
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Statistics Statistics

2020

MOMENT KERNELS FOR T-CENTRAL SUBSPACE MOMENT KERNELS FOR T-CENTRAL SUBSPACE

Weihang Ren
University of Kentucky, weihang.ren@gmail.com
Digital Object Identifier: https://doi.org/10.13023/etd.2020.252

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Ren, Weihang, "MOMENT KERNELS FOR T-CENTRAL SUBSPACE" (2020). Theses and Dissertations--
Statistics. 48.
https://uknowledge.uky.edu/statistics_etds/48

This Doctoral Dissertation is brought to you for free and open access by the Statistics at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Statistics by an authorized administrator of UKnowledge. For
more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/statistics_etds
https://uknowledge.uky.edu/statistics
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Weihang Ren, Student

Dr. Xiangrong Yin, Major Professor

Dr. Katherine Thompson, Director of Graduate Studies

MOMENT KERNELS FOR T -CENTRAL SUBSPACE

DISSERTATION

A dissertation submitted in partial fulfillment of
the requirements for the degree of Doctor of

Philosophy in the College of Arts and Sciences
at the University of Kentucky

By
Weihang Ren

Lexington, Kentucky

Directors: Dr. Xiangrong Yin, Professor of Statistics

Lexington, Kentucky

2020

Copyright c© Weihang Ren 2020

ABSTRACT OF DISSERTATION

MOMENT KERNELS FOR T -CENTRAL SUBSPACE

The T -central subspace allows one to perform sufficient dimension reduction for any
statistical functional of interest. We propose a general estimator using a third mo-
ment kernel to estimate the T -central subspace. In particular, in this dissertation we
develop sufficient dimension reduction methods for the central mean subspace via the
regression mean function and central subspace via Fourier transform, central quantile
subspace via quantile estimator and central expectile subsapce via expectile estima-
tor. Theoretical results are established and simulation studies show the advantages
of our proposed methods.

KEYWORDS: Central expectile subspace, Central mean subspace, Central quantile
subspace, Central subspace, Sufficient dimension reduction.

Weihang Ren

April 7, 2020

MOMENT KERNELS FOR T -CENTRAL SUBSPACE

By
Weihang Ren

Dr. Xiangrong Yin

Director of Dissertation

Dr. Katherine Thompson

Director of Graduate Studies

April 7, 2020
Date

I dedicate this dissertation to
my family and

my beloved wife, Xu
for their constant support and unconditional love.

I love you all dearly.

ACKNOWLEDGMENTS

I would like to express my gratitude to my Ph.D. advisor, Dr. Xiangrong Yin, for

his support and guidance on my research during this past five years. His technical

advise, valuable feedback and encouragement on statistic and life was essential to the

completion my graduate study and has taught me insights on the academic research

and life. My Ph.D. would not have been achievable without his assistance and exper-

tise. He’s the nicest advisor and one of the smartest person I know. I simply cannot

imagine a better advisor.

Furthermore, I want to thank the members of my Ph.D. committee, Dr. David

Fardo, Dr. Solomon Harrar, Dr. Arnold Stromberg, and Dr. Derek Young, for their

helpful career advice and suggestion in general.

Moreover, thanks to the University of Kentucky Statistics Department for provid-

ing me with a great learning/research platform and highly enjoyable five years, and

in particular, Dr. Arnold Stromberg for his generous support.

Last, but not least, I would like to thank my family. My parents, Chunping

and Yu, receive my deepest gratitude and love for their dedication and many years

of unconditional love and support. My wife, Xu, deserve special thanks for her

understanding and love during the past few years. Her support and encouragement

was in the end what made this dissertation possible.

This dissertation is supported in part by National Science Foundation grant (CIF-

1813330) awarded to Dr. Xiangrong Yin at University of Kentucky.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1
1.1 Sufficient Dimension Reduction . 1
1.2 Inference Targets in Sufficient Dimension Reduction 3
1.3 T -Central Subspace . 4
1.4 Methodologies in Sufficient Dimension Reduction 5
1.5 Overview of the Dissertation . 7

Chapter 2 Moment Kernels for Estimating Central Mean Subspace and Cen-
tral Subspace . 9

2.1 Introduction . 9
2.2 The Moment Kernels . 9
2.3 T -Central Subspace for Particular Functionals 13
2.4 Order Determination . 18
2.5 Variable Selection . 19
2.6 Simulations and Applications . 21
2.7 Discussion . 32

