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ABSTRACT OF DISSERTATION

Graph-Theoretic Simplicial Complexes, Hajós-type Constructions, and k-Matchings

A graph property is monotone if it is closed under the removal of edges and vertices.
Given a graph G and a monotone graph property P , one can associate to the pair
(G,P ) a simplicial complex, which serves as a way to encode graph properties within
faces of a topological space. We study these graph-theoretic simplicial complexes
using combinatorial and topological approaches as a way to inform our understanding
of the graphs and their properties.

In this dissertation, we study two families of simplicial complexes: (1) neigh-
borhood complexes and (2) k-matching complexes. A neighborhood complex is a
simplicial complex of a graph with vertex set the vertices of the graph and facets
given by neighborhoods of each vertex of the graph. In 1978, Lovász used neigh-
borhood complexes as a tool for studying lower bounds for the chromatic number of
graphs. In Chapter 2, we will prove results about the connectivity of neighborhood
complexes in relation to Hajós-type constructions and analyze randomly generated
graphs arising from two Hajós-type stochastic algorithms using SageMath. Chapter 3
will focus on k-matching complexes. A k-matching complex of a graph is a simplicial
complex with vertex set given by edges of the graph and faces given sets of edges
in the graph such that each vertex of the induced graph has degree at most k. We
pursue the study of k-matching complexes and investigate 2-matching complexes of
wheel graphs and caterpillar graphs.
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Chapter 1 Overview

The main goal of topological combinatorics is to study the structure of combinatorial
objects using topological tools. In this dissertation, we will focus on the study of
graphs and their properties through an associated simplicial complex. Ideally, we can
use topological tools to obtain the homotopy type of the simplicial complex, which
would lead to a full understanding of the topological properties. When it is infeasible
to reach a homotopy type due the complexity of the graph we can deduce information
about the space through topological invariants, such as connectivity, homology, and
Euler characteristic.

Recall that a finite, simple graph G consists of a vertex set V (G) and an edge set
E(G), where an edge is a pair of elements in V (G). We say two vertices are adjacent
if they are joined by an edge in the graph and two edges or an edge and a vertex are
incident if they share a common vertex. Let G and H be two finite, simple graphs.
The neighborhood NG(v) of a vertex v ∈ G is is the subset of vertices K ⊂ V (G)
that are adjacent to v and an element w ∈ K is called a neighbor of G. For a vertex
v ∈ V (G), the degree of v, deg(v) is the number of edges incident to v.

If V (G) ∩ V (H) = {x}, the wedge sum G ∨
x
H of G with H over x is the graph

with vertex set V (G)∪V (H) and edge set E(G)∪E(H). Let {u, v} ∈ E(G) and w a
new vertex not in V (G). The subdivision of {u, v} ∈ G is obtained by deleting {u, v}
and adding w to V (G) and {u,w}, {w, v} to E(G). A vertex v ∈ V (G) is a leaf if
its neighborhood contains exactly one vertex. The chromatic number of a graph G,
denoted χ(G) is the minimum number of colors needed to color the vertices of the
graph G such that no two adjacent vertices share the same color.

A partial order is a binary relation ≤ on a set P that is reflexive (a ≤ a for all
a ∈ P ), antisymmetric (if a ≤ b and b ≤ a then a = b), and transitive (if a ≤ b and
b ≤ c then a ≤ c). A partially ordered set (poset) is any set P equipped with a partial
order ≤. For elements a, b ∈ P such that a ≺ b we say a is covered by b or b covers
a if there does not exist an element c such that a ≤ c ≤ b. A Hasse diagram P is a
directed graphical representation of a poset P such that the vertex set V (P) = V (P )
and edges represent pairs of elements (a, b) such that a ≺ b in P .

1.1 Simplicial Complexes

Definition 1.1.1. An (abstract) simplicial complex ∆ on a set X is a collection of
subsets of X such that

(i) ∅ ∈ ∆

(ii) If σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆.

The elements of a simplicial complex are called faces and an n − simplex is the
collection of all subsets of [n + 1] = {1, 2, . . . , n + 1}. A subcomplex Γ of a complex
∆ is a subcollection of ∆ which satisfies (i) and (ii). We will make no distinction
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between an abstract simplicial complex ∆ and an arbitrary geometric realization |∆|
of ∆ as a topological space. The link of a vertex v in a simplicial complex X is
linkX(v) := {σ ∈ X : v /∈ σ, {v} ∪ σ ∈ X}. Further, the star of a vertex v in X is
starX(v) := {σ ∈ X : v ∈ σ}.

For simplicial complexes ∆ and ∆′, the topological join is ∆ ∗∆′ = {σ ∪ σ′ : σ ∈
∆, σ′ ∈ ∆′}. A simplicial complex ∆ is said to be a cone with cone point {x} ∈ ∆
if for every face σ ∈ ∆ we have σ ∪ {x} ∈ ∆, that is the simplicial complex ∆′ ∗ x
for some ∆′. Note that every cone is contractible. The suspension of a space ∆ is
denoted Σ(∆) and is the join of ∆ with two discrete points.

A topological spaceX is called k-connected if for every 0 ≤ ` ≤ k, every continuous
map from the boundary of B`+1, the unit ball in (`+1)-dimensional Euclidean space,
into X can be extended to a continuous map from all of B`+1 to X. Equivalently,
the higher homotopy groups π`(X) vanish for all dimensions ` ≤ k.

Neighborhood Complexes

An influential example of topological combinatorics is Lovász’s 1978 work [22] study-
ing lower bounds for chromatic numbers through the construction of neighborhood
complexes, answering a long-standing conjecture by Kneser. Over 20 years ealier,
Kneser [16] conjectured

Conjecture 1.1.2 (Kneser, 1955). If we split the n-subsets of a (2n+k)-element set
into k + 1 classes, one of the classes will contain two disjoint n-subsets.

The upperbound of this conjecture can be quickly verified by showing that we can
split (2n+ k)-element set into k + 2 classes such that any two n-subsets in the same
class intersect. Let Ki denote the class of subsets whose first element is i. Then, the
sets K1, K2, ..., Kk+1, and Kk+2∪· · ·∪Kk+n+1 is a partition of the n-subsets into k+2
subsets such that any two n-subsets in the same class intersect.

In 1978, Lovász [22] proved the lower bound also holds. His approach involved con-
structing the Kneser graphKGn,k to have vertices which are n-subsets of {1, 2, . . . , 2n+
k} where an edge exists between two vertices if and only if the n-subsets are disjoint
and reinterpreting Conjecture1.1.2 into showing the chromatic number of the Kneser
graph KGn,k is k + 2.

Proving the chromatic number of a graph is a challenge within itself leading Lovász
to defining the neighborhood complex of a graph G [22]. For any graph G, the
neighborhood complex of G, denoted N (G), is the simplicial complex with vertex set
V (G) and facets given by NG(v) for all v ∈ V (G), where NG(v) denotes the neighbors
of v in G (not including v).

Example 1.1.3 (Neighborhood complex). Given the graph on the left of Figure 1.1
there are three neighborhoods {1, 3}, {2, 3, 4}, and {1, 2, 4} which can be seen as
maximal faces in the neighborhood complex, depicted to the right.

Lovász used the neighborhood complex N (G) along with Borsuk-Ulam’s Theorem
to provide a general lower bound for the chromatic number of graphs and a sharp
lower bound for the chromatic number of the Kneser graphs.

2
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G

2 4

1

3

N (G)

Figure 1.1

Theorem 1.1.4 (Lovász [22]). If N (G) is k-connected, then χ(G) ≥ k + 3.

There are several famous families of graphs, e.g. Kneser and stable Kneser graphs,
for which these topological lower bounds (or equivalent techniques) yield the only
known proofs of their chromatic numbers. We note here that N (G) is 0-connected
if and only if it is path-connected, and being 0-connected implies having chromatic
number greater than 2. For connected bipartite graphs, having a disconnected N (G)
characterizes this family. The following proposition justifies our assumptions through-
out this work that when G is connected with χ(G) ≥ 3, N (G) is path-connected.

Proposition 1.1.5. The complex N (G) is path-connected if and only if G is con-
nected and not bipartite.

Proof. If G is not connected, then it is immediate that N (G) is not connected. Let
G be a connected bipartite graph with bipartition V (G) = A ] B, where ] denotes
disjoint union. For all a ∈ A,N(a) ⊆ B and for all b ∈ B,N(b) ⊆ A. Therefore,
the neighborhood complex induced by B is disjoint from the neighborhood complex
induced by A and N (G) = N (A) ]N (B), hence N (G) is not connected.

Suppose now that G is connected and not bipartite, so there exists an odd cycle
C = c0, c1, ..., cn in G. We prove that between any two vertices x, y ∈ V (G) there is
a walk of even length, from which it follows that x and y are connected by a path in
N (G). Since G is connected, there exists a walk Wx from x to some cx ∈ C, and a
walk Wy from y to some cy ∈ C. Since C has odd length, there exists a walk Codd in
C of odd length from cx to cy, and there also exists a walk Ceven in C of even length
from cx to cy. For any given even/odd parities of Wx and Wy, one can connect x
and y by a path of even length that starts with Wx, continues through either Codd or
Ceven, and concludes with Wy. Thus, x and y are path-connected in N (G).

In Chapter 2 we will consider the relationship between connectivity and neigh-
borhood complexes. In general, when N (G) is k-connected it is possible for there to
be arbitrarily large gaps between χ(G) the chromatic number of G and k + 3. Ma-
toušek and Ziegler [Remark (H1) in [24]] make a remark that implies that if G does
not contain a 4-cycle, then N (G) is at most 0-connected. Thus, the neighborhood
complex of a graph where the girth, i.e. the length of the shortest cycle, is greater
than 4 is not 1-connected.

3



Matching Complexes

Since the influential work of Lovász, interest in graph-theoretic simplicial complexes
continued to rise. Another such complex of interest is a matching complex. A match-
ing complex of a graph G, denoted M1(G), is a simplicial complex with vertices given
by edges of G and faces given by matchings of G, where a matching is a subset
of edges H ⊆ E(G) such that any vertex v ∈ V (H) has degree at most 1. Some
matching complexes that have been studied in detail are the full matching complex
M1(Kn), where Kn is the complete graph on n vertices, and the chessboard complex
M1(Km,n), where Km,n is the complete bipartite graph with block size m and n. The
original motivation for the full Matching complex was established through the work
of Brown and Quillen to study the structure of the order complex of the non-trivial
abelian subgroups of G generated by transpositions [3, 4, 25].

Results about M1(Kn) and M1(Km,n) include connectivity bounds and rational
homology. For a general survey on matching complexes see [33]. The homotopy type
of matching complexes is a bit more mysterious. The homotopy type of matching
complexes for paths and cycles [18], for forests [23], and for the

(
bn+m+1

3
− 1c

)
skeleton

of M1(Km,n) for all m,n and M1(Km,n) when 2m− 1 ≤ n [34] is known to be either
a point, sphere, or wedge of spheres, but beyond these classes the homotopy type
of matching complexes is unclear. In further analysis of the full matching complex
and, analogously, the chessboard complex it was discovered that 3-torsion appeared
in higher homology groups of both complexes [28]. Leading one to question, what
graph structures give rise to torsion in matching complexes?

In [14], Jonsson defines the bounded degree complex BDλ
n(G) with a sequence

λ = (λ1, λ2, . . . , λn) to be the complex of subgraphs of a graph G with n vertices
such that the degree of vertex xi is at most λi, which is a natural generalization of
matching complexes. When λ = (d, . . . , d) we write BDd

n(G) := BD
(d,d,..,d)
n (G). The

bounded degree complex BD1
n(Kn) is the matching complex on complete graphs, that

is M1(Kn). Jonsson primarily focuses on the connectivity of BDλ
n(Kn) considering

the outcome for graphs with and without loops. For d ≥ 2, BDd
n(G) is the d-

matching complex on G with vertices given by edges in G and faces by d-matchings
in G, where a d-matching is a subset of edges H ⊆ E(G) such that any vertex
v ∈ V (H) has degree at most d. Bounded degree complexes are generalizations of
matching complexes that involve relaxing the incidence conditions on the vertices.
Using this more general family of complexes we can learn about matching complexes.
For example, in Section 3.5 we use bounded degree complexes to inductively study
k-matching complexes. For a further survey of bounded degree complexes see [33].

In Section 3.2, we connect our results to the connectivity results in [14]. The focus
of Chapter 3 will be the topology of M2(G) := BD2

n(G), the 2-matching complex of
G. Since a matching of G is also a 2-matching of G, the matching complex of G is a
subcomplex of the 2-matching complex of G, with M1(G) ⊂M2(G).

Definition 1.1.6. A 2-matching complex of a graph G, denoted M2(G) is a simplicial
complex with vertices given by edges of G and faces subsets of edges H ⊆ E(G) such
that any vertex v ∈ V (H) has degree at most 2.

4



Example 1.1.7. See Figure 1.2 consisting of the graph G, its matching complex
M1(G), and its 2-matching complex M2(G). The 2-matching complex of G consists
of 5 maximal faces. Namely, (1) {a,c,d}, (2) {a,c,e} (3) {b,c,d}, (4) {b,c,e}, (5)
{a,b,d,e}. Note that M1(G) is homotopy equivalent to S0 ∨ S1, M2(G) is homotopy
equivalent to S2 a 2-sphere, and that M1(G) ⊆M2(G).

M2(G)

a b

d

c

e

G

a d

b

c

e

a b

d

c

e

M1(G)

Figure 1.2: A graph G with its 1-matching and 2-matching complex.

The rest of the overview provides the relevant background on the tools that we will
use with a primary focus on discrete Morse theory and the Matching Tree Algorithm.

1.2 Discrete Morse Theory

Discrete Morse theory was first developed by R. Forman [6] and has since become a
powerful tool for topological combinatorialists. The main idea of the theory is to pair
faces within a simplicial complex in such a way that we obtain a sequence of collapses
yielding a homotopy equivalent cell complex.

Definition 1.2.1. A partial matching in a poset P is a partial matching in the
underlying graph of the Hasse diagram of P , i.e., it is a subset M ⊆ P ×P such that

• (a, b) ∈M implies b � a; i.e. a < b and no c satisifies a < c < b.

• each a ∈ P belongs to at most one element in M .

When (a, b) ∈M , we write a = d(b) and b = u(a).

A partial matching on P is called acyclic if there does not exist a cycle

a1 ≺ u(a1) � a2 ≺ u(a2) � · · · ≺ u(am) � a1

with m ≥ 2 and all ai ∈ P being distinct.

Given an acyclic partial matching M on a poset P , an element c is critical if it is
unmatched. If every element is matched by M , M is called perfect. We are now able
to state the main theorem of discrete Morse theory as given in [18, Theorem 11.13].

5



Theorem 1.2.2 (Kozlov [18]). Let ∆ be a polyhedral cell complex and let M be
an acyclic matching on the face poset of ∆. Let ci denote the number of critical
i-dimensional cells of ∆. The space ∆ is homotopy equivalent to a cell complex ∆c

with ci cells of dimension i for each i ≥ 0, plus a single 0-dimensional cell in the case
where the empty set is paired in the matching.

The following theorem shows there is an intimate relationship between linear
extensions and acyclic matchings [18].

Theorem 1.2.3 (Kozlov, Theorem 11.2). A partial matching on a poset P is acyclic
if and only if there exists a linear extension of L of P such that x and u(x) follow
consecutively.

Since x and u(x) follow consecutively in the linear extension, when we refer to
these elements in the linear extension we will use the notation (x, u(x)) and consider
them as a pair of consecutive elements in the poset.

It is often useful to create acyclic partial matchings on different sections of the
face poset of a simplicial complex and then combine them to form a larger acyclic
partial matching on the entire poset. This process is detailed in the following theorem
known as the Cluster Lemma in [14] and the Patchwork Theorem in [18].

Theorem 1.2.4 ([14], [18]). Assume that ϕ : P → Q is an order-preserving map.
For any collection of acyclic matchings on the subposets ϕ−1(q) for q ∈ Q, the union
of these matchings is itself an acyclic matching on P .

A common way to obtain an acyclic matching is to toggle on an element x in the
vertex set of a face poset P .

