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Regulation of Myofilament
Contractile Function in Human Donor
and Failing Hearts
Kerry S. McDonald1* , Laurin M. Hanft1, Joel C. Robinett1, Maya Guglin2 and
Kenneth S. Campbell2,3

1 Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States, 2 Division
of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States, 3 Department of Physiology, University
of Kentucky, Lexington, KY, United States

Heart failure (HF) often includes changes in myocardial contractile function. This study
addressed the myofibrillar basis for contractile dysfunction in failing human myocardium.
Regulation of contractile properties was measured in cardiac myocyte preparations
isolated from frozen, left ventricular mid-wall biopsies of donor (n = 7) and failing human
hearts (n = 8). Permeabilized cardiac myocyte preparations were attached between a
force transducer and a position motor, and both the Ca2+ dependence and sarcomere
length (SL) dependence of force, rate of force, loaded shortening, and power output
were measured at 15 ± 1◦C. The myocyte preparation size was similar between groups
(donor: length 148 ± 10 µm, width 21 ± 2 µm, n = 13; HF: length 131 ± 9 µm,
width 23 ± 1 µm, n = 16). The maximal Ca2+-activated isometric force was also similar
between groups (donor: 47 ± 4 kN ·m−2; HF: 44 ± 5 kN ·m−2), which implicates that
previously reported force declines in multi-cellular preparations reflect, at least in part,
tissue remodeling. Maximal force development rates were also similar between groups
(donor: ktr = 0.60 ± 0.05 s−1; HF: ktr = 0.55 ± 0.04 s−1), and both groups exhibited
similar Ca2+ activation dependence of ktr values. Human cardiac myocyte preparations
exhibited a Ca2+ activation dependence of loaded shortening and power output. The
peak power output normalized to isometric force (PNPO) decreased by ∼12% from
maximal Ca2+ to half-maximal Ca2+ activations in both groups. Interestingly, the SL
dependence of PNPO was diminished in failing myocyte preparations. During sub-
maximal Ca2+ activation, a reduction in SL from ∼2.25 to ∼1.95 µm caused a ∼26%
decline in PNPO in donor myocytes but only an∼11% change in failing myocytes. These
results suggest that altered length-dependent regulation of myofilament function impairs
ventricular performance in failing human hearts.

Keywords: heart failure, human cardiac myocytes, contractile properties, rate of force development, loaded
shortening, power output, sarcomere length
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INTRODUCTION

Human heart failure is defined as the inability of the cardiac
pump function to meet peripheral demands. Heart failure afflicts
∼6 million patients in the US and is associated with 1 in 9 deaths
(Benjamin et al., 2018). Most current medication strategies for
heart failure are designed to alleviate symptoms by decreasing
the hemodynamic load (arterial blood pressure). Thus, new
precision-based approaches that focus on the disease mechanisms
intrinsic to the myocardium could have a significant impact.

The etiology of human heart failure is complex and
encompasses ventricular remodeling and alterations to cardiac
myocyte biology, which include energetic deficiencies and
alterations in calcium handling and myofilament function.
The purpose of this study was to address the myofibrillar
basis for contractile dysfunction in failing human myocardium.
Regulation of steady-state and dynamic contractile properties was
measured in single permeabilized cardiac myocyte preparations
isolated from frozen, left ventricular mid-wall biopsies of donor
and failing human hearts.

MATERIALS AND METHODS

Samples were obtained from patients undergoing heart
transplants at the University of Kentucky and from organ
donors who did not have heart failure. Hearts were handed
to a researcher as soon as these were excised from the body.
Mid-wall myocardial samples of distal anterior left ventricular
free wall were dissected and snap frozen in liquid nitrogen and
stored at -150◦C before shipping to the University of Missouri.
All procedures were approved by the University of Kentucky
Institutional Review Board, and written informed consent was
obtained from each patient who had heart failure and from a
legally authorized representative of each organ donor. Samples
were obtained from seven organ donors (mean age of 39 ± 6, 3
female, 6 white, 1 African-American), four patients with ischemic
heart failure (mean age of 48 ± 10, 1 female, 3 white, 1 African
American), and four patients with non-ischemic heart failure
(mean age of 51 ± 4, 3 female, 3 white, 1 African American).
Data are presented as two groups, donor and heart failure (HF).

