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Abstract 

A fully functional proton exchange membrane fuel cell with single land channel geometry 

on the cathode and segmented anode current collector with 9 mm2 active area with a 350μm 

spatial resolution was utilized to measure the local current distribution in the land channel 

direction. A distinguished printed circuit board approach was used for the data acquisition 

to adapt to any flow field design.  

Performance of this segmented cell was examined at dry, wet and moderate humidity 

settings to study the water transport phenomenon in the PEMFC. In the dry condition at 

60 ͦ C with 0% relative humidity, the non-uniform water production and dehydrated 

membrane revealed high current localization under the land region. Conversely, in the wet 

condition at 60 ͦ C with 80% relative humidity, due to the severe flooding in the catalyst 

layer resulted in very small limiting current density under the channel region. Individual 

segment performance analysis for the moderate settings at 60 ͦ C with 60% relative 

humidity displayed the uniform current distribution at higher cell potential whereas 

irregular local current generation at low cell voltages due to higher water accumulation 

under the land region. 
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1 Introduction 

A fuel cell is an electrochemical energy conversion device which uses the chemical energy 

from an external fuel source (mostly hydrogen) and converts it to the electrical energy with 

the help external oxidizing agent (mostly oxygen) by undergoing redox reactions. A fuel 

cell can continuously produce electricity as far as the fuel is supplied. 

An assembly of fuel cell consists of an anode, a cathode, and a membrane electrode 

assembly (MEA). At anode, a fuel is supplied which undergoes an oxidation reaction 

separating ions and electrons. The ions are passed through the electrolyte membrane while 

electrons are released in the external circuit generating electric current. At cathode, the 

oxidizing agent is supplied which undergoes reduction reaction with the help of electrons 

and ions to produce water. The detailed operating principle of a fuel cell is discussed later 

in the report. All the results and discussions presented in this report are totally based on the 

study of proton exchange membrane fuel cell (PEMFC). 

1.1 Classification of Fuel Cells 

Fuel cells can be classified based on the type of electrolyte used, operating temperature, 

and its application areas. Discussed below are some of the primary types of fuel cell. 

a. Alkaline Fuel Cells (AFC) 

Alkaline fuel cells use alkaline solutions, such as Potassium Hydroxide (KOH) 

solution as an electrolyte and non-precious metals as electrodes. In AFC, the rate 

of the electrochemical reaction is fast and thus provides a very high efficiency. 
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These fuel cells don’t need continuous supply of electrolyte due to recirculating 

electrolyte generation. 

 

Reactions in AFC: 

Reaction at Anode: 2𝐻2 + 4𝑂𝐻−→ 4𝐻2𝑂 + 4𝑒− 

Reaction at Cathode: 𝑂2 + 2𝐻2O + 4𝑒− → 4𝑂𝐻− 

Overall Reaction: 𝑂2 + 2𝐻2 → 2𝐻2𝑂 

 

The major drawback of the AFC is that it is not tolerant to Carbon dioxide (CO2). 

The minimum amount of CO2 in the air can lead to poisoning and can drastically 

affect the overall efficiency due to carbonate formation. Low water handling 

capacity and increased corrosion are also some of the other problems faced during 

the operation of AFC. 

 

b. Phosphoric Acid Fuel Cells (PAFC) 

Phosphoric acid fuel cells use liquid phosphoric acid (H3PO4) as an electrolyte 

and platinum activated carbon electrodes.  

 

Reactions in PAFC: 

Reaction at Anode: 2𝐻2 → 4𝐻+ + 4𝑒− 

Reaction at Cathode: 𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂 

Overall Reaction: 𝑂2 + 2𝐻2 → 2𝐻2𝑂 
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The use of precious metal catalysts such as Platinum are poisoned due to Carbon 

monoxide (CO) formation which greatly affects the life and overall performance of 

the cell. However, operating the fuel cell at higher temperatures can minimize this 

problem. 

 

c. Solid Oxide Fuel Cells (SOFC) 

Solid oxide fuel cells use a non-porous ceramic as an electrolyte. These fuel cells 

are operated at very high temperatures (800-1000 ͦ C) and thus does not require 

any precious metal catalysts. SOFC can use wide range of fuels such as Carbon 

monoxide, hydrogen, etc. 

 

Reactions in SOFC: Using Hydrogen as a fuel 

Reaction at Anode: 2𝐻2 + 2𝑂2−→ 2𝐻2𝑂 + 4𝑒− 

Reaction at Cathode: 𝑂2 + 4𝑒− → 2𝑂2− 

Overall Reaction: 𝑂2 + 2𝐻2 → 2𝐻2𝑂 

 

Reactions in SOFC: Using Carbon monoxide as a fuel 

Reaction at Anode: 2𝐶𝑂 + 2𝑂2−→ 2𝐶𝑂2 + 4𝑒− 

Reaction at Cathode: 𝑂2 + 4𝑒− → 2𝑂2− 

Overall Reaction: 𝑂2 + 2𝐶𝑂 → 2𝐶𝑂2 
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The operation of SOFC provides a lot of high-quality waste heat which can be used 

for wide range of applications. Being operated at a high temperature can lead to 

leakage in the cell due to the variation in the thermal expansion coefficients of the 

materials used. 

