1 Study Sites 

Five river plume signatures, representative of a broad range of river sizes and 

flow characteristics in the Lake Superior watershed (cf. Marcarelli et al., 2019), were 

sampled for this study (Figure 1). The Little Elm River watershed is the smallest (40.6 

km2) and is located on the western side of the Keweenaw Peninsula. The Traverse River 

(65.6 km2) discharges on the south side of the peninsula. The Elm (75.3 km2), and the 

Misery (148.0 km2) are located adjacent to the Little Elm watershed. The Ontonagon is 

the largest of the three watersheds (3595.6 km2), comprising 2.6% of the Lake Superior 

drainage (Coble et al., 2016). 

The mean annual precipitation for this region is ~ 800 mm (National Atmospheric 

Deposition Program; station MI99; Chassell Michigan) with over 50% of precipitation 
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falling as snow (Stottlemyer and Toczydlowski 2006). Mean annual temperature for the 

region is 4.5° C (Chapter 1). 

 

3.3.2 Chemical and optical analyses 

Samples and reflectance analyses were collected from each of the study sites from 

a 4m inflatable boat navigating from within the river, to the plume center (determined a 

priori with remote sensing imagery and geographic positioning system), and then outside 

of the plume at each watershed.  Samples were immediately filtered with 0.45 µm PVDF 

syringe filters into opaque HDPE containers and transported in a cooler back to Michigan 

Tech for analysis.  

Absorption and fluorescence spectra were analyzed using a Horiba Aqualog 

fluorometer (Horiba–Jobin–Yvon Aqualog C; Horiba Co., Edison, NJ) in 1 cm quartz 

cells (Starna Cells, Inc). Absorption spectra were run from 240 nm to 600 nm at 3 nm 

resolution. Fluorescence spectra were recorded at 3 nm excitation wavelengths from 240 

nm to 600 nm and emission was recorded at 3 nm resolution from 240 nm to 640 nm 

(Figure S3). Fluorescence spectra were converted to Raman units (R.U.) using Raman 

scattering from a sealed Milli-Q cuvette (Starna) (R.U.) (Lawaetz and Stedmon, 2009). 

Absorbance values were converted to Naperian absorption coefficients (aλ) (Green and 

Blough, 1994): 

ܽఒ = 2.303 ஺ഊ
௅

                                                                                                                     (1) 
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Where Aλ	 is absorbance at wavelength λ, and L is the path-length, in meters.  

Inner filter effects, Raman scattering, and Raleigh scattering for fluorescence EEMs were 

corrected for inner filter effects using the flucut function in PLS toolbox (version 782; 

Eigenvector) in Matlab (r2014a). We derived two specific spectral slopes (S275-295 and 

S350-400) from the absorption spectra as indicators of average DOM molecular weight 

(Helms et al., 2008), and these were calculated as the slopes of the linear regressions of 

log-transformed absorption spectra from 275-295 nm and 350-400 nm, respectively. 

 

Figure 1: The five river watersheds sampled in this study from across the Keweenaw 

Peninsula of Michigan. Colored regions denote watershed areas.   
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From the fluorescence spectra measurements, we calculated three parameters. The 

biological index (BIX), used to differentiate terrestrial reference standards from 

phytoplankton derived DOM (Osburn et al., 2019) and humification index (HIX), an 

index of soil humification (Zolsnay et al., 1999; Ohno, 2002) and were defined as: 

BIX = 
ிయఴబ
ிరయబ

                                                                                                                          (2) 

Where F380 and F430 are the fluorescence emission intensities at 380 and 430 nm, 

respectively at excitation 310 nm. 

HIX =  
ஊிరయఱషరఴబ
ஊிయబబషయరఱ

                                                                                                                 (3)   

Where Σܨସଷହିସ଼଴ is the sum of the fluorescence emission from 435 to 480 nm and 

Σܨଷ଴଴ିଷସହ is the sum of the fluorescence emission from 300 – 345 nm at excitation of 

254 nm. 