Definition 1.2.5. Let P be the face poset of a simplicial complex ∆ and Q ⊆ P a
subposet.Toggling on an element x in the vertex set of Q is a partial matching that
pairs subsets a ∈ Q, x 6∈ a with a ∪ {x}, whenever possible.

Lemma 1.2.6. Toggling provides an acyclic partial matching.

Proof. To see this suppose we toggle on the element x. Start with an element a1 ∈ P
such that x 6∈ a1, x ∈ u(a1). Any element a2 ≺ u(a1) with a2 6= a1 contains x since
(a1, u(a1)) ∈M . Hence, there is no element u(a2), and a cycle cannot be created.

Additionally, using the patchwork theorem, we see that performing repeated tog-
gling yields an acyclic matching.

Lemma 1.2.7. Let P be a poset with vertex set V (P ) and {x1, x2, ..., xn} with xi ∈
V (P ) for all i be a sequence of toggling elements of P . Repeatedly toggling on x1,
then x2 and so on, yields an acyclic matching on P .
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Proof. Let Q be a poset with elements R and Yi for i ∈ [n] with relations given
by Yi ≺ Yi+1 for all i ∈ [n − 1] and Yn ≺ R. Recursively define Di := {α ∈
P |{xi} ∈ α or α ∪ {xi} ∈ P and α 6∈ Dj for j ≤ i − 1}. Define ϕ : P → Q by
ϕ−1(Y1) := D1 ∪ {x1}, ϕ−1(Yi) := Di, for 2 ≤ i ≤ n, and the remaining elements to
R. The map ϕ is well-defined and order-preserving. On ϕ−1(Yi) toggle on xi, which is
an acyclic matching by Lemma 1.2.6. The union of which forms an acyclic matching
on P by Theorem 1.2.4.

1.3 Matching Tree Algorithm (MTA)

In [1], the authors detail the Matching Tree Algorithm which provides an acyclic
discrete Morse matching on the face poset of an independence complex of a graph
G. An independence complex Ind(G) of a graph G is a simplicial complex in which
the vertices are given by vertices of G and faces are given by independent sets of
vertices. The matching complex of a graph G is equal to the independence complex
of the line graph of G where the vertices of the line graph are the edges of the graph
and two vertices are adjacent if the corresponding edges are incident in the graph. In
Section 3.4, we will use the Matching Tree Algorithm to find the homotopy type of
the 1-matching complex of a wheel graph, by looking at the independence complex
of the line graph.

Let G be a simple graph with vertex set V = V (G). Bousquet-Mélou, Linusson,
and Nevo motivate the MTA with the following algorithm. Let Σ denote the inde-
pendence complex of G. Take a vertex p ∈ V and let N(p) denote the set of its
neighbors. Define ∆ = {I ∈ Σ : I ∩N(p) = ∅}. For I ∈ ∆ and p 6∈ I, the set of pairs
(I, I ∪ {p}) form a perfect matching of ∆ and hence a matching of Σ. The vertex p
is called a pivot.

Notice that the unmatched elements of Σ are those containing at least one element
of N(p). Choose an unmatched vertex and continue the process as many times as
possible. This algorithm will give rise to a rooted tree, called a matching tree of Σ,
whose nodes represent sets of unmatched elements. Some of the nodes are reduced
to the empty set, and all others are of the form

Σ(A,B) = {I ∈ Σ : A ⊆ I and B ∩ I = ∅},

where
A ∩B = ∅ and N(A) :=

⋃
a∈A

N(a) ⊆ B.

The root of the tree is Σ(∅, ∅), which is equal to the set of all the independent sets
of G. As we traverse the tree the sets Σ(A,B) will become smaller and the leaves of
the tree will have cardinality 0 or 1.

The following presentation of the Matching Tree Algorithm follows [10]. Begin
with the root node Σ(∅, ∅) and at each node Σ(A,B) where A ∪ B 6= V apply the
following procedure:

(1) If there is a vertex v ∈ V r (A ∪ B) such that N(v) r (A ∪ B) = ∅, then v is
called a free vertex. Give Σ(A,B) a single child labeled ∅.
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(2) Otherwise, if there is a vertex v ∈ V r (A ∪ B) such that N(v) r (A ∪ B) is a
single vertex w, then v is called a pivot and w a matching vertex. Give Σ(A,B)
a single child labeled Σ(A ∪ {w}, B ∪N(w)).

(3) When there is no vertex that satisfies (1) or (2) and A ∪ B 6= V , choose a
tentative pivot in V ′ = V r (A ∪ B) and give Σ(A,B) two children Σ(A ∪
{v}, B ∪N(v)), which we call the right child, and Σ(A,B ∪ {v}), which we call
the left child.

Remark 1.3.1. Step (3) is motivated by the observation that if v has at least two
neighbors, say w and w′ then some of the unmatched sets I contain w, and some
others don’t, but if they do not contain w than they must contain w′.

The following theorem is the main theorem for the Matching Tree Algorithm,
which is due to Bousquet-Mélou, Linusson, and Nevo [1], but is stated as it appears
in Braun and Hough [2].

Theorem 1.3.2. A matching tree for G yields an acyclic partial matching on the face
poset of Ind(G) whose critical cells are given by the non-empty sets Σ(A,B) labeling
non-root leaves of the matching tree. In particular, for each set Σ(A,B), the set A
yields a critical cell in Ind(G).

Thus far, we have provided combinatorial tools for determining the homotopy
type of simplicial complexes. It is also possible to use more topological methods
to approach homotopy type. As we will see in Section 3.5 this approach requires
inductively determining the homotopy type of complexes of interest and appropriately
“gluing” these spaces over a common subspace. For a more detailed discussion see [8,
Section 4.G] and [18, Section 15.2]. The following lemma follows from [8, Proposition
4G.1], where X ∨ Y is considered as a homotopy colimit.

Lemma 1.3.3. Let X and Y be two spaces such that X 'f X ′ and Y 'g Y ′, then
X ∨ Y ' X ′ ∨ Y ′.

Copyright© Julianne M. Vega, 2020.
0000-0002-9904-9677
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Chapter 2 Hajós-type Constructions and Neighborhood Complexes

2.1 Introduction

Given a finite graph G, recall that the neighborhood complex N (G) is the simplicial
complex with vertex set V (G) and facets given by neighborhoods of vertices v ∈
V (G). In this chapter, we investigate the interaction of the topology of neighborhood
complexes and k-constructibility. The constructibility we are interested in results
from the operations of Hajós merge, G1∆HG2, applied to two disjoint graphs G1 and
G2, and of vertex identification, vid(G,L), applied to a graph G and a list of pairs of
nonadjacent vertices in G.

Definition 2.1.1. A graph is called Hajós k-constructible if it is a complete graph
Kk or if it can be constructed from Kk by successive applications of the following two
operations:

• (Hajós Merge) If G1 and G2 are already-obtained disjoint graphs, then to the
disjoint union G1 ] G2 remove an edge (x1, y1) from G1 and an edge (x2, y2)
from G2, identify x1 with x2, and add the edge (y1, y2). We abuse notation and
denote the resulting graph G1∆HG2.

• (Vertex Identification) Identify two nonadjacent vertices in an already-obtained
graph H, where we ignore the presence of multiple edges. If L is a list of pairs of
nonadjacent vertices in G, then vid(G,L) is the graph obtained by identifying
all those pairs of vertices.

Any construction of a graph using this process will be called a Hajós construc-
tion. An example of a Hajós merge is given in Figure 2.1. One can verify that
χ(G1∆HG2) ≥ min(χ(G1), χ(G2)), and that χ(vid(G,L)) ≥ χ(G) showing if G is
Hajós k-constructible, then χ(G) ≥ k.

z1 x1

y1

x2 z2

y2

z1 x1x2 z2

y1 y2

Figure 2.1: An example of a Hajós merge, K3∆HK3.

Our two main results show that applying one of a broad family of Hajós merges
or one of a large class of vertex identifications results in at least one copy of S1 as a
wedge summand of the neighborhood complex of the resulting graph. Specifically:
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Theorem 2.3.3. For two connected graphs G1 and G2 with edges (x1, y1) and (x2, y2)
respectively such that either

1. χ(G1), χ(G2) ≥ 3 and neither (x1, y1) nor (x2, y2) is a bridge or

2. χ(G1) ≥ 3, χ(G2) ≥ 4, and (x2, y2) is not a bridge,

N (G1∆HG2) is homotopy equivalent to a wedge of at least one copy of S1 with
another space.

Theorem 2.3.5. Let G be a connected graph that is not bipartite with v, w ∈ V (G)
such that d(v, w) ≥ 5 and G′ := vid(G, [v, w]) with the resulting identified vertex
denoted vw. Then N (G′) ' N (G)

∨
S1
∨
S1.

If N (G) includes an S1-wedge summand, then the rank of the first homology
group of N (G), called the first Betti number of N (G), is positive. In contrast to
these results, we prove Theorem 2.3.2 and Theorem 2.3.3, in which we show that for
a restricted class of vertex identifications using vertices at distance less than five, the
first Betti number of the neighborhood complex does not increase. In Theorem 2.3.5,
we prove that arbitrarily large decreases in the first Betti number can result from a
single vertex identification.

By our above results, if G is constructible where the final step is one of these
Hajós merges or a vertex identification using vertices with distance at least five,
then rank(H̃1(N (G))) ≥ 1. It is interesting to compare this fact with the following
theorem of Kahle regarding neighborhood complexes of random graphs. Recall that
the random graph G(n, p) denotes the probability space of all graphs on a labeled
vertex set of size n with each edge inserted independently with probability p.

Theorem 2.1.2 (Kahle [15]). If p = 1/2 and ε > 0 then almost always H̃`(N (G(n, p)))
= 0 for ` ≤ (1− ε) log2(n).

From this perspective, we expect neighborhood complexes of graphs to have trivial
first Betti numbers. Thus, we infer that a “typical” Hajós construction of a graph
will end in a vertex identification using two vertices that are at distance less than or
equal to four.

We conclude this chapter with a discussion of the results of computational exper-
iments involving different approaches to randomly generating Hajós-type construc-
tions. In particular, we define two stochastic algorithms for generating graphs of
chromatic number at least k and use these algorithms to analyze the number of
vertices and edges in the resulting graphs and their first Betti numbers.

Motivation

Proper graph colorings are of great interest in combinatorics and the study of chro-
matic numbers for graphs is a frequent focus. While coarse bounds on the chromatic
number can be found easily, determining the chromatic number is NP-complete. In
1978, Lovász advanced the study of chromatic numbers through the construction of
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the neighborhood complex N (G) of a graph G. Intuitively, N (G) is capturing the
relations of the vertices with their neighbors and the topological connectivity of N (G)
is measuring the complexity of continuous deformations of the neighborhoods in the
graph. Lovász [22] proved that the topological connectivity of N (G) gives a general
lower bound for the chromatic number of G, and then showed that this provides a
sharp lower bound for Kneser graphs. Since this original result, there has been steady
development regarding our understanding of neighborhood complexes of graphs and
various topological lower bounds for chromatic numbers [18].

Another area of interest related to graph colorings is the characterization of k-
chromatic graphs, i.e. graphs with chromatic number k. In 1961, Hajós [7] character-
ized graphs with chromatic number at least k through the concept of a k-constructible
subgraph, showing that if if χ(G) ≥ k, then G contains a Hajós k-constructible sub-
graph. Urquhart later strengthened Hajós’ result.

Theorem 2.1.3 (Urquhart [31]). For every 3 ≤ t ≤ k, every k-chromatic graph is
t-constructible.

In the proof, Urquhart describes a Hajós-type construction which involves an “Ore
merge,” an operation that involves the Hajós merge followed by a restricted series of
vertex identifications.

This theorem has been the subject of continued investigation in recent years,
including connections to computation complexity [9, 21], explicit Hajós construc-
tions [12, 13, 31], and extensions [11, 20]. Also, the end behavior of Hajós construc-
tions was considered for k-critical graphs, where a k-chromatic graph is k-critical if
for every proper subgraph H there exists some j < k such that H is j-chromatic. The-
orem 2.1.3 implies that k-critical graphs are k-constructible. Jensen and Royle [12]
proved the existence of k-critical graphs that do not have a Hajós sequence consisting
of exclusively k-critical graphs.

Theorem 2.1.4 (Jensen and Royle [12]). For every k ≥ 4 there exists a k-critical
graph that allows no Hajós k-construction where all intermediary graphs are k-critical.

The proof involves finding graphs that satisfy the three specifications in the propo-
sition below for k ≥ 4, k 6= 8, which forces some structure on the end behavior of
certain Hajós constructions.

Proposition 2.1.5 (Jensen and Royle [12]). If G

1. is 3-connected,

2. has chromatic number at least k, and

3. for every v ∈ V (G) and every pair u1, u2 ∈ NG(v) there exists a (k−1)-coloring
ϕ of G− v such that ϕ(w) 6= ϕ(ui) for all w ∈ NG(v) r {ui}, i = 1, 2,

then G is a k-critical graph such that the last step of any possible Hajós k-construction
of G consists of a vertex identification on a graph that is not critical.
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The proof of this result involved exploring the operations necessary for the final
steps of the Hajós construction sequence, showing that the key to constructing k-
critical graphs is to end in a vertex identification.

Building on these narratives, we are led to ask how the connectivity of the neigh-
borhood complex of a given graph is affected by the Hajós merge and vertex identifica-
tion operations. Further, we ask what end behavior of a Hajós construction sequence
is necessary to obtain a graph with a highly (topologically) connected neighborhood
complex.

We explore the topological effects of Hajós merges and vertex identifications in
Section 2.2, providing insight into restrictions on Hajós-type constructions for graphs
with highly connected neighborhood complexes. In Section 2.3 we investigate the
impact of “short-distance” identifications on the first Betti number of N (G). In
Section 2.4, we briefly investigate the topological effects of DHGO compositions, a
generalization of the Hajós merge. Finally, in Section 2.5, we introduce two graph
construction algorithms based on different Hajós-type constructions, discuss the out-
comes of computational experiments using these, and conclude with open problems.

2.2 Topological effects of Hajós-type operations

In this section, we investigate the effects of Hajós merges and vertex identifications
on N (G). Our main results are Theorem 2.2.3, Theorem 2.2.5, and Corollary 2.2.6,
in which we prove that a broad family of Hajós merges and vertex identifications with
distance at least five result in S1-wedge summands in the neighborhood complex. We
assume throughout this section that G1 and G2 are connected graphs with chromatic
number at least 3. Recall that a bridge in a graph G is an edge whose deletion
increases the number of connected components of G.

Lemma 2.2.1. G1∆HG2 has a bridge if at least one of the edges used in the Hajós
merge is a bridge.

Proof. Suppose that G1 and G2 are two connected graphs with edges (x1, y1) and
(x2, y2) respectively. Suppose that under the Hajós construction y1 and y2 get iden-
tified as y1y2, while (x1, y1) and (x2, y2) get deleted and (x1, x2) is added to create
G1∆HG2. Let G′i := Gi r (xi, yi). Suppose that (x1, y1) is a bridge in G1 such that
G′1 := A ]B, then the Hajos merge produces a graph with (x1, x2) a bridge between
A and vid(G′2 ]B, [y1, y2]).

Lemma 2.2.2. Let G be a connected non-bipartite graph such that G′ := Gr (x, y)
is connected bipartite. Then, N (G′) = A ] B with A and B path-connected, where
NG′(x), NG′(y) ⊆ A and x, y ∈ B.

Proof. Since the deletion of the edge (x, y) results in a bipartite graph, (x, y) must
be part of all the odd cycles and no even cycles in G. Hence, by the connectivity
of G′, there must be an even path p from x to y and no such odd path. Therefore,
there is no even path from y to any neighbor v ∈ NG′(x) or from x to any neighbor
w ∈ NG′(y), which implies y and NG′(x) are not in the same connected component.
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Similarly for x and NG′(y). In addition, notice that x and NG′(x) cannot be in the
same component because they would need to be connected by an even path in G′

creating an odd cycle, a contradiction to G′ being bipartite. Similarly for y and
NG′(y). Since a connected bipartite graph gives rise to a neighborhood complex with
two connected components, the result follows.