 

d. Molten Carbonate Fuel Cells (MCFC) 

Molten carbonate fuel cells use molten carbonate salts mixture as an electrolyte. 

These fuel cells are also operated at a considerably high temperature (650 ͦ C) and 

hence non-precious metals can be used as catalysts, thus, reducing the cost. 

Similar to SOFC, MCFC can also use carbon monoxide as a fuel. 

 

Reactions in MCFC: Using Hydrogen as a fuel 

Reaction at Anode: 2𝐻2 + 2𝐶𝑂3
2−→ 2𝐻2𝑂 + 2𝐶𝑂2 + 4𝑒− 

Reaction at Cathode: 𝑂2 + 2𝐶𝑂2 + 4𝑒− → 2𝐶𝑂3
2− 

Overall Reaction: 𝑂2 + 2𝐻2 → 2𝐻2𝑂 

 

Reactions in MCFC: Using Carbon monoxide as a fuel 

Reaction at Anode: 2𝐶𝑂 + 2𝐶𝑂3
2−→ 4𝐶𝑂2 + 4𝑒− 

Reaction at Cathode: 𝑂2 + 2𝐶𝑂2 + 4𝑒− →2𝐶𝑂3
2− 

Overall Reaction: 𝑂2 + 2𝐶𝑂 → 2𝐶𝑂2 
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Due to the operation at high temperature, MCFC are susceptible to corrosion which 

reduces the cell life and overall efficiency. Carbonate produces Carbon dioxide 

which is very difficult to be separated from the generated water. 

 

e. Polymer Electrolyte Fuel Cell 

Polymer electrolyte fuel cells can be classified as i) Proton exchange membrane 

fuel cell (PEMFC) and ii) Anion exchange membrane fuel cell. 

i) Proton exchange membrane fuel cells use a solid polymer electrolyte and 

precious metal (platinum) activated porous carbon electrodes. PEMFC are 

comparatively smaller in size and operate at low temperature (30-90 ͦ C), 

offering an advantage to start quickly and less wear and tear in the system. 

These fuel cells use pure hydrogen as a fuel and are very susceptible to 

carbon monoxide poisoning.  

 Water and heat management are the primary issues faced while operating a 

 PEMFC. These type of fuel cells are generally used for transportation and 

 stationary applications considering their remarkable power to weight ratio. 

 The detailed construction and operation of PEMFC are discussed later in 

 this report. 

 Reactions in PEMFC: 

 Reaction at Anode: 2𝐻2 → 4𝐻+ + 4𝑒− 

 Reaction at Cathode: 𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂 

 Overall Reaction: 𝑂2 + 2𝐻2 → 2𝐻2𝑂 
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ii) Anion exchange membrane fuel cells (AEMFC) are similar to proton 

exchange membrane fuel cells with a prime difference of alkaline 

membrane instead of acidic membrane used in PEMFC. In AEMFC, the 

OH- ions are transported from cathode to anode instead of H+ ions 

transported other way round. Such reaction leads to alkaline pH in the fuel 

cells which offer certain advantages as improved oxygen catalysis and 

availability of variety of fuels including hydrogen. 

Reactions in AEMFC: 

Reaction at Cathode: 
1

2
𝑂2 + 𝐻2𝑂 + 2𝑒−→ 2𝑂𝐻− 

Reaction at Anode: 2𝑂𝐻− + 𝐻2 → 2𝐻2𝑂 + 2𝑒− 

Overall Reaction: 
1

2
𝑂2 + 𝐻2 → 𝐻2 
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Table 1 Classification of Fuel cells. [1] 

Type of Fuel 

cell 

Operating 

Temperature 

( ͦC) 

Advantages  Disadvantages Applications 

Alkaline Fuel 

Cell 

60-250  High efficiency, 

Ease of heat and 

water management 

Requires pure 

O2 

Space 

Phosphoric 

Acid Fuel 

Cell 

160-220 CO tolerant, 

Waste heat 

durability 

Low Power 

density, high 

cost 

Stationary 

power  

Solid Oxide 

Fuel Cell 

600-1000 CO tolerant, can 

use various fuels, 

usable waste heat 

Long startup 

time, require 

thermal 

shielding 

Stationary 

power with 

cogeneration 

Molten 

Carbonate 

Fuel Cell 

600-800 CO tolerant, 

usable waste heat 

Long startup 

time, electrolyte 

maintenance 

Stationary 

power with 

cogeneration 

Proton 

Exchange 

Fuel Cell 

30-90 High efficiency, 

low wear, high 

power density 

High cost, 

waste heat 

Transportation 

and stationary 

power 

 

1.2 Components of PEMFC 

A PEMFC consists of four basic components. 

a. Solid polymer electrolyte membrane 

b. Catalyst layer 

c. Gas diffusion layer 

d. Bipolar plate. 