The ratio of fluorescence Peak C to Peak A (C/A), which has been shown to 

inversely track photodegradation of DOM (Coble, 1996; Hansen et al. 2016) as well as 

the degree of humic substance degradation or oxidation (Moran et al. 2000; Kothawala et 

al. 2012) was calculated as: 

C/A = 
ி೐ೣయరబ/೐೘రరబ

ி೐ೣమలబ/೐೘రఱబ
                                            (4)   
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Where ܨ௘௫ଷସ଴/௘௠ସସ଴ is fluorescence intensity at excitation 340 nm and emission 

wavelength 440 nm.  ܨ௘௫ଶ଺଴/௘௠ସହ଴ is fluorescence intensity at excitation 260 nm and 

emission wavelength 450 nm. All samples were acidified to pH 2 with HCl (VWR) and 

analyzed for total organic carbon with a Shimadzu TOC-V analyzer (Shimadzu;  Kyoto, 

Japan). We report the specific absorbance normalized by DOC concentration of the 

sample (SUVA254) as a metric to quantify the amount of chromophoric DOM in the 

sample, which has also been related to DOM aromaticity (Weishaar et al. 2003). We also 

report absorption at 440 nm (a440) which has been used as a proxy for CDOM levels in 

complex waters (Brezonik et al. 2015).  Secchi depth was also recorded when depth to 

bottom was sufficient.  

 

3.3.3 Radiometry 

Remotely sensed reflectance (Rrs) measurements were measured using two 

methods. (1)  Sequential measurements were made of water surface and normalized to 

plaque radiances using a white reference panel (Spectralon). Three scans were collected 

and the mean was used for analysis. For these measurements we employed an ASD 

Fieldspec 3 spectroradiometer (Analytical Spectral Devices, Boulder, CO). (2) We 

measured upwelling radiance directly below the water surface using a 20° foreoptic 

(ASD) and normalizing to sky irradiance as measured with a Remote Cosine Receptor 

(ASD). Three scans were collected and the mean was used for analysis.  Because of the 

lack of relationship between these two measurements, this study employs the sequential 
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measurement technique. The average of three scans is reported. Reflectance spectra were 

convoluted to the relative spectral response curves of Landsat 8 Operational Land Imager 

(OLI) bands by multiplying reflectance spectra by the relative response of each band by 

wavelength (cf. Meingast et al. 2014). Spectral response curves were acquired from 

(https://landsat.usgs.gov/spectral-characteristics-viewer). 

3.3.4 Statistics 

Relationships among a440 and DOC, and Rrs to a440 were determined using linear 

regressions in R (R Core Team 2014). A one-way analysis of variance (ANOVA) with a 

Tukey’s honest significant difference (HSD) test was used to assess mean differences in 

absorption and fluorescence indices among sampling locations.  
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Table 1: Optical characteristics of river, plume and Lake Superior DOM 
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Table 2: Absorption and fluorescence indices (mean and standard error) from tributaries, 
plumes and open lake stations. Letters indicate significant differences among locations. 
Ontonagon samples collect 30-Aug-2018 were not included due to missing data. 

 

a4
40
 (
m

‐1
)

S2
75
‐2
95

S3
50
‐4
00

C
/A

H
IX

B
IX

D
O
C
 (
m
g 
L‐
1
)

SU
V
A
  2
5
4 
 (
L 
m
g 
C
‐1
 m

‐1
)

R
iv
er
s

6.
64
(0
.9
5)

a
0.
01
4(
0.
00
2)

a
0.
01
7(
0.
00
2)

a
0.
71
(0
.1
4)

a
24
.9
(4
.4
)a

0.
5(
0.
4)

a
10
.8
(1
.3
)a

4.
1(
0.
5)

a

P
lu
m
es

3.
60
(0
.9
6)

a
,b

0.
01
5(
0.
00
2)

a
0.
01
7(
0.
00
1)

a
0.
61
(0
.1
4)

a
13
.8
(4
.4
)b

0.
5(
0.
4)

b
6.
3(
1.
3)

b
3.
5(
0.
5)

a

La
ke

0.
55
(0
.2
7)

b
0.
02
0(
0.
00
1)

b
0.
01
6(
0.
00
1)

a
0.
52
(0
.1
4)

a
2.
8(
0.
6)

c
1.
0(
0.
3)

c
3.
0(
0.
3)

b
1.
5(
0.
2)

b



80 

 

