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Abstract 

Over the last 150 years, many of the native migratory salmonid populations in North 

America have declined or been extirpated, and their native habitats have been 

significantly altered. Life history variation within and among migratory fish populations 

plays an important role in their persistence when faced with changing habitat 

conditions. One of the most extreme life history events in salmonids is the movement 

from lotic to lentic habitats, a migration that can span long distances and different 

habitat types. Understanding the factors affecting migratory life histories expressed by 

individuals within a population play an important role in dynamics and habitat 

requirements of the whole population. Here, I investigate three primary factors that 

contribute to an individual fishes’ “decision” to migrate: genetics, environmental 

conditions, and individual body condition. In rainbow trout Oncorhynchus mykiss of the 

Shasta River, California we found distinct genetic structure among subpopulations in 

spatially separate habitats. Within one of those population segments we detected 

partial migration in which some individuals migrate, but others do not. We found that 

increased in daily mean water temperature were associated with upriver migration of 

adult coaster brook trout Salvelinus fontinalis in the Salmon Trout River, Michigan. In 

the Pilgrim River, Michigan we documented a previously unrecognized population of 

migratory brook trout. These results provide information critical to understanding the 

ecology of these at-risk populations and broaden our understanding of migratory 

behavior in general. The methodologies we developed to quantify movement data in 

the context of migratory life histories are applicable to other systems where further 

understanding of the drivers of migratory life history variation is needed. 
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1 Introduction 

Migration is an important aspect of fish biology and can exert a powerful influence on 

key population parameters such as survival, growth, and reproduction (Gross et al. 

1988, Dodson et al. 2013). This is especially true in the case of migratory Oncorhynchus 

and Salvelinus species that move between several different habitat types during their 

life (Castonguay et al. 1982, Quinn 2011). Such aquatic habitats range from high 

gradient intermittent headwater streams, newly impounded beaver ponds, tidal marsh, 

and open ocean or Great Lakes. The long distance and predictable seasonal migrations 

of salmonids between lentic and lotic habitats make them vulnerable to anthropogenic 

factors such as physical or thermal impediments to migration (Angilletta et al. 2008) and 

harvest at specific times or in specific locations (Quinn et al. 2007, Theriault et al. 2008). 

Because of this, many Oncorhynchus and Salvelinus populations in North America have 

diminished or disappeared completely (Jelks et al. 2008). Ironically, both Oncorhynchus 

and Salvelinus species have also proven to be widespread human-assisted invaders 

(Dunham et al. 2002, Boyer et al. 2008), which illustrates the adaptability of these 

species and their ability to take advantage of suitable habitat. There is a need to identify 

and describe important life history variation in specific populations. 

Understanding the geographic scale of fish migration within a population is a crucial 

step in identifying at-risk populations and defining conservation units (Crandall et al. 

2000, Waples 2008). Further, understanding the drivers that influence particular 

migration patterns is important so that populations and their habitat may be effectively 

managed and restored if needed. Conditions frequently fluctuate on short and long 

timescales within riverine, estuarine, and open water habitats, and migratory salmonids 

occupy each of these habitats during part of their lives, so it is not surprising that their 

evolution has resulted in the expression of varied life histories within and among 

populations (Stearns 1989, Hendry et al. 2000, Crozier et al. 2008). In a population with 

varied life histories, not all individuals will exhibit the same movement patterns or 
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maturation times even under similar environmental conditions (Stearns and Koella 

1986). For example, some individuals may out-migrate to new habitats a year earlier or 

later than the majority of their cohort (Hutchings and Jones 1998, Bell and Duffy 2011). 

When varied migratory life histories are expressed within a population, there is no 

instance where the whole population is in the same habitat type at the same time 

(Blanck et al. 2007). This provides a buffer when conditions are unfavorable at a 

particular location and time, but also an opportunity for some individuals in a 

population to benefit when conditions are favorable. The importance of preserving life 

history variation in at-risk populations has received more attention from fish biologists 

(Schindler et al. 2010), because it may allow migratory salmonid populations to persist 

despite unfavorable environmental changes; it may also enable them to take advantage 

of newly available or restored habitats (Anderson and Quinn 2007). 

Fish migration is driven by three main factors: 1) genetic disposition that has been 

shaped by a population’s local adaptation (Jones et al. 1997, Fraser et al. 2011). These 

population-level movements might include a downstream smolt migration or an 

upstream spawning migration. Population-level movements are the result of long-term 

environmental and ecological conditions in which the population evolved (Quinn 2011); 

2) local environmental condition. These include movements away from a particular 

location in response to changes in habitat attributes such as temperature (Sutton et al. 

2007, Benjamin et al. 2013), flow (Scruton et al. 2003), food availability (Vehanen 2003, 

Sloat et al. 2014b) or inter- or intraspecific competition (Fausch and White 1981); 3) 

individual condition (Hutchings and Jones 1998, Tipping et al. 2003, Sloat et al. 2014b). 

Individual condition can influence their fate in a density-dependent situation or trigger 

movements as bioenergetic needs change (Morinville and Rasmussen 2003, Wysujack et 

al. 2009). Kendall et al. (2015) provided an extensive review of the effects of individual 

condition, environmental factors, and genetics on anadromous versus resident traits in 

Oncorhynchus mykiss populations. Of course, these three factors often do not operate 

independently, but rather may be in feedback with one another. 
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Understanding how genetics, habitat, and individual condition interact within a specific 

population may be important for preserving life history variation within that population.  

Relating short and long-distance movements to current environmental factors should 

reveal which forces and conditions are the best predictors of fish movement.  Such 

insights will be important for managing fish for harvest as well as for conservation. 

Understanding the timing of movements for particular age or size classes is also 

important for implementing harvest seasons and limits (Lucas and Baras 2000, Dann et 

al. 2013). With this information in hand, custom management prescriptions may be 

made to most effectively protect and enhance those populations.  

Partial migration, which represents an extreme in life history variation, involves some 

individuals in a population moving long distances (from lentic to lotic habitats in 

anadromous or potadromous fish populations), while others remain river residents for 

their entire life (Jonsson and Jonsson 1993, Chapman et al. 2011, Chapman et al. 2012). 

Partial migration has been observed among individuals of the same age and habitat 

including salmonids in the Pacific (Olsen et al. 2006), Atlantic (Wysujack et al. 2009), and 

Great Lakes watersheds (Robillard et al. 2011). The implications of partial migration are 

evident in mating systems where migratory and resident individuals interbreed if one 

life history is disproportionally successful (Thériault et al. 2007, Sloat et al. 2014a). The 

relative success of resident versus migratory individuals depends on environmental 

conditions that can change from year to year or generation to generation (Hutchings 

and Myers 1994).  

In ecosystems that have a long history of anthropogenic disturbance, certain life 

histories may have been selected against to a point where they are no longer found in a 

population. Changes in habitat may also have compounding effects. In some cases, 

promoting a certain part of the life history may have negative feedback on the 

population if the beneficiaries are subject to poor conditions at a later life history stage 

(Jeffres and Moyle 2012). Harvest may also be more impactful to certain life histories 
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within a population if effort is concentrated in a specific space or time (Dann et al. 

2013). Conversely, certain life histories may be favored by different management 

actions, for example by improving conditions in a migration corridor for sea-ward 

migration. Fisheries managers may not have control over how certain life history 

variants in the population will behave, but they often can control some aspects of 

habitat quality or harvest, which may result in positive or negative selection on some life 

histories.  It is therefore important to understand the relative importance of these life 

histories to the persistence and growth the population as a whole.  

There is a growing consensus that life history variation plays a key role in the ability of 

migratory salmonid populations to thrive. Because existing migratory life histories are 

the result of specific habitat conditions, it is important to understand the life history 

variation present in specific watersheds. Collecting movement data for migratory 

salmonids can be difficult because they are cryptic and occupy a wide range of habitats 

(Kendall et al. 2015). However, several newer techniques permit the collection of 

detailed data on fish movements at both the individual and population levels. 

Increasingly high resolution and cost-effective genetic analyses give researchers new 

tools to explore population structure and relatedness, and specific genetic markers that 

may be controlling migratory behavior within and among migratory salmonid 

populations (Miller et al. 2012, Pearse et al. 2014). Moreover, chemical analyses of 

biological samples can provide very detailed information on the past movements of 

individual fish by matching chemical signatures in hard parts (otoliths or fin rays for 

example) to water chemistry of locations that individual has occupied (Kennedy et al. 

2005, Sellheim et al. 2017). Meanwhile, traditional tagging and tracking provides 

insights into real-time movement, survival, and growth for individuals (Lucas and Baras 

2000). Combining these techniques makes it possible to explore linkages between 

population and individual-level movements, and how they relate to population 

dynamics such as survival and population growth rate. Given the increasing efficiency of 

these methodologies, it is becoming more realistic to embark on multidisciplinary 
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studies at the watershed scale to examine local adaptation within a specific migratory 

salmonid population. Developing relatively simple models that combine life history 

variation with population dynamics may be of great use in understanding mechanisms 

to sustain and enhance specific populations.  

Here, I describe the migrations and within-river movements observed in three specific 

salmonid populations. In chapter one, I describe the movements of O. mykiss in the 

Shasta River, California, a spring-fed tributary to the Klamath River. We implemented a 

mark-recapture model to compare survival and movement probabilities in two parts of 

the watershed with different habitat characteristics. We also characterized seven life 

history variants within the system and used genetic analysis to investigate relatedness 

among them. In chapter two we enumerated upriver migration of adult coaster brook 

trout and coho salmon in the Salmon Trout River, Michigan. We developed models to 

test the effects of environmental cues (water temperature, stage height, and barometric 

pressure) on timing of upstream migration. In chapter three we describe the 

movements of brook trout in the Pilgrim River, Michigan and determine whether a 

portion of the population migrates between river and lake habitats. We also 

implemented a mark-recapture model to estimate seasonal movement and survival 

probabilities for brook trout among segments of the river and test for differences in 

those parameters between sampling years and age classes. By combining movement 

data, life history modeling, and genetic analysis, a more comprehensive understanding 

of interactions between populations and their environments was obtained.  
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2.2 Abstract   

Variation in migratory life history is common in populations of rainbow trout 

Oncorhynchus mykiss. Timing and extent of migration can be linked to differences in 

genetics, environmental conditions, and individual physiology. Within and among 

population migratory life history variation likely increases with heterogeneity and 

connectivity among habitat across space or time. Anthropogenic influences often 

simplify habitats, isolate habitat segments, or restrict migration corridors. The Shasta 

River in northern California is an historically productive spring fed system that is highly 

impacted by land use practices that result in degraded salmonid habitats. Restoration 

efforts have aimed to improve stream conditions by installing cattle exclusion fencing 

and conserving spring inflows in parts of the watershed. We used outmigrant trapping 

and individual tracking data from Passive Integrative Transponder (PIT) tagging to 

identify life history variants of O. mykiss in the Shasta River and assessed their 

relatedness using restriction site-associated DNA sequencing (RADseq). We also used a 

mark-recapture model to estimate survival and movement probabilities of O. mykiss 

before and after habitat restoration efforts. Population structure was identified among 

O. mykiss collected in the upstream area near spring inflows and the seasonally 

impacted area downstream. Both resident and migratory individuals were identified in 

the upper spring-fed reach, but they were likely from one partially migrating population. 

Probability of out-migration from the spring inflow area did not change from pre- to 

post-restoration phases but was higher from the mainstem reach (0.71) than in a spring 

fed tributary (0.14). Reproductively divergent population segments may in part be a 

result of anthropogenic alterations that diminish habitat quality in parts of a watershed 

or restrict periods when migrations are possible. The ability to differentiate 

subpopulations within a given system can help shape restoration goals, while 

understanding how habitat conditions influence life histories can shape restoration 

strategies and predict how subpopulations might respond to changes in habitat 

conditions. 
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2.3 Introduction 

Salmonid populations can display extensive variation in migratory life histories, 

especially those that occupy systems where both lotic and lentic habitat is available. 

Migratory life history can range from multiple transitions between habitats to fully river-

resident, with migration and/or maturation occurring at virtually any age (Bell and Duffy 

2011, Benjamin et al. 2013, Jeffres and Adams 2019). Further, many migratory species 

exhibit plasticity in life histories and this behavioral variation can have great 

evolutionary significance (Stearns 1989, Pigliucci 2005, Olsen et al. 2006, Dodson et al. 

2013). Understanding genetic structure within and among populations has important 

ecological and management implications because habitat needs of population segments 

may vary both spatially and temporally depending life history stage (Bowen et al. 2005, 

Scribner et al. 2012). Linking population structure and life history variation to habitat 

attributes, particularly those that are influenced by humans, may be particularly 

important for preserving and enhancing threatened populations.  

Rainbow trout (Oncorhynchus mykiss) display a range of life histories, from completely 

resident within a river to migrating between lentic and lotic habitats multiple times 

during their lifetime (Shapovalov and Taft 1954). In migratory populations initial 

outmigration from riverine systems may occur at nearly any age (Quinn 2011, Sloat et al. 

2014a, Kendall et al. 2015). This flexibility allows O. mykiss to inhabit a broad range of 

habitats, which is a trait suggested to have allowed them to become established 

throughout the world (MacCrimmon 1971). In river systems accessible to the ocean or a 

lentic freshwater body, partial migration of a single population or separate populations 

of both stream resident and migratory O. mykiss have been observed (Zimmerman and 

Reeves 2000). Within a watershed, multiple reproductively-isolated populations may 

exist as a result of natural-occurring differences in suitability of spawning locations or 

timing, rearing habitat, and migration corridors (Burger et al. 1985). These differences 

may be exacerbated by anthropogenic influences that fragment habitat, 
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disproportionately affecting life history variants that successfully reproduce under 

altered conditions. Fragmentation can be due to long-term factors such as dams that 

block movement, or short term factors, such as reduced flows from seasonal water 

withdrawals (Moyle and Cech Jr 2004, Angilletta et al. 2008). 

Determining whether observed differences in migratory behavior are attributable to 

reproductive isolation or individual variation within the same population is critical to 

understanding how a species is interacting with its environment. Advancements in 

genetic sequencing and analytical tools have enabled researchers to efficiently identify 

structure within and among populations (Ali et al. 2016). A potential limitation to these 

studies is that the life history of individuals sampled may not be known before or after 

their point of capture. Tagging and tracking techniques reveal a wealth of information 

on individual movements, but researchers are often forced to make assumptions about 

untagged individuals in a population. By combining life history data from tagging studies 

with detailed genetic analyses, we can test hypotheses about the relatedness of 

individuals exhibiting certain migration patterns. 

The Shasta River in northern California is a system with substantial natural and 

anthropogenically-caused variability in habitats (Roddam and Ward 2017). We used 

outmigrant trapping and Passive Integrative Transponder (PIT) tagging data to identify 

life history variants of O. mykiss in the Shasta River and formulate hypotheses about 

population structure among different life history groups. Population structure was 

evaluated using recently developed genetic sequencing techniques to analyze archived 

scale samples from individuals in the hypothesized subpopulation groups. To evaluate 

changes to O. mykiss survival and migratory behavior relative to recent habitat 

restoration efforts, we divided the study into “pre-restoration phase” (2008-2010) and 

“post restoration phase” (2011-2013). We hypothesized that population structure exists 

between O. mykiss originating from the two different spawning locations because of 

potential spatial reproductive isolation. We also hypothesized that the migratory life 
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history would dominate in fish originating from the downstream spawning area because 

of unfavorable conditions during summer months. Conversely, we hypothesized that 

residency would be common in the upper reaches where summer conditions are more 

favorable, and that separate subpopulations of migratory and resident O. mykiss are 

sympatric. Further, we hypothesized that movement out of the upper reaches would 

decrease in the post-restoration phase of the study because of improved summer 

habitat conditions. 

Revealing population structure within a system is important for understanding how 

existing habitat is being used through the expression of particular migratory life history 

patterns. Identifying subpopulations and understanding life history variation that exists 

within them can help to identify how changes in habitat will impact certain life history 

variants. Likewise, such understanding may help predict how different subpopulations 

will respond as habitats are reconnected (e.g., through dam removal) or restored to 

better support a range of life histories (Anderson and Quinn 2007). Increasing the 

potential for variation within a population will likely increase its likelihood of persisting 

or growing when faced with changes to habitat conditions. 

2.4 Study Site 

The Shasta River in Siskiyou County, California, converges with the Klamath River 285 

km upstream from the Pacific Ocean (Figure 1). It drains an area of approximately 2,000 

km2 and its hydrology is driven by runoff of precipitation from higher elevations and by 

valley-floor spring inflows. Spring inputs range from seeps along the channel to inflows 

over 2 m3/s at the head of Big Springs Creek, a major tributary to the Shasta River. 

Emerging spring water is nutrient-rich due to the subsurface geology and is thermally 

stable at approximately 10°C throughout the year, facilitating a highly productive 

aquatic ecosystem resulting in rapid growth rates of salmonids (Nichols et al. 2014). 

However, summer irrigation withdrawals from both surface and groundwater result in 
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reduced flows and elevated stream temperatures downstream of the spring inflows due 

to reduction in thermal mass and input of warm tailwater returns (Council 2004, 

Stenhouse et al. 2012). Instream and riparian vegetation were compromised in many 

areas due to cattle grazing which reduces shading and contributes to increased water 

temperatures (Nichols et al. 2014). Discharge in the lower reach was reduced from over 

2.5 m3/s to less than 0.5 m3/s and stream temperatures exceed 25°C at times during 

most summers (Figure 2). Because of these low flows and elevated temperatures, 

summer habitat for salmonids may be limited throughout much of the system, 

particularly the downstream most 10 km, causing juvenile salmonids to vacate those 

locations (Jeffres and Moyle 2012). 

Historical accounts indicate that the Shasta River was highly productive for several 

species of salmonids (Snyder 1933, Coots 1953), yet current populations are small or 

threatened. Although adult salmonid monitoring efforts have been conducted in the 

Shasta River, information about adult steelhead escapement is limited because 

monitoring has primarily been focused on fall run Chinook and coho salmon and ended 

annually before the peak of steelhead migration into the Shasta River, which generally 

occurs in late winter and early spring. Published studies of Shasta River O. mykiss are 

limited; two analyses of scale samples from the Shasta River (Hopelain 1998, Hodge et 

al. 2016) suggested that most steelhead from the basin expressed a “half pounder” life 

history. Half pounders migrate from freshwater to the estuary and make a return 

migration before becoming sexually mature. They then migrate back to salt water 

before making an upstream spawning migration (Hopelain 1998). Sample sizes of Shasta 

River O. mykiss in the aforementioned studies were small and collected during a limited 

time of year, thus may not be representative of the entire population.  

Suitable spawning substrates in the Shasta River currently exist primarily in two spatially 

separate locations. One is the first 10 kilometers upstream from the confluence with the 

Klamath River, known as the “canyon” reach. The other is referred to as the “upper 
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basin” located from approximately river km 50 upstream to Dwinnell dam 

(approximately river KM 62), including Big Springs Creek and lower Parks Creek (Figure 

1). Dwinnell dam has blocked anadromous fish migrations since its construction 1926, 

eliminating approximately 22% of the anadromous fish habitat in the Shasta River 

watershed (NMFS 2012). Other isolated patches of spawning habitat exist in the 

mainstem between the canyon and upper basin, and in tributaries such as Yreka Creek 

and the Little Shasta River. 

Over the past decade, research has sought to identify potential bottlenecks to salmonid 

production in the Shasta Rivopo0er watershed (Adams 2013, Nichols et al. 2014, 

Roddam and Ward 2017). This work has primarily focused on Chinook and coho salmon, 

but a robust data set was collected on O. mykiss as well. In addition, a number of studies 

were conducted from 2006 to present that investigated habitat attributes such as 

streamflow and temperature. These studies found that optimal juvenile salmonid 

habitats exist in reaches immediately downstream of spring inflows but that thermal 

conditions degrade longitudinally downstream due to irrigation withdrawals and 

tailwater returns (Null et al. 2010, Stenhouse et al. 2012, Willis et al. 2016). This 

information has been used to prioritize and implement multipe habitat restoration 

projects.  