These four components are used to breakdown protons and electrons from the fuel and 

transport species. The polymer electrolyte membrane conducts and transports the proton 

with the help of water and thus it is very important to regulate the heat and water in the 
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fuel cell. These components are assembled together as shown in Figure 1.1. At higher 

current densities, the water generated in the fuel cell prevents the diffusion of oxygen in 

the cathode catalyst layer resulting in increased mass transport overpotential of cathode 

which reduces the overall voltage of the cell. Hence, it is very important to manage the 

water balance in the system for efficient proton conductivity and efficient oxygen transport. 

 
Figure 1.1. Schematic Representation of a PEMFC [2]. 

The importance and role of each of the component with respect to heat and water 

management, electron and proton transport is discussed below. 

a. Polymer electrolyte membrane 

Proton exchange membrane is one of the prime components of the PEMFC. It 

separates the reactants and allow only protons to pass by from anode to cathode. It 

also acts as barrier separating the anode and cathode gases as well as assuring no 

electronic conduction between the two electrodes resulting in higher power 

densities in PEMFC. The most common polymer electrolyte membrane is Nafion 
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(commercial product of DuPont) which is made up of perfluorosulfonic acid 

(PFSA) chain. This membrane needs to be hydrated adequately to transport the 

protons between the electrodes. Figure 1.2. shows the chemical structure of PFSA 

polymer chain in Nafion. 

 

Figure 1.2. Chemical Structure of Nafion membrane 

The desired proton conducting membrane should have following properties. 

1. Excellent mechanical and electrochemical stability at the operating conditions. 

2. Minimal resistive losses and no electronic conductivity to act as a barrier 

between two electrodes. 

3. High proton conductivity to withstand high current densities. 

4. Reactants should not be able to diffuse in the membrane to ensure high 

efficiencies. 

5. Low cost and high operating life. 

 The proton conductivity of the membrane depends on the water content and the 

 operation temperature of the fuel cell. There are two types of proton transport 

 mechanisms based on the humidity of the membrane as explained by Weber et al. 

 [3],[4]. At higher humidity, the proton transport mechanisms are non-classical such 
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 as “Grotthus mechanism” where the proton in passed along with the hydrogen 

 network present in the membrane. At lower humidity conditions, the proton is 

 transferred using the surface mechanism with electrostatic diffusion provided by 

 the sulfonate groups in the membrane. PFSA membrane provide all the required 

 properties but are very delicate and costly due to its lengthy and critical chemical 

 procedures. 

b. Catalyst layer 

Catalyst layers used at the anode and cathode of the PEMFC include platinum 

loaded carbon particles with a thin membrane of Nafion. The platinum acts as a 

catalyst whereas carbon particles provide the required mechanical strength and 

increased active surface area. The gases and protons get transferred through the 

catalyst layer and Nafion membrane by migration due to electric potential gradient 

whereas electrons are transferred to the reaction sites with the help of carbon 

particles.  

Activation overpotential of anode is much less than that of cathode activation 

overpotential. This is due to the difficulty of catalyzing the oxygen reduction 

reaction. The catalyst at cathode is subjected to very corrosive environment and 

should be chemically stable to activate oxygen. The rate of hydrogen oxidation 

reaction (HOR) is very fast as compared to oxygen reduction reaction (ORR) due 

to the diffusivity of hydrogen in the catalyst layer and lesser number of electrons 

involved in the action. 
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Though platinum is an excellent catalyst to be used at anode for hydrogen oxidation 

reaction, it is very vulnerable to carbon monoxide (CO) poisoning. The anode is 

supplied with pure hydrogen gas but the traces of carbon monoxide is generally 

found due to manufacturing process involving reformation of hydrocarbons. CO 

consumes platinum by reacting and blocks the active area of the catalyst resulting 

in reduced reactivity.  

Another problem faced at the cathode side is of flooding. The water produced at 

the time of operation in the cathode catalyst layer can block oxygen from diffusing 

in the catalyst layer which will result in overall voltage loss of the cell. This 

drawback can be tackled by increasing the amount of platinum loading on the 

cathode side which however will increase the cost of the PEMFC.   

 

Figure 1.3. SEM images of catalyst coated membrane [5]. 

 

c. Gas diffusion layer 

The gas diffusion layer (GDL) is assembled adjacent to the bipolar plates. It is made 

up of a porous carbon paper or a carbon cloth with very small thickness (100-300 

μm).  The main function of the GDL to diffuse the reactants to the catalyst layers 
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with minimum losses. It also provides the mechanical strength to catalyst layer 

increasing the active surface area and conducts electrical current as well as provides 

pathways for water to move from the reaction site to the flow channels. 