3.4 Results 

3.4.1 CDOM characteristics 

         S275-295 ranged from 0.013 to 0.023 nm-1 with the lowest values exhibited in 

tributaries (Table 2).  S350-400 ranged from 0.011 to 0.020, and were less variable across 

sampling positions than S275-295 (Table 2). HIX ranged from 0.6 outside of plumes in Lake 

Superior to 41.7 in the Traverse River (Table 1). HIX and BIX were the only metrics to 

show significant differences among all three locations (Table 2). BIX ranged from 0.43 to 

2.32. The maximum was recorded in Lake Superior outside of plumes and the minimum 

was collected in the Traverse River. HIX and BIX were strongly negatively correlated 

(Figure 2). C/A ranged from 0.18 to 1.02 with both the minimum and maximum recorded 

outside of plumes. SUVA ranged from 1.1 to 5.3 L mg C-1 m-1 and was generally lowest 
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outside of river plumes.

 

Figure 2: Plot of HIX vs BIX for this study.  
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Figure 3: a440 vs DOC relationship in this study (n = 16).  

 

3.4.2 CDOM and DOC relationship 

         DOC ranged from 1.8 to 17.5 mg L-1 in this study. Rivers had the highest values 

and ranged from 3.1 to 17.5 mg L-1 DOC. Plumes had intermediate values and ranged 

from 3.8 to 9.4 mg L-1. Lake Superior outside of plumes only ranged from 1.8 to 3.5 mg 

L-1. CDOM a440 ranged from 0.25 to 12.12 m-1 in the study. Rivers ranged from 3.97 to 

12.12 m-1. Plumes ranged from 0.33 to 8.16 m-1. Lake Superior outside of plumes ranged 

from 0.28 to 1.64 m-1. There was a strong linear relationship between CDOM a440 and 

DOC (Figure 3) with a regression line slope of 1.07 (S.E. = 0.10) mg m L-1.   
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3.4.3 Reflectance spectra characteristics and relationship to a440 

          Reflectance spectra in river plumes were similar excluding the Ontonagon Plume 

which exhibited much higher Rrs, primarily from 550 to 700 nm (Figure 4).  When 

convoluted to Landsat OLI band specific reflectance, the natural log of the ratio of 

Landsat OLI Band 3 (530 – 590 nm) to Band 4 (640 – 670 nm) was linearly correlated 

with the natural log of CDOM a440 (R2 = 0.42; p = 0.02; Figure 5). When Rrs was 

calculated as the ratio of upwelling radiance below the water surface divided by 

downwelling solar irradiance, the ratio of Landsat 8 Band 3/Band4 was not correlated 

with the above surface reflectance or CDOM a440 (data not shown).  
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Figure 4: Representative reflectance spectra for the study river plumes. The Misery River 

reflectance spectra were not valid and therefore were not used in the analysis, however 

absorbance, fluorescence and DOC data were used to develop empirical relationships.  

 

Figure 5: Relationship between Landsat OLI Band 3 / Landsat OLI B4 and CDOM levels 

at plume and out of plume (Lake) stations.  
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3.5 Discussion 

3.5.1 CDOM characteristics 

          S275-295 is lowest in the tributaries (Table 1), indicating that average molecular 

weight was highest in tributaries (Helms et al. 2008). This finding suggests that 

terrestrially derived, high molecular weight DOM influences oceanic waters (Stedmon 

and Markager, 2001; Stedmon et al., 2011). Loss of larger molecular weight DOM was 

expected in the Ontonagon and Misery rivers due to preferential adsorption of higher 

molecular weight DOM to sediment particles (Osburn et al., 2009). However, our results 

indicate slightly lower S275-295 and S350-400 in the Ontonagon and Misery with visibly 

higher sediment loads. Preferential adsorption and limited photo-degradation by 

suspended sediment provide parsimonious mechanisms for the lower slope values in the 

high sediment load tributaries.  

          HIX values ranged from 7.6 to 41.7 in all rivers and plumes, indicating a strongly 

humified DOM pool at all station within this study (Huguet et al., 2009). These results 

suggest that this humic material was likely of allochthonous origin to the lake, likely 

derived from soil processing (Chapter 2), and was largely recalcitrant when delivered to 

Lake Superior. However, the lower HIX values reported here have also been reported at 

more offshore regions of Lake Superior (Marcarelli et al., 2019), indicating that these 

materials are not impervious to degradation in Lake Superior. SUVA254  also trended with 

HIX indicating a general decrease in aromaticity from rivers to lake.  The associated low 



86 

 

BIX values are also indicative of DOM that is not of autochthonous origin and are likely 

terrestrially derived (Huguet et al., 2009; Figure 2). One interesting exception is the June 

8, 2018 sample outside of the Ontonagon River plume, which exhibited a BIX of 2.3, 

over four times greater than the mean value for this study. Results from Huguet et al. 