Theorem 2.2.3. For two connected graphs G1 and G2 with edges (x1, y1) and (x2, y2)
respectively such that either

1. χ(G1) ≥ 3, χ(G2) ≥ 4, and (x2, y2) is not a bridge, or

2. χ(G1), χ(G2) ≥ 3 and neither (x1, y1) nor (x2, y2) is a bridge.

Then N (G1∆HG2) is homotopy equivalent to a wedge of at least one copy of S1 with
another space.

Proof. Suppose under the Hajós construction y1 and y2 get identified as y1y2, while
(x1, y1) and (x2, y2) get deleted and (x1, x2) is added to create G1∆HG2. Let G′i :=
Gi r (xi, yi).

y1 y2

NG′
2
(y2)

NG′
2
(x2)

N (G′1) N (G′2)

x1

x2

NG′
1
(y1)

NG′
1
(x1)

NG′
1
(y1) ∗NG′

2
(y2)

Figure 2.2: Building N (G1∆HG2) as in the proof of Theorem 2.2.3.

First, consider the effect of identifying y1 and y2. Since y1 ∈ N (G′1) and y2 ∈
N (G′2) are elements in separate connected components, merging the two vertices
in the disjoint union N (G′1) ] N (G′2) is homotopy equivalent to attaching a 1-cell
between y1 and y2, as shown in Figure 2.2. In addition, merging y1 and y2 has
the effect of joining the faces NG′1

(y1) and NG′2
(y2) in N (G′1) ] N (G′2), which adds

NG′1
(y1)∗NG′2

(y2) to N (G′1)]N (G′2). Since NG′1
(y1)∩NG′2

(y2) = ∅, this join connects
a face of N (G′1) to a face of N (G′2) through a contractible join which is homotopy
equivalent to attaching a 1-cell between the contractions of NG′1

(y1) and NG′2
(y2),

respectively.
Now, we consider the effect of adding edge (x1, x2). Notice NG′1

(x1) ∈ N (G′1)
and x2 ∈ N (G′2), so adding the edge (x1, x2) has the effect of coning NG′1

(x1) over
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x2. Since NG′1
(x1) is contractible, this is homotopy equivalent to attaching a 1-cell

between x2 and the contraction of NG′1
(x1). The analysis is similar for NG′2

(x2) and
x1, as shown in Figure 2.2.

It remains to show that there is at least one S1 wedge summand in our resulting
neighborhood complex. We consider two cases.

Case 1: Assume χ(G1) ≥ 3 and χ(G2) ≥ 4, with (x2, y2) not a bridge.
Thus, G′2 is connected and χ(G′2) ≥ 3. If χ(G′1) ≥ 3 and G′1 is connected, then
there exists a path in the resulting complex from y1 to y2 that lies outside of the
1-simplex connecting y1 and y2, and thus we can deform the attaching map for the
1-cell between y1 and y2 along this path to create our S1.

If χ(G′1) ≥ 3 and G′1 is not connected, then G′1 is a disjoint union of two connected
graphs, call them X and Y , where {x1} and NG′1

(x1) are both in X and {y1} and
NG′1

(y1) are both in Y . Since χ(G′1) ≥ 3 and X and Y are not connected by a bridge
in G′1, it is impossible to have χ(X) = 2 = χ(Y ). Thus, without loss of generality
χ(X) ≥ 3 and hence N (X) is path-connected. Thus, there exists a continuous path
in N (X) from x1 to NG′1

(x1), and deforming the cone from x1 to NG′2
(x2) along this

path results in an S1 summand.
The only remaining case is that χ(G′1) = 2 and G′1 is connected. Note that G′1

cannot be disconnected, as otherwise adding the edge (x1, y1) to G′1 would result in
χ(G1) = 2, a contradiction. By Lemma 2.2.2, at least one of the connected compo-
nents of N (G′1) must contain at least two elements from the set {{x1}, {y1}, NG′1

(x1),
NG′1

(y1)}. By using a path homotopy argument similar to that used above, this
implies the existence of an S1 summand in the neighborhood complex.

Case 2: Assume χ(G1) ≥ 3 and χ(G2) ≥ 3, with (x1, y1) and (x2, y2) not
bridges. Our assumption implies that both G′1 and G′2 are connected. Thus, if both
χ(G′1) ≥ 3 and χ(G′2) ≥ 3, then both N (G′1) and N (G′2) are path-connected, and a
similar homotopy argument to the ones in the previous case implies the existence of
an S1-wedge summand.

Next, suppose without loss of generality that χ(G′2) ≥ 3 and χ(G′1) = 2. By
Lemma 2.2.2, at least one of the connected components of N (G′1) must contain at
least two elements from the set {{x1}, {y1}, NG′1

(x1), NG′1
(y1)}. By using a path

homotopy argument similar to that used above, this implies the existence of an S1

summand in the neighborhood complex
Finally, suppose that χ(G′1) = χ(G′2) = 2, and thus Lemma 2.2.2 implies that

N (G′1) and N (G′2) each have two path-connected components. Let N (G′1) = A ] B
andN (G′2) = C]D. From Lemma 2.2.2 we can assume x1, y1 ∈ A;NG′1

(x1), NG′1
(y1) ∈

B;x2, y2 ∈ C; and NG′2
(x2), NG′2

(y2) ∈ D. It follows that, up to homotopy equiva-
lence, the Hajós construction attaches 1-simplices between C and A, A and D, D and
B, and B and C. Thus, we have found that N (G1∆HG2) is homotopy equivalent to
the space obtained by starting with N (G′1) ] N (G′2), contracting each of the faces
formed by NG′1

(x1), NG′2
(x2), NG′1

(y1), and NG′2
(y2) to a point and then attaching

1-cells as indicated above. Note that if any of these faces intersect, then contracting
their union leads to the same structure. Attaching the 1-cells betweenN (G′1)]N (G′2)
as indicated creates a wedge summand of at least one copy of S1.
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Suppose v and w are vertices in a graph G and recall that the distance dG(v, w)
denotes the minimum number of edges in a path from v to w, where dG(v, w) =∞ if
v and w are not in the same component of G. When G is clear, we will write d(v, w)
for dG(v, w).

Lemma 2.2.4. Let G be a graph with vertices v and w such that d(v, w) ≥ 5 and
G′ := vid(G, [v, w]) with the resulting identified vertex denoted vw. If σ ⊆ NG′(vw)
with σ ∩NG(v) 6= ∅ and σ ∩NG(w) 6= ∅, then σ /∈ N (G).

Proof. Suppose that σ ∈ N (G). Define NG(v)∩ σ to be {v1, . . . , vm} and NG(w)∩ σ
to be {w1, . . . , w`}. Since NG(v) ∩NG(w) = ∅, there exists a vertex x ∈ G such that
{v1, . . . , vm, w1, . . . , w`} ∪ σ ⊆ NG(x). In particular, there exists vi ∈ {v1, . . . , vm}
such that d(vi, wj) = 2 for some wj ∈ {w1, . . . , w`}. This implies d(v, w) ≤ d(v, vi) +
d(vi, wj) + d(wj, w) = 2 + 1 + 1 = 4, a contradiction to d(v, w) ≥ 5.

Theorem 2.2.5. Let G be a connected graph that is not bipartite with v, w ∈ V (G)
such that d(v, w) ≥ 5 and G′ := vid(G, [v, w]) with the resulting identified vertex
denoted vw. Then N (G′) ' N (G)

∨
S1
∨
S1.

Proof. By Proposition 1.1.5, N (G) consists of one path-connected component, so the
simplices NG(v), NG(w), {v}, and {w} are all in the same path-connected component.
Further, since d(v, w) ≥ 5, we have that the sets NG(v), NG(w), {v}, and{w} are
pairwise disjoint. The operation of identifying v and w in G adds to N (G) the join
of NG(v) ∗ NG(w) and identifies v and w in N (G). By Lemma 2.2.4, no faces of
NG(v) ∗ NG(w) other than NG(v) and NG(w) are present in N (G). Therefore, the
join is homotopy equivalent to attaching a 1-cell between the contractions of the
facets given by NG(v) and NG(w), respectively. In addition, the identification of the
simplices {v} and {w} is homotopy equivalent to attaching a 1-cell between {v} and
{w}, as shown in Figure 2.3. Hence, N (G′) ' N (G)

∨
S1
∨
S1.

Corollary 2.2.6. Let G be a bridgeless j-chromatic graph with j ≥ 4 such that N (G)
is i-connected with i > 0. For any Hajós construction of G, there exists an H such
that the final step of the construction is a vertex identification vid(H, [v, w]) where v
and w satisfy dH(v, w) ≤ 4.

15



w v

N (G)
NG(w)NG(v)

NG(w) ∗NG(v)

Figure 2.3: Through an identification of v and w in G where d(v, w) ≥ 5, we add a
1-cell {v, w} and the join N(w)∗N(v) toN (G) to obtain a space homotopy equivalent
to N (vid(G, [v, w])).

2.3 Identifications of Vertices at Short Distances

Corollary 2.2.6 demonstrates the importance in Hajós-type constructions of identifi-
cations of pairs of vertices at distance strictly less than five. Since the typical Hajós
merge or vertex identification at distance strictly greater than four results in a wedge
summand of S1 for N (G), in order to produce a Hajós-type construction of G where
N (G) is i-connected for i > 0, it must be the case that vertex identifications at
short distances eliminate these wedge summands, and thus reduce the first homology
group of N (G). Therefore, we are motivated in this section to consider the effect
of such vertex identifications on these wedge summands and on the first Betti num-
ber of N (G), i.e. the rank of the first homology group of N (G). Our main results
are Theorems 2.3.2 and 2.3.3, in which we show that for a restricted class of ver-
tex identifications using vertices at distance less than five, the first Betti number of
the neighborhood complex does not increase. We also prove in Theorem 2.3.5 that
the number of wedge summands eliminated by a single vertex identification can be
arbitrarily large.

Lemma 2.3.1. If G is a graph with two vertices v and w such that p is a path from
v to w of length four, then NG(v) and NG(w) are connected via an edge in N (G)
between two of their respective vertices.

Proof. Let p = (v, x1, x2, x3, w). Then, x1 ∈ NG(v) and x3 ∈ NG(w). In addition,
x1, x3 ∈ NG(x2). Therefore, NG(v) andNG(w) are connected through the edge (x1, x3)
in N (G).

Theorem 2.3.2. Let G be a graph with vertices v and w such that d(v, w) ≥ 3 and
there exists a path of length four from v to w. Let G′ := vid(G, [v, w]). Then

rank(H̃1(N (G′))) ≤ rank(H̃1(N (G))) .
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Proof. Recall that the link of a vertex v in a simplicial complex X is linkX(v) :=
{σ ∈ X : v /∈ σ, {v} ∪ σ ∈ X}. Further, the star of a vertex v in X is starX(v) :=
{σ ∈ X : v ∈ σ}. By Lemma 2.3.1, NG(v) and NG(w) are connected via an edge in
N (G), though they are disjoint faces in N (G). Since d(v, w) ≥ 3, both v and w are
disjoint from these neighborhoods.

Through the identification of v and w, there is a two-step alteration of the neigh-
borhood complex N (G) that produces N (G′):

1. NG(v) andNG(w) are joined to become the face τ with vertex setNG(v)∪NG(w);

2. any faces containing v or w are deleted, while a new vertex vw is created with

linkN (G′)(vw) := linkN (G)(v) ∪ linkN (G)(w) .

We first address step (1): Consider the complex N (G)∪ τ . Since τ is contractible
and thus has zero homology, by the Mayer-Vietoris sequence we obtain:

· · · → H̃1(N (G) ∩ τ)→ H̃1(N (G))→ H̃1(N (G) ∪ τ)→ H̃0(N (G) ∩ τ)→ · · ·

Combining the fact thatN (G)∩τ is a subcomplex ofNG(v)∗NG(w) with Lemma 2.3.1,

it follows that N (G) ∩ τ is connected. Hence, H̃0(N (G) ∩ τ) = 0. So, H̃1(N (G))

surjects onto H̃1(N (G) ∪ τ), implying that

rank(H̃1(N (G))) ≥ rank(H̃1(N (G) ∪ τ)) .

We next address step (2), in which we go from N (G) ∪ τ to N (G′): Since
starN (G′)(vw) is a cone, it is contractible, and thus

N (G′) = N (vid(G, [v, w])) ' N (vid(G, [v, w]))/starN (G′)(vw)
∼= (N (G) ∪ τ)/(starN (G)∪τ (v) ∪ starN (G)∪τ (w))

where the homeomorphism of the latter two quotients follows from the fact that
linkN (G′)(vw) := linkN (G)(v) ∪ linkN (G)(w) and the links of v in both N (G) and
N (G) ∪ τ are the same, and similarly for w. Hence, we have

H̃1(N (G′)) ∼= H̃1((N (G) ∪ τ)/(starN (G)∪τ (v) ∪ starN (G)∪τ (w))) .

It follows from the existence of a path of length four from v to w that starN (G)∪τ (v)∪
starN (G)∪τ (w) is connected, and combining this with the long exact sequence for the
pair (N (G) ∪ τ, starN (G)∪τ (v) ∪ starN (G)∪τ (w)) we obtain

· · · → H̃1(starN (G)∪τ (v) ∪ starN (G)∪τ (w))→ H̃1(N (G) ∪ τ)

→ H̃1((N (G) ∪ τ)/(starN (G)∪τ (v) ∪ starN (G)∪τ (w)))

→ H̃0(starN (G)∪τ (v) ∪ starN (G)∪τ (w)) = 0 .

So, H̃1(N (G) ∪ τ) surjects onto H̃1(N (G′)), implying

rank(H̃1(N (G))) ≥ rank(H̃1(N (G) ∪ τ)) ≥ rank(H̃1(N (G′))) .
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Theorem 2.3.3. Let G be a graph with vertices v and w. Define U to be the set of
common neighbors of v and w, A := NG(v)rU , and B := NG(w)rU . Suppose that

1. d(v, w) = 2,

2. there is no path of length 3 from v to w in G, and

3.
(⋃

a∈ANG(a)
)
∩
(⋃

b∈B NG(b)
)

= ∅.

If G′ := vid(G, [v, w]), then

rank(H̃1(N (G′))) ≤ rank(H̃1(N (G))) .

Proof. Consider the disjoint union

V (G) = {v, w} ] U ] A ]B ]X

where U is the set of common neighbors of v and w, A := NG(v)rU , B := NG(w)rU ,
and X contains the remaining vertices in G. Since G contains no path of length 3
from v to w, the following must be true:

• there is no edge between any two elements of U ;

• v is adjacent to every element of U and A;

• w is adjacent to every element of U and B;

• there is no edge between U and A, and similarly for U and B;

• there are no restrictions on the structure of edges within A, B, or X or the
edges connecting elements of X with elements of A, U , or B, respectively.

Note that since v and w share a common neighbor, we have NG(v)∩NG(w) = U 6=
∅. Through the identification of v and w, there are two changes of the neighborhood
complex N (G) that produce N (G′). First, the face τ := NG(v) ∪NG(w) is added to
the complex — note that since NG(v) ∩ NG(w) 6= ∅ in this case, τ is not the join of
these two simplices. Also note that τ = U ∪ A ∪ B, so τ ∩ X = ∅. We can make
an identical argument to that given in the first step of Theorem 2.3.2 to show that
rank(H̃1(N (G))) ≥ rank(H̃1(N (G)∪τ)), except that we argue N (G)∩τ is connected
as a result of the property that NG(v) ∩NG(w) 6= ∅.