The structural, thermal, electrical as well as chemical properties of the GDL plays 

an important role in the operation of a PEMFC. Properties such as electrical 

conductivity, thermal conductivity, porosity, pore distribution ratio is very 

important for the electron transport, mass fuel transport, water and thermal 

management in the PEMFC.  

 

Figure 1.4. SEM image of Toray 060 carbon paper (left) and E-Tek carbon cloth (right) 

[5].  

d. Bipolar plates 

Bipolar plate is another important component of the PEMFC. The bipolar plates are 

responsible to transport the hydrogen and oxygen to the catalyst layers and remove 

the heat and water generated from the catalyst layers. It also transports electrons 

and provide the structural support (80% of the weight) to the entire fuel cell 

assembly. The bipolar plate consist of flow channels of which flow field design 

plays a vital role in the performance. There are various types of flow field designs 

such as straight, serpentine, interdigitated, etc. with which they provide different 

flow patterns such as co-flow, counter flow or cross flow. 
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2 Operation Principle of PEMFC 

The proton exchange membrane fuel cell is one of the most promising fuel cell 

technologies. In a PEMFC, pressurized hydrogen gas is supplied to the anode side. This 

gas is further diffused in the anode catalyst layer where it encounters platinum (catalyst). 

On reaction with platinum, the hydrogen molecule is split into H+ ions and electrons. The 

H+ ions are further passed through the proton exchange membrane to the cathode side 

whereas the electrons are passed through the external circuit generating current. 

Simultaneously, at the cathode side, oxygen is supplied and is diffused through the cathode 

catalyst layer. The supplied oxygen reacts with hydrogen ions to generate water consuming 

electrons from the external circuit. Figure 2.1 shows the working principle of a PEMFC. 

 

Figure 2.1 Working principle of PEMFC [6].  
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2.1 Performance of PEMFC 

The characteristic study of the performance of the fuel cell can be done by analyzing the 

polarization curve (voltage vs current density) as shown in Figure 2.2. Based on the 

factors that affect the performance of the fuel cell, a polarization curve can be divided 

into five regions. 

1. Activation polarization region 

2. Ohmic polarization region  

3. Concentration polarization region 

4. Hydrogen crossover region 

5. Thermodynamic region 

 

Figure 2.2. Sample polarization curve of PEMFC 
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1. Activation polarization Region 

In the low current density regions, when the current is drawn, voltage loss is 

observed from the equilibrium value. This voltage loss is due to the activation 

energy required to initiate the redox reactions at both the electrodes. This loss is 

also known as activation overpotential.  

This activation overpotential can be calculated using a Butler-Volmer equation as 

follows. 

𝑖𝑐𝑒𝑙𝑙 = 𝑖0 [exp (
𝛼𝑎𝐹

𝑅𝑇
𝜂) − exp (

−𝛼𝑐𝐹

𝑅𝑇
𝜂)] 

 

Where, 𝑖𝑐𝑒𝑙𝑙 is the current density generated by the cell (A/cm2), 𝑖0 is exchange 

current density (A/cm2), 𝛼𝑎 and 𝛼𝑐 are anodic and cathodic charge transfer 

coefficients respective, R is universal gas constant (J/mol), T is cell temperature 

(K), F is Faraday’s constant (C/mol) and 𝜂 is activation overpotential. 

2. Ohmic polarization region 

The voltage loss in the ohmic polarization region is due to the resistance to charged 

species transport such as electron transport resistance or ion transport resistance. 

This voltage loss is known as ohmic overpotential. To represent the resistance of 

every component, area specific resistance ‘r’ (Ω. cm2) is used.  

Ohmic overpotential can be calculated using Ohm’s law as follows. 

𝜂 = 𝑖𝑐𝑒𝑙𝑙 ∗  ∑ 𝑟  
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where, 𝑖𝑐𝑒𝑙𝑙 is the current density generated by the cell (A/cm2), ∑ 𝑟  is the 

summation of area specific resistance of all the components that have electron or 

ionic transport resistance (Ω. cm2) and 𝜂 is ohmic overpotential. 

3. Concentration polarization region 

In the high current density region, the voltage loss caused due to the inadequate 

mass transport to and from the reaction site is known as concentration overpotential. 

This is due to the high rate of the reaction but slow rate of mass transfer to the 

catalyst. Due to this slow rate, the reactants can’t reach, and the generated products 

can’t leave from the catalyst. As the cell is subjected to high current density, the 

reactants are consumed, and products are accumulated at the electrode surface 

which increasingly causes more obstruction to the reactant flow. 

4. Hydrogen crossover region 

The primary and most important component of the fuel cell assembly is the 

electrolyte membrane. This membrane is responsible to transport ions from one 

electrode to another and physically fence the fuel and the oxidizer to avoid the direct 

reaction. However, these membranes are not perfectly efficient as some of the gases 

permeate through the membrane due to the pressure as well as concentration 

gradient between the two electrodes. This phenomenon is known as gas crossover. 