Single Permeabilized Myocardial
Samples and Functional Measurements
A total of 29 permeabilized single cardiac myocyte preparations
from eight hearts from patients who had heart failure and
seven hearts from organ donors were analyzed for this work
(Table 1). Single permeabilized cardiac myocyte preparations
(see Figure 1) were mounted between a force transducer and a
motor, and contractile properties were measured during maximal
and sub-maximal Ca2+ activations at long (∼2.25 µm) and
short sarcomere lengths (∼1.95 µm), which are thought to
span the sarcomere working range (Pollack and Huntsman,
1974; Grimm et al., 1980; Guccione et al., 1997; Chung et al.,
2018). In brief, cardiac myocyte preparations were attached by
placing the ends of the myocyte into stainless steel troughs
(25 gauge) and ends were secured by overlaying a 0.5-mm

length of 4–0 monofilament nylon suture (Ethicon, Inc.)
and tying the suture into the troughs with loops of 10–0
monofilament (Ethicon, Inc.). The attachment procedure was
performed under a stereomicroscope (∼100× magnification)
using finely shaped forceps (McDonald, 2000). Prior to the
mechanical measurements, the experimental apparatus was
mounted on the stage of an inverted microscope (model IX-
70, Olympus Instrument Co., Japan). Mechanical measurements
were performed using a capacitance-gauge transducer plus a
10× amplifier (Aurora Scientific, Inc., Aurora, ON, Canada).
Length changes were introduced using a DC torque motor
(model 308, Aurora Scientific, Inc.) driven by voltage commands
from a personal computer via a 16-bit D/A converter (AT-MIO-
16E-1, National Instruments Corp., Austin, TX, United States).
Force and length signals were digitized at 1 kHz and stored on
a personal computer using LabVIEW for Windows (National
Instruments Corp.). Sarcomere length was monitored using an
IonOptix SarcLen system (IonOptix, Milton, MA, United States),
which used a fast Fourier transform algorithm of the video image
of the myocyte. Following attachment, the relaxed, permeabilized
cardiac myocyte preparation was adjusted to a sarcomere length
of ∼2.25 µm and passive tension was measured by slacking
the preparation in pCa 9.0 solution (McDonald and Moss,
1995; McDonald, 2000). Cardiac myocyte preparation force,
rates of force development, and force-velocity and power-
load measurements were made at 15 ± 1◦C as previously
described (McDonald, 2000; Hinken and McDonald, 2004;
Hanft et al., 2017).

Data and Statistical Analysis
Force redevelopment kinetics (ktr) following a slack-restretch
maneuver were determined by fitting a single exponential
function to the force recovery profile using the equation

F = Fmax(1− e−ktr
t
)

where F is tension at time t, Fmax is maximal tension, and ktr is
the rate constant of force development.

Myocyte length traces, force-velocity curves, and power-load
curves were analyzed as previously described (McDonald, 2000).
Myocyte length and sarcomere length traces during loaded
shortening were fit to a single decaying exponential equation:

L = Ae−kt + C

where L is cell length at time t, A and C are constants with
dimensions of length, and k is the rate constant of shortening
(kshortening). Velocity of shortening at any given time, t, was
determined as the slope of the tangent to the fitted curve
at that time point. In this study, loaded shortening velocities
were calculated at time equal to 100 ms after the onset of
the force clamp.

Hyperbolic force-velocity curves were fit to the relative force-
velocity data using the Hill equation (Hill, 1938)

(P + a)(V + b) = (Po + a)b

where P is force during shortening at velocity V, Po is the
maximal isometric force, and a and b are constants with
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TABLE 1 | Human permeabilized cardiac myocyte preparations.

Cardiac myocyte
preparations

Length (µm) Width (µm) Sarcomere
length (µm)

Passive force
(kN · m−2)

Peak power (pW) pCa for half-max.
force

Relative force
half-max. pCa

Donor 13 148 ± 10 21 ± 2 2.26 ± 0.01 1.91 ± 0.40 54 ± 12 5.77 ± 0.01 0.53 ± 0.03

HF 16 131 ± 9 23 ± 5 2.27 ± 0.01 1.67 ± 0.26 43 ± 25 5.85 ± 0.01 0.56 ± 0.02

Values are means ± S.E.M.