For the second step, we will show that N (G)∪τ is homotopy equivalent to N (G′),
and thus

H̃1(N (G′)) ∼= H̃1(N (G) ∪ τ) ,

from which our result will follow. Because we have assumed that
(⋃

a∈ANG(a)
)
∩(⋃

b∈B NG(b)
)

= ∅, in N (G) ∪ τ the edge (v, w) is contained in only
⋃
u∈U NG(u),

while also

v ∈

(⋃
a∈A

NG(a)

)
∪

(⋃
u∈U

NG(u)

)
and w ∈

(⋃
b∈B

NG(b)

)
∪

(⋃
u∈U

NG(u)

)
.
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The subcomplex
⋃
u∈U NG(u) ⊆ N (G) ∪ τ therefore has the structure of the join of

(v, w) with the subcomplex of
⋃
u∈U NG(u) induced by X; within this subcomplex,

we make a discrete Morse matching by pairing any cell σ containing v but not w with
σ ∪ {w}. By Theorem 1.2.2, the resulting space, which we denote X , is homotopy
equivalent to N (G) ∪ τ . The topological deformation resulting from this matching
has the effect of contracting the joined subcomplex along the edge (v, w), and thus
X is a simplicial complex where

⋃
b∈B NG(b) has been added to the link of v. This is

precisely the description of the link of vw in N (G′), which completes the proof.

4

3

v

w

2

1

2

1

vw

3

4

2

4vw

1

3

vw

1

2

3

4

Figure 2.4: Top left: Graph G with d(v, w) = 3; Top right: Graph G′ :=
vid(G, (v, w)); Bottom left: N (G); and Bottom right: N (G′). Observe that

rank(H̃1(N (G))) = 2 and rank(H̃1(N (G′))) = 3.

Remark 2.3.4. Without a path of length four, when d(v, w) = 3 we cannot conclude

in general that rank(H̃1(N (G′))) ≤ rank(H̃1(N (G))), since our Mayer-Vietoris argu-
ment no longer holds. As an example, consider the graph G depicted in Figure 2.4
and perform a vertex identification on v and w. An analogous consideration when G
is a cycle on 9 vertices yields similar results without increasing χ(G).

We next demonstrate that a single vertex identification can result in an arbitrarily
large decrease in the size of the first homology of N (G). Further, this decrease can
arise from the elimination of an arbitrarily large number of S1 wedge summands.

Theorem 2.3.5. For every n ≥ 5, there exists a graph Gn and a single vertex iden-
tification in Gn resulting in a graph G′n such that:

• N (Gn) is a wedge of 2n+ 5 circles, and

• N (G′n) has trivial first homology.

19



Proof. The theorem follows from Propositions 2.3.7 and 2.3.8.

We define our desired Gn as follows.

Definition 2.3.6. Let Gn be the graph with vertex and edge sets defined as follows:

V (Gn) = {X, Y, Z} ∪ {iA, iB, iC : 1 ≤ i ≤ n}

and

E(Gn) := {(X, Y ), (Y, Z), (1A,X), (nC,X)}
∪ {(iB,X), (iA, iB), (iB, iC), (iC, iA) : 1 ≤ i ≤ n}
∪ {(jC, Z), (jC, (j + 1)A) : 1 ≤ j ≤ n− 1}
∪ {(kA,Z) : 2 ≤ k ≤ n}

Define G′n := vid(Gn, [X,Z]).

G3 and G′3 are shown in Figure 2.5. One can show that χ(Gn) = 4 for all n, and
that it is possible to provide an explicit Hajós construction ofGn starting with iterated
Hajós merges using n copies of K4, followed by a sequence of vertex identifications.

Y 1A

X

Z

2A 3A

1B 2B 3B

3C1C
2C

3C

XZ

Y

2C1C 3A2A
1B

1A
2B 3B

Figure 2.5: G3 is displayed on the left and G′3 = vid(G3, [X,Z]) on the right. Gn

along with G′n defines a family of graphs for which the decrease in the rank of the
first homology group after one vertex identification can be arbitrarily large.

Proposition 2.3.7. For n ≥ 5, N (Gn) '
∨

2n+5

S1.

Proof. Let Pn denote the face poset of N (Gn). Every vertex v ∈ Gn generates
a subposet isomorphic to a boolean algebra Bd containing the subsets of NGn(v),
where d is the cardinality of NGn(v). The neighborhood of X generates a subposet
isomorphic to Bn+3 and the neighborhood of Z generates a subposet isomorphic
to B2n−1. The remaining vertices have degree 2, 3, or 4 giving rise to subposets
isomorphic to B2, B3, and B4, respectively. To provide notation for this, let NP(v) :=
{p ∈ Pn : p ⊆ NGn(v)} and NP(v)≥1 := {p ∈ NP(v) : |p| ≥ 1}, where NP stands
for Neighborhood Poset. The strategy for this proof is to make systematic acyclic
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5A
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Figure 2.6: Q6, poset example for proof of Proposition 2.3.7.

matchings on parts of the small Boolean algebras, then to quotient the resulting
space by the subcomplex of N (Gn) given by NGn(X)∪NGn(Z), which is contractible.

In order to create our systematic acyclic matchings, we will apply Theorem 1.2.4.
Define Qn to be the poset on the elements

{O,X,Z2, . . . ,Z(n−1),1A,2A, . . . , (n− 1)A,2C,3C, . . . ,nC}

with cover relations given by:

• O ≺ 1A ≺ 2A ≺ Z2 ≺ 2C ≺ Z3 ≺ 3A;

• 2A ≺ X;

• 2C ≺ 3C ≺ · · · ≺ (n− 2)C ≺ nC ≺ (n− 1)C;

• jA ≺ Zj+1 ≺ (j + 1)A for all 3 ≤ j ≤ n− 2; and

• jC ≺ Zj+1 for all 3 ≤ j ≤ (n− 2).

Q6 is illustrated in Figure 2.6. To distinguish target elements in Qn from the vertices
of Gn, we write the elements of Qn in bold.

We next define a poset map Γn : Pn → Qn. The preimage of an element α ∈ Qn

is denoted as Γ−1n (α). We begin by setting Γ−1n (O) = NP(X) ∪NP(Z). No matching
will take place on this subposet of Pn, and the corresponding subcomplex will remain
contractible. This accounts for both of the large Boolean algebras in Pn. What
remains unmapped are a handful of cells in each smaller Boolean algebra, which we
must handle individually, leading to a long list of preimages. For each element in Qn,
we define Γ−1n in a manner that makes it straightforward (though tedious) to verify
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that the resulting map is order preserving. For the elements in Qn that are less than
or equal to 2C, we make the following assignments. Observe that when we remove
elements from our neighborhood posets in the mapping below, it is due to the fact
that those elements were already mapped in a previous preimage assignment. The
preimages are:

• Γ−1n (1A) = {{1A, 1B, 2A}, {1A, 2A}, {1B, 2A}};

• Γ−1n (2A) =

(NP(Y ) ∪ NP(1C) ∪ NP(2C) ∪ NP(2B))

r {{1A, 1B, 2A}, {1A, 2A}, {1B, 2A}, {1A, 1B}, {2A, 3A}, 1A, 1B, 2A, 2B, 2C, 3A}

;

• Γ−1n (X) = (NP(1B) ∪ NP(1A) ∪ NP(nB) ∪ NP(nC))≥1;

• Γ−1n (Z2) = {{2B, 2C,Z}, {2B, 2C}, {2C,Z}}; and

• Γ−1n (2C) =

(NP(2A) ∪ NP(3A))≥1

r {{2B, 2C,Z}, {2B, 2C}, {2B,Z}, {1C, 2C}, {2C, 3C}, {2C,Z}}

.

At this point, all of the elements of Pn contained in NP(X), NP(Z), NP(Y ),
NP(1C), NP(1A), NP(2A), NP(3A), NP(nC), NP(1B), NP(nB), NP(2B), and NP(2C)
have been assigned an image under Γn. Next, we map the remaining elements of Pn
to elements of Qn that are above 2C:

• Γ−1n (jC) = NP((j+1)A)≥1r{{jC, Z}, {jC, (j+1)C}} for each 3 ≤ j ≤ (n−2);

• Γ−1n (Zk) = {{kA, kB, Z}, {kA, kB}} for each 3 ≤ k ≤ (n− 1);

• Γ−1n (kA) =

(NP(kC) ∪ NP(kB))≥1

r {{kA, kB, Z}, {kA, kB}, {kB,Z}, {kA,Z}, {kA, (k + 1)A}}

for each 3 ≤ k ≤ (n− 1);

• Γ−1n (nC) = {{(n− 1)C, nB, nC}, {(n− 1)C, nC}, {(n− 1)C, nB}}; and

• Γ−1n ((n− 1)C) =

NP(nA)≥1

r {{(n− 1)C, nB, nC}, {(n− 1)C, nB}, {(n− 1)C, nC}, {(n− 1)C,Z}, {nB, nC}}

.
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To complete our proof, we define a matching on each Γ−1n (t) for t ∈ Qn rO. For
each σ ∈ Γ−1n (t) that does not contain the vertex t (the bold symbol is an element of
Qn, the unbolded symbol is a vertex of Gn), we pair σ with σ ∪ {t} — if the element
is Zi, we use the vertex Z as the unbolded version of Zi. Because for each of these
matchings there is a unique element that is used for the pairing assignment, it is a
quick exercise to confirm that these are all acyclic matchings. Thus, by Theorem 1.2.4,
we have defined an acyclic matching on Pn. In addition to Γ−1n (O), the corresponding
critical (i.e. unmatched) cells in each preimage are:

• Γ−1n (1A) : {1A, 2A};

• Γ−1n (2A) : {2A, 2B}, {X,Z};

• Γ−1n (X) : {1A,X}, {1C,X}, {1B,X}, {nA,X}, {nB,X}, {nC,X};

• Γ−1n (Z2) : {2C,Z};

• Γ−1n (2C) : {2C, 3B};

• Γ−1n (jC) : {jC, (j + 1)B} for 3 ≤ j ≤ n − 2, which gives rise to n − 4 critical
1-cells;

• Γ−1n (kA) : {kA,X} for 3 ≤ k ≤ n− 1, which gives rise to n− 3 critical 1-cells;

• Γ−1n (Zk) has no critical cells for any 3 ≤ k ≤ (n− 1);

• Γ−1n (nC) : {(n− 1)C, nC}; and

• Γ−1n ((n− 1)C) has no critical cells.

This gives a total of 2n+5 critical 1-cells. Since NGn(X)∪NGn(Z) forms a contractible
subcomplex of the critical complex for this matching, we can contract this subcomplex
yielding N (Gn) '

∨
2n+5

S1.

Proposition 2.3.8. For n ≥ 5, we have N (G′n) '
∨

2n−1
S2.

Proof. Let P ′n denote the face poset of N (G′n). Define Q′n to be the poset on the
elements

{O′, T } ∪ {jA, jC : 2 ≤ j ≤ (n− 1)}

with cover relations given by O′ ≺ 2A, iA ≺ iC ≺ (i + 1)A for 2 ≤ i ≤ (n − 2),
and maximal element T . Thus, Q′n is totally ordered. As in the previous proof, it
is helpful to think of P ′n as a union of subsets of neighborhoods of the vertices of
G′n, adjusted to remove the subsets contained in the neighborhood of XZ. Similarly
to our previous proof, our strategy will be to leave the subsets of the neighborhood
of XZ unmatched, pair off subsets of the remaining vertices in N (G′n), and then
quotient out the neighborhood of XZ at the end.

We define a poset map Γ′n : P ′n → Q′n. As before, let NP(v) := {p ∈ Pn : p ⊆
NGn(v)} and NP(v)≥1 := {p ∈ NP(v) : |p| ≥ 1}. Begin by setting (Γ′n)−1(O′) =
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NP(XZ); no matching will take place on this subposet of P ′n and the corresponding
subcomplex will remain contractible. For each of the remaining elements in Qn, we
define (Γ′n)−1 in a manner that makes it straightforward to verify that the resulting
map is order-preserving. We first define

(Γ′n)−1(2A) = (NP(1C) ∪ NP(2B) ∪ NP(2C))≥1 r NP(XZ) .

Next, to account for NP(1A), NP(1B), NP(2A), NP(3A), and NP(3B), set

(Γ′n)−1(2C) ={{1C, 2B, 2C,XZ}, {2C, 3B, 3C,XZ}, {1A, 1C,XZ}, {1B, 1C,XZ},
{1C, 2B,XZ}, {2C, 3C,XZ}, {2B, 2C,XZ}, {2C, 3B,XZ},
{3B, 3C,XZ}, {3A, 3C,XZ}, {1C, 2C,XZ}, {1C,XZ}, {3B,XZ},
{3C,XZ}} .

We next make two types of iterated assignments, to account for the neighborhoods
of the remaining vertices of G′n, and a final assignment for maximal triangles in
N (G′n):

• (Γ′n)−1(kA) = {{kA, kB, (k+1)A,XZ}, {kB, (k+1)A,XZ}, {kA, (k+1)A,XZ},
{(k + 1)A,XZ}, {kA, kB,XZ}} for 3 ≤ k ≤ n, where we do not include
the four sets in (Γ′n)−1(nA) containing an element labeled (n + 1)A, thus
|(Γ′n)−1(nA)| = 1;

• (Γ′n)−1(kC) = {{kC, (k+1)B, (k+1)C,XZ}, {(k+1)B, (k+1)C,XZ}, {kC, (k+
1)C,XZ},
{kC, (k + 1)B,XZ}, {(k + 1)B,XZ}, {(k + 1)C,XZ}} for 3 ≤ k ≤ n; and

• (Γ′n)−1(T ) = {{kA, kC,XZ} : 4 ≤ k ≤ n}.

All cells in (Γ′n)−1(T ) are unmatched. As in the previous proof, for each σ ∈ Γ−1n (t)
that does not contain the vertex t (the bold symbol is an element of Qn, the unbolded
symbol is a vertex of Gn), we pair σ with σ ∪ {t}. For each matching there is a
unique element used for pairing and therefore all matchings are acyclic. Thus by
Theorem 1.2.4, we have defined a matching on P ′n. Other than the elements in
(Γ′n)−1(O), our critical cells are:

• (Γ′n)−1(2A) has no critical cells;

• (Γ′n)−1(2C) : {1A, 1C,XZ}, {1B, 1C,XZ}, {2B, 2C,XZ}, {3A, 3C,XZ};

• (Γ′n)−1(kA) : {kA, kB,XZ} for 3 ≤ k ≤ n, which gives rise to n − 2 critical
2-cells;

• (Γ′n)−1(kC) has no critical cells for 3 ≤ k ≤ n; and

• (Γ′n)−1(T ) : {kA, kC,XZ} for 4 ≤ k ≤ n, which gives rise to n − 3 critical
2-cells.
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This gives a total of 2n−5+4 = 2n−1 critical 2-cells. Since (Γ′n)−1(O) corresponds to
a contractible subcomplex of the critical complex for this matching, we can contract
this subcomplex and obtain N (G′n) '

∨
2n−1

S2.

2.4 Topological Effects of DHGO Compositions

Recall that a graph G is k-extremal if G is k-chromatic and k-critical, i.e. any
subgraph of G has chromatic number lower than k, and G has the minimum number
of edges possible among such graphs on n vertices. According to Kostochka and
Yancey [17], Ore suggested that the best possible construction of sparse critical graphs
can be obtained by starting with an extremal graph on at most 2k vertices and
repeatedly using Kk as G2 in DHGO-compositions, a generalization of Hajós merges.
We study these compositions in this section.

Definition 2.4.1. For a graph G and u ∈ V (G), a split of u, denoted sp(G, u), is
a new graph G′′ with vertex set V (G′′) = V (G) r {u} + {u′, u′′}, where G r {u} ∼=
G′′ r {u′, u′′}, N(u′) ∪N(u′′) = N(u), and N(u′) ∩N(u′′) = ∅.

Definition 2.4.2. Let G1 and G2 be graphs such that x1 ∈ V (G1) and (x2, y2) ∈
E(G2). A DHGO-composition, denoted D(G1, G2), is a graph that is created by
deleting (x2, y2), splitting x1 into x′1 and x′′1 with positive degrees, and identifying x′1
with x2 and x′′1 with y2.

A Hajós merge is a special case of a DHGO-composition, which motivates us to
consider the topological effect on N (G) of these more general operations.

Lemma 2.4.3. Let G be a connected non-bipartite graph such that G′′ := sp(G, u)
is connected bipartite where N(u′) ∪ N(u′′) = N(u) and N(u′) ∩ N(u′′) = ∅. Then,
N (G′′) = A ]B, where NG′′(u

′), u′′ ∈ A and NG′′(u
′′), u′ ∈ B.