Efforts to rehabilitate habitat in the upper basin were geared toward improving summer 

rearing conditions for juvenile salmonids. Installation of cattle exclusion fencing along 

the majority of the mainstem and tributaries in the upper basin caused a drastic and 

observable change by allowing in-stream and riparian vegetation to reestablish (Nichols 

et al. 2014). This growth cooled stream temperature by shading and increased habitat 

complexity. Removing cattle from the stream also likely reduced damage to redds and 

incubating salmonid eggs. A multi-stakeholder effort was implemented to coordinate 

irrigation schedules to reduce temperature increases from tailwater re-entering the 

stream. Releases from Dwinnell Dam were better managed for the benefit of salmonid 



20 

populations downstream by releasing water during key migration windows that were 

identified through tagging studies (CDFW, unpublished data). Many of these habitat 

restoration projects began around 2008, when collection of PIT tag data on O. mykiss 

was initiated. Regrowth of in-stream vegetation in Big Springs Creek increased when 

fencing was installed in 2008 and plateaued in 2011 (Willis in press). Sustained elevated 

summer stream temperatures in the mainstem Shasta River downstream of Big Springs 

Creek were highest from 2008-2010 (Figure 2). We divided the study into a pre-

restoration phase (2008-2010) and post-restoration phase (2011-2014). 

2.5 Methods 

Two long term sampling programs implemented by the California Department of Fish 

and Wildlife were used to gather information on migratory behavior of juvenile O. 

mykiss in the Shasta River from 2008-2014. Out-migrating juvenile salmonids were 

sampled at the mouth of the Shasta River, providing information on juvenile salmonid 

production from the entire system. A second monitoring effort provided detailed 

information on migratory life history of individually tagged fish within the upper basin 

area and was used to assess seasonal survival and movement probabilities during the 

pre- and post-restoration phases of the study. Using patterns observed in these two 

datasets, migratory life histories were categorized, and hypotheses were made 

regarding population structure among them. Genetic samples were then analyzed from 

individuals in each life history group to test these hypotheses.  

Out-migrating juvenile salmonids were sampled each year from mid-February through 

late June at the mouth of the Shasta River (RKM 0) using a 1.5 m rotary screw trap (EG 

Solutions, Corvallis OR). The end of the sampling season was often dictated by 

reductions in water flows that rendered the trap inoperable (approximately 0.8 m3/s). 

Fish captured at this trap were assumed to be out-migrating to the Klamath River. 

Individual size and timing of capture along with a subsample of aged scales was used to 
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infer information on age structure. Age 0 O. mykiss were clearly identifiable based on a 

fork length by date of capture plot, however separation was not as clear between the 

older age classes (Figure 3). Known age 1 fish from the upper basin were often identified 

as age 2 based on length-at-age cutoffs used at the rotary screw trap. Because captured 

O. mykiss were recorded by age class rather than individually measured, those classified 

as age 1 and age 2 were grouped together for the purpose of this analysis.  

Catches of age 0 O. mykiss at the RKM 0 rotary screw trap typically began in early April 

and increased until the trap was removed in late June. Catches of age 1, 2, and 3+ O. 

mykiss typically began in early March, peaked in mid-April, and virtually ceased by June 

1 (Figure 4). The mean annual age 0 catch was 1112 (min = 464 max = 2731), age 1 and 2 

combined was 2347 (min = 453 max = 5662), and age 3+ was 202 (min = 76 max = x). 

The specific emergence location of individuals captured at the rotary screw trap was 

unknown, though it was assumed that most originated from one of the two primary 

spawning areas in Shasta River. Migratory history of individuals was also unknown, 

except for those that had been previously tagged in the upper basin.  

The second monitoring program was focused on river habitat use by juvenile salmonids 

in the upper basin and involved tagging individual fish with PIT and tracking their 

movement within and out of the upper basin with a network of antenna stations. A 

variety of methods were implemented to capture fish for tagging, including a rotary 

screw trap (operated at RKM 51), fyke nets, seines, minnow traps, and snorkeling with a 

hand net. The capture efforts were opportunistic and took place at various times of year 

at 13 general locations within the upper basin: six in the Mainstem Shasta River, five in 

Big Springs Creek (including Little Springs), and two in Parks Creek. Many of these efforts 

were guided by snorkel surveys to identify the location of juvenile salmonids.  

Captured fish were anesthetized, scanned for presence of a PIT tag and measured for 

fork length. A scale sample was collected for use in aging and genetic analysis. PIT tags 

(12 mm or 9 mm FDX) were sterilized and implanted by hand into the body cavity 
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through an incision made with a 12-gage hypodermic needle. The minimum size for 

implantation with 9 mm tags was 50 mm fork length, and 55 mm fork length for 12 mm 

tags. Fish were held in containers of aerated river water until normal behavior resumed 

and released back to their location of capture. From 2008 to 2014 a total of 2547 O. 

mykiss in the upper basin were implanted with PIT tags, including 1588 in the mainstem 

Shasta River, 900 in Big Springs Creek (including Little Springs Creek), and 59 in Parks 

Creek (Figure 5). Based on length-frequency and recapture data from tagged individuals, 

we used 200 mm as a cutoff between age 1 and age 2+ O. mykiss in the upper basin. 

Using these criteria, a total of 2115 O. mykiss were tagged at Age 0, 316 at Age 1, and 

116 at age 2+ (Table 1). 

Between nine and twenty PIT tag antenna stations were operated each year from 2008-

2014 (Figure 1). Within the upper basin, antenna stations operated at up to six sites on 

the mainstem Shasta River, six sites in Big Springs Creek, and three sites in Parks Creek. 

Stations also operated at three sites in the mainstem Shasta River downstream of the 

upper basin, including three independent stations at RKM 0 near the rotary screw trap. 

PIT tag antenna data logging devices were built by Mauro Engineering (Mt. Shasta CA) 

utilizing Allflex (Boulder CO, now Biomark ID) interrogation units. Up to five antennas 

could be operated at one station. Solar panels and battery banks were used to supply 

power. Antenna dimensions varied in size depending on channel width at a given site, 

but most were approximately 3 meters long and one meter high and constructed with a 

single wire loop housed in PVC. Antennas were secured to t-posts driven into the stream 

bed standing upright perpendicular to flow in a pass-through orientation. High flow 

events, damage by livestock and wildlife, and power outages caused periods of non-

operation of stations ranging from hours to days or even weeks in some cases.  
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2.5.1 Survival and Movement Model 

Detections of individually tagged fish were used to build a multi-state mark-recapture 

model in Program Mark (v 9.0) to estimate seasonal survival and movement 

probabilities of juvenile O. mykiss in the upper basin. We also used this modeling 

approach to test for difference in survival and movement during pre-restoration (2008-

2010) and post-restoration (2011-2014) phases of the study. Cormack-Joly-Seber (CJS) 

mark-recapture models use observations of tagged individuals to estimate encounter 

probabilities (p) during sampling occasions and survival probabilities (S) from one 

sampling occasion to the next (Cormack 1964, Jolly 1965, Seber 1965). Multi-state mark-

recapture models are an extension of the CJS model that also estimate a transition 

parameter (ψ) , which is the probability of moving from one state to another state 

between sampling occasions (White et al. 2006). Data is formatted into a capture history 

matrix, where each individual is assigned a state (represented by a letter) indicating 

where it was observed during each sampling occasion. Individuals not observed during a 

given sampling occasion were assigned a zero for that occasion.  

In this study model, states were defined as three geographic locations where an 

individual tagged O. mykiss could be encountered: mainstem Shasta River within the 

upper basin (S), Big Springs Creek (B), and the mouth of the Shasta River (K). 

Observations in the K location could also be interpreted as out-migration, since it was 

assumed that individuals encountered there were out-migrating to the Klamath River. 

Release of a newly tagged individual, detection at an antenna station, or physical 

recapture of a tagged fish constituted an observation in one of these locations during a 

given encounter occasion. If an individual was observed in more than one location 

during an encounter occasion, they were assigned the location where the last 

observation occurred.  

Five encounter occasions were defined to estimate seasonal movement and survival 

probabilities (Figure 6). All tagged individuals were combined into the same temporal 
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framework. The first encounter occasion included tagging and release of age 0 

individuals from April through September (initial release). The second encounter 

occasion (summer) included detections that occurred from April through September if 

detection occurred more than 10 days after tagging or in a location (e.g., antenna) other 

than where the initial release occurred. This criterion was chosen because healing of 

incisions for tag implantation occurs within 10 days (C. Adams personal observation) so 

potential tag loss and mortality from tagging or capture was assumed to have occurred 

within this time period. The third encounter occasion (winter) included any individuals 

observed in the upper basin from October of the first year through May of the second 

year. The fourth encounter occasion included detection at stations downstream of the 

upper basin during the smolt outmigration period (March-June) or detection in an upper 

site from June (of the second year) through February (of the third year). The fifth and 

final occasion included any encounter in March of the third year or later. An individual in 

state K during this occasion was an age 2 outmigrant. 

Fish that would have emerged as fry in 2008-2013 were included in this analysis because 

monitoring was in place from age 0-2+ for those individuals (those tagged as age 1 in 

2008 and 0 in 2014 were excluded). Only fish < 200 mm were included because their age 

could be assigned with confidence based on the length at date and growth data 

collected throughout the study. Fish tagged over 200 mm fork length were likely 

residents (only 2 of 100 tagged were ever detected outside of the upper basin). With 

these criteria met, a total of 2,253 fish were included in this analysis. Individuals were 

categorized as pre-restoration if they were tagged and released between 2008-2010, 

and post-restoration if tagging occurred in 2011-2012. An example capture history is 

shown here; S0BK0  1 0, the individual was tagged in the mainstem Shasta in the spring, 

not detected during the first summer, detected in Big Springs Creek in the winter, 

detected out-migrating during the second spring, and not encountered after 

outmigration. The last binary sequence indicated whether that individual was in the pre-

restoration group (1 0;) or post-restoration group (0 1;).  
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There is great flexibility in how multi-state models are defined and built in Program 

Mark, and group effects can be incorporated to test for differences in parameters across 

segments of the sample population using Akaike Information Criterion (AIC). The best 

fitting model(s) can then be used to generate parameter estimates and their standard 

errors. Because of the spatial and temporal design of the model, some parameters could 

be fixed to reduce the overall parameter count in the model. Individuals that moved to 

the K location were expected to have out-migrated so they would not be observed 

again. To account for this in the model, S was fixed to zero in the K location and those 

individuals were removed from further inclusion in parameter estimates. All ψ 

parameters from K to any other state were also fixed to 0 (transitions from the out-

migrant location back to an upper basin location were rarely observed and made 

impossible in the model). Detection probability at K was fixed to 0.6 for all occasions. 

This detection probability was based on the estimates made for this location in a 

previous study (Adams 2013). The logit link function was used for all survival and 

detection probability parameter estimates, while a multinomial logit link function was 

used for transition probabilities so that they are forced to sum to one. All models were 

fully time dependent (different parameter estimates for each encounter occasion). 

Four models were constructed to test for differences in detection probability (p) 

between groups, locations, or both. AIC model ranking of these four models indicated 

that p was different between pre- and post-restoration groups, but the same between 

locations, and so this parameterization of p was used for subsequent model 

construction. Next, four models were constructed to test for differences in survival (S) 

between groups, locations, or both. AIC model ranking indicated that S was the same 

between pre- and post-restoration groups, but different between locations, and so this 

parameterization of S was used for models testing for differences in out-migration 

probability between groups, locations, or both. Four additional models were 

constructed to test for differences in ψ to the K state (outmigration) between groups, 

locations, or both (Table 2). This resulted in a set of ten candidate models. Without the 
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stepwise approach to parameterization the total candidate set would have 64 models 

(4x4x4). Overdispersion in the data set was assessed using median c-hat estimation in 

Program Mark. A c-hat value less than 3 indicates acceptable overdispersion in the data 

(Lebreton et al. 1992). The estimated c-hat value was then used as an overdispersion 

correction factor to produce a quasi-likelihood AIC (QAIC table comparing the ten models 

(Kenneth et al. 2002). The top model in the set was then used for parameter estimation. 

To test the effect of the detection probability in the K location on survival estimates, the 

probability of 0.6 was substituted with either 0.4 and 0.8 in the best fit model and rerun. 

This was thought to encompass the realistic range of possible actual detection 

probabilities based on coverage of the stream transect and days of operation of the PIT 

tag antenna stations at this site. 

2.5.2 Population Genetic Structure  

Based on data collected from outmigrant trapping and detections of fish PIT tagged in 

the upper basin, seven distinct life histories were observed in O. mykiss of the Shasta 

River and hypotheses were made regarding population structure among them (Figure 

7):  

1. The first life history group consisted of age 0 individuals captured at the RKM 0 

rotary screw trap. These fish were hypothesized to have emerged from redds in 

the canyon reach (RKM 0 – RKM 10) because very few age 0 O. mykiss tagged in 

the upper basin were observed out-migrating the year they emerged.  

2. The second group consisted of age 0 individuals captured in the upper basin 

where we assumed they originated. It is not known whether they remained as 

resident or out-migrated after initial sampling. We hypothesized that this group 

was from a breeding population separate from group 1.  

3. A third group consisted of individuals that were known to have reared in the 

upper basin and out-migrated at age 1, based on PIT tag detections. We 
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hypothesized this group would be genetically similar to group 2 (age 0 

individuals from the upper basin).  

4. A fourth group was known to remain in the upper basin beyond the age 1 

outmigration window based on their detection or capture in the upper basin and 

lack of observations at downstream sampling locations. These were considered 

stream residents and were hypothesized to be most similar to groups 2 and 3 

(i.e., originated in upper basin). Differences between these groups would 

indicate separate resident and migrant populations rather than one partially-

migrating population. 

5. The fifth group consisted of age 1 smolts (based on size between 100 and 210 

mm) of unknown origin captured at the RKM 0 rotary screw trap. We 

hypothesized that these individuals would be most closely related to group 3 

(i.e., fish from the upper basin) because high water temperatures and low flow 

conditions in the summer would limit over-summer rearing habitat in other 

areas of the Shasta river.  

6. A sixth group consisted of larger O. mykiss (age 2-3+) captured at RKM 0 rotary 

screw trap. Very few PIT tagged fish of this larger size were observed out-

migrating from the upper basin, so we hypothesized that these were either from 

the canyon spawning location and had reared in an unknown location, or they 

were from a spawning location outside of the Shasta River, such as the mainstem 

Klamath River or other tributaries. 

7. A seventh group consisted of O. mykiss captured upstream of Dwinell Dam, 

which has blocked anadromous fish migrations since 1926. Given that this 

population has been isolated from the rest of the Shasta River for over 100 

years, we hypothesized that they would have a distinct genetic signature. 

To evaluate these hypothesized life history groups, we analyzed DNA from 552 archived 

scale samples. The samples were collected by CDFW between 2008 and 2014. Scales 

were collected by a knife scraped within a small area above the lateral line between the 
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dorsal and adipose fin, placed on waterproof paper, and stored in coin envelopes at the 

Yreka CDFW Fisheries Field Office. DNA was extracted using a magnetic bead-based 

protocol (Ali et al. 2016) and stored at -20° C. 

To generate DNA sequence data, SbfI RAD libraries were prepared with well and plate 

barcodes using protocol described by Ali et al. (2016) and 150bp paired-end reads were 

sequenced using an Illumina HiSeq 2500 (Illumina, SanDiego CA). Sequencing data was 

first demultiplexed by requiring a perfect barcode match, then aligned to the O. mykiss 

reference genome using bwa mem with default parameters (Li 2013). Next, SAMtools (Li 

et al. 2009) was used to convert sequence alignment map (SAM) files to binary 

alignment map (BAM) files, perform filtering (i.e., remove PCR duplicates, unmapped 

reads, low-quality [map quality <5] reads, and improperly paired reads), and sort and 

index the BAM files. Samples with greater than 50,000 aligned reads passing filtering 

were retained for downstream analysis. 

All population structure analyses were performed using Analysis of Next Generation 

Sequencing Data (ANGSD) (Korneliussen et al. 2014) with a minimum mapping quality 

score of 20, and a minimum base quality score of 20. To select single nucleotide 

polymorphisms (SNP) sites appropriate for downstream analyses, the following steps 

were applied. Major and minor alleles were inferred for sites with a high probability of 

being variable (SNP-p-value < 1e-6) from genotype likelihoods (-doMajorMinor 1) using 

the SAMtools genotype likelihood model (-GL 1) (Li et al. 2009). Allele frequencies were 

estimated assuming a fixed major and minor allele (-doMaf 1) (Kim et al. 2011). Sites 

with a minor allele frequency less than 0.05 (-minMaf) and sites missing data in more 

than half of individuals (-minInd) were excluded. For principle component analysis, a 

single base from individuals at each site passing the above filters was randomly sampled 

(-doIBS 1) and the called alleles were used to construct a covariance matrix (-doCov 1). 

Sampling a single read rather than calling genotypes allows the use of SNPs with low 

coverage while also correcting for variability in coverage between individuals.  
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A principal component analysis PCA was conducted including SNPs from all sequenced 

samples from all groups. Secondary PCAs were run on the samples from the upper basin 

(Groups 2, 3, and 4) and from RKM 0 (Groups 1,6) to assess population structure among 

those groups. In the upper basin PCA, individuals were coded with their specific location 

of capture (Big Springs Creek, Parks Creek, or mainstem Shasta River) to determine if 

there was observable separation in genetic structure. 

2.6 Results 

2.6.1 Detection of Tagged Individuals 

Of the 2,547 O. mykiss tagged from 2008 to 2014, 1,226 were encountered again at 

least 10 days after tagging. Eleven were detected out-migrating from the Shasta River at 

age 0, 156 at age 1, and 12 at age 2. Age 0 outmigration occurred in spring (4 

individuals) and fall (6 individuals). Age 1 outmigration occurred from February through 

June and peaked in April (Figure 8). Travel time from the upper basin to RKM 0 during 

that outmigration window ranged from one day to 104 days and tended to be faster 

later in the season (Figure 9). 

Sixty-one tagged individuals were detected moving from the mainstem Shasta River into 

Big Springs Creek, and sixty-seven individuals moved from Big Springs Creek to the 

mainstem Shasta River (excluding those that moved out during the age 1 out-migration 

window). Most of these movements occurred in early summer or fall. While most 

individuals moved between locations once or twice throughout their residency in the 

upper basin, several individuals moved between mainstem and tributary habitats many 

times and occasionally traveled from the upper basin to RKM 0 and back within a few 

days. Based on detections in the upper basin beyond the age 1 outmigration window, 

130 individuals were known to remain stream resident and only two individuals tagged 

at age 2 (>200 mm fork length) were detected out-migrating during the study period.  
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All the above numbers only reflected individuals detected and are conservative, since 

others likely reached these life history milestones without being detected.  

2.6.2 Survival and Movement Model 

Apparent survival and detection probabilities were different in Big Springs Creek and the 

mainstem Shasta River, and different during pre- and post-restoration phases. Out-

migration probability differed between Big Springs Creek and the mainstem Shasta River 

locations but did not differ between pre- and post- restoration groups. In the first sets of 

models, those allowing differences in both p and S between locations and pre- and post-

restoration groups were ranked first in their respective AIC tests (Table 3). Therefore, p 

and S were estimated separately for locations and pre- and post-restoration groups in 

the next set of models testing for differences in out-migration probability. In this set, the 

model allowing for differences in out-migration between the mainstem Shasta River and 

Big Springs Creek but not pre- and post-restoration groups (ψ to K same Grp) was best 

supported in AIC ranking with 0.98 AIC weight (Table 4). Low overdispersion in the data 

was indicated by a c-hat estimate of 1.39, which was used as a correction factor to 

produce the QAIC table. 