The voltage loss in this region is due to the molecular diffusion of hydrogen through 

the membrane. This hydrogen reacts directly with the oxygen which decreases the 

electrochemical potential. This loss can be calculated as follows. 

𝑖𝑐𝑟𝑜𝑠𝑠 =  −𝑖0 exp  (
𝛼𝑐𝐹

𝑅𝑇
𝜂) 
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Where, 𝑖𝑐𝑟𝑜𝑠𝑠 is equivalent current density due to gas crossover and 𝜂 is crossover 

overpotential. 
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3 Segmentation of PEMFC 

The reactant and water distribution are the primary parameters affecting the performance 

of a PEMFC. To study these mechanisms within a component of the cell as well as between 

the connecting interfaces of the two components, local or individual evaluation is must. 

Segmented PEMFC is one of the local diagnostic method used to evaluate the local current 

densities, ohmic resistance, electrochemical active area, etc. These local measurements can 

be used to evaluate the factors that affect the local voltage losses. The design of cell affects 

the consumption rate of the fuel which leads to local water production, generating non-

uniform local current densities and ohmic resistances which are different from the overall 

reading of the cell. 

 

Figure 3.1. Segmented current collector 
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The segmented flow field allows to analyze the local transport mechanism and the effect 

of local water generation on overall cell performance. Figure 3.1 shows a segmented flow 

current collector design used to measure local current density and ohmic resistance 

distribution along the land channel geometry of the cell. The 9 segments provided on the 

collector allows hydrogen to flow through 8 channels present between the consecutive two 

segments. The current produced in the local area due to the local electrochemical 

interaction of the reactants allows us to study the transport mechanism and overall effect 

on the cell performance.  

There are various techniques developed for the measurement of local current density 

distribution. Cleghorn et al. [7-10] developed a printed circuit board (PCB) approach to 

measure the local current distribution. This technique was used along with segmented 

electrodes and was proved useful for various reactant flow and humidification strategies. 

In this method to measure a local current distribution in the individual segments, each 

segment was decoupled from the rest of the segments on the PCB and the current and 

voltage sense of the selected segment was connected to the external load box which 

allowed them to measure the current distribution of each and every segment and study its 

effect on the overall performance of the cell. Geiger et al. [11] came up with a novel 

technique including magnetic loop array with closed loop Hall effect sensors to monitor 

the current distribution. In this method, a current sensor is used to measure the current in 

the individual segment. This Hall effect sensors generates a magnetic field with respect to 

the primary current and gives out the voltage of the hall generator which is in proportion 

with the primary current. With the help of boosted circuit an opposing magnetic field is 
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generated to drive the core to zero flux. This opposing magnetic field produces the 

secondary current which can be measured with the help of accurate resistor. Stumper et al. 

[12] used a sub-cell partial electrode membrane assembly to measure the current 

distribution. 

Segmented fuel cell technique is used in various research to evaluate the effect of local 

parameters on the fuel cell performance. Hakenjos et al. [13] implemented a segmented 

anode approach to evaluate the local water flow distribution and its effect on the current 

density for various air flow rates. Similarly, Sun et al. [14] used a segmented fuel cell 

method to evaluate the effect of operating temperature, fuel flow rate and relative humidity 

on the local current distribution of the cell. Dong et al. [15] designed a segmented cathode 

flow field to evaluate the local ohmic resistance and current density distribution to study 

the effect of cathode humidification on the water distribution in the cell. 
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4 Importance of Land Channel Geometry: Literature 
Review 

The flow field geometry of a PEMFC is made up of a land and channel as shown in Figure 

4.1. The purpose of the land is transporting the electron and remove heat from the system 

and channel ensures the flow of reactants and products to and from the reaction site. The 

following literature survey serves the purpose of understanding the effect of the land 

channel geometry on the performance parameters of the fuel cell. 

 

Figure 4.1. Schematic diagram of land channel geometry in the flow field of a PEMFC 

[16] 

Due to the complexity of fabricating such a small-scale assembly and difficult of making 

electrical connection in very small available area, researchers use a very complex models, 

imaging techniques and ex-situ experiments to study the transport phenomena in the land 

channel direction of the fuel cell. 
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4.1 Effect on Water Distribution 

In the high relative humidity setup, the land channel geometry is responsible for the non-

uniform water distribution in the GDL. This non-uniform distribution can be the primary 

reason disoriented current generation and thus it is necessary to study species distribution 

in the land channel direction. Wang et al. [17] developed a numerical model to analyze the 

water distribution in the land channel direction and concluded that at higher current density 

regions, the water accumulated under the land region is four to five times as that of the 

channel region.  Figure 4.2 shows their findings for 100 % relative humidity. 

 
Figure 4.2. Water distribution in GDL with respect to land channel geometry at 80 ͦ C and 

2.5 A/cm2 current density. 

Further, Deevanhaxy et al. [18] and Eller et al. [19] used X-ray radiography and X-ray 

tomography techniques respectively for imaging the water saturation in the land channel 
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direction. Results of both lead to the higher water saturation under the land channel exists 

and can cause mass transport resistance decreasing the overall efficiency of the cell. 