FIGURE 1 | Experimental design. (A) Tissue was procured as part of the University of Kentucky Heart Transplant program and Biobank program. Mid-wall
myocardial samples of distal anterior left ventricular free wall were dissected and snap frozen in liquid nitrogen and stored at -150◦C before shipping to the University
of Missouri. Single human permeabilized cardiac myocyte preparations were mounted between a force transducer and a motor, and contractile properties were
measured during maximal and sub-maximal Ca2+ activations at long (∼2.25 µm) and short sarcomere lengths (∼1.95 µm). (B) Representative force redevelopment
and loaded shortening traces from a human permeabilized cardiac myocyte preparation.

dimensions of force and velocity, respectively. Force-velocity
data were normalized to isometric force to illustrate condition
effects on loaded shortening velocity. Power-load curves were
obtained by multiplying force x velocity at each relative load
on the force-velocity curve, and statistical analysis compared
peak normalized power output (PNPO) values, which were
obtained by multiplying relative force at optimum power x
velocity at optimum power. Curve fitting was performed using
a customized program written in QBasic, as well as commercial
software (SigmaPlot).

The experimental data were analyzed in SAS 9.1.3 (SAS
Institute, Cary, NC, United States) using linear mixed effects.
As previously described (Haynes et al., 2014), this statistical
approach accounts for the hierarchical structure of the data
(values obtained from different numbers of myocyte preparations
from hearts procured from organ donors and patients who had
heart failure) and has greater statistical power than standard
ANOVA for this type of design. Compound symmetry was
assumed for the covariance structure, and post-hoc analyses
were performed using Tukey-Kramer corrections. P < 0.05 was
accepted as a statistically significant difference. N = number of

hearts. n = number of cardiac myocyte preparations. Values are
expressed as means± SEM.

RESULTS

Contractile Properties of Human Single
Permeabilized Cardiac Myocyte
Preparations
Permeabilized human cardiac myocyte preparations were similar
in size between donor and heart failure groups (Table 1). At
sarcomere length (SL) ∼2.25 µm, passive tension was similar
between groups (donor: 1.91 ± 0.40 vs. HF: 1.67 ± 0.26 kN ·
m−2) (Table 1).

Maximal Ca2+-activated tension was similar between
donor and heart failure cardiac myocyte preparations (donor:
47 ± 4 kN ·m−2; HF: 44 ± 5 kN ·m−2) (Figure 2). For all
figures, the different symbols indicate data points from each
heart sample to indicate variability among tissues. After the
entire experimental protocol (see Figure 1), the final maximal
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FIGURE 2 | Maximal Ca2+-activated tension. Donor group, N = 7 hearts,
n = 13 cardiac myocyte preparations. HF group, N = 8 hearts, n = 16 cardiac
myocyte preparations. Different symbols indicate data points from each heart
sample. Linear mixed model, p = 0.715.

Ca2+-activated tension was 0.902 ± 0.037 of the initial pCa 4.5
force in donor preparations and 0.806 ± 0.032 in heart failure
preparations (p = 0.064).

Maximal rates of force development (as indexed by the rate
constant, ktr) were also similar between donor and heart failure
groups Donor: ktr = 0.60 ± 0.05 s−1; HF: ktr = 0.55 ± 0.04 s−1)
(Figure 3). All human cardiac myocyte preparations exhibited a
robust Ca2+ activation dependence of ktr , i.e., lower ktr values at
half-maximal Ca2+ activation (p< 0.001) (Figure 4). In addition,
ktr values increased at short sarcomere length (SL) compared
with those at long SL during sub-maximal Ca2+ activations
(p < 0.001).

The maximal absolute power generating capacity was similar
between donor and heart failure groups (donor: 1.23± 0.15 µW ·
mg−1; HF: 1.07± 0.14 µW ·mg−1) (Figure 5). Statistical analysis
showed that the peak normalized power output (PNPO) fell as
Ca2+ activation was reduced in cells from organ donors and
patients who had heart failure (Figures 6A,B). At sub-maximal
Ca2+ activations, PNPO also decreased at short sarcomere length
in both groups. Interestingly, Figure 6C shows that cells from
failing hearts exhibited a markedly reduced sarcomere length
dependence of PNPO (p = 0.004). This indicates that normalized
power falls further as sarcomere length is reduced in cells
from organ donors than it does in cells from patients who
had heart failure.

No differences were observed in either maximal Ca2+-
activated tension or ktr values between sexes in cardiac
myocyte preparations from donor or heart failure samples
(Supplementary Figures S1, S2).

DISCUSSION

Brief Summary
Steady-state and dynamic contractile properties were measured
in human single permeabilized cardiac myocyte preparations.

FIGURE 3 | Rate of force development (ktr ) during maximal Ca2+ activation.
Donor group, N = 6 hearts, n = 11 cardiac myocyte preparations. HF group,
N = 8 hearts, n = 14 cardiac myocyte preparations. Different symbols indicate
data points from each heart sample. Linear mixed model, p = 0.663.