The top model was used for parameter estimation, which allowed for differences in 

detection and survival probability across locations and pre- and post-restoration groups, 

and difference in outmigration probability among locations but not groups (ψ to K same 

Grp). Apparent survival point estimates from the initial release to the summer occasion 

increased in both locations from pre- to post-restoration, however the post-restoration 

estimate for the mainstem was a boundary estimate (close to one) so standard error 

could not be estimated (Figure 10). Estimated apparent survival probability in the 

mainstem from summer to winter summer did not differ significantly from pre- to post-

restoration (0.42, 95% CI 0.30-0.55 for pre- and 0.33, 95% CI 0.29-0.39 post-). There was 

a significant reduction in winter survival in Big Springs Creek from pre- to post- 
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restoration (0.71, 95% CI 0.47-0.87 to 0.38, 95% CI 0.32-0.45). Estimated apparent 

winter survival did not differ from pre- to post-restoration in either location but was 

significantly higher in the mainstem than in Big Springs Creek.  

Movement estimates from the initial release to the summer occasion did not differ 

significantly from pre- to post-restoration in either location, but movement from Big 

Spring into the mainstem was significantly greater than movement from mainstem into 

Big Springs Creek. Estimates of movement to either location to the K state in summer 

were bounded at zero (Figure 11). Movements between the summer and winter 

occasions from the mainstem into Big Springs Creek did not differ significantly from pre- 

to post-restoration (0.05, 95% CI 0.02-0.11 to 0.09, 95% CI 0.05-0.16), but did decline 

significantly in Big Springs Creek from pre- to post- restoration (0.42, 95% CI 0.27-0.58 

to 0.15, 95% CI 0.09-0.23). Estimates of outmigration from either location between 

summer and winter occasions was low (0.31, 95% CI 0.01-0.06 in mainstem and 0.02, 

95% CI 0.00-0.05). The most significant difference in movement probability occurred 

during the spring out-migration period, when an estimated 0.71 (95% CI 0.62-0.79)   

mykiss out-migrated from the mainstem but only 0.14 (95% CI 0.07-0.24) out-migrated 

from Big Springs Creek. Movements between the mainstem and Big Springs Creek were 

low and not significantly different in pre- and post-restoration groups.  

To examine how more conservative or more liberal detection probabilities would affect 

apparent survival estimates, we substituted the p = 0.6 at the downstream location (K) 

used in the above model with 0.4 and 0.8 and examined change in the other parameter 

estimates. Most apparent survival estimates were similar in all three trials, with the 

exception of winter survival estimates in the mainstem location for both pre- and post-

restoration groups (Figure 12). This is because very few fish out-migrated during other 

occasions, thus altering p at the K state had little effect on other estimates. With p at 

location K fixed to 0.8, estimates of apparent winter survival at the upper basin 

mainstem location fell within the lower confidence intervals of the original model (with 
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p fixed to 0.6) however, when p was fixed to 0.4 estimates were higher than upper 

confidence interval limits of the original model (Figure 12). 

2.6.3 Population Genetic Structure  

Based on 496 samples that were successfully sequenced, O. mykiss in the Shasta River 

system had genetic variation that associated in most cases with the individual’s site of 

collection and its age indicating spatial structure of their reproduction and displayed life 

histories. The PCA including all sequenced samples indicated clear separation of 

individuals into three clusters (Figure 13). One included most individuals hypothesized 

to originate from RKM 0 (Group 1 and 6), another included individuals hypothesized to 

originate from the upper basin (Group 2, 3, and 4), and the third included individuals 

collected upstream of anadromy (group 7). Most of the age 0 and age 2-3+ samples 

collected at RKM 0 (group 1 and 6) mapped closely with other RKM 0 samples, but 

approximately 20% from each group did map more closely with samples from the upper 

basin. Age 1 samples of unknown origin collected at RKM 0 (group 5) were divided 

nearly equally, with approximately half mapping closely with RKM 0 samples and half 

with upper basin samples.  

Two secondary PCAs were run on the samples from the upper basin (groups 2, 3, and 4) 

and from RKM 0 (groups 1, 5, and 6) to assess population structure among those groups. 

The PCA of upper basin samples revealed no apparent structure between locations 

within the upper basin or between life history groups (Figure 14). This suggests that the 

O. mykiss individuals from within the upper basin are not reproductively isolated, but 

that partial migration appears to exist, with some individuals out-migrating and others 

remaining stream resident. In the PCA including only the RKM 0 samples indicated a 

higher level of population structure among the hypothesized life history groups. Age 0 

individuals mapped separately from the age 2-3+ of unknown origin, while the unknown 

age 1 individuals mapped as being integrated with both of those groups (Figure 15). 
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2.7 Discussion 

By combining detailed movement information obtained through tagging studies with 

genetic sequencing techniques, we were able to characterize population structure of 

Shasta River O. mykiss in the context of migratory life history. This structure was 

primarily linked to location of origin (i.e. upper basin, canyon, or upstream of 

anadromy). Differences in habitat conditions between the upper basin and canyon 

reaches likely dictate the relative success of certain migratory life histories of individuals 

originating in those locations. These results are similar to findings in the Fall River of the 

Sacramento drainage, where genetic structure was observed between O. mykiss 

originating from environmentally-variable parts of the watershed and those from more 

stable spring dominated areas (Ali et al. 2016).  Within the upper Shasta River basin, 

population genetic structure was not apparent among migratory and resident life 

history but the mainstem reach produced disproportionately more out-migrating 

individuals relative to Big Springs Creek. Differences in habitat between mainstem and 

spring tributary habitat may cause discrepancy in the relative frequency of particular 

migratory life histories.   

Several factors may be contributing to the population structure observed between the 

canyon and upper basin O. mykiss subpopulations in the Shasta River. Spatially, 

spawning site fidelity may be responsible for reproductive isolation between these 

locations. Temporally, differences in adult O. mykiss migration timing is likely, given that 

summer, fall, and winter run phenotypes exist in the Klamath River system (Pearse et al. 

2007, Hodge et al. 2016). Summer steelhead, which make upstream migrations in the 

spring and over-summer in stream habitat before spawning the following winter, were 

likely more common before hydrology of the Shasta River was altered (Papa et al. 2007). 

Approximately five O. mykiss that had likely migrated to the ocean and back (based on 

size, coloration, and timing) were observed in the upper basin during the summer of 

2012 (C. Adams, personal observation). Extreme summer conditions can be unfavorable 
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for upstream migration and staging of adult O. mykiss in the canyon reach, limiting 

success of the summer-run ecotype to the upper basin and to times when downstream 

conditions allow for migration. Temperature monitoring in the canyon reach indicated 

that water temperatures in at least some locations become too warm in summer to 

support salmonids (Stenhouse et al. 2012). Prior to extensive irrigation withdrawals, 

there may not have been such drastic differences in thermal and hydrologic regimes 

between upper and lower river (Stenhouse et al. 2012). Currently drastically different 

streamflow and temperature conditions exist in the canyon reach and upper basin 

because of irrigation withdrawals and tailwater return in summer. The seasonal 

segregation of these habitats has likely led to reproductive isolation and contributed to 

the population structure observed here. 

A wide temporal range in spawning timing was observed in both the canyon and the 

upper basin, occurring as early as February and as late as May (C. Adams, personal 

observation), which may cause reproductive isolation within a single spawning location 

(Pearse et al. 2007). Non-tagged age 1 individuals collected at the RKM 0 rotary screw 

trap appear to be a mixture of fish originating in the upper basin and the canyon, 

suggesting that suitable over-summer habitat may be accessible to canyon-origin O. 

mykiss. Depending on timing of spawning and emergence, some individuals may be 

more likely to find suitable over-summer habitat nearby and become older fish 

observed at this site, while other may be forced to move to more distant habitats. 

Although water temperatures in some locations are high (Stenhouse et al. 2012), 

pockets of thermal refugia may exist in the canyon reach that were not monitored, 

which may support over-summering O. mykiss.  

Some of the age 1-3+ individuals sampled at the RKM 0 rotary screw trap may have 

originated in the Shasta River but over-summered in the mainstem Klamath River or in 

other nearby tributaries and returned when conditions became more favorable. 

Alternatively, they may have originated from locations outside of the Shasta River. 
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Chinook and coho salmon spawn in the Shasta River basin in the fall, likely providing a 

substantial food source and potentially attracting O. mykiss from outside of the Shasta 

River. This seasonal food source extends into the spring when tens of thousands of 

salmon fry emerge from redds in the canyon reach. It is not known where they may 

have reared before their capture, but it is not likely that they originated from the upper 

basin based on the low occurrence of detections of older upper basin tagged individuals 

at RKM 0. Some of these fish may even be “half-pounders”, a common life history 

observed in the Klamath River where individuals make a full migration to saltwater and 

back before reaching sexual maturity (Hodge et al. 2016). Additional study of the origin 

and life history of O. mykiss sampled at RKM 0 could reveal what habitats these 

individuals are using, allowing targeted restoration goals to increase their survival.  

Despite the differences in migratory life history and potential for temporal segregation 

of reproduction, population genetic structure was not detected in O. mykiss within the 

upper basin. The stable flows and water temperatures of spring-dominated portions of 

the river, such as Big Springs Creek, can provide favorable habitat both inter- and intra-

annually, and therefore support fully stream-resident fish. Results of the survival and 

movement model suggest that this is the case, with out-migration from the mainstem 

Shasta River occurring at over double the rate than out-migration from Big Springs 

Creek. Movements occurred out of Big Springs Creek in summer and winter, before the 

age-1 out-migration period, so the combination of a low out-migration rate before the 

time when most fish move may result in an overall lower number of individuals leaving 

Big Springs Creek. Many of the individuals that left Big Springs Creek in summer or 

winter then out-migrated from the mainstem during the outmigration window. Seasonal 

changes in water temperatures and discharge are not as drastic in Big Springs Creek as 

the mainstem, so the potential for those factors to serve as environmental cues for out-

migration may be diminished. Further research into other factors that can influence 

relative occurrence of residency and migration such as density and growth rate  (Sloat et 
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al. 2014b) may help to explain causes of migratory life history variation in O. mykiss 

subpopulation.  

Estimated seasonal survival was only significantly different between the mainstem and 

Big Springs Creek locations during the winter occasion. Resident individuals likely have 

lower detection probability than migratory individuals since they are less likely to pass 

by antenna stations. If residency was higher in Big Springs Creek apparent survival rates 

may therefore have been reduced. 

The only significant difference in pre- to post-restoration estimates of survival occurred 

in Big Springs Creek where it decreased in the post-restoration phase. Based on catches 

at the RKM 0 rotary screw trap, overall abundance of O. mykiss was higher during the 

post restoration phase, thus density dependent effects on survival may have 

contributed to these results. In addition, if residency increased during the post-

restoration phase, apparent survival estimates may have decreased, as explained above. 

The impacts to rearing habitat that may result from fencing and water management 

practices may take years to be fully recognized, and our assessment of pre- and post-

restoration differences may have been premature.  

An important component of our movement and survival model was fixing detection 

probability at RKM 0 to 0.6 throughout the study. Considering both inter- and intra-

annual variation in antenna station operation at this site, fixing such a parameter is 

surely an overgeneralization. However, using the model to estimate this parameter is 

difficult since no encounters of individuals are expected after they enter that state 

(location), and increasing the parameter count to accommodate temporally variability 

lessens the strength of the model to predict more biologically important parameters 

(i.e. survival and movement). On average, 0.6 was a reasonable detection probability to 

use based on the results of prior analyses that looked more closely at detection 

probability of PIT tagged coho salmon at this site (Adams 2013). Testing a more liberal 

(0.8) and a more conservative (0.4) detection probabilities at RKM 0 resulted in small 
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differences in survival parameter estimates, but highlights the importance of this final 

detection opportunity and the implication it can have on estimates of survival in earlier 

life history stages. Independently estimating detection probability at out-migration 

(river mouth) sites by deploying multiple antenna stations in a short distance would 

strengthen watershed-scale mark-recapture models for migratory salmonid populations. 

The genetic analyses we were able to conduct using low quality DNA samples obtained 

from scales revealed potential for using archived samples to characterize population 

genetic structure and demonstrates the importance of obtaining and storing genetic 

material. Being able to confidently assign life history type to individuals was a key 

component of our analysis. Using this approach, we were able to identify population 

structure of O. mykiss within the Shasta River, which has important ecological and 

management implications. Understanding migratory life history variation within specific 

subpopulations can help to set realistic and targeted restoration goals. Increasing life 

history types that a system can support and understanding linkages between life history 

variants and population structure will be important for protecting and enhancing at-risk 

populations through changing environmental conditions.  
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Table 1. Total O. mykiss tagged in the upper Shasta River basin from 2008 to 2014. 

 

   
Mainstem Shasta 

R. Big Springs Cr. Parks Cr. 

Year 

Capture 
Effort 
Days 

Total 
Tagged 

Age 
0 

Age 
1 

Age 
2+ 

Age 
0 

Age 
1 

Age 
2+ 

Age 
0 

Age 
1 

Age 
2+ 

2008 159 476 371 84 14 1 0 0 6 0 0 
2009 90 514 209 64 23 176 7 4 31 0 0 
2010 15 53 0 12 4 33 2 2 0 0 0 
2011 138 287 117 35 21 91 15 8 0 0 0 
2012 56 491 47 16 2 386 20 20 0 0 0 
2013 141 607 448 7 13 116 16 0 7 0 0 
2014 72 119 66 30 5 0 3 0 10 5 0 
Total 671 2547 1258 248 82 803 63 34 54 5 0 
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Table 2. Models constructed to test for differences in detection probability, survival, and 

out-migration probability of upper Shasta River basin tagged O. mykiss. X indicates 

parameters that were constrained by either location (mainstem Shasta River and Big 

Springs Creek) or by group (pre- or post-restoration). 

 
Detection 

Probability p  
Survival 

Probability S 

Out-migration 
Probability (ψ to 

K) 

Model Name Location  Group  Location  Group  Location  Group  
Fully Interactive       
p same Loc X      
p same Grp  X     
p same Loc and Grp X X     
S same Loc   X    
S same Grp    X   
S same Loc and Grp   X X   
ψ to K same Loc     X  
ψ to K same Grp      X 
ψ to K same Loc and Grp     X X 
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Table 3. Akaike Information Criterion table of models testing for differences in detection 

probability (a) and survival probability (b) across locations (mainstem Shasta River and 

Big Springs Creek) and groups (pre- or post-restoration). p=detection probability 

S=apparent survival probability  

Model 
Number of 
Parameters QAICc 

Delta 
QAICc 

AICc 
Weights 

Model 
Likelihood QDeviance 

Fully Interactive 51 4750.28 0.00 0.79 1.00 172.69 

p same Grp 46 4752.88 2.61 0.21 0.27 185.58 

p same Loc 46 4789.40 39.12 0.00 0.00 222.09 

p same Loc and Grps 42 4811.56 61.28 0.00 0.00 252.45 

       

Model 
Number of 
Parameters QAICc 

Delta 
QAICc 

AICc 
Weights 

Model 
Likelihood QDeviance 

Fully Interactive 51 4750.28 0.00 0.82 1.00 172.69 

S same Grp 43 4753.27 2.99 0.18 0.22 192.11 

S same Loc 45 4768.39 18.11 0.00 0.00 203.14 

S same Loc and Grp 44 4777.69 27.41 0.00 0.00 214.49 
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Table 4. Quasi-likelihood Akaike Information Criterion results table for movement and 

survival models, with overdispersion factor c-hat=1.39. p=detection probability 

S=apparent survival probability ψ=movement probability 

Model 
Number of 
Parameters QAICc 

Delta 
QAICc 

AICc 
Weights 

Model 
Likelihood QDeviance 

ψ to K same Grp 46 5410.71 0.00 0.98 1.00 199.64 
Fully Interactive 51 5418.88 8.17 0.02 0.02 197.54 
p same Loc 46 5423.34 12.63 0.00 0.00 212.28 
S same Grp 43 5424.66 13.96 0.00 0.00 219.76 
ψ to K same Loc and Grp 43 5434.00 23.29 0.00 0.00 229.09 
ψ to K same Loc 47 5439.82 29.11 0.00 0.00 226.70 
S same Loc 45 5441.37 30.67 0.00 0.00 232.36 
S same Loc and Grp 44 5452.31 41.60 0.00 0.00 245.35 
p same Grp 46 5465.11 54.40 0.00 0.00 254.05 
p same Loc and Grps 42 5491.64 80.93 0.00 0.00 288.78 
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Figure 1. Map of Shasta River, indicating the “canyon” and “upper basin” spawning 

locations, rotary screw trap, PIT tag antenna stations, and “upstream of anadromy” 

sampling site.  
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Figure 2. Discharge at RKM 25 from USGS Montague gage (a), water temperature at 

RKM 0 and RKM 51 (upper basin) (b), water temperatures at RKM 51 (downstream of 

Big Springs Creek), Big Springs Creek, and RKM 54 (upstream of Big Springs Creek) from 

2008 to 2014 (c). 
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Figure 3. O. mykiss fork length at date of capture at Shasta RKM 0 rotary screw trap. 

Colored points indicate individuals sampled and successfully sequenced for genetic 

analysis.  
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Figure 4. Total O. mykiss trapped per Julian week at RKM 0 RST, 2008-2014 combined. 

Using length at age cut-offs from Chesney et al 2007. 
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Figure 5. Fork length by date for all upper basin tagged O. Mykiss in the mainstem 

Shasta River and Big Springs Creek (2008-2014). 
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Figure 6. Schematic of the spatial (top) and temporal (bottom) structure of the multi-

state survival and movement model. Dashed arrows indicate movement parameter 

fixed to zero. 
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Figure 7. Schematic of Shasta River and collection locations for seven hypothesized 

groupings of O. mykiss. 
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Figure 8. Monthly total number of Shasta River O. mykiss tagged (top) and detected 

(bottom), 2008-2014 combined. Note difference in y-axis scales. 
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Figure 9. Tagged O. mykiss travel time from last detection in upper Shasta River basin to 

first detection at RKM 0 February through June, 2008-2014 combined. 
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Figure 10. Survival probability estimates for tagged O. mykiss in the Shasta River (from 

model ψ to K same Grp). Sampling occasions on the x-axis indicate the three intervals 

seasonal survival was estimated. Filled symbols represent the pre restoration group 

(2008-2010) and empty symbols represent the post-restoration group (2011-2014).  
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Figure 11. Movement probability estimates for tagged O. mykiss in the Shasta River 

(from model ψ to K same Grp). Location on the x-axis indicate location where the the 

movement initiated and terminated. S = Shasta River mainstem B = Big Springs Creek, K 

= out-migration. Symbols fill represent restoration group; filled = pre-restoration (2008-

2010), empty = post-restoration (2011-2014), hatched = both groups combined. 
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Figure 12. Apparent survival estimates from top model (ψ to K same Grp), where p at 

state K was fixed to 0.6, overlaid with point estimates from the same model where p at 

K was set to 0.4 (red dashes) and (0.8 green crosses). 
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Figure 13. Principal component analysis for O. mykiss individuals in seven life history 

groups from the Shasta River. Outliers and samples with <50K reads are excluded.  
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Figure 14. Principal component analysis of O. mykiss samples collected in the upper 

Shasta River basin.   
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Figure 15. Principal component analysis of O. mykiss samples collected at RKM 0 

(excluding those that mapped closely with upper basin samples). 
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3.2 Abstract 

Environmental cues can play a key role in the variation in timing of life history events, 

such as upstream migration of salmonids for reproduction. Understanding these 

relationships takes on added significance for at-risk populations such as the adfluvial 

form of brook trout (coasters) that were once abundant in Lake Superior and its 

tributaries, but now are imperiled. We evaluated the relationship between 

environmental factors and upriver migration of coasters and coho salmon in the 

Salmon-Trout River, one of the only southern Lake Superior tributaries where remnant 

coaster brook trout are known to persist. Statistical models were constructed to predict 

numbers of adult salmonids making upstream spawning migrations from Lake Superior 

using daily mean stage height, water temperature, and barometric pressure as well as 

metrics to account for seasonality and daily change in those parameters. An interactive 

model that included daily change in stage height and water temperature best predicted 

daily coaster brook trout observations, while an interactive model that included mean 

daily values for all three environmental parameters best predicted daily observations of 

coho salmon. Synchronized migration timing may be critical to reproductive success, 

especially in populations of low abundance such as coasters, ensuring that individuals 

reach spawning grounds with mates. Understanding how environmental conditions can 

serve as cues for migration may help to predict how migration timing could shift if the 

frequency and magnitude of precipitation events change, as they are predicted to in a 

changing climate.  
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3.3 Introduction 

Migratory species use spatially separate habitats at specific times of the year and 

developmental stages of their life history to optimize key outcomes such as growth, 

survival, and reproductive success, ultimately influencing their fitness (Northcote 1992, 

Dingle and Drake 2007, Morita et al. 2014). For populations of migratory fish that make 

upstream (adfluvial) migrations for reproduction, these migrations are often associated 

with environmental cues, such as water temperature or discharge (Jonsson 1991, Dahl 

et al. 2004). The timing of migrations can be critical to ensure that individuals arrive to 

spawning areas when potential mates are present (Dittman and Quinn 1996) and 

environmental conditions are suitable. Synchronized migration is ultimately critical for 

small or otherwise at-risk populations. 