Similarly, Natarajan et al. [20] also found out the heavy water accumulation under the land 

channel in the low current density region and concluded the non-uniform water distribution 

has a greater impact on the reactant low resistance as well as the electron transport 

resistance. Considering all the results mentioned above, it is necessary to study the local 

current density distribution to understand the effect of water accumulation on the overall 

current density of the fuel cell. 

4.2 Effect on Current Distribution 

The land channel geometry leads to uneven transport pathways, non-uniform water 

accumulation in the GDL as well as in the membrane, varying electrical and transport 

resistances leads non-uniform reactant flow which generates uneven local current densities 

in-plane direction of PEMFC. This study of these uneven pattern of local current generation 

can help understand the transport phenomenon in the fuel cell. 

Researchers have tried various numerical as well as experimental approaches to analyze 

this pattern and understand the overall impact of the flow field geometry on the cell 

performance. For the interdigitated flow field, He et al. [21] found out that the local current 

density for the channel region closer to inlet has a higher current density and further goes 

on decreasing as we move forward in the outlet region direction. Figure 4.3 demonstrates 

his results for the local current density distribution. 
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Figure 4.3. Current density distribution for interdigitated flow pattern 

Further, Meng et al. [22] studied the current density distribution with respect to the water 

content in the GDL for high humidity setup. He compared heavily flooded GDL and very 

dry GDL to analyze the distribution for the same setup. In conclusion of his simulation he 

found out that the difference between the land and channel current generation is 

comparatively low as in the case of flooded GDL setup. He believes the higher transport 

resistance in the case of flooded GDL leaded to these results. Figure 4.4 shows the results 

for his experiments. 
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Figure 4.4. Local current density distribution for dry and flooded  

GDL setup at 80 ͦ C. 

Freunberger et al. [23] applied an experimental approach to study the local current density 

distribution using segmented cell approach. He used gold plated probes place at the 

junction of the two interfaces to measure the potential difference between the two 

components. According to his findings, in the higher global current density region, the 

current density under the channel region is higher than the current density under the land 

region. For the lower global current density region, he found out the exact opposite results 

where current density under the land channel was higher than the channel region. The 

inadequate hydration of the membrane leads to these results.  
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5 Experimental Setup 

5.1 Design of Segmented Anode Flow Channel [16] 

A new approach was considered to manufacture the segmented cell in which the anode 

current collector plate is segmented, and cathode current collector plate has a single land 

channel geometry. This design can be used according to the flow design such as cross flow, 

counter flow, etc. 

 

Figure 5.1. Segmented anode side current collector 

In this design, multiple flow channels for the hydrogen transport were created. As show in 

Figure 5.1, this anode current collector consists of nine lands and 8 channels. The land 

width being 200 μm and is made up of gold-plated copper to avoid the corrosion. The 150 

μm separation between the two land segments are used as flow channels for the hydrogen 
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flow. The dimension of the catalyst layer was kept to be 3 mm x 3 mm active area resulting 

in approximately a spatial resolution of 350 μm. 

The high amount of platinum loading was used on used on the anode catalyst for the faster 

rate of hydrogen oxidation and GDL from the anode side was removed to avoid in-plane 

current generation. Eliminating anode GDL resulted in high in-plane resistance which can 

be used for the accurate local current density measurement. On the cathode side, a single 

land channel geometry of 1 mm configuration was used without any segmentation. 

5.2 Design of Current Distribution Measurement System [16] 

In this experimental approach, a high frequency resistance (HFR) method is used. In this 

method, an alternating current is supplied to the segmented cell and the voltage drop across 

the cell is measured. Further, using Ohm’s law, the high frequency resistance of the cell 

can be calculated. 

For the measurement of the local current density, a PCB design approach was selected as 

shown in Figure 5.2. Nine shunt resistors of 200 mΩ were connected in a parallel fashion 

representing the electronic and protonic resistances of the cell in the in-plane direction of 

the PEMFC. Using a high-resolution multimeter, (Keithley Instruments DMMA 2700), we 

can calculate the voltage drop across each of the shunt resistor and the local current for 

each of the segment can be calculated using Ohm’s law as follows. 

𝐼𝐴𝐶
𝑛 =

𝑉𝐴𝐶
𝑛

𝑅𝑠
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Where, Rs is the shunt resistance and n is the selected segment number. 

 

Figure 5.2. Experimental setup for measurement of local current density 

5.3 Preparation of Membrane Electrode Assembly (MEA) 

A catalyst coated membrane of 0.4 mg/cm2 of platinum loading consisting of platinum 

catalyst (40% of Pt/Vulcan C) and Nafion ionomer solution (D2020) with ionomer/carbon 

weight ration of 0.8 was supplied from the facility of University of Calgary, Alberta, 

Canada. To prepare the membrane electrode assembly, a small window of 3 mm x 3 mm 

and 4 mm x 4 mm was cut out from two individual Kapton sub-gaskets using Silhouette 

Cameo precision cutter. Further, a Nafion membrane (NRE 212) was pressed between the 

two sub-gaskets. The catalyst layer was punched out from the respective anode and cathode 
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sheets of catalyst inks and was placed in each of the cut-out windows on the Kapton sub-

gaskets as shown in Figure 5.3. 