Proof. Since χ(G′′) = 2, u must be part of all odd cycles in G. This implies that
there is an odd path from u′ to u′′, so u′′, N(u′) ∈ A and NG′′(u

′′), u′ ∈ B. If u′ and
u′′ are in the same connected component, there is an even path between u′ and u′′,
implying there is only one connected component, which is a contradiction to being
connected bipartite.

Theorem 2.4.4. Consider two connected graphs G1 and G2 with x1 ∈ V (G1) and
(x2, y2) ∈ E(G2) such that:

1. χ(G1), χ(G2) ≥ 3 and (x2, y2) is not a bridge, and

2. D(G1, G2) is built using a connected sp(G1, x1).

Then, N (D(G1, G2)) is a wedge of at least one copy of S1 with another space.
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Proof. The result follows analogously to Theorem 2.2.3 with an adaptation arising
in the steps of the operation. Let G′1 := sp(G1, x1) and G′2 := G2 r (x2, y2) with
the DGHO-composition identifying x′1, x2 and x′′1, y2. It follows as in Theorem 2.2.3,
the effect of identifying x′1 with x2 is homotopy equivalent to attaching a 1-simplex,
(x′1, x2), and joining NG′1

(x′1) ∗ NG′2
(x2). Similarly, the identification of x′′1 with y2

gives rise to the attachment of (x′′1, y2) and joining NG′1
(x′′1) ∗NG′2

(y2).
It remains to show that there is at least one S1 wedge summand in our resulting

neighborhood complex. Assume χ(G1) ≥ 3 and χ(G2) ≥ 3, with (x2, y2) not a bridge.
Thus, G′2 is connected and χ(G′2) ≥ 2. Since G′1 = sp(G1, x1) is connected, analo-
gously to the proof of Theorem 2.2.3 it suffices to show that one of the connected com-
ponents ofN (G′1) contains at least two elements from {{x′1}, {x′′1}, NG′1

(x′1), NG′1
(x′′1)}.

This follows from Lemma 2.4.3 when χ(G′1) ≥ 2 and χ(G′2) ≥ 3.
Suppose that χ(G′1) = χ(G′2) = 2. Then, N (G′1) and N (G′2) each have two con-

nected components. That is, N (G′1) = A]B and N (G′2) = C]D have two connected
components, respectively. From Lemma 2.4.3, we can assume NG′1

(x′1), x
′′
1 ∈ A and

NG′1
(x′′1), x′1 ∈ B. From Lemma 2.2.2, we can assume x2, y2 ∈ C andNG′2

(x2), NG′2
(y2) ∈

D. Hence, up to homotopy equivalence the DGHO-composition attaches 1-cells be-
tween A and C, C and B, B and D, and D and A. The result follows.

2.5 Graph Construction Algorithms, Experimental Results, and Open
Problems

In this section, we report on results regarding computational experiments using Sage-
Math [30] via CoCalc.com [26]. We describe two stochastic algorithms that produce
graphs using Hajós constructions and Urquhart constructions (defined below). Using
these algorithms, we generate sets of graphs and analyze the resulting distributions of
their sizes, orders, and the ranks of the first homology groups of their neighborhood
complexes. We conclude the section with several open problems.

Two Hajós-type construction algorithms

We define in Appendix A two algorithms that we call the Constructible Random Algo-
rithm (CRA) and the Urquhart Random Algorithm (URA). The CRA is a stochastic
algorithm implementing the recursive definition of k-constructible graphs given in
Defintion 2.1.1. We use a probability p to determine the likelihood of selecting a
Hajós merge or vertex identification at each step of the algorithm; when p is small,
vertex identifications are favored. To define the URA, we require the notion of Ore
constructibility.

Definition 2.5.1. A graph is Ore k-constructible if it is a complete graph Kk or if
it can be constructed from Kk by successive applications of the following operation:

• (Ore Merge) Suppose G1 and G2 are already-obtained disjoint graphs with
respective edges (x1, y1) and (x2, y2). Let µ be a bijection from a subset of V (G1)
to V (G2) so that x1 /∈ domain(µ) and x2 /∈ range(µ), and µ(y1) 6= y2. Form the
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Hajós merge on G1 and G2 using the two edges, then identify the vertex pairs
[x, µ(x)]. We abuse notation and denote the resulting graph Ore(G1, G2).

Any construction of a graph using this process will be called an Ore construction.

Note that an Ore merge arises from a single Hajós merge followed by a sequence
of restricted vertex identifications. Urquhart [31] proved that the families of Hajós
constructible and Ore constructible graphs are equivalent.

Theorem 2.5.2 (Urquhart [31]). For a graph G and k ≥ 2, the following conditions
are equivalent:

• G is Hajós-k-constructible;

• G is Ore-k-constructible.

In the proof of Theorem 2.5.2, Urquhart showed that for k ≥ 3 every k-chromatic
graph G can be obtained by the following construction.

Definition 2.5.3. Suppose that a graph G is obtained by applying Ore merges to a
sequence of graphs G1, G2, . . . , G` each containing Kk. We will call a construction of
G using this approach an Urquhart construction, and write (again abusing notation)
G = Urq(G1, . . . , G`).

Inspired by this chain of ideas, the URA repeatedly generates graphs using a
slightly-restricted version of the Urquhart construction. These minor restrictions
ensure that the input graphs for the Urquhart construction are connected. We use
random choices for various parameters and vertex/edge selections in the URA, leading
to the stochasticity of the algorithm.

Experimental Results

Using an implementation in SageMath, we ran the Constructible Random Algorithm
for p ∈ {0.02, 0.1, 0.5} and k ∈ {3, 4, 5, 6}, generating various numbers of graphs. For
each of the three values of p when k = 5 and for p = 0.02 when k = 6, we include in
Appendix A a plot of the number of vertices versus number of edges for the graphs
generated, and a histogram of the first Betti numbers of the resulting neighborhood
complexes. We also provide in Table 2.1 the percent of graphs for which the first
Betti number was trivial. Similarly, we ran the Urquhart Random Algorithm for
k ∈ {3, 4, 5, 6} and m = n = 12; we provide in Appendix A and Table 2.2 the same
data report as for our CRA generated data.

It is interesting to note that the URA-generated graphs frequently have zero first
Betti number as shown in Figures A10, A12, and A14 and Table 2.2, and also have
a reasonable distribution of number of vertices versus number of edges, as shown in
Figures A9, A11, and A13. On the one hand, this matches our expectation from
Theorem 2.1.2 that many graphs will have a trivial first Betti number; on the other
hand, it is somewhat surprising that we so frequently have an Urquhart construction
with final step being a vertex identification of two vertices at short distance from
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Table 2.1: CRA results.

k p # graphs generated fraction of first Betti numbers equal to zero

3 0.02 10,000 0.25
3 0.10 10,000 0.065
3 0.50 10,000 0.0018

4 0.02 10,000 0.61
4 0.10 10,000 0.32
4 0.50 10,000 0.01

5 0.02 10,000 0.88
5 0.10 10,000 0.54
5 0.50 2,939 0.03

6 0.02 10,000 0.88
6 0.10 10,000 0.44
6 0.50 2,894 0.08

Table 2.2: URA results, with m = n = 12 for all cases.

k # graphs generated fraction of first Betti numbers equal to zero

3 2000 0.67
4 2000 0.74
5 2000 0.81
6 2000 0.83

each other. We obtain these distributions with only 2000 graphs sampled. It is worth
noting that by the nature of Urquhart constructions beginning from supergraphs
of Kk, the URA produces graphs that would potentially require a large number of
recursive steps in order to be produced by the standard Hajós constructions.

The CRA data is somewhat more complicated, in that the probability p that is
selected as input for the algorithm plays a significant role in the outcomes. Further,
in order to obtain interesting data, it is necessary to generate a larger number of
graphs; while it is possible for all of the cases we consider to generate 10000 graphs
with CRA, it was not always reasonable using SageMath via CoCalc to compute
the first Betti numbers for all these graphs. When Hajós merges are prioritized, on
average, the number of vertices in the resulting graphs is much larger than when
vertex identifications are prioritized. With a larger number of vertices, it is compu-
tationally more expensive to compute the Betti number and as a result only the first
approximately 2900 graphs generated by the algorithm were able to be computed,
as shown in Table 2.1 for k = 5 and k = 6 with p = 0.50. When p = 0.50, Hajós
merges are equally likely as vertex identifications in CRA, so it is not surprising that
Table 2.1 and Figure A2 show that most of the graphs produced have a positive first
Betti number. Also, because a Hajós merge of G1 and G2 results in a graph with
|V (G1)|+ |V (G2)|−1 vertices and |E(G1)|+ |E(G2)|−1 edges, the plot in Figure A1
is not particularly surprising. While Table 2.1 and Figures A3 and A4 show that the
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situation improves for p = 0.10, it is when p = 0.02 that we see behavior similar to
the URA output.

In summary, based on these initial investigations, the URA appears to be quite
effective at producing sample sets of graphs that have a broad distribution of number
of vertices against number of edges and also have a large percentage of graphs with
zero first Betti number. The CRA is also capable of generating reasonable sample
sets, but it is less clear how long it would take the CRA with p ≈ 0.02 to produce
a sample set of graphs with a large average number of vertices. To accomplish this
task, the URA appears to be better suited.

Further questions

The original motivation inspiring the definition of N (G) was to provide lower bounds
for the chromatic numbers of Kneser graphs [22]. These topological approaches have
also been used subsequently to find sharp lower bounds for chromatic numbers of other
graphs, e.g. the stable Kneser graphs [27]. In this work we have shown that Hajós-
type constructions of these and other graphs with highly-connected neighborhood
complexes are constrained in significant ways, leading to the following:

Problem 2.5.4. Find Hajós, Ore, and/or Urquhart constructions for Kneser and
stable Kneser graphs, or for other graphs with highly-connected neighborhood com-
plexes.

The operations of Hajós merge and vertex identification leading to Hajós con-
structibility are foundational in all this work. However, both Urquhart’s results and
our experimental data has demonstrated that the specific form of Urquhart construc-
tions given in Definition 2.5.3 serve as both a powerful theoretical tool and a useful
ingredient in algorithms for sampling k-constructible graphs. This motivates their
further study, and thus we define the following families of graphs.

Definition 2.5.5. Let k ≥ 3, m ≥ k, and n ≥ 1. Define Urq(k,m, n) to be the set
of graphs of the form Urq(G1, . . . , Gj), where 1 ≤ j ≤ n and for each i = 1, . . . , j the
graph Gi is connected, Gi is a supergraph of Kk, and |V (Gi)| ≤ m.

Thus, Urq(k,m, n) is the set of graphs that are Urquhart-k-constructible using
at most n component graphs (all connected), each having no more than m vertices.
Given a k-constructible graph G with k ≥ 3, Urquhart’s proof of Theorem 2.1.3
implies that there exist m,n such that G ∈ Urq(k,m, n). The following problems
are inspired by classical questions in k-constructibility and topological properties of
neighborhood complexes.

Problem 2.5.6. For a fixed k ≥ 3, identify infinite families of graphs G for which
good upper bounds can be given on the values of m and n where G ∈ Urq(k,m, n).

Problem 2.5.7. What is the distribution of the chromatic numbers of the graphs in
Urq(k,m, n)?
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Problem 2.5.8. For each fixed i, what is the distribution of the ranks of the i-th
homology groups for N (G) over G ∈ Urq(k,m, n)?

Copyright© Julianne M. Vega, 2020.
0000-0002-9904-9677
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Chapter 3 Two-Matching Complexes

3.1 Introduction

In this chapter, we will use discrete Morse Theory and the Matching Tree Algorithm
to prove homotopical results about 2-matching complexes. In Section 3.2, we con-
sider a class of graphs for which the homotopy type of the 2-matching complex is
contractible.Then, in Section 3.3 we look at graphs whose homotopy type of the 2-
matching complex changes from a sphere to a point with the addition of leaves. We
end this section with a constructible algorithm to maximize the number of additional
leaves that can be added to a certain family of graphs without changing the homotopy
type of M2(G). In Section 3.4, we define k-matching sequences and look at wheel
graphs as a first example. We conclude with k-matchings of perfect caterpillar graphs
and future directions.

3.2 Contractibility in 2-matching complexes

We begin this section by exploring properties of 2-matching complexes. Let G be
a finite, simple graph with vertex set V (G) and edge set E(G). Recall a vertex
v ∈ V (G) is a leaf if its neighborhood contains exactly one vertex. For a graph G
with v ∈ V (G), attaching a leaf to v in G refers to the process of adding a new vertex
w to V (G) and {v, w} to E(G). Given a graph G with two leaves u, v and edges
{v1, u} and {v2, v}, define G(u,v) to be the graph obtained by identifying u and v,
labeled uv. That is E(G(u,v)) = E(G) r {{v1, u}, {v2, v}} ∪ {{v1, uv}, {v2, uv}} and
V (G(u,v)) = V (G) r {u, v} ∪ {uv}.

Definition 3.2.1. For a graph G = (V (G), E(G)) with max degree three, the clawed
graph of G, denoted C(G) or CG is the graph obtained by subdividing every e ∈ E(G)
and attaching a (possibly empty) set of leaves to every v ∈ V (G) so that deg(v) = 3
for all v. The graph G is called the core of C(G). See Example 3.2.2.

If |E(G)| and |V≤2(G)| denote the number of edges and the number of vertices
with degree less than or equal to 2 in a graph G, respectively, and L is the number of
leaves of G, the process of clawing G introduces |E(G)|+ |V≤2(G)|+ L new vertices
and |V≤2(G)|+ L new edges.

Example 3.2.2. Clawing a graph as shown in Figure 3.1: (A) Begin with a graph
G, (B) Subdivide each edge (depicted with open circles), (C) attach a set of leaves
to each vertex of G so that deg(v) = 3 for all v ∈ V (G). We say graph G is the core
graph of C(G) or C(G) is the clawed graph with respect to G. |E(G)| = 4 = |V≤2(G)|
and L = 3 so the total number of vertices added is 11 and the total number of new
(leaf) edges is 7.

Definition 3.2.3. For an edge set H ⊆ E(G), let V (H) denote the set of vertices
supported by H. That is, V (H) :=

⋃
e∈H

V (e). An induced claw unit of a graph is a
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(A) (B)

(C)

Figure 3.1: Clawing a graph.

K1,3 subgraph with 1 vertex of degree 3 in G and 3 vertices of degree less than or
equal to 2 in G (Figure 3.2.)

We will be interested in deleting an induced claw unit in a graph. To do so, we
consider an induced claw unit c to be defined by the unique degree 3 vertex, call it v.
We abuse notation and use Gr c to denote the vertex deleted subgraph of Gr {v},
the graph obtained by deleting v and all the edges incident to it.

Gr c
y

zx

G

Figure 3.2: The edge set {x, y, z} defines an induced claw unit, call it c, of graph G.
The shaded region is the graph Gr c.

We will use discrete Morse theory to determine the homotopy type of clawed
graphs. We observe now that induced claw units in graphs behave nicely with 2-
matching complexes.

Proposition 3.2.4. Let c ∈ G be an induced claw unit with edge set E(c) = {x, y, z}.
The following sets are in bijection with each other:

(i) The set of 2-matchings of Gr c,
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(ii) The set of 2-matchings containing {y, z}, and

(iii) The set of 2-matchings containing x and not y or z.

Proof. For any 2-matching m in G r c, both m ∪ {x} (not containing y or z) and
m∪{y, z} are 2-matchings in G. Notice that x and {y, z} cannot be in a 2-matching
together since they all meet at a degree three vertex.