(2009) suggest that this sample is likely of autochthonous origin, potentially the only 

sample in this study with these characteristics.  

3.5.2 CDOM and DOC relationship 

         Remote sensing studies measuring CDOM often assume that CDOM levels can be 

converted into DOC concentrations (Kutser et al., 2005; Brezonik et al., 2015). 

Absorption coefficients between 400-450 nm are often used as proxies for CDOM levels 

because they fall within the range of satellite sensor detection (Brezonik et al., 2015). The 

relationship between a440 as an indicator of CDOM and DOC was quite strong (R2 = 0.87; 

Figure 3) indicating that CDOM levels (specifically a440) can be used in this region as an 

indicator of DOC concentration.  However, these relationships are often not constant 

(Worrall & Burt, 2010) and must be interpreted with caution. Furthermore, this 

relationship does not indicate zero DOC is associated with zero CDOM, indicating that 

this relationship is not linear at lower DOC concentrations or that the intercept is not zero 

and is likely most applicable in river-influenced regions of Lake Superior. 
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3.5.3 Reflectance spectra characteristics and relationship to a440 

The general shape of river plume reflectance spectra varied substantially between plumes 

(Figure 4). Most notably, the reflectance spectra of the Ontonagon had a maximum Rrs 

ranging between 0.05 and 0.15 sr-1. These values are generally indicative of turbid waters 

(Kutser et al., 2001). The Traverse, Little Elm, and Elm appeared similar, with much 

lower Rrs and a maximum reflectance between 550 – 600 nm. This is likely a signature of 

CDOM dominated tributaries and is a defining characteristic of these river plumes. 

         When convoluted to band specific responses for Landsat 8, the ratio of Band 3 to 

Band 4 showed the only significant relationship with CDOM (R2 = 0.42; p = 0.02; Figure 

5), which is in line with previous studies nominating this ratio as the strongest indicator 

of CDOM levels (Kurtser et al., 2005; Brezonik et al., 2015). However, quasi-analytical 

algorithms (QAAs) have been developed in Lake Superior using the Moderate Resolution 

Imaging Spectroradiometer (MODIS) to more accurately quantify CDOM levels (Mouw 

et al., 2013). Although this sensor likely lacks adequate spatial resolution for application 

in coastal systems, recent advances in applications of these QAAs to Landsat imagery 

(Wei et al., 2019) may provide a tool for increasing the accuracy and constraining error 

estimates for CDOM levels in Lake Superior. Future work is necessary to assess the 

utility and adjust quasi-analytical algorithms for use in complex Lake Superior waters. 

3.6 Conclusions 

          This study sampled five rivers for DOC quality and concentration as well as 

spectral reflectance associated with each. We found DOC to be generally humic-like as 
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indicated by HIX and of various average molecular weights as indicated by spectral 

slopes. SUVA254 was also highly variable indicating various degrees of aromaticity 

throughout the study rivers.  DOC concentrations were moderate and variable, with rivers 

discharging the highest DOC concentrations.   Spectral properties and DOC 

concentrations varied across tributaries, and unique DOM characteristics of rivers were 

reflected in the plumes into Lake Superior.    

        A significant relationship was evident between spectral response curves and CDOM 

levels (a440). This relationship, although significant, displays the variable nature of DOM 

in this region and therefore indicates that satellite retrievals in the near-shore region of 

CDOM levels are likely accompanied by relatively high levels of uncertainty. Therefore, 

we recommend specific relationships be developed for CDOM levels in individual river 

plumes for Lake Superior for highest accuracy between rivers. However, the work 

presented here demonstates the ability for remote sensing platforms to differentiate plume 

signatures from open lake signatures. Building on the work presented here, specifically 

for the relatively large Ontonagon River, would aid in the utility of satellite sensors to 

monitor DOC loadings to Lake Superior.  
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