 

Figure 5.3. Schematic representation of MEA preparation a) Catalyst coated membrane 

sandwiched between anode and cathode assembly b) cross section of MEA 

Then this subassembly was placed between two cardboard sheets for uniform pressure 

distribution and was put on the hot press. The catalyst was transferred on the Nafion 

membrane (NRE 212) by hot pressing the subassembly at 150 ͦ C and 2.75 MPa pressure 

for 3 minutes as shown in Figure 5.4. 
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Figure 5.4. Catalyst coated membrane in the hot press. 

 

5.4  Assembly of Segmented Cell 

For the assembly of the cell, graphite bipolar plates were used at both anode and cathode. 

A carbon paper (TGP-H-90) was used as a GDL on the cathode side with a dimension of 5 

mm x 5 mm. A 250 μm PTFE was used to seal the GDL in the assembly to achieve 20% 

compression. The schematic diagram of the cell assembly is shown in the Figure 5.5. 
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Figure 5.5. Assembly of segmented cell representing a) Anode end plate b) Segmented 

anode current collector c) Catalyst coated membrane d) Cathode GDL e) Cathode bipolar 

plate f) Cathode current collector g) Cathode end plate [24] 

Further the catalyst coated membrane was fused in between the cathode side assembly and 

segmented anode side assembly with the compression pressure of 2 MPa to ensure proper 

sealing and avoid any leakage and damage to any component. Figure 5.6 shows the anode 

and cathode assembly and Figure 5.7 shows the cross section of the segmented cell 

assembly. 
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Figure 5.6. Components of Segmented cell assembly 

 

 
Figure 5.7. Cross section view of segmented cell assembly [16] 

On completion of segmented cell assembly, preconditioning was performed based on the 

New Energy and Industrial Technology Development Organization (NEDO), Japan 

suggested parameters as mention in Table 2. For the control of relative humidity, pressure, 

cell temperature and mass flow rates of the reactants Fuel Cell Technologies’ test stand 

was used. For the control of supplied Voltage and Current, a Vertex potentiostat from 
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Ivium technologies was used. For the measurement of local current generation, Keithley 

digital multimeter was used. Once the precondition of the fuel cell was performed, the 

testing was conducted as mentioned in Table 3. 

Table 2. NEDO preconditioning parameters for PEMFC 

 

Parameter Value 

Area of cell 9 mm2 

H2 flow rate 70 sccm 

Air flow rate 100 sccm 

Cell temperature 80 ͦ C 

Anode relative humidity 88 % 

Cathode relative humidity 42 % 

Duration 6 hours 

 

Table 3. Testing Conditions for the measurement of the local current density in the land 

channel direction. 

 

Control Type Pressure 

(psi) 

Cell 

Temperature 

(ͦ C) 

An/Ca 

Relative 

humidity 

(%) 

An/Ca 

flowrates 

(sccm) 

An/Ca Fuel 

Voltage 5 60 80/80 70/70 H2 /Air 

Voltage 5 60 80/60 70/70 H2 /Air 

Voltage 5 60 50/0 70/70 H2 /Air 
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6 Results and Discussions 

According to the test conditions mentioned in Table 3, the segmented PEMFC performance 

was analyzed to understand the effect of relative humidity (RH) considering the local 

current distribution in the land channel direction. The cell was operated with hydrogen as 

an anode gas and air supplied to the cathode. Figure 6.1 shows that the overall cell 

performance is affected by the humidity content as the overall ohmic resistance and oxygen 

transport resistance tend to increase. 

 

Figure 6.1. Performance of cell at dry, moderate and wet humidity conditions 

In dry condition (0% RH), the limiting current density is observed to be around 1 A/cm2. 

This value is comparatively low as compared to regular fuel cell performance. In dry 
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condition, this lower limiting current density is the effect of higher proton transport 

resistance as well as the catalyst layer dehydration. As mentioned earlier in this report, 

catalyst layer requires adequate amount of water to transport the ions from one electrode 

to another, which in this case is very low. Thus, catalyst layer has to be dependent solely 

on the current generation which generates water. 

In wet condition (80% RH), the limiting current density of the cell is approximately 0.8 

A/cm2. In this case, at the limiting current density value, severe flooding is observed due 

to the over-hydration of the membrane. This is due to higher humidity condition and current 

generation which hinders the oxygen transport to the cathode catalyst layer. This 

hinderance increases the concentration overpotential in the cell and a sudden voltage drop 

is observed. 