Adfluvial spawning migrations of salmonids are well-known and ecologically important 

events. Attributes of tributary habitat, such as flow or temperature can vary annually or 

from system to system, causing variation in when cues for migrations occur (Jonsson 

1991, Goniea et al. 2006). Anthropogenic impacts within watersheds such as migration 

barriers, or alterations to the natural hydrologic or thermal regime may affect the timing 

and extent of reproductive migrations (Goniea et al. 2006). In addition, mortality risk 

due to predation or capture by humans during upstream migration may be elevated due 

to heightened vulnerability in low flow conditions and at high concentrations of 

individuals that attract predators (Quinn et al. 2007).  

Adfluvial brook trout that inhabit the upper Great Lakes, known as coasters, make 

migrations from lake habitat into tributaries to spawn and were historically abundant in 

Lake Superior (Roosevelt 1865, Shiras 1935). Relative to stream residents, coasters have 

access to lake habitat and resources, and thus they grow to larger sizes and may live 

longer (Huckins and Baker 2008). Combined effects of over-harvest, habitat 

degradation, and invasive species have reduced the abundance of coasters to critically 

low numbers (Newman and Dubois 1996, Huckins et al. 2008, Feringa et al. 2016). The 



66 

most abundant populations of coasters are found in the Nipigon region along the north 

shore of Lake Superior (Huckins et al. 2008, Mucha and Mackereth 2008). Verified 

populations along the south-central shore are limited to a few studied watersheds, with 

the Salmon-Trout River hosting the last confirmed remnant population that clearly 

displays the adfluvial life history (Huckins and Baker 2008, Schreiner et al. 2008, Scribner 

et al. 2012). To protect this remnant population and implement management actions to 

increase coaster abundance around the Lake Superior basin, greater understanding is 

needed regarding key features of their life histories such as timing of reproductive 

migrations (Newman et al. 1998, Schreiner et al. 2008). 

Species that share habitat with at-risk populations are an important component of the 

ecology of the at-risk population itself, through interactions such as predation or 

competition (Fausch and White 1981, Hoxmeier and Dieterman 2013). Coho salmon 

were first introduced into the Great Lakes in 1966 (Keller et al. 1990) and the Salmon-

Trout River now hosts a significant coho salmon population (Huckins and Baker 2008). 

Aggressive behavioral interactions between juvenile brook trout and non-native species 

have been shown to be asymmetric and negatively affect growth (Fausch and White 

1981), but interactions between spawning brook trout and coho salmon have not 

received much attention. The upstream migration timing of coho salmon overlaps that 

of coaster brook trout, though it is not understood how their presence might affect the 

behavior of coasters.  

The objective of this study was to determine the number of coaster brook trout and 

coho salmon making upstream spawning migrations and investigate environmental 

factors that may be associated with those movements. To address these questions, a 

fish counting weir was operated approximately six kilometers upstream from Lake 

Superior on the Salmon-Trout River from 2005-2012 during the late summer/fall coaster 

spawning migration season. Data collected at this weir in 2006 was analyzed using 

Poisson regression modeling to test which environmental cues (stage height, water 
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temperature, and barometric pressure) best predicted daily upstream migration of 

coasters (Nitz 2008). It was determined that stage height and water temperatures were 

best predictors of upstream coaster migration, however the model fit between 

predicted and observed detection was weak (Nitz 2008).  These environmental cues 

have been found to be associated with upstream migration in other systems supporting 

migratory salmonids (Jonsson 1991, Workman et al. 2002). Better understanding of how 

seasonality and change in conditions serve as environmental cues is needed, specifically 

for coasters in the Salmon Trout River. 

Here we expand the analysis of environmental parameters and coaster spawning 

migration to include two additional years of data (2009 and 2010). An alternative 

modeling approach was used, and we added to the analysis detrended parameters to 

account for seasonality and a metric of change in environmental conditions from one 

day to the next. We also use this modeling approach for coho salmon migration to 

better understand the characteristic of their migration. These two species are occupying 

the same habitat during spawning migration and their potential interactions could be 

important. We hypothesized that environmental conditions detrended for seasonal 

change (i.e., daily increases in stage height and decreases in temperature) would have 

the greatest predictive ability for upstream migrations in all years, which if found, would 

confirm and further support the findings by Nitz 2008.  

3.4 Methods 

3.4.1 Study Site 

The Salmon-Trout River is a Lake Superior tributary located in Marquette County, 

Michigan and drains approximately 127 km2, flowing through mixed hardwood and 

conifer forests. The headwaters originate approximately 16 km south of Lake Superior 

and flow north. Waterfalls located approximately 14 river km from Lake Superior block 



68 

upstream migration of fishes. Substrate in the river is a mosaic of sand with some 

gravel/cobble and peat; however, it is becoming increasingly sand dominated (Casey 

Huckins, unpublished data). Prior to European settlement, the Salmon-Trout River 

supported an abundant coaster population, but this population has declined since the 

early twentieth century (Smith 1942). Records of coaster population abundance in the 

Salmon-Trout River are sparse and variable, but accounts by anglers suggest a sharp 

decline in the 1960’s, around the time of Pacific Salmon introduction  (Bullen 1988). 

Visual counts of adult coaster brook trout at spawning sites detected less than 200 

individuals in 2019 (Casey Huckins, personal communication). 

3.4.2 Weir Operation 

A video-based fish counting weir was operated at river km 6 on the Salmon-Trout River 

(Figure 1) from 2005 to 2012. The camera was deployed underwater and was 

illuminated with infra-red lighting that provided side-view 640*480 resolution video of 

fish as they swam through a narrowed chute in the weir. Video footage from 2006, 

which spanned from June through mid-November, was reviewed by Nitz 2008. To 

compliment data collected in 2006 we also reviewed and analyzed video data collected 

in 2009 and 2010 because the weir provided data of fish movements and environmental 

conditions during a time range that was similar in duration and timing and thus 

consistent with 2006. In 2006 the weir operated from July 1 through Nov 19, while in 

2009 and 2010 the weir operated from Aug 27 through Nov 17, encompassing the time 

when the majority of upstream migration of coasters in the Salmon-Trout River occurs 

(Huckins and Baker 2008, Nitz 2008). 

Data were not collected when the video weir was damaged or removed from the river 

during high flow or when high turbidity or camera/lighting malfunctions compromised 

the field of view. Total non-operational days during the 85-day sampling season used in 

these analyses were 2 in 2006, 33 in 2009, and 20 in 2010 (Figure 2). Video files from 
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2006 were recorded and reviewed using VCR.  Files from 2009 and 2010 were recorded 

digitally and reviewed using VLC media player. Fish species were identified, and brook 

trout estimated to be 300 mm or larger were considered adult coasters (Huckins and 

Baker 2008). Daily mean stage data was collected using an Onset Level Logger installed 

at the weir site during all three years. Daily mean water temperature was also collected 

at the site using an Onset Hobo Temp Pro. Daily mean barometric pressure data from 

the Sawyer International Airport (approximately 63 kilometers from the weir site) was 

retrieved from WeatherUnderground.com. 

3.4.3 Migration Modeling 

A dataset was compiled using number of upstream migrating coasters and coho salmon 

per day from September 1 through November 18 in 2006, 2009, and 2010. This time 

frame was selected because it included the majority of the coaster and coho salmon run 

and was consistently sampled in all three years. It also excluded a high flow event in late 

August 2009 that resulted in weir being not operational, and highly variable 

temperatures in late August 2010, when minimal migrations were observed that could 

have skewed analyses. Because the majority (>80%) of fish detections occurred during 

nighttime hours, days were defined as 12:00 noon to 12:00 noon the next day. Only 

days with greater than 12 hours of review were included in the modeling dataset. To 

normalize count data for comparison across the 3 years of observation, daily detections 

of coasters and coho salmon were each divided by the total number of each species 

counted throughout the season.  

Poisson regression is often used to analyze count data, and was the approach taken by 

Nitz 2008. However, one of the key assumptions of the Poisson distribution is that the 

mean is equal or very close to the variance. The mean for coaster counts in this three-

year dataset (using the adjustment for percentage of coaster run) was 1.76 while the 

variance was 6.07, and for coho counts the mean was 1.79 and the variance was 12.63. 
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Because these variances are much greater than the means, a negative binomial model 

was used, which is a modification to the Poisson distribution that accounts for this 

overdispersion in the data (Ver Hoef et al. 2007). Because the response variable for 

Poisson and negative binomial models must be a whole integer, percentages ≥ 1 were 

rounded to whole numbers, and values between 0 and 1 were rounded to one. 

Three sets of models were constructed to assess the ability of stage height, water 

temperature, and barometric pressure to predict daily upstream migration (adjusted to 

proportion of total seasonal count). For the first set of models, daily mean values of 

stage height, water temperature, and barometric pressure were used independently to 

construct three models, then interactive models were constructed including a 

combination of two or all three parameters, resulting in seven models.  The second set 

of models were designed to examine the effects of these same environmental 

parameters, but accounting for seasonal shifts in their values. The mean values of each 

of the environmental parameters (stage height, water temperature, and barometric 

pressure) were detrended by fitting a regression line through their mean daily values in 

each year (Table 1). Residuals from these lines represent daily means of the parameter 

value detrended for the overall seasonal change and as a result can be positive or 

negative (Figure 3). 

A third set of models assessed the explanatory power of calculated change in daily 

means relative to the parameter means from the previous day. The second and third 

sets of models each included three models that examined the individual effects of the 

three parameters and then interactive models were constructed including combination 

of two or all of the other parameters, resulting in seven models for each set.  A null 

model and a model that only included chronological day were also included, resulting in 

set of 23 candidate models (Table 2). Models were run separately for coaster brook 

trout and coho salmon, and the Akaike Information Criterion (AIC) function in R (version 

3.6.0) was used to determine which model best predicted the daily migration of each 
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species. Goodness of fit was assessed using a chi-square test based on residual deviance 

and degrees of freedom. A value greater than a critical value of 0.05 indicated good fit 

of the model to the data. 

3.5 Results 

From Aug 27 - Nov 17, the total number of coasters observed moving upstream from 

Lake Superior was 244 in 2006, 108 in 2009, and 326 in 2010. Coho salmon numbers 

totaled 407 in 2006, 145 in 2009, and 538 in 2010 (Table 3). Periods of non-operation of 

the weir likely resulted in undetected migratory individuals, particularly in 2010 when 

several days of nonoperation occurred immediately after a large migration event during 

a period of high river stage (Figure 2). The majority (86%) of fish were detected during 

the night (Figure 4).  

Short-term variation in stage height and stream temperature was low throughout the 

2006 season relative to 2009 and 2010, when there were several precipitation events 

that more than doubled stage height. Four of these precipitation events occurred during 

the 2009 season, and two occurred during the 2010 season. During most of these 

increases in stage height, stream temperature also increased, while barometric pressure 

decreased (Figure 5, 6). 

In all three years, numbers of both coasters and coho salmon peaked in late October 

(Figure 5, 6) and there appeared to be a bimodal distribution in coaster migration with 

one peak occurring in late September, and another in late October. Coho salmon 

detections were in generally more evenly distributed across the sampling period (Figure 

6). The greatest number of detections in a single day occurred on Sept 28, 2009 when 

41% of the total coho run was observed (53 individuals).  

Coaster brook trout appeared to initiate adfluvial migration earlier than coho, but in 

general detections of the two species occurred as similar relative magnitudes 
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throughout the season. During review of video files, it was noted that many coaster 

detections occurred shortly before or after coho salmon detections. It appears that days 

when the greatest number of coasters were observed were also days when relatively 

large numbers of coho salmon were detected (Figure 7). Combing all three sampling 

years, 61% of coaster detections occurred within an hour of a coho salmon detection 

(Figure 8 a), and 21% occurred within five minutes minute of a coho salmon detection 

(Figure 8 b).  

3.5.1 Migration Modeling 

The interactive model including daily change in water temperature and daily change in 

stage height best predicted daily coaster detections, with an AIC weight of 0.81 (Table 

4).  Parameter estimates for this top model indicate that daily change in stream 

temperature was the most significant term in the model (Table 5). A chi-square value of 

0.38 for this model indicated good fit of the model to the data (>0.05). 

For coho salmon migration, the interactive model that included mean daily values for all 

three environmental parameters (water temperature, stage height, and barometric 

pressure) best predicted coho salmon migration with an AIC weight of 0.98 (Table 6).  

The interactive term including mean daily stage height and barometric pressure was 

most significant based on parameter estimates for the top model (Table 7). A chi-square 

value of 0.39 for this model indicated good fit of the model to the data (>0.05). 

3.6 Discussion 

Interacting environmental variables predicted upstream migration of adfluvial coaster 

brook trout and coho salmon. Metrics of environmental parameters (i.e. daily mean, 

detrended, daily change) that performed best varied between the two study species, 

but there was a clear correlation of coaster detections with coho salmon detections. 

Expanding understanding of spatial and temporal aspects of migrations, such as we have 
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done here, is critical for successful management of at-risk populations (Homel and Budy 

2007). 

Daily detections of coasters were best predicted by an interactive model with daily 

changes in stage height and stream temperature, but not the daily mean values. Stage 

height and water temperature were also found to be the best predictors by Nitz 2008, 

but his analysis only used daily average values, and did not consider daily change as 

predictors. Daily changes in water temperature and stage height are likely associated 

with precipitation events in unregulated systems like the Salmon-Trout River. Changing 

patterns in meteorological events may therefore alter the cues for timing of spawning 

migrations in populations such as coaster brook trout.  

Daily change in stream temperature was the most significant term in the top model for 

coaster migration. Overall, there is decreasing trend in temperature during the fall 

spawning period, thus it is interesting that migration was associated with short-term 

increases in water temperature. Swimming efficiency and speed of upstream-migrating 

Chinook salmons was maximized within an optimal range of water temperatures 

(Salinger and Anderson 2006). Coaster migration may similarly peak when temperatures 

reach a range optimal for swimming performance.  Migrations in a lacustrine population 

of brook trout peaked between 7°C and 11°C and were most frequently observed when 

there was a sudden decrease then increase in temperature (Baril and Magnan 2002), 

similar to what we observed in the Salmon Trout River. Increasing temperature was also 

found to be associated with upstream migration of steelhead in Lake Michigan 

tributaries (Workman et al. 2002). However, steelhead migrate in the spring when the 

general stream temperature trend is also increasing and increases in stage during spring 

may more often be associated with water temperature increases. In our data set, the 

water temperature ultimately decreased throughout the fall season, but precipitation 

events tended to cause short term increases in water temperatures.  
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Evaluating environmental parameters on a daily timescale as we did here may overlook 

important longer-term changes in those parameters, such as those that may occur over 

several days or weeks leading up to a migration event. The overall temperature regime 

during the migration season was decreasing, from over 15°C in early September to less 

than 5°C by mid-November. In all three years, short periods of increasing water 

temperature did occur, and these short higher-temperature events coincided with the 

greatest number of adfluvial migration observations. Decreasing temperature may be a 

cue for the migration in general, but shorter periods of increasing temperature may 

trigger shorter term upstream movements (Baril and Magnan 2002). It appears based on 

Figures 5 and 6 that when storms or precipitation events occurred, water temperatures 

change more rapidly than stage height, and often increased, likely because of the lag in 

time for precipitation in upstream areas of the watershed to reach the monitoring site. 

Modeling environmental changes over longer periods (i.e. weekly change rather than 

daily) may more accurately describe the observed movements.  

The interactive model that included daily mean values for all three parameters and their 

interactions best predicted daily coho salmon migration (Table 6). The interactive term 

with daily mean stage and barometric pressure was the most significant in the top 

model (Table 7).  Coho migration models were likely influenced by the single day when 

41% of the 2009 coho run was observed, which occurred during a rapid increase in stage 

height and stream temperature and decrease in barometric pressure.  Without this 

outlying data point, results may have been similar to that of coasters.  

There may be some limitations in how predictors can be tested using the modeling 

approach presented here. An assumption of Poisson type-distributions is that the data 

set does not contain high count values such as we observed here (i.e. day when 41% of 

coho run occurred in 2009). Expanding the candidate model sets to include models 

where mean daily values, detrended values, and daily change are combined may 

provide more insight on the specific conditions when migrations can be expected to 
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occur. However, increasing the complexity of these models in this way may require a 

more robust data set, which could be acquired with review of additional years of 

existing video weir data. 

Observations at the weir are only one snapshot of an individual’s upstream migration. 

Time spent in the six kilometers between the lake and the weir site is likely variable, and 

individuals may have been responding to environmental conditions for extended 

periods before reaching the weir site (Huckins and Baker 2008). Conditions in Lake 

Superior likely influence when fish initially stage and then enter tributaries, and studies 

on the north shore of Lake Superior suggest that coaster movement into tributaries 

occurs within three days of large precipitation events (Newman et al. 1999). If adult 

mortality in tributary habitat is relatively high, survival of early migrants may be lower 

than those migrating later in the season, because they may need to hold in the river 

habitat for longer periods until they are fully mature or until coasters of the opposite 

sex arrive to spawn with. The Salmon-Trout River is closed to fishing during the 

spawning season, so in river-mortality by humans should be negligible. However, river 

otters and eagles are frequently observed around the migrating coasters during 

spawning season (Huckins personal observation). 

In all three years, a somewhat bimodal distribution of migration peaks occurred. 

Different age, sex, or size classes of coasters may respond to different run timing cues. 

Coasters may return to spawn beginning at age three and have been documented in the 

Salmon-Trout River up to age six (Huckins and Baker 2008). Female Atlantic Salmon have 

been found to ascend tributaries earlier than males (Dahl et al. 2004). Primary spawning 

locations are limited to a few sites and are separated by several kilometers (Casey 

Huckins, personal communication). Differences in spawning locations may also contribute 

to differences in run timing depending on degree of spawning site fidelity. Use of 

telemetry technology or genetic markers could help to inform whether portions of the 

Salmon-Trout coaster population consistently use specific spawning habitats. Brook 
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trout have been found to exhibit schooling behavior in later life stages (Fraser et al. 

2005), which could also be a contributing factor to the observed upstream migration 

patterns, with separate groups of fish migrating at different times. 

While daily change models were best for coasters, daily mean models were best for 

coho salmon, possibly reflecting the different evolutionary history of these species, with 

coho being native to the Pacific coast and not the Great Lakes. In general, though, the 

timing of coaster migration was similar to the pattern observed for coho salmon (Figure 

5 and 6). It was noted during video review that groups of coho salmon would often pass 

the weir site with coasters either mixed in or following close behind. Schooling behavior 

with non-native coho salmon may result in coaster brook trout migration timing 

different than would be observed in the absence of coho salmon. Coaster brook trout 

spawning habitat in the Salmon-Trout River is tightly associated with groundwater 

inflow (Van Grinsven et al. 2012). The limited availability of these locations may result in 

competition between the species for spawning habitat or redd superimposition by the 

two species, though observations suggest that the two species use different spawning 

locations (Casey Huckins, personal observation).  

The number of missed sampling days in 2009 and 2010 may have contributed to 

performance of our models, especially considering that several days were missed 

immediately after a large number of migrations. However, in 2006 when only one day 

was missed, large migrations only occurred for a single day and were followed by days 

with low numbers. The number of individuals missed during weir malfunction likely 

depends on time and conditions during a specific outage. Pooling data from all years, as 

we did in our models, helps to validate that these migration cues are consistently 

observed in multiple years and validated prior analysis of the 2006 data. Building on this 

dataset by reviewing additional years of data that have been collected would facilitate a 

stronger quantitative analysis. Deploying other technology such as a sonic imagery to 
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detect upriver migrations could provide more accurate counts because they can 

continue to operate in periods of elevated flows or turbidity (Maxwell and Gove 2004).  