Human cardiac myocytes exhibited both Ca2+ activation and
sarcomere length dependence of force development and power
output. Maximal Ca2+-activated contractile force, rates of force
development, and power were similar between human donor and
failing samples. Conversely, the sarcomere length dependence of
power was diminished in myofilaments from failing hearts, which
provides a sub-cellular, biophysical mechanism for the depressed
Frank-Starling relationship in failing human hearts.

Human Permeabilized Cardiac Myocyte
Preparations
For both donor and heart failure samples, human single
permeabilized cardiac myocyte preparations displayed Ca2+

activation dependence of force, ktr values, loaded shortening,
and power output, which has previously been reported in
rodent and porcine permeabilized cardiac myocyte preparations
(McDonald, 2000; McDonald et al., 2012). Previous studies
have reported the Ca2+ sensitivity of both force (Wolff
et al., 1996; van der Velden et al., 2000, van Der Velden
et al., 2001; van der Velden et al., 2003, 2006; Kooij et al.,
2010; Wijnker et al., 2013; Haynes et al., 2014; Swenson
et al., 2017) and rates of force development (Edes et al.,
2007) in human permeabilized cardiac myocyte preparations.
Our study is the first, to our knowledge, to show the Ca2+

activation dependence of loaded shortening and power
output in human permeabilized cardiac myocyte preparations.
Compared with those during maximal Ca2+ activations, the
velocity at optimal power, peak normalized power output,
and absolute power output were all lower during half-
maximal Ca2+ activations, which signifies that changes in
both force and loaded shortening velocity account for the
regulation of human myofilament power output generating
capacity by activator [Ca2+]. Also, human cardiac myocyte
preparations exhibited a sarcomere length dependence of
force, ktr values, loaded shortening, and power output,
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FIGURE 4 | Regulation of rate of force development (ktr ). In myocytes from organ donors (N = 6 hearts, n = 11 cardiac myocyte preparations) and patients with heart
failure (N = 8 hearts, n = 14 cardiac myocyte preparations), ktr values were lower during half maximal than maximal Ca2+ activations (*p < 0.001). At half-maximal
Ca2+ activations, ktr values were lower at long sarcomere length (#p < 0.001). Different symbols indicate data points from each heart sample. Linear mixed model
testing for main effects of heart failure status, ktr experimental condition, and their statistical interaction.

similar to reports on rodent (Fabiato and Fabiato, 1975;
Adhikari et al., 2004; Stelzer and Moss, 2006; Korte and
McDonald, 2007; Hanft and McDonald, 2009, 2010; Hanft
et al., 2016) and porcine (McDonald et al., 2012) permeabilized
cardiac myocyte preparations.

Donor vs. Heart Failure Human
Permeabilized Cardiac Myocyte
Preparations
Maximal Ca2+-activated tension, ktr values, and absolute power
output were similar between donor and heart failure cardiac
myocyte preparations. Other studies have reported similar
maximal Ca2+-activated tensions in human single permeabilized
cardiac myocytes obtained from donor and end-stage heart
failure samples stored in liquid nitrogen (Wolff et al., 1996;
van der Velden et al., 2000, van Der Velden et al., 2001;
van der Velden et al., 2003, 2006). In contrast, maximal
Ca2+-activated tension has been reported to be reduced in
single permeabilized cardiac myocytes from small-animal mixed
models of heart failure (Belin et al., 2006; de Waard et al.,
2007; Edes et al., 2008; Hanft et al., 2017). In addition,
ktr values, loaded shortening, and power output have been
reported to be decreased in single permeabilized myocytes
from late-stage heart failure in rodent models (Edes et al.,
2008; Hanft et al., 2017). The exact reasons for the differences
between human and rodent heart failure studies are uncertain
but likely arise, at least in part, from confounding variables
associated with human patients (e.g., age, sex, medications,
disease etiology, genetic variability, fresh vs. frozen samples).
Consistent with this, contractile properties showed more
variability in human cardiac myocyte preparation in this
study compared with those in previous reports on rodent
permeabilized cardiac myocyte preparations (Edes et al., 2008;
Hanft et al., 2017).