Example 3.2.5. Consider the graph in Figure 3.3. There is exactly 1 induced claw
unit, call it c, given by the edge set {x, y, z}. The set {e} is the only 2-matching of
Gr c. Notice that the 2-matchings contianing {y, z} consists of exactly {e, y, z} and
2-matchings containing x and not y or z consists of exaclty {e, x}.

e

y z

x

Figure 3.3

We turn our attention to a general connectivity result of M2(G) for any graph G.
Since F(M2(G)) the face poset of a 2-matching complex of G has vertex set consisting
of faces of M2(G) with an order relation of containment, for a, b ∈ F(M2(G)), a ≺ b
if b = a ∪ e for some e ∈ E(G). In relation to Figure 3.3, suppose we define a partial
matching of F(M2(G)) by toggling on x, where x ∈ E(G). Then, the matchings
remaining after toggling are exactly those that contain {y, z} and therefore are in
bijection with 2-matchings of G r c by Proposition 3.2.4. Hence, if you have two
edge-disjoint induced claw units c1 and c2 in G, the choice of toggle edge in c1 and c2
and the order in which one toggles is irrelevant.

Lemma 3.2.6. Let G be a simple, finite graph and C = {c1, ..., cn} be a collection of
induced claw units in G with E(ci) := {xi, yi, zi} for each ci. Then the connectivity
of M2(G) is at least 2|C|− 2. Further, if we fix the toggle edge in each ci, say xi, then
every critical cell remaining after toggling on all of the xi’s will consist of {yi, zi} for
all i, regardless of order.

Proof. Let P := F(M2(G)) be the face poset of the 2-matching complex of G. We
define a partial (discrete Morse) matching on P by (arbitrarily) fixing xi as the tog-
gle edge for each ci. Our claim is that for any permutation π ∈ Sn, the unmatched
subposet that remains after toggling on xπ(1), xπ(2), xπ(3), . . . , xπ(n) is the upper-order
ideal P≥{yπ(1),zπ(1),yπ(2),zπ(2),...,yπ(n),zπ(n)}. Since permutations can be generated by a se-
quence of transpositions, it suffices to consider the unmatched subposet obtained from
toggling x1, then x2 and the unmatched subposet obtained from toggling x2, then x1.

Suppose first that we toggle on x1. The edge x1 ∈ E(G) forms a 2-matching with
all 2-matchings of G that do not contain both y1 and z1 so the unmatched cells of P
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are precisely the elements containing both y1 and z1. That is, the unmatched subposet
that remains is P≥{y1,z1}. Now, toggling on x2 matches all of the 2-matchings of G
that contain y1, z1, but do not contain y2, z2. All elements a ∈ P≥{y1,z1} with {x2} ∈ a
will be paired with b := a r {x2} through toggling on x2 and all elements b are in
P≥{y1,z1} since {y1, z1} ∈ b. Notice that all matchings in P≥{y1,z1} are in bijection with
2-matchings in Gr c1 by Proposition 3.2.4 and c2 ∈ Gr c1.

Hence, the unmatched subposet that remains after toggling on x1 then x2 is
precisely P≥{y1,z1,y2,z2}. An analogous argument shows that the same upper order
ideal remains after toggling first on x2 and then x1. By induction, we get that the
unmatched subposet that remains after toggling on xπ(1), xπ(2), xπ(3), . . . xπ(n) is the
upper-order ideal P≥{yπ(1),zπ(1),yπ(2),zπ(2),...,yπ(n),zπ(n)}. Two elements from each induced
claw unit contribute to {yπ(1), zπ(1), yπ(2), zπ(2), . . . , yπ(n), zπ(n)} and an acyclic match-
ing has been produced such that all unmatched sets are of size at least 2|C|. It follows
that the connectivity of M2(G) is at least 2|C| − 2.

Definition 3.2.7. Let G be any graph. A claw-induced partial matching is an acyclic
partial matching on F(M2(G)) obtained by toggling on elements in the vertex set of
F(M2(G)) corresponding to edges in induced claw units of G, whenever possible.

Observation 3.2.8. If G and H are two graphs with leaf vertices v1 ∈ V (G) and
v2 ∈ V (H), it is immediate for G ∨

v1∼v2
H we have

M2(G ∨
v1∼v2

H) = M2(G) ∗M2(H),

where ∗ denotes the topological join.

Proposition 3.2.9. If v1, v2 ∈ V (G) are two leaf vertices of a graph G, then M2(G) =
M2(G(v1,v2)).

Proof. Let G be a graph with x, y two leaf nodes and m ∈ M2(G) be a 2-matching.
A 2-matching H ⊆ E(G) of a graph G consists of vertices v ∈ V (H) with degree at
most 2. Identifying two leaf vertices of G does not affect the 2-matching since the
identified vertex has degree 2. So m is also a 2-matching for G(x,y), the graph which
identifies x and y.

Theorem 3.2.10. Let G be a graph with e = {x, y} ∈ E(G) such that deg(x) ≤ 2
and deg(y) ≤ 2. Then M2(G) is contractible.

Proof. Since both endpoints of e have degree at most 2, e may be included in any
2-matching of Gre and M2(G) ' e∗M2(Gre). Hence, M2(G) is a cone and therefore
contractible.

We observed in Theorem 3.2.10 that graphs that contain an edge with endpoints
of degree less than or equal to 2 form a large class of graphs that have contractible
2-matching complexes. We will now explore 2-matching complexes that are close to
but not contractible. We begin by considering clawed paths of even length. In the
following proposition, we use the well-known fact that for two spheres Sm and Sn,
Sm ∗ Sn ' Sm+n+1.
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Proposition 3.2.11. For n ≥ 0, let CPn be a clawed path with respect to a path of
length n. Then, M2(CPn) ' S2n+1.

Proof. Since P0 consists of one vertex and no edges, we have CP0 = K3,1. See
Figure 3.4. It follows that M2(CP0) ' S1. Consider now a clawed path of length 1,
CP1 consists of two copies of K3,1 intersecting at one vertex. By Observation 3.2.8 we
have M2(CP1) = M2(CP0 ∨ CP0) = M2(CP0) ∗M2(CP0) = S1 ∗ S1 ' S1+1+1 = S3.
Continuing inductively, we have M2(CPn) = M2(CPn−1 ∨ CP0) ' S2(n−1)+1 ∗ S1 '
S2n−2+3 = S2n+1.

P0 CP0

1 2

3

M2(CP0) ' S1

3

2

1

P1 CP1

1 2 4 5

3 6

M2(CP1) ' S1 ∗ S1 ' S3

∗

1 2

3

4 5

6

Figure 3.4: M2(CP0) and M2(CP1) as in the proof of Proposition 3.2.11.

Corollary 3.2.12. M2(CPn−1) 'M2(CCn) ' S2n−1.

Proof. The result follows from Proposition 3.2.9, see Figure 3.5.

In the next proposition, we see that, even further, the 2-matching complex for
a clawed cycle shares its homotopy type with the 2-matching complex of a fully
whiskered cycle.

Definition 3.2.13. A fully whiskered graph W (G) is a graph in which a leaf is
attached to every vertex of the graph G.

Proposition 3.2.14. Let WCm denote a fully whiskered 2m-cycle graph for m ≥ 3.
M2(WCm) ' S2m−1.

Proof. Label the edges of the cycle by 1, 2, ..., 2m and each leaf edge by xi,i+1 for
i ∈ [2m−1], and x1,2m, where the index corresponds to the incident edges in the cycle
as in Figure 3.6. Let the edge set ci := {xi,i+1, i, i+1} for each i ∈ {1, 3, 5, . . . , 2m−1}
denote an induced claw of WCm. Then the collection C = {c1, c3, . . . , c2m−1} defines
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Figure 3.5: On the left graph CP2, the clawed path of length 2 and on the right CC3,
the clawed 3-cycle obtained by identifying the endpoints of CP2. The core 3-cycle is
shown with dashed lines.

a family of m induced claw units that are edge disjoint. If this were not the case,
then one edge j ∈ E(WCm) would be an edge in two claws, but by the labeling
system this would mean that j = j + 1 which is a contradiction to the edge labels
on the cycle. Following the proof of Lemma 3.2.6, for each i ∈ {1, 3, 5, . . . , 2m − 1}
let xi,i+1 be the toggle edge in the discrete Morse matching on the face poset of
M2(WCm). By Lemma 3.2.6, we know the connectivity of M2(WCm) is at least
2(m) − 2. Further, every unmatched cell contains {1, 2, . . . , 2m}, that is all of the
edges in the even cycle. All of the edges in the cycle forms a maximal two matching of
WCm and hence {1, 2, . . . , 2m} is the only critical cell of the discrete Morse matching
and M2(WCm) ' S2m−1.

Corollary 3.2.15. M2(WCn) 'M2(CCn) for n ≥ 3.

In Proposition 3.2.14, we considered fully whiskered 2m-cycle graphs because we
are interested in aligning this result with clawed path graphs, but there is no reason
why we could not apply the same reasoning for fully whiskered odd-cycle graphs.

Theorem 3.2.16. Let WCd
n denote a fully whiskered n-cycle graph for odd n. Then,

M2(WCd
n) ' Sn−1.

Proof. Using the same claw-induced partial matching as in the proof of Proposi-
tion 3.2.14 for all i ∈ {1, 3, . . . , n − 2}, the remaining unmatched cells must contain
{1, 2, . . . , n− 1}. These cells form an upper order ideal in the partially matched face
poset of M2(WCd

n) and include precisely {xn,1, 1, 2, ..., n−1, xn−1,n}, {1, 2, ..., n}, {xn,1,
1, 2, ..., n− 1}, {1, 2, ..., n− 1, xn−1,n}, and {1, 2, ..., n− 1}. Performing a final toggle
on the edge xn−1,n, we obtain one critical cell, {1, 2, ..., n} and hence M2(WCd

n) '
Sn−1.

We saw in Corollary 3.2.15 that M2(CCn) ' M2(WCn) ' S2n−1 and it is no
coincidence that CCn is a subgraph of WCn. The next lemma shows that there are
certain degree two vertices such that attaching a leaf does not affect the homotopy
type of the 2-matching complex. We call such vertices attaching sites.
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x1,6

x1,2

x2,3

x3,4

x4,5

x5,6 1
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3
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x1,5

x1,2

x2,3x3,4

x4,5

Figure 3.6: On the left a complete matching on WC3 as in Proposition 3.2.14 high-
lighted with a double line and on the left the partial matching on WCd

5 as in Re-
mark 3.2.16 highlighted with a double line.

Lemma 3.2.17. Let CG := C(G) be a clawed graph with vertex set V (CG), edge set
E(CG), and v ∈ V (CG) a degree two vertex with e1, e2 ∈ E(CG) the two incident
edges to v. Define a complete claw-induced partial matching on P, the face poset of
M2(CG). Then both edges e1 and e2 are in a critical cell if and only if attaching a
leaf to v does not change the homotopy type. Further, if at least one edge, {e1, e2} is
not in any critical cell obtained from the complete claw-induced partial matching of
P , the 2-matching complex of CG with a leaf attached to v is contractible.

Proof. Since CG is a clawed graph and deg(v) = 2, v is the intersection of two claws
c1 and c2. For each claw, one of the edges is a toggle edge and two are in critical cells.
If e1 and e2 are in some critical cell; then they are in all critical cells since this would
mean that one of the other edges in c1 and c2 are toggled on. Attaching a leaf w to
v does not give rise to any additional cells since this would imply that e1, e2, and the
edge {v, w} are all in a 2-matching together, but this is not possible because they are
all incident to a common vertex.

Suppose now that no critical cell contains both e1 and e2 (but perhaps contains
one). Then attaching a leaf w to v gives rise to several new critical cells, under the
same matching M. For each critical cell X in the claw-induced partial matching on
P , X ∪ {w, v} is a critical cell in the claw-induced partial matching on F(M2(CG ∪
{w, v})). Therefore, every critical cell can be further matched by toggling on {w, v}
and M2(CG ∪ {w, v}) is contractible.
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Theorem 3.2.18. For a clawed graph CG, M2(CG) ' S
2
3
n−1 where n = |E(CG)|.

Proof. The clawed graph CG consists of a collection of claws that have pairwise
intersection of at most 1 vertex, that is a collection of 1

3
n induced claw units. Each

claw in this claw decomposition of G gives rise to one toggle edge and two edges in
the critical cell. By Lemma 3.2.6, the connectivity of M2(CG) is at least 2

3
n − 2.

Further the complete claw-induced partial matching will consist of one critical cell
consisting of two edges of each claw which defines a maximal matching on the clawed
graph CG. Since a graph has 1

3
n claws and two of every one belongs in the critical

cell, the critical cell has size 2
3
n and M2(CG) ' S

2
3
n−1.

We can relate these findings back to [14, Theorem 12.5] which gives a general
connectivity bound for these complexes. Recall that a clique of a graph is a induced
subgraph that is isomorphic to a complete graph. For a real number ν, a family
of sets ∆ is AM(ν) if ∆ admits an acyclic matching such that all unmatched sets
are of dimension dνe. For λ = (λ1, ..., λn) define |λ| =

∑n
i=1 λi. For a sequence

µ = (µ1, ..., µn), n ≥ 1, define

α(n, µ) = min{α : BDλ
n is AM(

|λ| − α
2

− 1)}.

Theorem 3.2.19. (Thm 12.5, [14]) Let G be a graph on the vertex set V . Let
{U1, .., Ut} be a clique partition of G and let λ = (λ1, ..., λn) and µ = (µ1, ..., µn) be
sequences of nonnegative integers such that λi ≤ µi for all i. Then BDλ

n(G) is dνe−1
connected, where

ν =
|λ|
2
− 1

2

t∑
j=1

(α(|Uj|, µUj)− 1

Proposition 3.2.20. Theorem 3.2.18 is an example where Theorem 3.2.19 is not
sharp.

Proof. To show this we need to choose a clique partition. By construction of the
clawed graphs, the best we can do is choosing a partition of 2- and 1-cliques. Let
λ = (2, 2, ..., 2) = µ. By [14, Lemma 12.6], all values of α are 2 and any µ with
λi < µi for i = 1, 2 would give rise to larger α values. So, the lower bound on

connectivity is given by ν = |λ|
2
− 1

2

t∑
j=1

2 − 1. Let T denote the number of claws in

G. Since |λ| = 2|V (G)| and t = T + (|v| − 2T ) = |E|
3

+ (|V | − 2 |E|
3

), ν simplifies to

|v| − ( |E|
3

+ |v| − 2 |E|
3

)− 1 = |E|
3
− 1. From Theorem 3.2.18, the actual dimension of

the 2-matching complex is |E|
3

, greater than the lower bound obtained from Theorem
3.2.19.

3.3 Clawed Non-separable Graphs

Suppose we have a graph with potential attaching sites, i.e. vertices of degree 2. It
is natural to ask, which of these degree 2 vertices are actually attaching sites with
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respect to some matching. In addition, once we start attaching leaves, how many can
we attach before the 2-matching complex becomes contractible? To analyze these
questions, we will focus our attention on clawed non-separable graphs. Our overall
goal of this section will be to maximize the number of attaching sites in a clawed
graph by pairing toggle edges in the graph.

Definition 3.3.1. A non-separable, i.e. 2-connected, graph is a connected graph in
which the removal of any one vertex results in a connected graph.

Non-separable graphs can be classified through the following construction [5,
Proposition 3.1.1]:

1. Begin with a graph G := n-cycle

2. Choose two vertices of G, say v1 and v2.

3. Attach the two endpoints of a path to v1 and v2 respectively.

4. Set G to be this new graph and return to (2).

Using this construction we can define a clawed non-separable graph.

Definition 3.3.2. A clawed non-separable graph is a graph obtained through the
following construction.

1. Begin with G a clawed n-cycle, that is G := C(Cn).

2. Choose two leaves of G, say v1 and v2.

3. For each endpoint x in a path P , let one of the leaves attached to x be an
endpoint of the clawed path, CP . Attach the two endpoints of a clawed path
to v1 and v2 respectively.

4. Set G to be this new graph and return to (2).

We can use the construction of clawed non-separable graphs to get an understand-
ing of the relationship between the number of claws in a clawed non-separable graph
and the number of leaves. This will eventually lead us to finding an upper bound
for the number of attaching sites in such a graph. Recall that an attaching site is a
degree two vertex such that attaching a leaf does not affect the homotopy type of the
resulting 2-matching complex.

Proposition 3.3.3. Let T be the number of claws in a clawed non-separable graph
and L the number of leaves. Then T and L have the same parity modulo 2.