The modeling approach we developed could be useful in further exploring the variables 

investigated here as well as for integrating additional environmental parameters that 

may be associated with adfluvial migration. Other habitat parameters shown to 

potentially be associated with adfluvial migration or maturity are photoperiod, moon 

phase, water chemistry, and intra- and interspecific interactions (Ovidio et al. 1998, 

Kuparinen et al. 2009). The timing and extent of these environmental cues may change 

on different scales and it is important to understand the implications for migration 

patterns, and ultimately the reproductive success of coasters and other migratory fish 

species in the Lake Superior basin. 

With counts of adult coasters in the Salmon Trout River ranging from 108-326 in this 

study, the population is at-risk. These counts are conservative and additional individuals 

likely passed the monitoring station during periods of non-operation, but the totals are 

comparable to visual counts made at spawning locations (Casey Huckins, unpublished 

data). Obtaining counts from other years when the weir was operating would help to 

confirm this population estimate and identify cohort differences that are important in 

projecting the trajectory of this population. 

Timing is especially important for maximizing success of reproductive migrations in at-

risk populations. Modeling approaches like those presented here can advance our 

understanding of how migratory species use available habitat. Pinpointing specific 

environmental conditions or patterns that trigger migration will enable researcher to 

predict how migration patterns might respond or need to respond as environmental 

conditions are altered. The timing and the magnitude of precipitation events, and thus 

river discharges, are predicted to become more erratic and with greater peaks as 

climate change progresses (Hayhoe et al. 2010), which raises the question of whether 

coaster brook trout will be able to adjust the timing of their migration. If spawning 
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migration timing shifts, then it is possible that the timing of key developmental juvenile 

stages may shift as well, and the spatial and temporal habitat needs of all life stages may 

need to be re-evaluated. 
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Table 1. Regression equations used to detrend environmental predictor variables of 

coaster brook trout and coho salmon migration in the Salmon Trout River in 2006, 2009, 

and 2010. 

 

 2006 2009 2010 

 
Regression 
Equation R2  

Regression 
Equation R2  

Regression 
Equation R2  

Stage Height y=0.003x+0.03 0.58 y=0.005x+0.11 0.13 y=0.001x+0.19 0.06 
Water 
Temperature y=-0.14x+5176.4 0.83 y=-0.15x+5616.2 0.79 y=-0.13x+4879.1 0.83 
Barometric 
Pressure y=-.001x+71.37 0.01 y=-0.001x+71.65 0.01 y=-0.0001x+32.87 0.00 
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Table 2. Models used to predict daily detections of coaster brook trout and coho slamon 

at a weir on the Salm Trout River. Parameters were included in each model are indicated 

by “x”. 

 Daily Mean Detrended Daily Mean 
Change in daily mean 

from previous day 

Model Name 
Stage 
Height 

Water 
Temp 

Bar 
Press 

Stage 
Height 

Water 
Temp 

Bar 
Press 

Stage 
Height 

Water 
Temp 

Bar 
Press 

Daily Mean Stage x         
Daily Mean Temp  x        
Daily Mean BP   x       
Daily Mean StagexTemp x x        
Daily Mean StagexBP x  x       
Daily Mean TempxBP  x x       
Daily Mean StagexTempxBP x x x       
Detrended Stage    x      
Detrended Temp     x     
Detrended BP      x    
Detrended StagexTemp    x x     
Detrended StagexBP    x  x    
Detrended TempxBP     x x    
Detrended StagexTempxBP    x x x    
Daily Change Stage       x   
Daily Change Temp        x  

Daily Change BP         x 

Daily Change StagexTemp       x x  

Daily Change StagexBP       x  x 

Daily Change TempxBP        x x 

Daily Change StagexTempxBP       x x x 

Null          
Day           
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Table 3. Total coaster brook trout and coho salmon numbers moving upstream at the 

Salmon Trout River weir site Aug 27-Nov 17 in 2006, 2009, and 2010. 

Year 

Sampling 
Days Used in 

Models 

Stage Height 
(m) 

Barometric 
Pressure (mm) 

Stream 
Temperature 
(Degrees C)  Coaster 

Brook 
Trout 

Coho 
Salmon Mean STDEV Mean STDEV Mean STDEV 

2006 78 2.7 0.3 726.5 7.3 8.1 4.2 244 407 

2009 51 3.2 1.3 728.5 7.6 8.7 4.1 108 145 

2010 60 1.6 0.7 726.2 6.8 9.2 3.9 326 538 
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Table 4. AIC table for negative binomial models predicting daily detections of coaster 

brook trout at a weir in the Salmon Trout River.  

Model Name 
Number of 
Parameters AICc deltaAICc 

Model 
Weight 

Daily Change StagexTemp 5 616.97 0 0.81 
Daily Change Temp 3 621.03 4.06 0.11 
Daily Change StagexTempxBP 9 622.2 5.23 0.06 
Daily Change TempxBP 5 624.23 7.26 0.02 
Daily Change StagexBP 5 655.26 38.29 0 
Daily Change Stage 3 656.95 39.98 0 
Detrended StagexTemp 5 657.69 40.72 0 
Detrended Temp 3 657.93 40.96 0 
Daily Change BP 3 659.24 42.27 0 
Detrended TempxBP 5 659.83 42.86 0 
Detrended BP 3 660.15 43.18 0 
Detrended StagexTempxBP 9 660.23 43.26 0 
Daily Mean BP 3 660.53 43.56 0 
Null 2 661.36 44.39 0 
Day 3 661.8 44.83 0 
Daily Mean Stage 3 662.63 45.66 0 
Daily Mean Temp 3 663.37 46.4 0 
Detrended Stage 3 663.42 46.45 0 
Daily Mean StagexBP 5 663.58 46.61 0 
Detrended StagexBP 5 663.92 46.95 0 
Daily Mean TempxBP 5 664.63 47.66 0 
Daily Mean StagexTemp 5 665.53 48.56 0 
Daily Mean StagexTempxBP 9 671.61 54.64 0 
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Table 5. Summary of top negative binomial model with interactive terms daily mean 

water temperature, daily mean stage height, and daily mean barometric pressure to 

predict daily coaster brook trout detections in the Salmon Trout River. 

Coefficients:      

 Estimate 
Std. 
Error z value Pr(>|z|)  

(Intercept) 0.472 0.079 5.950 2.680E-09 *** 
Detrended Temp 0.518 0.080 6.451 1.110E-10 *** 
Detrented Stage 2.456 0.883 2.782 5.390E-03 ** 
Detrended Temp:Stage 1.163 0.909 1.280 2.007E-01  
---      
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘ ’1   
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Table 6. AIC table for negative binomial models predicting daily detections of coho 

salmon in the Salmon Trout River. 

Model Name 
Number of 
Parameters AICc deltaAICc 

Model 
Weight 

Daily Mean StagexTempxBP 9 613.29 0 0.98 
Daily Change StagexTempxBP 9 622.09 8.8 0.01 
Daily Change StagexTemp 5 623.45 10.15 0.01 
Daily Mean StagexTemp 5 632.92 19.63 0 
Daily Mean StagexBP 5 637.1 23.81 0 
Daily Change StagexBP 5 639.87 26.57 0 
Daily Change Stage 3 641.08 27.78 0 
Daily Mean TempxBP 5 641.93 28.64 0 
Detrended BP 3 642.6 29.31 0 
Detrended StagexBP 5 643.13 29.83 0 
Daily Mean BP 3 643.73 30.44 0 
Detrended TempxBP 5 645.05 31.75 0 
Detrended StagexTempxBP 9 652.15 38.86 0 
Detrended StagexTemp 5 655.8 42.5 0 
Daily Change TempxBP 5 655.83 42.53 0 
Daily Change Temp 3 659.55 46.25 0 
Daily Change BP 3 660.96 47.67 0 
Daily Mean Temp 3 661.98 48.69 0 
Detrended Stage 3 662.46 49.16 0 
Detrended Temp 3 663.7 50.41 0 
Daily Mean Stage 3 664.9 51.6 0 
Null 2 666.43 53.13 0 
Day  3 667.28 53.98 0 
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Table 7. Summary of top negative binomial model with interactive terms daily mean 

water temperature, daily mean stage height, and daily mean barometric pressure to 

predict daily coho salmon detections in the Salmon Trout River. 

 

Coefficients:      

 Estimate 
Std. 
Error z value Pr(>|z|)  

(Intercept) 
-

150.272 75.168 -1.999 0.046 * 
TempDailyMean 12.531 6.977 1.796 0.073 . 
StageDailyMean 870.642 377.800 2.305 0.021 * 
BPDailyMean 5.336 2.633 2.027 0.043 * 
TempDailyMean:StageDailyMean -51.796 38.450 -1.347 0.178  
TempDailyMean:BPDailyMean -0.445 0.244 -1.822 0.069 . 
StageDailyMean:BPDailyMean -30.948 13.241 -2.337 0.019 * 
TempDailyMean:StageDailyMean:BPDailyMean 1.869 1.346 1.389 0.165  
---      
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’1     
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Figure 1. Location of the fish counting weir on the Salmon-Trout River, Marquette 

County, Michigan.  
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Figure 2. Total daily counts of coaster brook trout (a) and coho salmon (b) in the Salmon 

Trout River. Days with at least 12 hours of review are indicated by solid orange line. 
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Figure 3. Example of detrended mean daily environmental parameters in the Salmon 

Trout River (2010 water temperature). 

 

 



92 

 

Figure 4. Number of coaster brook trout and coho salmon detected at the video weir in 

the Salmon Trout River by hour of day, 2006, 200, and 2010 combined. 
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Figure 5. Daily percentage of total seasonal coaster migration in the Salmon Trout River, 

water temperature (°C), stage height (10th mm), and barometric pressure (adjusted by 

subtracting 700 and dividing by 2.5 to fit on second y-axis scale) in a) 2006, b) 2009, and 

c) 2010 in the Salmon Trout River.   
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Figure 6. Daily percentage of total seasonal coho salmon migration in the Salmon Trout 

River, water temperature (°C), stage height (10th mm), and barometric pressure 

(adjusted by subtracting 700 and dividing by 2.5 to fit on second y-axis scale) in 2006, 

2009, and 2010 in the Salmon Trout River.   
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Figure 7. Daily counts (transformed to percentage of total run) of coaster brook trout 

plotted against coho salmon in the Salmon Trout River. 
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Figure 8. Number of hours (a) and minutes (b) passing between coaster brook trout and 

coho salmon detections in the Salmon Trout River, 2006, 2009, and 2010 combined. 
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Figure 9. Daily percentage of total coaster brook trout and coho salmon counts in the 

Salmon Trout River plotted against environmental parameter metrics used in modeling. 
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4.2 Abstract 

A critical step in protecting at risk populations, such as migratory salmonids, is 

identifying where remnant populations exist. We assessed movement of brook trout in a 

southern Lake Superior tributary to determine what proportion, if any, made adfluvial 

migrations between lake and river habitats. We used detections of Passive Integrated 

Transponder (PIT)-tagged brook trout and a multi-state mark-recapture model to make 

seasonal estimates of apparent survival and movement probabilities in and among three 

segments of the river. We also tested for differences in those probabilities across 

sampling years and age classes. Seasonal survival of tagged brook trout was not 

significantly different across the three sampling years or age classes; however, 

differences were detected in movement probabilities among age classes. Over-winter 

survival probability in lake habitat was estimated to be 0.44. Out-migration from the 

river to lacustrine habitat occurred in early winter, with the probability of out-migration 

estimated to be as high as 0.50 from the lower reach of the river. Relatively few brook 

trout were confirmed to reside in the river through a contiguous year, but this may be a 

result of lower detection probability for resident versus migrant individuals. We 

successfully documented at least 12% of the Pilgrim River brook trout displaying an 

adfluvial life history, which confirms the presence of an additional migratory south 

shore population in the region. Describing when tributary and lake habitats are used 

and obtaining seasonal movement and survival estimates will be essential to inform 

plans to enhance coaster brook trout populations.  
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4.3 Introduction  

Substantial variation in migratory life histories can exist within and among 

subpopulations of a species occupying in nearby or even overlapping habitat (Hendry et 

al. 2000). For migratory fish populations, the temporal and spatial characteristics of 

transitions between different habitat types have direct linkages to population 

parameters such as survival, growth, and reproduction (Gross et al. 1988, Dodson et al. 

2013).  Environmental conditions, genetics, and individual condition or physiology have 

been identified as primary factors that interact to drive the timing and extent of 

migrations in salmonids (Jones et al. 1997, Sloat et al. 2014, Kendall et al. 2015). In some 

cases, variation in these life history traits within a population, such as age at maturity 

and degree of migration, may be  important for populations to persist through changing 

environmental conditions (Stearns 1989, Crozier et al. 2008, Schindler et al. 2010).   

Completion of life cycles by salmonids that make long distance and often predictable 

seasonal migrations between lentic and lotic habitat can be limited by anthropogenic 

alterations to physical or ecological conditions (Angilletta et al. 2008, Letcher et al. 

2015) and harvest at specific times or in specific locations (Quinn et al. 2007, Theriault 

et al. 2008).  Because migratory salmonid species occupy a range of habitats, many are 

at risk due to one or more of their habitats being altered or degraded. Under natural or 

disturbed conditions, differential survival of individuals occupying alternative habitats in 

space or time can cause adaptation of life history traits (Hutchings 1993). Therefore, 

understanding the spatial and temporal extent of migrations and its variation within and 

among subpopulations an essential step toward identification, protection, and 

enhancement of threatened populations (Crandall et al. 2000, Waples 2008).  

Coaster brook trout (coasters) are a life-history variant of brook trout (Salvelinus 

fontinalis) native to the upper Great Lakes that make adfluvial migrations (between 

lentic and lotic habitat) into tributaries or are fully lacustrine (Becker 1983, Huckins et al. 

2008). Coasters were once abundant and supported a robust recreational fishery around 
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much of Lake Superior (Roosevelt 1865), but declines in these populations were noted 

as early as the late 19th century (Shiras 1921). Declines continued throughout the 20th 

century due to combined effects of overharvest, habitat alterations, and interactions 

with non-native species (Newman et al. 2003, Huckins et al. 2008). Scientific study of 

coasters was sparse until the early 2000’s, when interest grew in restoring coaster 

populations, leading to consideration for listing under the Endangered Species Act 

(Hewitt et al. 2008, USFWS 2008).  

Research has revealed variation in the spatial and temporal aspects of migration 

patterns among coaster populations. In the Nipigon region, where the most abundant 

coaster populations remain, juveniles occupy tributary habitat before out-migrating to 

nearshore areas of Lake Superior (D'Amelio et al. 2008, Mucha and Mackereth 2008, 

Robillard et al. 2011b). A similar migration pattern occurs for a population in the Salmon 

Trout River on the south shore of Lake Superior (Huckins and Baker 2008). Coaster 

populations in Tobin Harbor on Isle Royale are fully lacustrine, using shoal habitat for 

spawning (Quinlan 1999, Gorman et al. 2008, Huckins et al. 2008).  Similarly, wide 

variation in migration patterns have also been documented among populations of brook 

trout, known as salters, that migrate between tributary and ocean habitats along the 

northern Atlantic coast of North America (Dutil and Power 1980, Castonguay et al. 1982, 

Curry et al. 2002, Curry et al. 2006). 

Tributaries to Lake Superior span a range of habitat types, and their fish populations 

have not been fully characterized or studied. Additional populations and a wider range 

of coaster migration patterns may exist than have been documented thus far. Many 

Lake Superior tributaries that support coasters contain impassible waterfalls within 

kilometers of Lake Superior, limiting the available habitat for juvenile rearing, which 

may result in individuals out-migrating (D’Amelio et al.2008). Seasonal changes in 

habitat conditions may also lead to out-migration of juveniles. Some Lake Superior 

tributaries can experience reduced flows and elevated temperatures during the summer 
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months (Miller et al. 2016), while winter habitat may be limited due to freezing of entire 

river segments (Kusnierz 2009, Kusnierz et al. 2014). Other tributaries extend far inland 

and can contain suitable rearing habitat throughout the year, supporting juveniles for 

several years before their initial migration to open water habitat (Huckins and Baker 

2008). Identifying existing populations and describing the spatial and temporal 

characteristics of migrations will facilitate protection of remnant populations and 

prioritization restoration goals that target specific habitat needs within the Lake 

Superior watershed  (Schreiner et al. 2008).  

Partially migrating populations, which express both migratory and resident life histories, 

have been documented in brook trout populations with access to lake or ocean habitat 

(Kusnierz et al. 2009, Robillard et al. 2011a, Scribner et al. 2012). In some populations, 

differences in life histories among individuals within a population result from differences 

in individual physiology, such as development rate (Morinville and Rasmussen 2003). In 

two brook trout populations, out-migrating individuals were of lower body condition 

(lower length to weight ratio) than individuals that remained in tributary habitats (Jones 

et al. 1997, Huckins et al. 2008), but such biological differences were not detected in 

other populations (Kusnierz et al. 2009). There are some conflicting findings regarding 

the role of genetics in determining migrant versus resident life histories in brook trout 

(Wilson et al. 2008, Scribner et al. 2012, Pearce 2013). Nevertheless, preserving 

variation in life history and genetics is important for protecting and enhancing 

populations.  

Estimating survival during specific life history segments or within specific habitats can 

help to identify bottlenecks to population growth. Because migratory brook trout 

occupy different habitats through certain life stages, they are exposed to different 

sources of mortality. Size-dependent effects on survival of brook trout have been 

documented as a function of both angling regulations and pressure (Risley and 

Zydlewski 2010) and environmental factors (Xu et al. 2010, Letcher et al. 2015). These 
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differences in age and size specific survival can ultimately select for or against particular 

life histories (Hutchings 1993). There are limited survival estimates for brook trout in the 

wild, and most are focused on younger age classes. Obtaining survival estimates during 

specific life history stages can help to understand how populations will respond to 

specific rehabilitation efforts. 

To restore coaster populations in Minnesota, a protective regulation that limited daily 

harvest to one brook trout with a minimum size of 508 mm (20 inches) was initiated for 

waters accessible to coasters. Since its implementation in 1997, this change appears to 

have increased the proportion of larger and older brook trout in those populations 

(Miller et al. 2016).  A similar regulation was put in place on the lower reaches of eight 

Lake Superior tributaries in Michigan in 2014 (MIDNR 2016), with the goal of increasing 

brook trout size and survival and thus the likelihood of the migratory life history. The 

tributaries included this regulation were suspected to potentially support coasters, but 

their presence has not been confirmed.  

One of the tributaries with the protective regulation is the Pilgrim River, Houghton 

County Michigan, which is suspected to have supported a coaster population in the 

early 1900s (Newman et al. 1998). We assessed the spatial and temporal aspects of 

brook trout movements in the Pilgrim River, to determine if brook trout there show a 

migratory life history, and if so to identify when migration in and out of the river occurs. 

We hypothesized that a migratory form of brook trout existed in the Pilgrim River. Based 

on earlier surveys suggesting river habitat seemed adequate to support brook trout 

year-round, we hypothesized that a large portion of the population or subpopulation 

would display a stream resident life history. Further, we hypothesized that survival in 

lentic habitat of Portage Lake (the connecting waterbody between the Pilgrim River and 

Lake Superior) would be lower than in the river due to the potential exposure to 

predators, and this might influence the timing of migratory movements. To address 

these hypotheses, we observed and described the range of life histories expressed 
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within the Pilgrim River brook trout population and estimated seasonal survival of 

specific size classes. Describing migration timing, determining what proportion of the 

population exhibits a migratory life history, and obtaining seasonal survival estimates 

will provide a solid foundation for prescribing successful coaster enhancement efforts in 

this and other systems. 