Length-Dependent Activation of Power
in Human Permeabilized Cardiac
Myocyte Preparations From Donor vs.
Heart Failure Samples
The relationship between ventricular filling and ventricular
output was described in the early twentieth century and is known
as the Frank-Starling relationship (Frank, 1895; Patterson and
Starling, 1914). The functional importance of the Frank-Starling
relationship is to dynamically match left and right ventricular
outputs and adapt hemodynamics to peripheral demands. The
molecular mechanism underlying the Frank-Starling relationship
involve sarcomere physical factors, including alterations in
inter-filament lattice spacing (Fuchs and Martyn, 2005) and
myosin cross-bridge orientation (Ait Mou et al., 2016), perhaps
mediated by titin (Cazorla et al., 2001; Fukuda et al., 2003).
The Frank-Starling relationship often is markedly depressed in
late-stage cardiac failure (Braunwald and Ross, 1964; Ross and
Braunwald, 1964; Holubarsch et al., 1996). Depressed Frank-
Starling relationships result, at least in part, from the reduced
length dependence of the activation of cardiac myofilaments
from failing hearts. For instance, studies have reported reduced
the length dependence of the Ca2+ sensitivity of force in
single permeabilized cardiac myocyte preparations from failing
human hearts (Schwinger et al., 1994; Holubarsch et al.,
1996; Sequiera et al., 2013; Wijnker et al., 2014). Our study
extended previous studies by examining the length dependence
of cardiac myofilament loaded shortening and power output,
which ultimately determines ventricular ejection. Interestingly,
the length dependence of power was significantly depressed in
failing human cardiac myocyte preparations, providing evidence
of novel dynamic myofibrillar mechanisms (in addition to
the length dependence of steady-state force) for depressed
Frank-Starling relationships in failing human hearts. The exact
molecular mechanisms for the depressed myofilament length
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FIGURE 5 | Peak absolute power output. Donor group, N = 6 hearts, n = 11
cardiac myocyte preparations. HF group, N = 8 hearts, n = 14 cardiac
myocyte preparations. Different symbols indicate data points from each heart
sample. Linear mixed model, p = 0.542.

dependence of power remain to be determined. Certainly, lower
levels of PKA-mediated phosphorylation of cardiac myofilament
proteins with heart failure may contribute (Wolff et al., 1996;
van der Velden et al., 2003; Messer et al., 2007; Copeland
et al., 2010; Kooij et al., 2010; Haynes et al., 2014). For
instance, PKA phosphorylation and troponin exchange with
pseudo-phosphorylation affect the length dependence of force
(Kooij et al., 2010; Wijnker et al., 2013, 2014) and have been
shown to, in part, restore the length dependence of the Ca2+

sensitivity of force in failing cardiac myocyte preparations.
Another plausible molecular regulator of the length dependence
of power is cardiac myocyte binding protein-C (cMyBP-C),
a protein that resides in the C-zone of thick filaments and
the phosphorylation state is depressed in failing myocardium
(Hamdani et al., 2008; Copeland et al., 2010; Kooij et al.,
2010; Haynes et al., 2014; Stathopoulou et al., 2016). In
addition, preliminary studies from our lab have shown that the
sarcomere length dependence of power is regulated by PKA
phosphorylation sites on cMyBP-C in a transgenic mouse (Hanft
et al., 2019). This finding raises the intriguing possibility that
thick filament ON state may contribute to the length dependence
of power output, which could be addressed experimental by
small molecules or peptides that regulate thick filament states
(Green et al., 2016). There also may be many dynamic changes in
sarcomere signals beyond PKA, and the dynamic signaling at the
sarcomere may vary widely between “normal” and heart failure
myocardia, which requires exploration of sarcomere functional
proteomics in response to varied stimuli, e.g., neurohumoral
factors, activation frequency (i.e., heart rate), and medications
(Hamdani et al., 2008).

Integration of Findings in Failing Human
Myocardium
Heart failure is postulated to arise from a variety of changes in
cardiac myocyte biology, including loss of cells, morphological