Proof. It is clear that for the clawed graph of a non-separable n-cycle the parity of T
and L is the same. Then, by construction two leaves are chosen, changing the number
of leaves but keeping the parity the same. For each additional claw we add another
leaf and the parity remains the same.
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A consequence of this proposition is that there is an even number of possible
toggle edges that are not in induced claw units that contain a leaf. Our strategy for
obtaining an upper bound for the maximum number of attaching sites will be to pair
the toggle edges such that two paired toggle edges are incident to each other.

Theorem 3.3.4. Let C(H) be the clawed graph of a non-separable graph H such that
C(H) has T claws. Then, the upper bound for the maximum number of leaves that
can be added before changing the homotopy type of the 2-matching complex of C(H)
is T .

Proof. The total number of possible attaching sites is given by 3T−L
2

since each claw
has three vertices with degree less than three, we need to remove the number of leaves
since the degree is one, and then divide by two since all remaining vertices are the
intersection of two claws. Now to find the maximum number of attaching sites we
subtract away the minimum number of vertices that have at least one edge that is
toggled on.

There is one toggled edge per claw and for any claw that has a leaf we can choose
the leaf as the toggle edge, which will maximize the number of attaching sites since
no additional leaf can be added to either endpoint of a leaf edge. The most ideal
matching pairs the toggled edges, so minimally we have T−L

2
vertices that cannot be

sites.
Hence, we have a maximum of 3T−L

2
− T−L

2
= 2T

2
= T attaching sites.

The strategy in the proof of Theorem 3.3.4 was to pair toggle edges as a way
to maximize the number of attaching sites. We provide two examples (Figures 3.7
and 3.8) in which the toggle edges are depicted with a solid line and the edges in
the critical cell are depicted as double lines. In Figure 3.7, we have an example of
a clawed non-separable graph together with a partial matching which attains the
maximum number of attaching sites, namely 5.

Figure 3.7: Clawed non-separable graph which attains the maximum attaching sites.

It is not always the case that we can achieve the upper bound for the number
of attaching sites for clawed non-separable graphs. In Figure 3.8, we see that after
toggling on the leaf edges and doing our best to pair the inner toggle edges we are
still left with two independent induced claw units that are surrounded by edges that
are already in the critical cell. No matter which edge we choose in either of these
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induced claw units as the toggle edge, we will decrease the total number of possible
attaching sites and thereby the number of possible attaching sites is less than the
maximum.

Figure 3.8: Clawed non-separable graph which does not achieve maximum attaching
sites.

We end this section with a constructible algorithm to obtain a maximal number
of attaching sites in a clawed non-separable graph.

This constructible algorithm to obtain a maximal number of attaching sites prior-
itizes using leaf edges as toggle edges followed by pairing non-leaf toggle edges. Using
Lemma 3.2.6, we may arbitrarily choose one of the three edges in each of our claws
without changing the homotopy type generated by the claw-induced partial match-
ing. At each step we are bringing together as many of the toggle edges as possible to
attain the maximal number of attaching sites. Figure 3.9 provides an example.

1. Begin with a clawed n-cycle and a claw decomposition C = {c1, ..., cn}. Choose
all the leaves as toggle edges such that all edges in the cycle are in the critical
cell.

2. Choose two claws, ci and cj to attach the next clawed path. Notice that ci and
cj are induced claw units that contain a leaf, which we call leaf-claws. Change
the matching on these two leaf-claws so that:

a) For each of the chosen leaf claws ci and cj: If the leaf claw is incident to
a previously chosen or currently chosen leaf claw change the matching to
match the toggle edges of these two leaf-claws, prioritizing the leaf claws
incident to only one previously chosen leaf-claws. In doing so the number
of attaching sites will either remain the same or increase.

3. For the new clawed path, let all of the leaves be the toggle edges.

4. Return to (2).

This algorithm returns the maximum number of attaching sites. Consider taking a
claw-induced matching on a clawed non-separable graph. If it was possible to increase
the number of attaching sites by modifying this matching, one of two scenarios may
be present:
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(i) there exists a leaf-claw such that the toggle edge is not the leaf edge, or

(ii) there exists a pair of incident claws such that neither one has a toggle edge that
is already incident to another toggle edge.

Through this algorithm, all leaves are toggle edges so (i) is not present. Notice that if
(ii) appeared in this construction it would arise from step (2) of the algorithm when
we add a new clawed path, but during that step we are re-orienting so that whenever
possible toggle edges are incident to each other.

v1

v2

v1

v2

Figure 3.9: On the left most picture we start with a clawed cycle. Choosing two
points, v1 and v2 we attach a clawed path of length 2. Since the chosen two leaf claws
are incident, we pair the toggle edges of each. Then we choose two more vertices, v1
and v2 and continue. In this step there is one claw unit that is incident to two leaf
claws and the other claw unit is incident to one.

3.4 k-matching sequences

We now turn our attention to the relationship between 1-matchings and 2-matchings.
Define a k-matching sequence as the sequence (M1(G),M2(G),M3(G), . . . ,Mn(G)),
up to homotopy, for 1 ≤ k ≤ n and where Mn(G) is a contractible space. The
n-matching complex Mn(G) is a cone, hence contractible precisely when there is an
edge e ∈ E(G) with both endpoints having max degree n. In this section we will look
at the k-matching sequence for wheel graphs.

Let Wn be a wheel graph on n vertices, that is a graph formed by connecting
every vertex of a n− 1 cycle to a single universal vertex. Label the edges of the cycle
with c0, ..., cn−2 and inner edges by `0, `1, . . . , `n−2, where ` is used to symbolize “leg”
edges, such that ci shares a vertex with `i−1 and `i modulo n− 1. See Figure 3.10.

We will determine the homotopy type of the 1-matching complex and 2-matching
complex of wheel graphs. In the proof of Theorem 3.4.2, we will first focus on the
“legs” or spokes of the wheel and then on the outer cycle. In [19], Kozlov proves the
following proposition which will come in handy.
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`0
`1

`2`3

c0

c1

c2

c3

Figure 3.10: W5 and the labeling used in Theorems 3.4.2 and 3.4.4.

Proposition 3.4.1 (Kozlov, [19] Proposition 5.2). For n ≥ 1, let Cn denote the cycle
of length n. The homotopy type of the independence complex of the cycle graph is

Ind(Cn) '

{
Sνn ∨ Sνn n ≡ 0 mod 3

Sνn n 6≡ 0 mod 3.

where νn = dn−4
3
e.

Theorem 3.4.2. Let Wn be a wheel graph on n vertices. Then, for k ∈ N, the
homotopy type of M1(Wn) is given by:

M1(Wn) '


Sνn ∨ Sνn n ≡ 1 mod 3∨
n−2

Sνn n ≡ 2 mod 3∨
n

Sνn n ≡ 0 mod 3

where νn = dn−4
3
e.

Proof. The strategy of this proof will be to use the Matching Tree Algorithm on
the line graph of Wn, see Figure 3.11. The line graph of Wn, denoted L(Wn) is
given by a complete graph on n − 1 vertices, labeled `0, . . . , `n−2 and an (n − 1)-
cycle graph c0, . . . , cn−2 with the additional edges {cj, `j−1} and {cj, `j} where j is
calculated modulo n − 1. We derive the homotopy type of M1(Wn) by defining an
acyclic (discrete Morse) matching on the face poset of the independence complex of
L(Wn) using the Matching Tree Algorithm.

Let P denote the face poset of Ind(L(Wn)). To begin we start with a tentative
pivot `0 which gives rise to two children Σ(∅; `0) and Σ(`0; `1, . . . , `n−2, c0, c1). We
first address the right child Σ(`0; `1, . . . , `n−2, c0, c1). The elements of V r (A ∪ B)
are c2, c3, . . . cn−2. Since c2 has exactly 1 neighbor in V r (A ∪ B), use c2 as a pivot
leading to 1 child Σ(`0, c3; `1, . . . , `n−2, c0, c1, c2, c4) where c3 is the matching vertex.
Continue in this fashion consecutively choosing the pivot cf(2), cf(3), . . . , cf(k) where
3k < n− 1 and f(i) = j + 3(i) mod n− 1, with j the index on the tentative pivot of
this branch, namely the index of `j.

Notice n−1
3

is the number of groups of 3 that we can break the (n − 1) cycle
into, where each group consists of 1 pivot and 2 neighbors of that pivot. Hence,

43



`0 `1

`2`3

c0

c1

c2

c3

Figure 3.11: LW5, the line graph of W5.

for n ≡ 0 mod 3 and n ≡ 2 mod 3 n−1
3

is not a whole number meaning that all
vertices in the outer cycle are either in A or B at the time we reach cf(k). Therefore
`0, cf(1), cf(2), . . . , cf(k) is the single critical cell of this branch.

When n ≡ 1 mod 3, n−1
3

is a whole number and we have a group of 3 left over
when we reach cf(k), 2 of which are already in A. Therefore, we have an isolated
vertex and an empty leaf results, i.e. there are no critical cells of this branch.

Now, turning our attention to Σ(∅, `0) we iterate this process using `1 as our tenta-
tive vertex. Due to the symmetry of L(Wn), each branch beginning with Σ(`j, N(`j))
will either result in an empty leaf or a single critical cell as described above. The
general structure of our matching tree can be seen in Figure 3.12.

Σ(∅, ∅)

Figure 3.12: The shaded branches have identical structure with the first element of
each branch starting with A = ∅. The last stripped branch is representative of the
outer cycle.
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Once all vertices of the complete graph have been chosen as tentative vertices, we
are left with one child Σ(∅; `0, . . . `n−2) and V r (A ∪ B) consists of only vertices on
the outside cycle. When n ≡ 0 mod 3, and m = n− 1 ≡ 2 mod 3, Proposition 3.4.1
states there exists a matching tree with one critical cell of size νn + 1. Additionally,
from each of the other branches we have critical cells of size νn+1. By Theorem 1.3.2,
the homotopy type is a wedge of spheres, M1(Wn) '

∨
n

Sνn when n ≡ 0 mod 3.

When n ≡ 1 mod 3, and m = n−1 ≡ 0 mod 3, each of the branches resulting from
vertices of the complete graph are empty. Hence, M1(Wn) ' M1(Cm) = Ind(Cm) '
Sνn .

Finally, when n ≡ 2 mod 3, and m = n − 1 ≡ 1 mod 3, a subtle shift occurs.
Notice that νn = νm+1 when m = n−1 so Proposition 3.4.1 says we have one critical
cell of size νn and each of the n− 1 branches gives rise to a critical cell of size νn + 1.
We now argue that we can further match the cells α := {`n−2, cf(1), . . . , cf(k)} and
β := {cf(0), . . . , cf(k)}. We do so by showing that there exists a linear extension which
is a modification of the linear extension L that was generated by the Matching Tree
Algorithm with u(β) = α, which by Theorem 1.2.3 gives us that there is an acyclic
matching with α and β paired, as desired.

First note that {`n−2, cf(1), . . . , cf(k)} is a facet in the independence complex of
L(Wn) for n ≡ 2 mod 3 which means it is a maximal element of the face poset. Since
β ≺ α ∈ P , β is a coatom.

We claim for any pair (x, u(x)) for which β <P x or β <P u(x) (i.e. β <L (x, u(x)),
α is incomparable to x and to u(x). If β ≺P x ≺P u(x), then α is incomparable to x
and incomparable to u(x) since β ≺ α and α is maximal. Suppose β is incomparable
to x and β <P u(x). Since β ≺ α, α is incomparable to u(x). Since β is incomparable
to x, β < u(x), and x ≺ u(x) it must be that β ∪ x ⊆ u(x). In addition, α and β
differs by 1 element and if x < α this would mean α = β ∪ x which is a contradiction
to the incomparability of u(x).

This means that any pair (x, u(x)) in L such that β < (x, u(x)) can be moved
above α. The only concern is if there exists elements (y, u(y)) such that (y, u(y)) <L
α and (y, u(y)) >L (x, u(x)) but this is not possible as this means (y, u(y)) >L
(x, u(x)) >L β and we have seen (y, u(y)) is incomparable to α.

Finally, we note that for any pair (y, u(y)) such that (y, u(y)) <L α, we have seen
β 6<L (y, u(y)) and therefore it is either the case that (y, u(y)) is incomparable to β
or (y, u(y)) <L β.

Hence, we can rearrange L so that u(β) = α which implies pairing α and β forms
an acyclic matching. It follows from Theorem 1.3.2 that this homotopy type for
M1(Wn) '

∨
n−2

Sνn .

The next theorem show that for n ≥ 6, M2(Wn) is contractible.

Lemma 3.4.3 ([14, Lemma 4.3]). Let ∆0 and ∆1 be disjoint families of subsets of
a finite set such that τ * σ if σ ∈ ∆0 and τ ∈ ∆1. If Mi is an acyclic matching on
∆i for i = 0, 1 then M0 ∪M1 is an acyclic matching on ∆0 ∪∆1.
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Theorem 3.4.4. Let Wn be a wheel graph on n vertices. Then, for k ∈ N, the
homotopy type of M2(Wn) is given by:

M2(Wn) '


S2 ∨ S2 ∨ S2 n = 4

S3 ∨ S3 n = 5

pt n ≥ 6.

Proof. Let Pn be the face poset of M2(Wn). See figure 3.10 for an example of the
labeling of Wn. Our strategy will be to define acyclic matchings on subposets of Pn
and then apply Theorem 1.2.4. Define Qn to be a poset on the elements {c0, c2,R}
given by the relations c0 ≺ c2 ≺ R. The target elements in Qn are in bold to
differentiate them from vertices of Wn. Now, we define the poset map Γn : Pn → Qn

by defining the preimage Γ−1n (α) for each α ∈ Qn.

• For n = 4 let Γ−1n (R) := {{c1, c2, `2}, {c2, `2}, {c2, `2, `0}, {c1, `0, `1}, {c2, `,`2}}.

• For n ≥ 5 let Γ−1n (R) := {m ∈ M2(Wn)|{c1, `0, `1} ⊆ m or {c1, `0, c3, `2} ⊆
m or {cn−2, `n−2, c1, `1} ⊆ m or {cn−2, `n−2, c3, `2} ⊆ m}.

• Γ−1n (c2) := {m ∈M2(Wn)|{c1, `0} ⊆ m or {cn−2, `n−2} ⊆ m}r Γ−1n (R)

• Γ−1n (c0) = {m ∈M2(Wn)|{c0} ⊆ m or m ∪ {c0} ∈M2(Wn)}.

Since every 2-matching of Wn either contains c0, {c1, `0}, or {cn−2, `n−2}, elements of
Pn have been assigned an image under Γn and, by definition, Γn is order-preserving
poset map. For the preimages Γ−1n (c0) and Γ−1n (c2) perform a toggle on c0 and c2,
respectively. That is, for each σ ∈ Γ−1n (α) that does not contain α, pair σ with
σ ∪ {α}. By Lemma 1.2.6, these matchings are acyclic. In addition, both of these
toggles result in a perfect (discrete Morse) matching. Notice that what remains are
the elements of Γ−1n (R) which is a set of disjoint subposets for n ≥ 5 where each
of the sets {c1, `0, `1}, {c1, `0, c3, `2}, {cn−2, `n−2, c1, `1}, and {cn−2, `n−2, c3, `2} are the
minimal vertices of the respective subposets. Since the (poset) join between any two
of these elements would contain more than two leg edges, which is not possible in a
2-matching, these posets are pairwise disjoint.

Claim: Each subposet either consists of 1 element or is associated to a contractible
subcomplex for n ≥ 4.

Recall that any subset of edges in a disjoint union of paths forms a 2-matching.
Each of the sets {c1, `0, `1}, {c1, `0, c3, `2}, {cn−2, `n−2, c1, `1}, and {cn−2, `n−2, c3`2}
contains two leg edges and two cycle edges. Hence the possible edges that we union
with any of these elements to form a 2-matching form a disjoint union of paths when
n ≥ 6. When n ≥ 7, toggling on c4 will pair away all of the remaining cells since c4 can
be in any 2-matching containing the sets {c1, `0, `1}, {c1, `0, c3, `2}, {cn−2, `n−2, c1, `1},
and {cn−2, `n−2, c3`2}. For n = 6, toggles can be made with c1, c3 and c4. Therefore,
by Lemma 3.4.3, M2(Wn) ' pt when n ≥ 6.