4.4 Study Site 

The Pilgrim River watershed is in Houghton County, Michigan and includes 

approximately 63 km2 of land that is 58% forested, 25% open and 12% wetland (EGLE 

2019). The Pilgrim River is primarily a spring-fed system known for being highly 

productive relative to many other streams in the region, and for its abundance of brook 

trout (DEQ 2012). Summer temperatures from 2015-2018 averaged approximately 17°C 

in the lower reach, and 15°C near river kilometer (RKM) 14. Average summer baseflow is 

approximately 0.37 m3/s at RKM 6 (USGS 04043016 Pilgrim River at Paradise Rd NR 

Dodgeville, MI). This region receives an average of 508 cm of snowfall and spring snow 

melt events can result in large increases in discharge (DEQ 2012). Approximately 1,300 

acres along the Pilgrim River corridor is protected from development through 

conservation easements.  

Rather than connecting directly with Lake Superior, the Pilgrim River flows northeasterly 

into Portage Lake which is connected to Lake Superior approximately 20 km to the west 

and 15 km to the east (Figure 1). Portage Lake is a warm-water system during the 

summer months (Hanchin 2016). The downstream-most kilometer of the Pilgrim River is 

low gradient, bordered by a wetland complex, and likely influenced by seiches, winds, 

and other conditions that change lake surface elevations at daily-weekly time scales. 

More typical lotic habitat begins at RKM 1, and the majority of the Pilgrim River 

upstream consist of riffle pool habitat with cobbles mixed with sandy substrates and 

beaver (Castor canadensis) dams occur regularly.  
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The primary salmonid species in the Pilgrim River are brook trout (Salvelinus fontinalis), 

brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and Coho salmon 

(Oncorhynchus kisutch), with pink salmon (Oncorhynchus gorbuscha), and chinook 

salmon (Oncorhynchus tshawytscha) also observed but in lower numbers (personal 

observations). Splake (artificial hybrids of Salvelinus fontinalis x Salvelinus namaycush) 

were documented in the Pilgrim River in 2012 and 2013 (Feringa et al. 2016). Brook 

trout are the only native salmonid species in the Pilgrim River. Other fish species include 

white sucker (Catostomus commersonii), silver redhorse sucker (Moxostoma anisurum), 

sculpin spp. (Cottus spp.), lamprey spp. (Lampetra spp.), creek chub (Semotilus 

atromaculatus), Northern red belly dace (Chrosomus eos), rainbow smelt (Osmerus 

mordax), logperch (Percina caprodes), yellow perch (Perca flavescens), rock bass 

(Ambloplites rupestris), pumpkinseed (Lepomis gibbosus), smallmouth bass (Micropterus 

dolomieu), northern pike (Esox lucius), walleye (Sander vitreus), and lake sturgeon 

(Acipenser fulvescens) (C. Adams personal observations, DEQ 2012).  

4.5 Methods 

The primary tool we used for assessing brook trout movements was Passive Integrated 

Transponder (PIT) tags coupled with stationary in-stream antennas. Fish were collected 

by backpack electrofishing in three reaches of the Pilgrim River; RKM 1-3, 5-6, and 13-14 

(Figure 1). Captured fish were anesthetized with a 10% clove oil solution (in ETOH) 

added to fish holding water at a ratio of 1 ml solution/1 L river water. All captured fish 

were scanned for the presence of a previously implanted PIT tag. If no tag was detected, 

brook trout that measured 150 mm total length or longer were implanted with 23 mm 

half duplex PIT tags (Oregon RFID, Portland OR). A sterilized 8-gauge hypodermic needle 

was used to create an incision approximately 20 mm anterior to the base of fish's left 

pelvic fin. Tags were sterilized with 90% ethanol, rinsed with distilled water, and 

inserted through the incision into the body cavity by hand. All fish were measured for 
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total length, weighed for wet mass, and then allowed to recover in an aerated holding 

tank for 30 minutes before release near their location of capture. 

A total of 763 brook trout were tagged in 2014 through 2018 (Table 1). Total length 

ranged from 150 mm (minimum size that was tagged) to 430 mm (Figure 2). Tagging 

efforts in 2014 and 2015 were limited to one day in October each year. The highest 

densities of large (300+ mm) brook trout were encountered in May and June at RKM 1 

and 2. The length frequency of tagged fish did not reveal a clear distinction between age 

classes (Figure 3), but patterns could be obscured because this figure includes fish that 

were tagged on different dates throughout the year.  

Custom-made PIT tag antenna stations were installed at four locations to monitor 

movements of tagged fish. These were located at approximately RKM 0 (installed 

September 2016), 1 and 6 (installed October 2015), and 14 (installed August 2017) 

(Figure 1). Data loggers were made by Mauro Engineering (Mt. Shasta, CA). Power was 

provided by 12-volt batteries coupled with solar panels. Antennas were comprised of a 

single loop of 12 gage wire housed in PVC pipe resulting in a rectangle approximately 1 

m tall x 2.5 m wide. These antennas were positioned perpendicular to stream flow and 

attached to posts driven into the stream bed (Figure 4a). At the RKM 0 location where 

deeper water, wave action, and boat traffic limited function of standard antennas, pass 

over antennas were deployed. These antennas were a circular coil design and laid flat on 

the stream/lake bottom (Figure 4b), detecting tags that passed less than one meter over 

them. At RKM 1, 6, and 14 antennas spanned most of the stream cross section; in 

contrast, at RKM 0, antenna coverage was 20% or less of the stream width depending on 

river discharge and lake levels. Year-round operation was attempted but high-water 

levels, snowfall that blocked solar panels, or equipment malfunction caused periods of 

non-operation ranging from days to weeks. Temperature loggers were deployed at each 

station and the USGS streamflow gaging station was in operation at RKM 6 from the 
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start of the study until June 2018 when it was permanently damaged by a major flood 

event.  

Brook trout were considered to have migrated to Portage Lake if they were detected at 

the RKM 0 station at any time. Because of the limited coverage of the RKM 0 antenna 

station, individuals detected at RKM 1 during November or December but not 

necessarily RKM 0 were also classified as having migrated to Portage Lake (probable out-

migrant). It is assumed that these individuals were missed at the RKM 0 station or may 

have remained in the lowest 1 km reach, where conditions are influenced by Portage 

Lake. Individuals detected only at in-river stations upstream of RKM 1 for one whole 

year were considered resident. 

4.5.1 Movement and Survival Model 

We used a multi-state mark-recapture model to estimate seasonal movement 

and apparent survival probabilities for PIT tagged brook trout the Pilgrim River 

and Portage Lake. Cormack-Joly-Seber (CJS) mark-recapture models use 

detections of tagged individuals to estimate encounter probabilities (p) during 

sampling occasions and survival probabilities (S) between sampling occasions 

(Cormack 1964, Jolly 1965, Seber 1965). Multistate mark recapture models are 

an extension of the CJS model that also estimate a movement parameter (ψ) , 

which is the probability of moving from one state (i.e. location) to another 

between sampling occasions (White et al. 2006). Data was analyzed with 

program Mark (v.9.0), which is a software for analysis of mark-recapture data 

that allows great flexibility in designing multi-state models. (White et al. 2006, 

Hodge et al. 2016). Program Mark facilitates model comparison using Akaike 

Information Criterion (AIC) and uses maximum likelihood for parameter 

estimation.  
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A capture history matrix was compiled in which each individual was assigned a 

letter representing where it was encountered (physical capture or detection at 

an antenna station) during each sampling occasion (season). Tagging year and 

age were also assigned to each individual so that we could build two sets of 

models to test for differences in: 1) detection and survival probability across 

years, and 2) survival and movement probability among age classes.  The three 

reaches were defined as: Portage Lake and the downstream most 1 kilometer 

(K), RKM 1-5 where there was a protective harvest regulation (L), and RKM 6 and 

above where there was no protective harvest regulation (U) (Figure 1). 

Individuals not encountered in any of the three reaches during a given sampling 

occasion were assigned a zero for that occasion. 

The temporal structure of the model was chosen based on the general 

movement patterns observed in the detection data (Figure 5). Five encounter 

occasions were defined based on general movement patterns observed in the 

data. The first occasion (spring) was an initial release of fish tagged before July 1 

of the first year (n = 181). The second occasion (summer) was from July through 

October of the first year, which included detections of previously tagged fish and 

another 471 individuals tagged and released during this time period (which were 

assigned a zero for the spring encounter occasion). Releases of newly tagged fish 

only occurred during the first two occasions. The third occasion (winter) was 

from November of the first year through February of the second year. The fourth 

occasion (second spring) was from March through June of the second year, and 

the fifth occasion (second summer) included any encounters that occurred 

during or after July of the second year. For example, for the capture history 

LUK0L, the individual brook trout was tagged and released in the lower reach in 

spring (L), detected in the upper reach in summer (U), detected entering Portage 

Lake in winter (K), not detected in the second spring (0), then detected in the 

lower reach in the second summer (L). 
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The same five occasions were assessed for all individuals, but tagging year was 

specified as a covariate. Only fish tagged in 2016 (n = 76), 2017 (n = 292), and 

2018 (n = 285) were used for this analysis, because all detection stations were in 

place during this time period and tagged fish could be assigned a location for 

each of the five sampling occasions. Individuals were also assigned an age 

covariate based on length at tagging so that differences in movement and 

survival among age classes could be assessed. A sample of 100 individuals 

representing the length distribution of tagged fish were aged by reading scales to 

establish approximate age cutoffs. Length bins were Age 1; 150-199 mm (n = 

417), Age 2; 200-299 (n = 285), and Age 3+; ≥ 300mm (n = 61).  

The fully interactive model with this structure (no year or size class effects) 

would include 48 parameters (3S + 3p + 6ψ x 4 occasions). To build models with 

the fewest parameters while still maintaining biological and logical integrity, 

many movement parameters were fixed to zero if they were not observed in the 

PIT tag detection data (Figure 5). Fish were only detected in the K reach during 

the winter, so survival in K and movement to and from K were fixed to zero in all 

other sampling occasions. Fish detected at RKM 1 in November or December 

were assumed to have also out-migrated at least to the lowest 1 km reach and 

were assigned K for the winter occasion. All fish that moved to the K reach and 

were detected during a later occasion were detected the following spring, and so 

the movement parameter from K to L from winter so spring was fixed to 1 (if a 

fish moved to K and survived, it had to return to the L location in the spring). 

Because p during the last occasion is not estimable, ψ and S are confounded for 

the last sampling interval/occasion. Thus, all detections during occasion 4 and 5 

were recorded as L, allowing survival and movement parameters to be fixed to 

zero for the last two sampling occasions in the other reaches. Using this 

temporal scheme, some information is lost for fish that and are detected two 

years after tagging, but the occurrence of those individuals was low (n= 20) and 
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did not justify the added complexity to the models. The parameter-specific link 

function option was used so that a logit link could be used for S and p estimates, 

but a multinomial logit link could be used for ψ estimates, which forces them to 

sum to one. We used the median c-hat estimation method in Program Mark to 

assess overdispersion in the data and used that as a correction factor generate a 

quasi-likelihood AIC (QAIC) table for model comparison (Kenneth et al. 2002).  

The first set of models was designed to test for differences in detection (p) and 

survival (S) probability across the three tagging years, which allowed us to 

determine if p or S was lower in 2018 when a major flood event occurred. This 

analysis was conducted first because differences in these parameters from year 

to year would mean that they would need to be accounted for in the second set 

of models. All models in this set were fully time dependent (different parameters 

estimated for each sampling occasion) and ψ was held constant for all three 

groups so that only differences in survival and detection probability would be 

tested. First, a model was constructed that did not allow for differences in p or S 

between years. Then models were constructed that allowed combinations of p 

or S to be different across years, resulting in a set of ten candidate models (Table 

2).  

The second set of models was constructed to test for differences in survival (S) 

and movement (ψ) probabilities among three age classes (1, 2, 3+). Because the 

results from the first set of models indicated little difference in p and S between 

the three years, no year effect was included and detection probability (p) was 

held constant for all age classes. First, a model was constructed that did not 

allow for differences in S or ψ between age groups. Then models were 

constructed that allowed combinations of S or ψ to be different across age 

classes, resulting in a set of ten candidate models (Table 3). Estimation of c-hat 

was implemented in Program Mark and used as an overdispersion correction 
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factor to generate a QAIC table comparing the ten models. The top model from 

this set was used for parameter estimation. 

4.6 Results 

Of the 763 brook trout tagged and released between 2014-2018, 228 were detected at 

the RKM 0 antenna station or the RKM 1 station in November or December (30% of all 

tagged) indicating that these individuals expressed an adfluvial life history (Table 1). 

Only 14 brook trout (2%) were identified as likely river residents because all their 

detections were at in-river antenna stations (upriver of RKM 1) and over a time span of 

at least one year. The remaining individuals either went undetected or experienced 

mortality in the first year after tagging. Detection patterns were similar in all years of 

sampling. Detection at RKM 0 began in October and peaked in November or December 

as fish moved from river habitat into Portage Lake (Figure 6).  

The number of days when individuals were detected at RKM 0 in a given winter season 

ranged from one to 33, with smaller individuals tending to be detected on more days 

than larger individuals (Figure 7). Detections at RKM 0 and RKM 1 increased again in 

March and April, as tagged fish moved from Portage Lake or from the reach between 

the two stations upstream into river habitat. All brook trout that were detected moving 

into lake habitat and known to survive at least to the next spring (i.e., detection at an 

antenna station) moved back into the river in the first spring following outmigration. No 

individuals are known to have remained in lake habitat for more than six consecutive 

months before being detected again in the river. One-hundred-twenty-four individuals 

that were detected moving into the downstream most km or Portage Lake were not 

detected again. 

Detections at RKM 6 increased in June, when brook trout that had been residing from 

RKM 1-5 moved upstream (Figure 6). Three individuals tagged in the lowest kilometer in 

spring moved upstream at least as far as the RKM 14 antenna station during the 
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summer. The greatest number of detections occurred during the fall and movement 

during this period was bidirectional with individuals moving from the lower reach 

upstream to RKM 6 or 14 and back, sometimes within a few days. 

A total of 138 tagged brook trout were physically recaptured at a later date (Figure 8). 

Mean growth rate was 0.22 mm/day for fish tagged at 150-199 mm, 0.24 mm/day for 

fish tagged at 200-299 mm, and 0.18 mm/day for fish tagged at ≥300 mm. Seventy-eight 

of the individuals in the 150-199 size class when tagged had grown into the 200-299 mm 

size class by the next year. Forty-three percent of the individuals in the 200-299 mm size 

class when tagged, had grown into the 300+ mm size class when recaptured the next 

year. This pattern supported the three size-at-age categories used in survival and 

movement modeling and is similar to growth estimates for a nearby coaster population 

(Huckins and Baker 2008). 

4.6.1 Movement and Survival Model 

Detection (p) and survival (S) probability appeared to be unrelated to tagging year or age 

class, however movement probability did differ across age classes. The model with no 

differences in survival or detection probability among years was the most heavily 

weighted (0.84) of the candidate set (Table 4). Models with differences allowed in S and 

p for 2018 ranked second and third, weighted 0.07 and 0.05, respectively. Median c-hat 

for the global model in this set was 2.45, indicating moderate overdispersion in the data 

(White et al. 2006), and that value was used to adjust the models and produce a QAIC 

table. Because the best fit model from this set did not include differences in p and S 

among years, the effect of year was ignored in the second set of candidate models.  

The top model in the second set allowed no difference in survival (S) across age classes 

but allowed differences in movement probability (ψ) in all three age classes (All ψ 

Different, Table 5). This model had weight of 0.90, followed by the model that allowed 

difference in movement probability for age 3 (weight 0.09). The remaining model were 
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all weighted less than 0.01. Median c-hat for the global model was 1.95, indicating 

moderate overdispersion in the data (White et al. 2006), and that value was used to 

adjust the models and produce a QAIC table. The top model (All ψ Different) was used 

for parameter estimation. 

Estimated probabilities of survival from the spring to the summer sampling occasion 

were higher in the lower reach (0.63) than the upper reach (0.31), however the 95% 

confidence intervals of these estimates overlapped (Figure 9). Survival estimates for the 

summer to the winter occasion were nearly 1 for both the lower and upper reaches, but 

95% confidence interval for the upper reach included both 0 and 1. The summer survival 

estimates for the lower reach was a boundary estimate (extremely close to one or zero) 

and standard error could not be calculated. This is due to a small sample size and low 

detection probability during the winter sampling occasion (many fish moved to K and 

thus are not included in survival and detection probability estimates for the other 

reaches during that occasion). Estimated winter survival was highest in the Portage Lake 

location (0.44) but 95% confidence intervals overlapped with survival estimated in the 

lower reach (0.15). Estimated winter survival in the upper reach was significantly lower 

than in the lower reach and Portage Lake (0.01, 95%CI 0.00-0.06). 

Modeling results indicate that movement in spring to summer tended to occur mostly 

from the lower to the upper reach, with the highest probability of that movement 

occurring for age 2 fish (Figure 10). However, these differences were not statistically 

different, based on overlapping 95% confidence intervals for these estimates. 

Movement probabilities for summer to winter tended to show an upstream pattern for 

age-1 fish and more downstream for age-2 and 3, however each age class had some 

probability of moving to Portage Lake (Figure 10). Age 1 fish had a higher probability of 

migrating from the lower reach to Portage Lake (L:K=0.50, 95% CI 0.40-0.60) than from 

the upper reach (U:K=0.12, 95% CI 0.07-0.20). 
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4.7 Discussion 

Our data strongly suggest that a migratory form of brook trout exists in the Pilgrim 

River. Adfluvial brook trout in the Pilgrim River out-migrated to Portage Lake in late 

fall/early winter, around the time when ice cover forms on much of the river. 

Movements back into the lower river occurred in spring, around the time of ice melt. 

Migration further upstream occurred mid-summer, with many individuals moving 

upstream from the reach between RKM 1-3 to past RKM 6, with some traveling at least 

as far as RKM 14. Fall movements were extensive and bi-directional, presumably as fish 

move to spawning locations, and then for many, out of the river and into the open 

water habitat of Portage Lake. A similar movement pattern was observed in the 

Kennebecasis River, New Brunswick, where brook trout migrated upstream in the 

spring, made short-distance movements to spawning areas in the fall, then migrated 

downstream to brackish estuarine water post-spawn (Curry et al. 2002).   

The timing of adfluvial movements by Pilgrim River brook into river habitat contrasts 

with observations in the Salmon Trout River, which is the closest river with a verified 

coaster population (approximately 100 km east along shore of Lake Superior; Huckins 

and Baker 2008). In that system, brook trout initiated adfluvial migrations from Lake 

Superior when they reached approximately 300 mm total length and during a five 

month period that peaked in October (Huckins and Baker 2008, Nitz 2008). In Nipigon 

Bay, Ontario, adult coasters remained in nearshore waters and ascended tributaries to 

spawn in late summer and then migrated back to Nipigon Bay by mid-October (Mucha 

and Mackereth 2008). In this study, brook trout entered the Pilgrim River in April and 

May, which contrasts with the patterns from the Salmon-Trout and Nipigon Bay 

systems, but coincides with spawning migrations of rainbow smelt and white sucker 

(personal observation). Rainbow smelt and white sucker potentially offer an abundant 

food source for brook trout through direct consumption of smelt and consumption of 
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sucker eggs and emergent fry, as has been observed in other systems (Childress et at. 

2014).  

While we observed that some individual brook trout remained at the river/lake interface 

throughout most of the winter, larger individuals tended to be detected near the river 

mouth for only one or two days (Figure 7) and may move further out into the Keweenaw 

Waterway, which connects the Pilgrim River to Lake Superior approximately 20 km to 

the west and 15 km to the east. Coloration of some of the larger individuals captured in 

the spring suggest that they had recently inhabited open water habitat (bright silver 

flanks, counter shaded). Additionally, some of these individuals had what appeared to 

be gill net scars (Figure 11), further suggesting that they had been to Lake Superior 

where a commercial fishery exists. Additional monitoring of acoustically tagged brook 

trout using existing acoustic telemetry receivers located at the north and south entry of 

the Keweenaw waterway would help to verify if Pilgrim River brook trout enter Lake 

Superior. 