In the moderate humidity setting (60% RH), the proton and oxygen transport resistances 

are very much critical at low to moderate current density regions. With increased current 

generation, water production due to the redox reaction increases and hydrates the 

membrane, resulting in decrease of the overall concentration or mass transport 

overpotential significantly. Thus, we can observe that the limiting current density for 

moderate humidity condition is approximately 1.6 A/cm2 which is much higher than the 

previous two conditions. 

Further, the analysis of local current distribution is performed for the same conditions as 

presented in Table 3. In the following figures and analysis, segments 1, 2, 8 and 9 represent 

the land while segments 3, 4, 5, 6 and 7 represent the channel region.  
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Figure 6.2. Local current distribution for dry condition 

As observed in Figure 6.2, in dry condition (0% RH), at all the cell voltage the local current 

density generated in the channel area is much lower than that of current density generated 

in the land region. At 0.2 V, the current density generated in the center segment of the 

channel region is 0.6 A/cm2 while for the same cell potential the current density at the 

extremes of the land channel (segment 1 and 9) is 1.4 A/cm2. In the dry setting, the 

dehydrated membrane and catalyst layer is the primary reason for the voltage loss and thus, 

the local current generation is totally driven by the local ohmic resistance of the segment. 

Paul et al. [25] also concluded that in dry condition the proton conductivity thin membrane 

is much lower than that of thick membrane. 
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Figure 6.3. Local current distribution in wet condition 

In wet condition (80% RH), the trend of local current distribution is observed to be exactly 

opposite to the trend in dry condition. The current generation in the channel is significantly 

higher than the land region. At 0.3 V, the maximum current density at the center of the land 

region is 1.39 A/cm2 whereas at the extremes of land channel it is found to be 0.8 A/cm2 

for the same cell potential. As seen in the Figure 6.3, the local current density distribution 

under the channel start to drop considerably after 0.6 V of cell voltage. This sudden drop 

in the cell potential indicates huge amount of water accumulation under the channel region. 

The current generation under the channel region being the prime factor of overall cell 

current density, the accumulation or flooding of the water under the channel region 

decreases the overall performance of the cell.  
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Figure 6.4. Local current density distribution in moderate humidity setup 

For the moderate humidity conditions (60% RH), the local current distribution is uniform 

under both land and channel region for the cell potential above 0.3 V while overall current 

density being lower than 1.4 A/cm2. For example, at 0.5 V, the current density in the land 

region is 1 A/cm2 while at the center of the channel region is 1.06 A/cm2 which is 

approximately uniform. When the cell voltage decreases under 0.3 V, we can observe an 

uneven trend of local current distribution. The current generation under the land area is 

lower than that of current generation at the center of channel region. For example, at 0.1 V 

cell potential, the current density at the extremes of the land is 1.5 A/cm2 and at the center 

of the channel is 2 A/cm2. The trend at this cell potential closely aligns with the trend of 

current distribution in the wet condition. Considering the comparison, the uneven current 

distribution profile depict that the cell is moving into wet condition. This transition in the 
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wet phase is due to the increased rate of water production associated with the higher local 

current densities.  

For the moderate humidity condition, performance of each segment was analyzed and 

plotted as shown in Figure 6.5. 

 

Figure 6.5. Performance of individual segment for moderate humidity condition 

If we observe the limiting current densities for the segment under the end tip of the land 

region (segment 1, 9) and at the center of the channel region (segment 5), it increases from 

0.8 A/cm2 to 1.8 A/cm2. As the cell potential starts dropping below 0.4 V, we can notice 

that the current generation in the land region starts to extremely decrease due to the water 
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generation. From this plot, we can conclude that the water accumulation under the land 

region is higher as the distance between the catalyst layer and channel is comparatively 

larger in the land region and hence affects the amount of oxygen diffusion in the catalyst 

layer under this region. 
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7 Conclusions and Future Work 

 

In this experiment, a highly precise segmented with an active area of 9 mm2 with a 350 μm 

resolution was designed and fabricated. On in-house manufacturing of catalyst coated 

membrane, using cathode single land-channel geometry bipolar plate and segmented anode 

current collector the cell was assembled. Further, the cell was conditioned based on NEDO 

suggested parameters. A novel PCB approach was used for the data acquisition of the local 

current distribution was used.  

In wet condition, the current distribution in the land region was much lower than that of 

the local current generation in the channel region. Uneven water distribution and 

accumulation was the primary source for lower limiting current density. On the other hand, 

in dry condition, the current distribution under the land his effectively higher than in the 

channel region. The dehydration of the membrane governs the performance losses in this 

condition resulting in increased concentration overpotential. In moderate humidity 

conditions, at higher cell potential uniform current distribution is observed. As the cell 

voltage goes below 0.3 V, the transition in the wet phase causes water accumulation under 

the land region resulting in uneven current distribution in this setup. 

In future, this segmented cell can be used to understand the effect of oxygen transport on 

overall cell performance as well as to evaluate the ionic resistance distribution of the 

catalyst in the land channel direction for various flow field designs. 
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