When n = 5, Γ−1n = {{c1, `1, `0}, {c1, `0, `1}, {c3, `3, `2, c1}, {c1, `0, `2, c3}, {c1, `1,
`3, c3}}. Toggling on c1 and c3 leaves 2 critical 3-cells, namely {c1, `0, `2, c3}, {c1, `1, `3,
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c3}. Hence, M2(W5) ' S3∨S3. When n = 4, Γ−1n (R) := {{c1, c2, `2}, {c2, `2}, {c2, `2, `0},
{c1, `0, `1}, {c2, `1, `2}} and toggling on c1 leaves 3 critical 2-cells {c1, `0, `1}, {c2, `1, `2},
and {c2, `2, `0}. Hence, M2(W4) = S2 ∨ S2 ∨ S2.

Since M3(Wn) ' pt, we have the k-matching sequence of W4 is (Sνn ∨ Sνn ;S2 ∨
S2 ∨ S2; pt ) and for W5 is ( ∨

n−2
Sνn ;S3 ∨ S3; pt ) where ν = dn−4

3
e.

3.5 Two-matching complexes of caterpillar graphs

A caterpillar graph is a tree in which every vertex is on a central path or only one edge
away from the path. A perfect m-caterpillar of length n, denoted Gn is a caterpillar
graph withm legs at each vertex on the central path of n vertices (see Figure 3.13). We
conclude the paper with a derivation of 2-matching complexes of perfect m-caterpillar
graphs.

m m m m

x0 x1e

Figure 3.13: A perfect m-caterpillar of length n.

In [10], Jelić Milutinović et. al. calculate the homotopy type of M1(Gn) using
topological techniques.

Theorem 3.5.1. [10, Theorem 5.4] For m ≥ 2, let Gn be a perfect m-caterpillar
graph of length n ≥ 1. Then the homotopy type of M(Gn) is given by:

M(Gn) '


k∨
t=0

∨
αt

Sk−1+t if n = 2k

k∨
t=0

∨
βt

Sk+t if n = 2k + 1
(3.1)

where αt =
(
k+t
k−t

)
(m− 1)2t and βt =

(
k+1+t
k−t

)
(m− 1)2t+1.

As we will now see the homotopy type of M2(Gn) is also a wedge of spheres.

Definition 3.5.2. Let Gn be a perfect m-caterpillar of length n with the right most
edge along the central path e = {x0, x1}. Define BD(Gn) as the bounded degree
complex whose vertices are given by edges in Gn and faces are given by subgraphs H
of Gn such that the deg(x1) ≤ 1 and the degree of any other vertex is at most 2 in
H.
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In order to obtain the 2-matching complex of Gn, we will inductively use the
bounded degree complex BD(Gn−1) to build up to M2(Gn). Namely, our progression
will be:

M2(Gn−1)→ BD(Gn)→M2(Gn)→ BD(Gn+1)→M2(Gn+1)→ . . . .

Notice that the only difference between BD(Gn) and M2(Gn) is the possible degree of
the last vertex on the central path. This will allow us to build an inductive argument
on m-perfect caterpillar graphs. Let Σm denote the join with m distinct points.

Lemma 3.5.3. BD(Gn) ∼= Σm(M2(Gn−1)) ∨ Σ(BD(Gn−1))

Proof. Let m denote the number of legs off of each vertex along the central path
as seen in Figure 3.13. For a bounded degree complex BD(Gn), let e = {x0, x1}
be the right most edge along the central path and consider subgraphs H such that
deg(x1) ≤ 1 in H. We can decompose these bounded degree subgraphs into those
that contain e and those that do not. Namely, if we exclude e, the bounded degree
graphs are given by M2(Gn−1) ∗M1(Stm) where Stm is a star graph on m edges, and
if we include e the bounded degree subgraphs are given by e ∗BD(Gn−1). These two
complexes share BD(Gn−1) as a common subcomplex and hence

BD(Gn) ∼= M2(Gn−1) ∗M1(Stm)
⋃

BD(Gn−1)

e ∗BD(Gn−1).

Since e ∗BD(Gn−1) is a contractible space we get

BD(Gn) ∼= M2(Gn−1) ∗M1(Stm)
⋃

BD(Gn−1)

e ∗BD(Gn−1)/e ∗BD(Gn−1)

∼= Σm(M2(Gn−1))/BD(Gn−1),

where Σm(X) is X join a set of m discrete points. Since BD(Gn−1) ⊆ M2(Gn−1) we
see that BD(Gn−1) is contractible in Σm(M2(Gn−1)). Hence,

BD(Gn) ' Σm(M2(Gn−1)) ∨ Σ(BD(Gn−1)).

Lemma 3.5.4. M2(Gn) ∼= M2(Gn−1) ∗M2(Stm) ∨ Σ(Σm(BD(Gn−1)))

Proof. Let m be the number of legs off each vertex of the central path as seen in
Figure 3.13. For the 2-matching complex M2(Gn), let e = {x0, x1} be the right most
edge along the central path and consider 2-matchings of Gn. Following the argument
analogously to Lemma 3.5.3 we can decompose these 2-matchings into those that
contain e and those that do not. Hence,

M2(Gn) ∼= M2(Gn−1) ∗M2(Stm)
⋃

BD(Gn−1)∗M1(Stm)

e ∗BD(Gn−1) ∗M1(Stm).
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Since e ∗BD(Gn−1) ∗M1(Stm) is contractible, we obtain

M2(Gn) ∼= M2(Gn−1) ∗M2(Stm)/BD(Gn−1) ∗M1(Stm).

Further, sinceBD(Gn−1) ⊆M2(Gn−1) andM1(Stm) ⊆M2(Stm) we get thatBD(Gn−1)∗
M1(Stm) ⊆M2(Gn−1)∗M2(Stm) is contractible and M2(Gn) ∼= M2(Gn−1)∗M2(Stm)∨
Σ(Σm(BD(Gn−1))).

Theorem 3.5.5. Let Gn denote a perfect m-caterpillar graph of length n. Then,

(i) the homotopy type of BD(Gn) and M2(Gn) are wedges of spheres of varying
dimensions for all n ≥ 1,

(ii) the total number of spheres in BD(Gi+1) and M2(Gi+1) is given by the coefficient
of ti in the series∑

i≥0

Aiti =
∑
j≥0

Bjtj =
x

1− (1 + y)t− (x2 − y)t2

where x = (m− 1) and y =
(
m−1
2

)
, and

(iii) M2(Gi) '
∨
j≥0
∨
βi,j
Si+j where βi,j the number of spheres of dimension i + j is

the coefficient of ritj in B(r, t, x, y) =
∑
i,j≥0

bi,jr
itj = x

1−rt−(x2−y)r2t3−yrt2 where

x = (m− 1) and y =
(
m−1
2

)
.

Proof. (i) Since BD(G1) = M1(Stm) ' ∨
(m−1)

S0 and M2(G1) = M2(Stm) ' ∨
(m−1

2 )
S1,

(i) follows from Lemmas 3.5.3, 3.5.4, and 1.3.3.
(ii) Let Ai denote the total number of spheres in the homotopy type of BD(Gi+1)

and Bi be the total number of spheres in the homotopy type of M2(Gi+1). From
Lemmas 3.5.3, 3.5.4, and 1.3.3 we know A0 = x := (m− 1),B0 = y :=

(
m−1
2

)
, and A,

B follow the recursions:
Ai = Ai−1 + xBi−1 (3.2)

Bi = xAi−1 + yBi−1. (3.3)

Using equations 3.2 and 3.3, we see that Ai = (1 + y)Ai−1 + (x2 − y)Ai−2. Let
A(t) =

∑
i≥0
Aiti. Multiplying by (1− (1 + y)t− (x2 − y)t2) and solving we obtain

A(t) =
x

1− (1 + y)t− (x2 − y)t2
.

The argument for B(t) =
∑
j≥0
Biti is analogous.

(iii) Let αi,j be the total number of spheres of dimension j in BD(Gi+1) and βi,j the
total number of spheres of dimension j in M2(Gi+1). Using that BD(G1) ' ∨

(m−1)
S0
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and M2(G1) ' ∨
(m−1

2 )
S1, and Lemmas 3.5.3, 3.5.4, and 1.3.3 we obtain the following

initial conditions
α0,0 = x := (m− 1)

β0,1 = y :=

(
m− 1

2

)
α0,j = 0 for j ≥ 1

β0,j = 0 for j ≥ 2

αi,0 = 0 for i ≥ 1

βi,0 = 0 for i ≥ 0

Additionally, αi,j and βi,j follow the recursions

αi,j = αi−1,j−1 + x(βi−1,j−1) (3.4)

βi,j = xαi−1,j−2 + yβi−1,j−2. (3.5)

Using equations 3.4 and 3.5, we can see that

βi,j = βi−1,j−1 + (x2 − y)(βi−2,j−3 + y(βi−2,j−3).

Let B(r, t, x, y) =
∑
i,j≥0

bi,jr
itj and multiply by 1− rt− (x2 − y)r2t3 − yrt2. When we

solve and use the initial conditions we find that

B(r, t, x, y) =
x

1− rt− (x2 − y)r2t3 − yrt2

and the result follows from substituting (m− 1) for x and
(
m−1
2

)
for y.

Remark 3.5.6. The table of the homotopy types for BD(Gn) and M2(Gn), for small
values of n, can be found in Appendix B. From Theorem 3.5.5 (iii), notice that the
number of spheres in each dimension is given by a polynomial in x and y. If we set
x = y = 1, we can see that the number of terms in the sum given by the coefficient
of ritj is a binomial coefficient:

B(r, t, 1, 1) =
1

1− rt(1 + t)
=
∑
k≥0

rktk(1 + t)k

and the coefficient of [ritj] =
(
i
j−i

)
.
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3.6 Future directions.

The original motivation for this chapter was to study 1-matching complexes through
the lens of k-matching complexes for k ≥ 2. We end with a few open questions.
Our exploration of 2-matching complexes led to observations about the flexibility
of the homotopy type and how the homotopy type of clawed non-separable graphs
changes (or doesn’t change) as new leaves are added. One avenue to explore in this
direction involves understanding the interaction between clawed non-separable graphs
and additional leaves.

Question 3.6.1. Ranging over all clawed non-separable graphs, what is the average
maximum number of leaves that can be added without affecting the homotopy type
of the resulting 2-matching complex?

We have already seen that there are some graphs in which the maximum can be
obtained and other graphs in which there is an obstruction to doing so. It would be
interesting to know if clawed non-separable graphs tend to have structural properties
that obstruct obtaining the maximum and can we expect the maximum number of
leaves to be evenly distributed over all such graphs.

We can also ask about properties of graphs more generally.

Question 3.6.2. Given a graph, how can we determine when leaves can be attached
without affecting the resulting homotopy type of the 2-matching complex?

In Sections 3.4 and 3.5 , we defined the k-matching complex of a graph and
explored two examples, wheel graphs and perfect caterpillar graphs. Theorems 3.5.1
and 3.5.5 show that the homotopy type of M1(Gn) and M2(Gn) are both wedges
of spheres with combinatorial structure. A future direction of this work would be
to further understand the k-matching complex of families of graphs such as perfect
caterpillar graphs and trees in general. In [32], I conjectured

Conjecture 3.6.3. The k-matching complex of caterpillar graphs are homotopy equiv-
alent to a wedge of spheres,

which was recently proved in a paper by Singh. In [29], the author proves k-
matching complexes of forests are contractible or wedges of spheres and determines
the number of d-dimensional spheres in k-matching complexes of perfect caterpillar
graphs. The next step is to begin to look at k-matching sequences of graphs which are
known to have torsion in their 1-matching complexes such as the full and chessboard
complexes.

Copyright© Julianne M. Vega, 2020.
0000-0002-9904-9677
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Appendices

Appendix A: Algorithms and Experimental Data

Input : A complete graph on k vertices, a probability p ∈ (0, 1), and a
positive integer t.

Output: A list GraphList of t k-constructible graphs.

1 Set i = 0;
2 Initialize GraphList as a list containing only Kk;
3 while i < t do
4 Generate a random value 0 < r < 1;
5 if r > p and i > 0 then
6 Randomly select a non-complete graph G from GraphList;
7 Randomly choose a pair of non-adjacent vertices (v, w) in G;
8 Set G′ := vid(G, [v, w]);

9 else
10 Randomly select two graphs (possibly equal) G1 and G2 from

GraphList;
11 Randomly select one edge from each of G1 and G2;
12 Set G′ := G1∆HG2, performing the Hajós merge with the two

selected edges;

13 end
14 if G′ is not isomorphic to any element of GraphList then
15 Append G′ to GraphList;
16 Increase i by one;

17 else
18 Continue;
19 end

20 end

Algorithm 1: Constructible Random Algorithm (CRA)
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Input : Positive integers k ≥ 3 and t,m, n ≥ 1.
Output: A list GraphList of t Urquhart-k-constructible graphs.

1 Set i = 0;
2 Initialize GraphList as an empty list;
3 while i < t do
4 Generate a random integer 1 ≤ rc ≤ n;
5 Initialize L as an empty list;
6 for 1 ≤ s ≤ rc do
7 Set Gs = Kk;
8 Generate a random integer 1 ≤ r ≤ m;
9 Add r new vertices named v1, . . . , vr to Gs;

10 for 1 ≤ j ≤ r do
11 Select a random subset ∅ 6= S ⊆ V (Kk);
12 Add to Gs the edges {(vj, w) : w ∈ S};
13 end
14 Select a random graph H on vertex set {v1, . . . , vr};
15 Add the edges of H to Gs;
16 Append Gs to L;

17 end
18 while L contains more than one element do
19 Randomly select two graphs G1, G2 ∈ L;
20 Delete G1 and G2 from L;
21 Randomly select one edge from each of G1 and G2;
22 Choose a random integer 1 ≤ ` ≤ min{|V (G1)|, |V (G2)|} − 1;
23 Select ` pairs of disjoint vertices from G1 and G2 satisfying the

criteria to be used in an Ore merge;
24 Append to L the new graph Ore(G1, G2) formed using these

selections;

25 end
26 Define G′ to be the unique remaining element of L;
27 if G′ is not isomorphic to any element of GraphList then
28 Append G′ to GraphList;
29 Increase i by one;

30 else
31 Continue;
32 end

33 end

Algorithm 2: Urquhart Random Algorithm (URA)
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Figure A1: Orders versus sizes for
2939 CRA-generated graphs, k =
5, p = 0.50

Figure A2: Histogram of first
Betti numbers for N (G) for 2939
CRA-generated graphs, k = 5,
p = 0.50

Figure A3: Orders versus sizes for
10000 CRA-generated graphs, k =
5, p = 0.10

Figure A4: Histogram of first
Betti numbers for N (G) for 10000
CRA-generated graphs, k = 5,
p = 0.10

Figure A5: Orders versus sizes for
10000 CRA-generated graphs, k =
5, p = 0.02

Figure A6: Histogram of first
Betti numbers for N (G) for 10000
CRA-generated graphs, k = 5,
p = 0.02
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Figure A7: Orders versus sizes for
10000 CRA-generated graphs, k =
6, p = 0.02

Figure A8: Histogram of first
Betti numbers for N (G) for 10000
CRA-generated graphs, k = 6,
p = 0.02

Figure A9: Orders versus sizes for
2000 URA-generated graphs, k =
4, m = n = 12

Figure A10: Histogram of first
Betti numbers for N (G) for 2000
URA-generated graphs, k = 4,
m = n = 12

Figure A11: Orders versus sizes
for 2000 URA-generated graphs,
k = 5, m = n = 12

Figure A12: Histogram of first
Betti numbers for N (G) for 2000
URA-generated graphs, k = 5,
m = n = 12

Figure A13: Orders versus sizes
for 2000 URA-generated graphs,
k = 6, m = n = 12

Figure A14: Histogram of first
Betti numbers for N (G) for 2000
URA-generated graphs, k = 6,
m = n = 12
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Appendix B: Homotopy Type of M2(Gn) and BD(Gn).
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