Relative to the occurrence of migrating individuals, our modeling efforts identified few 

verified stream residents. Non-migrants likely have lower detection probability since 

they may not be moving past antenna stations as frequently as migrants. This is 

particularly important for interpreting the survival estimates in the upper reach since 

individuals residing between antenna stations would be not be detected, decreasing 

apparent survival rates. For example, a fish that was detected at RKM 6 and then 

resided in the reach between the upstream monitoring stations for the next year would 

be considered a mortality based on the model structure. With antenna stations located 

at RKM 6 and 14, there is a large amount of habitat that went unsampled, both between 

the stations and upstream of RKM 14. Over-winter survival estimates for brook trout 

that did remain in the river were low (0.01 in the upper reach, 0.15 in the lower reach), 

possibly due in part to non-migrating individuals residing in locations not sampled. 

Brook trout tend to use deeper, low velocity habitat in winter (Cunjak and Power 1986), 
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which exists in beaver dam impoundments common throughout the watershed. 

Because migrants in this study likely had higher detection probability, estimates of their 

survival and movement were likely more precise and had narrower confidence intervals 

than for stream-resident brook trout. Increasing effort to confirm survival of resident or 

less-mobile individuals would help to achieve better parameter estimates for those 

groups. This could be accomplished by deploying additional antenna stations and 

expanding physical capture effort to additional locations between antenna stations. 

Life history variation within populations such as  partial migration can result in co-

occurrence of both resident and migratory individuals and has been previously observed 

in coaster (Robillard et al. 2011a, Robillard et al. 2011b, Scribner et al. 2012) and salter 

populations (Curry et al. 2006, Thériault et al. 2007). In individual tributaries to the Gulf 

of St. Lawrence, New Brunswick, sympatric anadromous and resident individuals were 

found to be genetically more similar to each other than to individuals in adjacent 

drainages (Jones et al. 1997). Similarly, migrant brook trout from a single stream in the 

Pictured Rocks region of southern Lake Superior were more closely related to residents 

from that same stream than to migrants from a nearby stream (Pearce 2013). Genetic 

analyses of coasters in the Nipigon Bay region has suggested that they are a life history 

variant rather than a genetically distinct subspecies (D'Amelio and Wilson 2008, Wilson 

et al. 2008). Growth analysis further supported partial migration hypothesis for the 

occurrence of both stream- and lake-type brook trout the Nipigon region (Robillard et al. 

2011a). 

Genetic work on the Salmon Trout River, Michigan, suggested relative reproductive 

isolation between resident brook trout upstream of an impassible falls, and coasters 

found downstream (Scribner et al. 2012). They concluded that resident life-histories 

were relatively rare among individuals below the falls and individuals suspected of being 

residents commonly had an origin above the waterfall (either them or a parent). Indeed, 

early summer electrofishing sampling of 6 km of the Salmon Trout River detected only 
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124 brook trout (all <271 mm total length) and of these only 5 individuals were >205mm 

suggesting they might be in-stream residents (Scribner et al. 2012).  More conclusive 

and geographically broader genetic research is needed to understand similarities and 

differences between resident brook trout and coasters and the range of mechanisms 

that can result in the co-occurrence of resident and migratory individuals. Using tagging 

and detection data to confidently assign a life history to individuals could be a critical 

component of that research, as demonstrated in some other systems (Ali et al. 2016, 

Kelson et al. 2019) 

Estimating the probability of larger fish moving from the lower to the upper reach in 

summer has important implications for the protective harvest regulation in the Pilgrim 

River. Survival estimates from spring to summer were higher for the lower reach where 

harvest regulations were in place than the upper reach where these regulations were 

not in place. This could be a result, at least in part, of the protective harvest regulation 

in place on the lower section. With no external marking on tagged fish, it is difficult for 

anglers to identify them. However, three tags were reported in harvested fish 

throughout the study, all from the upper reach (MDNR personal communication). Even 

in catch and release fisheries, there can be 2-4 percent hooking mortality (Nuhfer and 

Alexander 1992), and with elevated fishing pressure, older age classes could be reduced 

or eliminated (Risley and Zydlewski 2010). Tagged coasters in the Salmon Trout River 

were harvested at an estimated rate of 12.1% in Lake Superior (Huckins and Baker 

2008). Further research on survival of particular age classes may help to determine the 

effects of angling on the Pilgrim River brook trout population.  

Published estimates of brook trout survival in the wild are rare, especially for older age 

classes. Annual survival of age 1 (considered adult) was 0.31 and 0.37 in two different 

stream networks in Massachusetts  (Kanno et al. 2014). In West Virginia, apparent 

annual survival was estimated at 0.28 for juveniles, 0.46 for small adults, and 0.38 for 

large adults (Petty et al. 2005). These estimates are similar to those we made for Pilgrim 
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River brook trout in the spring to summer interval and in the winter to spring interval for 

individuals that had out-migrated, though the individuals in our study were much larger. 

High survival estimates in the summer are partly a function of a large number of tagged 

fish being released in October near the RKM 1 and RK 6 antenna stations, resulting in 

detections shortly after tagging. While these fish did indeed survive though summer, 

they may not be as representative of summer survival as a fish tagged in July. 

The movement data collected here has important implications for management of the 

Pilgrim River brook trout population. Identifying the time periods and extent to which 

tributary and lake habitat is used can help guide restoration or management strategies. 

Obtaining similar information for brook trout in other potential coaster rivers could help 

to inform managers charged with protecting and enhancing coaster populations. 

Findings from this study help illustrate the diversity of life history strategies within and 

among populations. Identifying habitats where remnant populations of coaster brook 

trout persist is a critical first step in protecting and enhancing those populations. 

Identifying times when migrations occur and when individual habitats are being used 

can increase odds of success in restoration and management efforts, whether it be 

through targeted harvest regulations, habitat protection, or habitat enhancement 

geared toward a specific life history segment. 
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Table 1. Total number of brook trout tagged each year and the total detected at RKM 0, 

total assumed to have out-migrated (based on detection at RKM 0 or RKM 1 in 

November-December), and total confirmed resident based on detections. 

 

  
Detected out-

migrating (at RKM 0) 
Detected probable 

out-migrating 

Detected at only in-river 
stations for one year 

(resident) 

Year 
Total 
Tagged Number 

% of Total 
Tagged Number 

% of Total 
Tagged Number 

% of Total 
Tagged 

2014 59 1 2% 6 10% 0 0% 

2015 53 3 6% 12 23% 2 4% 

2016 74 19 26% 43 58% 1 1% 

2017 292 28 10% 88 30% 5 2% 

2018 285 41 14% 79 28% 6 2% 

Total 763 92 12% 228 30% 14 2% 
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Table 2. Parameritization of models constructed to test for differences in detection (p) 

and survival (S) probabilities among brook trout in the Pilgrim River tagged in 2016, 

2017, and 2018. Like colored boxes indicates that the parameter was held constant 

across those age groups. Movement probability (ψ) was held constant across all groups 

in all models. 

 Detection Probability (p) Survival Probability (S) 
Model Name 2016 2017 2018 2016 2017 2018 

All p Same all S Same             
2016 p Different              
2017 p Different             
2018 p Different             
All p Different             
2016 S Different             
2017 S Different              
2018 S Different             
All S Different             
All p and S Different             

 

 

 

 

 

 

 

 

 



130 

Table 3. Parameritization of models constructed to test for differences in survival (S) and 

movment (ψ) probabilities among age 1, age 2, and age 3 brook trout in the Pilgrim 

River. Like colored boxes indicates that the parameter was held constant across those 

age groups. Detection probability (p) was held constant across all groups in all models. 

 

 Survival probability (S) Movement Probability (ψ) 
Model Name Age 1 Age 2 Age 3 Age 1 Age 2 Age 3 

All S and ψ Same             
Age 1 S Different             
Age 2 S Different             
Age 3 S Different             
All S Different             
Age 1 ψ Different             
Age 2 ψ Different             
Age 3 ψ Different             
All ψ Different             
All S and ψ Different             
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Table 4. Quasi-likelihood Akaike Information Criterion (c-hat=2.45) ranking of models 

testing for differences in detection (p) and survival probability (S) among brook trout 

tagged in the Pilgrim River in 2016, 2017, and 2018. 

Model 
Number of 
Parameters QAICc 

Delta 
QAICc 

AICc 
Weights 

All p Same all S Same 19.00 802.03 0.00 0.84 
2018 S Different 27.00 807.00 4.97 0.07 
2018 p Different 25.00 807.88 5.85 0.05 
2017 p Different 25.00 809.24 7.20 0.02 
2017 S Different  27.00 809.40 7.36 0.02 
2016 p Different  25.00 813.28 11.24 0.00 
2016 S Different 27.00 816.57 14.54 0.00 
All p Different 31.00 819.98 17.94 0.00 
All S Different 41.00 834.71 32.68 0.00 
All p and S Different 53.00 856.98 54.94 0.00 
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Table 5. Quasi-likelihood Akaike Information Criterion (c-hat=1.92) ranking of models 

testing for differences in survival (S) and movement probability (ψ) among Age 1, Age 2, 

and Age 3 brook trout in the Pilgrim River. 

Model 
Number of 
Parameters QAICc 

Delta 
QAICc 

AICc 
Weights 

All ψ Different 20 988.67 0.00 0.90 
Age 3 ψ Different 17 993.29 4.62 0.09 
Age 1 ψ Different 20 998.55 9.88 0.01 
All S and ψ Diff 31 999.06 10.39 0.00 
Age 1 S Different 21 1002.18 13.51 0.00 
Age 3 S Different 21 1004.51 15.84 0.00 
Age 2 ψ Different 18 1005.57 16.90 0.00 
All S and ψ Same 17 1008.60 19.93 0.00 
All S Different 28 1009.52 20.85 0.00 
Age 2 S Different 22 1013.25 24.58 0.00 
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Figure 1. Map of Pilgrim River, Houghton County Michigan showing PIT tag antenna 

stations (colored circles) at River Kilometers 0, 1, 6, and 14 that form the boundaries of 

river segments as defined for movement and survival modeling.  
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Figure 2. Total length of brook trout tagged by date. Color indicates location tagged as 

either the lower reach or the upper reach of the Pilgrim River. 
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Figure 3. Number of brook trout tagged in the Pilgrim River grouped into 10 mm total 

length bins. 
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Figure 4. PIT tag station at Pilgrim River RKM 1 (a) and lay-flat antenna deployed at RKM 

0 (b).  
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Figure 5. Schematic of movement and survival model structure. U=upper reach L=lower 

reach K=Portage Lake. Solid arrows indicate ψ parameters estimated, dashed arrows 

indicate ψ parameters fixed to zero, filled arrows indicate parameters estimated, bold 

arrows indicated ψ parameter fixed to one. S indicated that apparent survival was 

estimated in that location for that time period. S was fixed to zero in those lacking S. 
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Figure 6. Monthly total brook trout detected in the Pilgrim River at each antenna 

station. 
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Figure 7. Number of days (within one winter) individual PIT tagged brook trout were 

detected at the Pilgrim River RKM 0 PIT tag antenna station. 
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Figure 8. Total length of physically recaptured PIT tagged brook trout in the Pilgrim 

River. Each set of points represents an individual’s length at tagging and at recapture. 
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Figure 9. Apparent survival probability estimates and 95% confidence intervals for PIT 

tagged brook trout in the Pilgrim River (from model All ψ Different). 
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Figure 10. Movement probability (ψ) estimates and 95% confidence intervals for PIT 

tagged brook trout in the Pilgrim River (from model All ψ Different). Occasion 1 = May-

June, Occasion 2 = July-October, Occasion 3 = November-February. Labels on x-axis 

indicate the reach where movement initiated and where it terminated. U = Upper reach, 

L = Lower Reach, K = Portage Lake. 
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Figure 11. Brook trout captured in the Pilgrim River on 16 May 2017 with suspected gill 

net scars. 

 

 

 

 

 


	Life History Variation in Migratory Salmonid Populations
	Life History Variation in Migratory Salmonid Populations
	By
	Christopher C. Adams
	A DISSERTATION
	Submitted in partial fulfillment of the requirements for the degree of
	DOCTOR OF PHILOSOPHY
	In Biological Sciences
	MICHIGAN TECHNOLOGICAL UNIVERSITY
	2020
	© 2020 Christopher C. Adams
	This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Biological Sciences.
	Department of Biological Sciences
	Dissertation Co-Advisor: Dr. Casey Huckins
	Dissertation Co-Advisor: Dr. Amy Marcarelli
	Committee Member: Dr. David Flaspohler
	Committee Member: Dr. Troy Zorn
	Department Chair: Dr. Chandrashekhar Joshi
	Preface vii
	Acknowledgements viii
	Abstract ix
	1 Introduction 1
	2 Assessing migratory life history variation and population genetic structure of Oncorhynchus mykiss in a spring-fed Klamath River tributary 12
	2.5.1 Survival and Movement Model 23
	2.5.2 Population Genetic Structure 26
	2.6.1 Detection of Tagged Individuals 29
	2.6.2 Survival and Movement Model 30
	2.6.3 Population Genetic Structure 32

	3 Environmental Cues for Migration of Coaster Brook Trout and Coho Salmon in a Southern Lake Superior Tributary 62
	3.4.1 Study Site 67
	3.4.2 Weir Operation 68
	3.4.3 Migration Modeling 69
	3.5.1 Migration Modeling 72

	4 Movement and Survival of a Previously Undocumented Adfluvial Brook Trout Population in a Southern Lake Superior Tributary 98
	4.5.1 Movement and Survival Model 108
	4.6.1 Movement and Survival Model 113
	Preface

	Chapter two, Movement, Survival, and Population Structure of Oncorhynchus mykiss in a Spring Fed Klamath River Tributary, contains significant contribution from Tasha Thompson and Dr. Michael Millers lab at the University of California, Davis, who pro...
	Acknowledgements

	This dissertation is the culmination of support and shared passion of many organizations and individuals, all of which are owed sincere gratitude. First, my co-advisors Dr. Casey Huckins and Dr. Amy Marcarelli have provided incredible guidance and ass...
	Abstract

	Over the last 150 years, many of the native migratory salmonid populations in North America have declined or been extirpated, and their native habitats have been significantly altered. Life history variation within and among migratory fish populations...

	1 Introduction
	Migration is an important aspect of fish biology and can exert a powerful influence on key population parameters such as survival, growth, and reproduction (Gross et al. 1988, Dodson et al. 2013). This is especially true in the case of migratory Oncor...
	Understanding the geographic scale of fish migration within a population is a crucial step in identifying at-risk populations and defining conservation units (Crandall et al. 2000, Waples 2008). Further, understanding the drivers that influence partic...
	Fish migration is driven by three main factors: 1) genetic disposition that has been shaped by a population’s local adaptation (Jones et al. 1997, Fraser et al. 2011). These population-level movements might include a downstream smolt migration or an u...
	Understanding how genetics, habitat, and individual condition interact within a specific population may be important for preserving life history variation within that population.  Relating short and long-distance movements to current environmental fac...
	Partial migration, which represents an extreme in life history variation, involves some individuals in a population moving long distances (from lentic to lotic habitats in anadromous or potadromous fish populations), while others remain river resident...
	In ecosystems that have a long history of anthropogenic disturbance, certain life histories may have been selected against to a point where they are no longer found in a population. Changes in habitat may also have compounding effects. In some cases, ...
	There is a growing consensus that life history variation plays a key role in the ability of migratory salmonid populations to thrive. Because existing migratory life histories are the result of specific habitat conditions, it is important to understan...
	Here, I describe the migrations and within-river movements observed in three specific salmonid populations. In chapter one, I describe the movements of O. mykiss in the Shasta River, California, a spring-fed tributary to the Klamath River. We implemen...
	1.1 References

	2 Assessing migratory life history variation and population genetic structure of Oncorhynchus mykiss in a spring-fed Klamath River tributary
	Christopher C. Adams1, Tasha Q. Thompson2, Caitlin E. Bean3, Casey J. Huckins1, Amy M. Marcarelli1
	1Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931
	2Department of Animal Science, University of California, Davis, 1 Shields Avenue, Davis, CA 95616
	3California Department of Fish and Game, Yreka Fisheries Program, 1625 South Main Street, Yreka, CA, 96097
	2.1 Acknowledgements
	Our work on this project represents a collaboration between government agencies, nonprofit organizations, tribes, and university researchers. These include the California Department of Fish and Wildlife, U.S. Fish and Wildlife Service, NOAA Fisheries,...

	2.2 Abstract
	Variation in migratory life history is common in populations of rainbow trout Oncorhynchus mykiss. Timing and extent of migration can be linked to differences in genetics, environmental conditions, and individual physiology. Within and among populatio...

	2.3 Introduction
	Salmonid populations can display extensive variation in migratory life histories, especially those that occupy systems where both lotic and lentic habitat is available. Migratory life history can range from multiple transitions between habitats to ful...
	Rainbow trout (Oncorhynchus mykiss) display a range of life histories, from completely resident within a river to migrating between lentic and lotic habitats multiple times during their lifetime (Shapovalov and Taft 1954). In migratory populations ini...
	Determining whether observed differences in migratory behavior are attributable to reproductive isolation or individual variation within the same population is critical to understanding how a species is interacting with its environment. Advancements i...
	The Shasta River in northern California is a system with substantial natural and anthropogenically-caused variability in habitats (Roddam and Ward 2017). We used outmigrant trapping and Passive Integrative Transponder (PIT) tagging data to identify li...
	Revealing population structure within a system is important for understanding how existing habitat is being used through the expression of particular migratory life history patterns. Identifying subpopulations and understanding life history variation ...

	2.4 Study Site
	The Shasta River in Siskiyou County, California, converges with the Klamath River 285 km upstream from the Pacific Ocean (Figure 1). It drains an area of approximately 2,000 km2 and its hydrology is driven by runoff of precipitation from higher elevat...
	Historical accounts indicate that the Shasta River was highly productive for several species of salmonids (Snyder 1933, Coots 1953), yet current populations are small or threatened. Although adult salmonid monitoring efforts have been conducted in the...
	Suitable spawning substrates in the Shasta River currently exist primarily in two spatially separate locations. One is the first 10 kilometers upstream from the confluence with the Klamath River, known as the “canyon” reach. The other is referred to a...
	Over the past decade, research has sought to identify potential bottlenecks to salmonid production in the Shasta Rivopo0er watershed (Adams 2013, Nichols et al. 2014, Roddam and Ward 2017). This work has primarily focused on Chinook and coho salmon, b...
	Efforts to rehabilitate habitat in the upper basin were geared toward improving summer rearing conditions for juvenile salmonids. Installation of cattle exclusion fencing along the majority of the mainstem and tributaries in the upper basin caused a d...

	2.5 Methods
	Two long term sampling programs implemented by the California Department of Fish and Wildlife were used to gather information on migratory behavior of juvenile O. mykiss in the Shasta River from 2008-2014. Out-migrating juvenile salmonids were sampled...
	Out-migrating juvenile salmonids were sampled each year from mid-February through late June at the mouth of the Shasta River (RKM 0) using a 1.5 m rotary screw trap (EG Solutions, Corvallis OR). The end of the sampling season was often dictated by red...
	Catches of age 0 O. mykiss at the RKM 0 rotary screw trap typically began in early April and increased until the trap was removed in late June. Catches of age 1, 2, and 3+ O. mykiss typically began in early March, peaked in mid-April, and virtually ce...
	The second monitoring program was focused on river habitat use by juvenile salmonids in the upper basin and involved tagging individual fish with PIT and tracking their movement within and out of the upper basin with a network of antenna stations. A v...
	Captured fish were anesthetized, scanned for presence of a PIT tag and measured for fork length. A scale sample was collected for use in aging and genetic analysis. PIT tags (12 mm or 9 mm FDX) were sterilized and implanted by hand into the body cavit...
	Between nine and twenty PIT tag antenna stations were operated each year from 2008-2014 (Figure 1). Within the upper basin, antenna stations operated at up to six sites on the mainstem Shasta River, six sites in Big Springs Creek, and three sites in P...
	2.5.1 Survival and Movement Model
	Detections of individually tagged fish were used to build a multi-state mark-recapture model in Program Mark (v 9.0) to estimate seasonal survival and movement probabilities of juvenile O. mykiss in the upper basin. We also used this modeling approach...
	In this study model, states were defined as three geographic locations where an individual tagged O. mykiss could be encountered: mainstem Shasta River within the upper basin (S), Big Springs Creek (B), and the mouth of the Shasta River (K). Observati...
	Five encounter occasions were defined to estimate seasonal movement and survival probabilities (Figure 6). All tagged individuals were combined into the same temporal framework. The first encounter occasion included tagging and release of age 0 indivi...
	Fish that would have emerged as fry in 2008-2013 were included in this analysis because monitoring was in place from age 0-2+ for those individuals (those tagged as age 1 in 2008 and 0 in 2014 were excluded). Only fish < 200 mm were included because t...
	There is great flexibility in how multi-state models are defined and built in Program Mark, and group effects can be incorporated to test for differences in parameters across segments of the sample population using Akaike Information Criterion (AIC). ...
	Four models were constructed to test for differences in detection probability (p) between groups, locations, or both. AIC model ranking of these four models indicated that p was different between pre- and post-restoration groups, but the same between ...