changes, transformed intracellular signaling, disrupted
energetics, altered Ca2+ handling, and modifications of
myofilament function. There is evidence of several contractility
adaptations of intact myocardial preparations from failing
human hearts, which include (i) decreased β-adrenergic
responsiveness, (ii) depressed force-frequency relations, and (iii)
slowed relaxation rates (Chung et al., 2018). From a myofilament
standpoint, findings from failing permeabilized myocardial
preparations include the (i) increased Ca2+ sensitivity of force,
(ii) depressed length dependence of the Ca2+ sensitivity of
force, and (iii) decreased PKA phosphorylation of myofilament
proteins. One parameter that has yielded mixed results,
especially between permeabilized multi-cellular and single-cell
preparations, is maximal Ca2+-activated tension. In this regard, a
recent study showed depressed force and power in multi-cellular
preparations obtained from the transmural region of the left
ventricular free wall of human failing myocardium (Haynes et al.,
2014). Our current study directly addressed the sub-cellular
mechanistic underpinnings of this finding by measuring force
and power in single permeabilized cardiac myocytes obtained
from the same region of the left ventricles of donor and failing
myocardia. Our finding that force and power in single cells
does not depend on the heart failure status implies that the
changes in multi-cellular myocardial preparations arise, at
least in part, from tissue remodeling, perhaps due to the loss
of myofilaments and consequent augmentation of myocardial
fibrosis (Haynes et al., 2014).

Study Limitations
There are several limitations with human cardiac myocyte
contractile property studies. First, there is the caveat of
categorizing non-failing, donor myocardium as normal because
of the possibility of high blood levels of catecholamines and
inotropic support at the time of procurement. Second, the
diversity of factors that contribute to non-ischemic disease
likely augments experimental variability. Third, any assessment
of cardiac myocyte size is precluded because ventricular
biopsies are mechanically disrupted, which yields highly
variable sized fragments. Fourth, permeabilized cardiac myocyte
contractile property studies have an inherent bias due to the
selection of rod-shaped cardiac myocyte-sized preparations.
The selection of myocyte preparations (to only those that
can withstand measurements) may exclude populations with,
for instance, diminished maximum tension-generating capacity.
The preparation selection process increases the possibility
of a false-negative result about tension generation capacity.
Fifth, the labor-intensive nature of single cardiac myocyte
contractile property measurements limits the sample size, which
in combination with regional variability (Kuro-o et al., 1986;
Cazorla et al., 2000), disease etiology, and varied treatments
also increases the likelihood of false-negative results. Sixth,
the small size of single cardiac myocyte preparations (tens
of nanograms) tests the limits of conventional techniques
to assess myofilament protein isoforms and post-translational
modifications in preparations that had their mechanics measured
(Herron et al., 2001; Herron and McDonald, 2002; Korte et al.,
2005; Hanft et al., 2013).
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FIGURE 6 | Normalized force-velocity and power-load curves. (A) Cumulative force-velocity and power-load curves from donor and HF preparations. (B) In myocyte
preparations from organ donors and patients with heart failure, the peak normalized power output (PNPO) was lower at half-maximal Ca2+ activation than at
maximal Ca2+ activation (*p = 0.027 or lower depending on comparisons). (C) Sarcomere length dependence of PNPO (that is, PNPO at long SL half max – short
SL half-max) was significantly reduced in failing samples, *p = 0.004. Different symbols indicate data points from each heart sample. All tests were performed using
the linear mixed model.

Next Steps
This study provides a comprehensive assessment of contractile
properties of human single permeabilized cardiac myocytes
from donor and patients who have heart failure. The
study implicates myocardial tissue remodeling to explain,
at least in part, previous reports of depressed force and
mechanics in human multi-cellular myocardial preparations.
Additionally, since the sarcomere length dependence of power
was diminished in myofilaments from failing hearts, it is likely
that that altered length dependence of myofilament power
contributes to the depressed Frank-Starling relationship in
failing human hearts. Future exploration of unique molecular
mechanisms will necessitate next-generation, unbiased, cellular
functional proteomic approaches on preparations that had their
mechanics measured. Additional work is needed to address other
myofilament properties, including dynamic response to calcium
transients, myofilament efficiency, thin and thick filament
dynamics, and relaxation kinetics, and how these are affected
during the progression to heart failure. Future investigations will
also require systematic delineation of how confounders such as
genetics, disease etiology, environment, age, sex, co-morbidities,
and medications affect myofilament function studies. Both
the expansion of dynamic myofilament studies and critical
evaluation of individual patient scenarios are necessary for

future, best-practice precision medicine to treat the underlying
molecular mechanisms that cause human hearts to fail.
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FIGURE S1 | Maximal Ca2+ activated tension- Effects of sex. Male, N = 8 hearts,
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myocyte preparations. Different symbols indicate data points from each heart
sample. Linear mixed model, p = 0.549.
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Effects of sex. Male, N = 7 hearts, n = 11 cardiac myocyte preparations.
Female, N = 7 hearts, n = 12 cardiac myocyte preparations. Different
symbols indicate data points from each heart sample. Linear mixed model,
p = 0.993.
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