	2.5.2 Population Genetic Structure
	Based on data collected from outmigrant trapping and detections of fish PIT tagged in the upper basin, seven distinct life histories were observed in O. mykiss of the Shasta River and hypotheses were made regarding population structure among them (Fig...
	To evaluate these hypothesized life history groups, we analyzed DNA from 552 archived scale samples. The samples were collected by CDFW between 2008 and 2014. Scales were collected by a knife scraped within a small area above the lateral line between ...
	To generate DNA sequence data, SbfI RAD libraries were prepared with well and plate barcodes using protocol described by Ali et al. (2016) and 150bp paired-end reads were sequenced using an Illumina HiSeq 2500 (Illumina, SanDiego CA). Sequencing data ...
	All population structure analyses were performed using Analysis of Next Generation Sequencing Data (ANGSD) (Korneliussen et al. 2014) with a minimum mapping quality score of 20, and a minimum base quality score of 20. To select single nucleotide polym...
	A principal component analysis PCA was conducted including SNPs from all sequenced samples from all groups. Secondary PCAs were run on the samples from the upper basin (Groups 2, 3, and 4) and from RKM 0 (Groups 1,6) to assess population structure amo...


	2.6 Results
	2.6.1 Detection of Tagged Individuals
	Of the 2,547 O. mykiss tagged from 2008 to 2014, 1,226 were encountered again at least 10 days after tagging. Eleven were detected out-migrating from the Shasta River at age 0, 156 at age 1, and 12 at age 2. Age 0 outmigration occurred in spring (4 in...
	Sixty-one tagged individuals were detected moving from the mainstem Shasta River into Big Springs Creek, and sixty-seven individuals moved from Big Springs Creek to the mainstem Shasta River (excluding those that moved out during the age 1 out-migrati...

	2.6.2 Survival and Movement Model
	Apparent survival and detection probabilities were different in Big Springs Creek and the mainstem Shasta River, and different during pre- and post-restoration phases. Out-migration probability differed between Big Springs Creek and the mainstem Shast...
	The top model was used for parameter estimation, which allowed for differences in detection and survival probability across locations and pre- and post-restoration groups, and difference in outmigration probability among locations but not groups (ψ to...
	Movement estimates from the initial release to the summer occasion did not differ significantly from pre- to post-restoration in either location, but movement from Big Spring into the mainstem was significantly greater than movement from mainstem into...
	To examine how more conservative or more liberal detection probabilities would affect apparent survival estimates, we substituted the p = 0.6 at the downstream location (K) used in the above model with 0.4 and 0.8 and examined change in the other para...

	2.6.3 Population Genetic Structure
	Based on 496 samples that were successfully sequenced, O. mykiss in the Shasta River system had genetic variation that associated in most cases with the individual’s site of collection and its age indicating spatial structure of their reproduction and...
	Two secondary PCAs were run on the samples from the upper basin (groups 2, 3, and 4) and from RKM 0 (groups 1, 5, and 6) to assess population structure among those groups. The PCA of upper basin samples revealed no apparent structure between locations...


	2.7 Discussion
	By combining detailed movement information obtained through tagging studies with genetic sequencing techniques, we were able to characterize population structure of Shasta River O. mykiss in the context of migratory life history. This structure was pr...
	Several factors may be contributing to the population structure observed between the canyon and upper basin O. mykiss subpopulations in the Shasta River. Spatially, spawning site fidelity may be responsible for reproductive isolation between these loc...
	A wide temporal range in spawning timing was observed in both the canyon and the upper basin, occurring as early as February and as late as May (C. Adams, personal observation), which may cause reproductive isolation within a single spawning location ...
	Some of the age 1-3+ individuals sampled at the RKM 0 rotary screw trap may have originated in the Shasta River but over-summered in the mainstem Klamath River or in other nearby tributaries and returned when conditions became more favorable. Alternat...
	Despite the differences in migratory life history and potential for temporal segregation of reproduction, population genetic structure was not detected in O. mykiss within the upper basin. The stable flows and water temperatures of spring-dominated po...
	Estimated seasonal survival was only significantly different between the mainstem and Big Springs Creek locations during the winter occasion. Resident individuals likely have lower detection probability than migratory individuals since they are less l...
	The only significant difference in pre- to post-restoration estimates of survival occurred in Big Springs Creek where it decreased in the post-restoration phase. Based on catches at the RKM 0 rotary screw trap, overall abundance of O. mykiss was highe...
	An important component of our movement and survival model was fixing detection probability at RKM 0 to 0.6 throughout the study. Considering both inter- and intra-annual variation in antenna station operation at this site, fixing such a parameter is s...
	The genetic analyses we were able to conduct using low quality DNA samples obtained from scales revealed potential for using archived samples to characterize population genetic structure and demonstrates the importance of obtaining and storing genetic...
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	3.2 Abstract
	Environmental cues can play a key role in the variation in timing of life history events, such as upstream migration of salmonids for reproduction. Understanding these relationships takes on added significance for at-risk populations such as the adflu...

	3.3 Introduction
	Migratory species use spatially separate habitats at specific times of the year and developmental stages of their life history to optimize key outcomes such as growth, survival, and reproductive success, ultimately influencing their fitness (Northcote...
	Adfluvial spawning migrations of salmonids are well-known and ecologically important events. Attributes of tributary habitat, such as flow or temperature can vary annually or from system to system, causing variation in when cues for migrations occur (...
	Adfluvial brook trout that inhabit the upper Great Lakes, known as coasters, make migrations from lake habitat into tributaries to spawn and were historically abundant in Lake Superior (Roosevelt 1865, Shiras 1935). Relative to stream residents, coast...
	Species that share habitat with at-risk populations are an important component of the ecology of the at-risk population itself, through interactions such as predation or competition (Fausch and White 1981, Hoxmeier and Dieterman 2013). Coho salmon wer...
	The objective of this study was to determine the number of coaster brook trout and coho salmon making upstream spawning migrations and investigate environmental factors that may be associated with those movements. To address these questions, a fish co...
	Here we expand the analysis of environmental parameters and coaster spawning migration to include two additional years of data (2009 and 2010). An alternative modeling approach was used, and we added to the analysis detrended parameters to account for...

	3.4 Methods
	3.4.1 Study Site
	The Salmon-Trout River is a Lake Superior tributary located in Marquette County, Michigan and drains approximately 127 km2, flowing through mixed hardwood and conifer forests. The headwaters originate approximately 16 km south of Lake Superior and flo...

	3.4.2 Weir Operation
	A video-based fish counting weir was operated at river km 6 on the Salmon-Trout River (Figure 1) from 2005 to 2012. The camera was deployed underwater and was illuminated with infra-red lighting that provided side-view 640*480 resolution video of fish...
	Data were not collected when the video weir was damaged or removed from the river during high flow or when high turbidity or camera/lighting malfunctions compromised the field of view. Total non-operational days during the 85-day sampling season used ...

	3.4.3 Migration Modeling
	A dataset was compiled using number of upstream migrating coasters and coho salmon per day from September 1 through November 18 in 2006, 2009, and 2010. This time frame was selected because it included the majority of the coaster and coho salmon run a...
	Poisson regression is often used to analyze count data, and was the approach taken by Nitz 2008. However, one of the key assumptions of the Poisson distribution is that the mean is equal or very close to the variance. The mean for coaster counts in th...
	Three sets of models were constructed to assess the ability of stage height, water temperature, and barometric pressure to predict daily upstream migration (adjusted to proportion of total seasonal count). For the first set of models, daily mean value...
	A third set of models assessed the explanatory power of calculated change in daily means relative to the parameter means from the previous day. The second and third sets of models each included three models that examined the individual effects of the ...


	3.5 Results
	From Aug 27 - Nov 17, the total number of coasters observed moving upstream from Lake Superior was 244 in 2006, 108 in 2009, and 326 in 2010. Coho salmon numbers totaled 407 in 2006, 145 in 2009, and 538 in 2010 (Table 3). Periods of non-operation of ...
	Short-term variation in stage height and stream temperature was low throughout the 2006 season relative to 2009 and 2010, when there were several precipitation events that more than doubled stage height. Four of these precipitation events occurred dur...
	In all three years, numbers of both coasters and coho salmon peaked in late October (Figure 5, 6) and there appeared to be a bimodal distribution in coaster migration with one peak occurring in late September, and another in late October. Coho salmon ...
	Coaster brook trout appeared to initiate adfluvial migration earlier than coho, but in general detections of the two species occurred as similar relative magnitudes throughout the season. During review of video files, it was noted that many coaster de...
	3.5.1 Migration Modeling
	The interactive model including daily change in water temperature and daily change in stage height best predicted daily coaster detections, with an AIC weight of 0.81 (Table 4).  Parameter estimates for this top model indicate that daily change in str...
	For coho salmon migration, the interactive model that included mean daily values for all three environmental parameters (water temperature, stage height, and barometric pressure) best predicted coho salmon migration with an AIC weight of 0.98 (Table 6...


	3.6 Discussion
	Interacting environmental variables predicted upstream migration of adfluvial coaster brook trout and coho salmon. Metrics of environmental parameters (i.e. daily mean, detrended, daily change) that performed best varied between the two study species,...
	Daily detections of coasters were best predicted by an interactive model with daily changes in stage height and stream temperature, but not the daily mean values. Stage height and water temperature were also found to be the best predictors by Nitz 200...
	Daily change in stream temperature was the most significant term in the top model for coaster migration. Overall, there is decreasing trend in temperature during the fall spawning period, thus it is interesting that migration was associated with short...
	Evaluating environmental parameters on a daily timescale as we did here may overlook important longer-term changes in those parameters, such as those that may occur over several days or weeks leading up to a migration event. The overall temperature re...
	The interactive model that included daily mean values for all three parameters and their interactions best predicted daily coho salmon migration (Table 6). The interactive term with daily mean stage and barometric pressure was the most significant in ...
	There may be some limitations in how predictors can be tested using the modeling approach presented here. An assumption of Poisson type-distributions is that the data set does not contain high count values such as we observed here (i.e. day when 41% o...
	Observations at the weir are only one snapshot of an individual’s upstream migration. Time spent in the six kilometers between the lake and the weir site is likely variable, and individuals may have been responding to environmental conditions for exte...
	In all three years, a somewhat bimodal distribution of migration peaks occurred. Different age, sex, or size classes of coasters may respond to different run timing cues. Coasters may return to spawn beginning at age three and have been documented in ...
	While daily change models were best for coasters, daily mean models were best for coho salmon, possibly reflecting the different evolutionary history of these species, with coho being native to the Pacific coast and not the Great Lakes. In general, th...
	The number of missed sampling days in 2009 and 2010 may have contributed to performance of our models, especially considering that several days were missed immediately after a large number of migrations. However, in 2006 when only one day was missed, ...
	The modeling approach we developed could be useful in further exploring the variables investigated here as well as for integrating additional environmental parameters that may be associated with adfluvial migration. Other habitat parameters shown to p...
	With counts of adult coasters in the Salmon Trout River ranging from 108-326 in this study, the population is at-risk. These counts are conservative and additional individuals likely passed the monitoring station during periods of non-operation, but t...
	Timing is especially important for maximizing success of reproductive migrations in at-risk populations. Modeling approaches like those presented here can advance our understanding of how migratory species use available habitat. Pinpointing specific e...
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	Figure 6. Daily percentage of total seasonal coho salmon migration in the Salmon Trout River, water temperature ( C), stage height (10th mm), and barometric pressure (adjusted by subtracting 700 and dividing by 2.5 to fit on second y-axis scale) in 20...
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	4.2 Abstract
	A critical step in protecting at risk populations, such as migratory salmonids, is identifying where remnant populations exist. We assessed movement of brook trout in a southern Lake Superior tributary to determine what proportion, if any, made adfluv...

	4.3 Introduction
	Substantial variation in migratory life histories can exist within and among subpopulations of a species occupying in nearby or even overlapping habitat (Hendry et al. 2000). For migratory fish populations, the temporal and spatial characteristics of ...
	Completion of life cycles by salmonids that make long distance and often predictable seasonal migrations between lentic and lotic habitat can be limited by anthropogenic alterations to physical or ecological conditions (Angilletta et al. 2008, Letcher...
	Coaster brook trout (coasters) are a life-history variant of brook trout (Salvelinus fontinalis) native to the upper Great Lakes that make adfluvial migrations (between lentic and lotic habitat) into tributaries or are fully lacustrine (Becker 1983, H...
	Research has revealed variation in the spatial and temporal aspects of migration patterns among coaster populations. In the Nipigon region, where the most abundant coaster populations remain, juveniles occupy tributary habitat before out-migrating to ...
	...
	Partially migrating populations, which express both migratory and resident life histories, have been documented in brook trout populations with access to lake or ocean habitat (Kusnierz et al. 2009, Robillard et al. 2011a, Scribner et al. 2012). In so...
	Estimating survival during specific life history segments or within specific habitats can help to identify bottlenecks to population growth. Because migratory brook trout occupy different habitats through certain life stages, they are exposed to diffe...
	To restore coaster populations in Minnesota, a protective regulation that limited daily harvest to one brook trout with a minimum size of 508 mm (20 inches) was initiated for waters accessible to coasters. Since its implementation in 1997, this change...
	One of the tributaries with the protective regulation is the Pilgrim River, Houghton County Michigan, which is suspected to have supported a coaster population in the early 1900s (Newman et al. 1998). We assessed the spatial and temporal aspects of br...

	4.4 Study Site
	The Pilgrim River watershed is in Houghton County, Michigan and includes approximately 63 km2 of land that is 58% forested, 25% open and 12% wetland (EGLE 2019). The Pilgrim River is primarily a spring-fed system known for being highly productive rela...
	Rather than connecting directly with Lake Superior, the Pilgrim River flows northeasterly into Portage Lake which is connected to Lake Superior approximately 20 km to the west and 15 km to the east (Figure 1). Portage Lake is a warm-water system durin...
	The primary salmonid species in the Pilgrim River are brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and Coho salmon (Oncorhynchus kisutch), with pink salmon (Oncorhynchus gorbuscha), and chinook s...

	4.5 Methods
	The primary tool we used for assessing brook trout movements was Passive Integrated Transponder (PIT) tags coupled with stationary in-stream antennas. Fish were collected by backpack electrofishing in three reaches of the Pilgrim River; RKM 1-3, 5-6, ...
	A total of 763 brook trout were tagged in 2014 through 2018 (Table 1). Total length ranged from 150 mm (minimum size that was tagged) to 430 mm (Figure 2). Tagging efforts in 2014 and 2015 were limited to one day in October each year. The highest dens...
	Custom-made PIT tag antenna stations were installed at four locations to monitor movements of tagged fish. These were located at approximately RKM 0 (installed September 2016), 1 and 6 (installed October 2015), and 14 (installed August 2017) (Figure 1...
	Brook trout were considered to have migrated to Portage Lake if they were detected at the RKM 0 station at any time. Because of the limited coverage of the RKM 0 antenna station, individuals detected at RKM 1 during November or December but not necess...
	4.5.1 Movement and Survival Model
	We used a multi-state mark-recapture model to estimate seasonal movement and apparent survival probabilities for PIT tagged brook trout the Pilgrim River and Portage Lake. Cormack-Joly-Seber (CJS) mark-recapture models use detections of tagged individ...
	A capture history matrix was compiled in which each individual was assigned a letter representing where it was encountered (physical capture or detection at an antenna station) during each sampling occasion (season). Tagging year and age were also ass...
	The temporal structure of the model was chosen based on the general movement patterns observed in the detection data (Figure 5). Five encounter occasions were defined based on general movement patterns observed in the data. The first occasion (spring)...
	The same five occasions were assessed for all individuals, but tagging year was specified as a covariate. Only fish tagged in 2016 (n = 76), 2017 (n = 292), and 2018 (n = 285) were used for this analysis, because all detection stations were in place d...
	The fully interactive model with this structure (no year or size class effects) would include 48 parameters (3S + 3p + 6ψ x 4 occasions). To build models with the fewest parameters while still maintaining biological and logical integrity, many movemen...
	The first set of models was designed to test for differences in detection (p) and survival (S) probability across the three tagging years, which allowed us to determine if p or S was lower in 2018 when a major flood event occurred. This analysis was c...
	The second set of models was constructed to test for differences in survival (S) and movement (ψ) probabilities among three age classes (1, 2, 3+). Because the results from the first set of models indicated little difference in p and S between the thr...


	4.6 Results
	Of the 763 brook trout tagged and released between 2014-2018, 228 were detected at the RKM 0 antenna station or the RKM 1 station in November or December (30% of all tagged) indicating that these individuals expressed an adfluvial life history (Table ...
	The number of days when individuals were detected at RKM 0 in a given winter season ranged from one to 33, with smaller individuals tending to be detected on more days than larger individuals (Figure 7). Detections at RKM 0 and RKM 1 increased again i...
	Detections at RKM 6 increased in June, when brook trout that had been residing from RKM 1-5 moved upstream (Figure 6). Three individuals tagged in the lowest kilometer in spring moved upstream at least as far as the RKM 14 antenna station during the s...
	A total of 138 tagged brook trout were physically recaptured at a later date (Figure 8). Mean growth rate was 0.22 mm/day for fish tagged at 150-199 mm, 0.24 mm/day for fish tagged at 200-299 mm, and 0.18 mm/day for fish tagged at ≥300 mm. Seventy-eig...
	4.6.1 Movement and Survival Model
	Detection (p) and survival (S) probability appeared to be unrelated to tagging year or age class, however movement probability did differ across age classes. The model with no differences in survival or detection probability among years was the most h...
	The top model in the second set allowed no difference in survival (S) across age classes but allowed differences in movement probability (ψ) in all three age classes (All ψ Different, Table 5). This model had weight of 0.90, followed by the model that...
	Estimated probabilities of survival from the spring to the summer sampling occasion were higher in the lower reach (0.63) than the upper reach (0.31), however the 95% confidence intervals of these estimates overlapped (Figure 9). Survival estimates fo...
	Modeling results indicate that movement in spring to summer tended to occur mostly from the lower to the upper reach, with the highest probability of that movement occurring for age 2 fish (Figure 10). However, these differences were not statistically...


	4.7 Discussion
	Our data strongly suggest that a migratory form of brook trout exists in the Pilgrim River. Adfluvial brook trout in the Pilgrim River out-migrated to Portage Lake in late fall/early winter, around the time when ice cover forms on much of the river. M...
	The timing of adfluvial movements by Pilgrim River brook into river habitat contrasts with observations in the Salmon Trout River, which is the closest river with a verified coaster population (approximately 100 km east along shore of Lake Superior; H...
	While we observed that some individual brook trout remained at the river/lake interface throughout most of the winter, larger individuals tended to be detected near the river mouth for only one or two days (Figure 7) and may move further out into the ...
	Relative to the occurrence of migrating individuals, our modeling efforts identified few verified stream residents. Non-migrants likely have lower detection probability since they may not be moving past antenna stations as frequently as migrants. This...
	Life history variation within populations such as  partial migration can result in co-occurrence of both resident and migratory individuals and has been previously observed in coaster (Robillard et al. 2011a, Robillard et al. 2011b, Scribner et al. 20...
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