Chapter 3 Cubic Kernel Method for Implicit T -Central Subspace 33
3.1 Introduction . 33
3.2 Cubic Kernel for I-functional . 33
3.3 T -Central Subspace for Particular Functionals 40
3.4 Order Determination . 46
3.5 Asymptotic . 48
3.6 Simulations and Applications . 49
3.7 Real Data Analysis . 58
3.8 Discussion . 60

Chapter 4 Minimum Discrepancy Approach of Moment Kernels with Appli-
cations in T -Central Subspace . 62

4.1 Introduction . 62
4.2 Proposed Framework . 62
4.3 Computation Methods . 66
4.4 Order Determination . 69
4.5 Discussion and Future Work . 70

iv

Appendices . 71
A Chapter 2 Detailed Proofs for Proposition 2.1 and 2.2 71
B Chapter 3 Detailed Proof for Proposition 3.4 80
C Chapter 4 Detailed Proof for 4.1 . 82

Bibliography . 92

Vita . 99

v

LIST OF TABLES

2.1 Accuracy for Model (A) . 23
2.2 Accuracy for Model (B) . 24
2.3 Accuracy for Model (C) . 25
2.4 Comparison of Computation Time of rMave and CKM for Model (A) . . 25
2.5 Order Determination for Model (A) . 26
2.6 Order Determination for Model (B) . 27
2.7 Order Determination for Model (C) . 27
2.8 Variable Selection for Model (A) . 28
2.9 Variable Selection for Model (B) . 28
2.10 Variable Selection for Model (C) . 29
2.11 Sparse Variable Selection for Model (A) 29
2.12 Average Distance Using Bootstrap Sample 31
2.13 Variable Selection on Bootstrap Sample 31

3.1 Quantile Accuracy Comparison for Model (A) 51
3.2 Quantile Accuracy Comparison for Model (B) 52
3.3 Quantile Accuracy Comparison for Model (C) 52
3.4 Quantile Accuracy Comparison for Model (D) 52
3.5 Quantile Accuracy Comparison for Model (E) 53
3.6 Expectile Accuracy Comparison for Model (B) 54
3.7 Expectile Accuracy Comparison for Model (C) 54
3.8 Expectile Accuracy Comparison for Model (D) 55
3.9 Variable Selection Results for Model (A) 55
3.10 Variable Selection Results for Model (B) 56
3.11 Variable Selection Results for Model (C) 56
3.12 Variable Selection Results for Model (D) 56
3.13 Variable Selection Results for Model (E) 57
3.14 Variable Selection Results for Model (A)-(E) with n = 200, p = 1000 . . . 57
3.15 Model Accuracy for Real Data . 59
3.16 Variable Selection Results for Real Data 60

vi

LIST OF FIGURES

2.1 Simulation results for ∆F vs Number of ωs based on Model (C). 23
2.2 Summary Plot for Auto MPG Data . 30

3.1 0.25th-CQS for Return of Portfolio . 59

vii

Chapter 1 Introduction

In this chapter, we will review some basic concepts and main methodologies in Suffi-

cient Dimension Reduction.

1.1 Sufficient Dimension Reduction

With the increasing high demand for handling high dimensional data, Sufficient Di-

mension Reduction (SDR) has become a fast developing research field due to its wide

range of applications: data visualization; predictive modeling; machine learning, etc.

Similar to other dimension reduction methodologies, SDR aims to organize the high

dimensional variables so as to preserve the core information. With the purpose of

extracting all the information of understanding the response variable, SDR tries to

search for a few linear combination of the predictors such that there is no information

loss in conditional distribution while achieving a lower rank of the data. Sufficiency

is derived from conditional independence which is a core concept of describing all the

information needed to understand relationship between response and predictors.

SDR was introduced by Li (1991), Cook (1996). We use the following introduction.

Definition 1.1. Let X : ΩX → Rp be a Borel measurable random vector, Y : ΩY → R

be a Borel measurable random variable and PS : Rp → Rp be a linear operator with

P2
S = PS and 〈PSx1,x2〉 = 〈x1,PSx2〉 for ∀x1,x2 ∈ Rp such that PS project a p

dimensional vector to a d dimensional linear subspace (d ≤ p), S ⊆ Rp, with respect

to standard inner product. Sufficient dimension reduction (SDR) is concerned with

the situation where the distribution of Y depend on X only through a linear projection

of X. That is

Y X | PSX.

1

Following the definition of SDR, S is called sufficient dimension reduction subspace

(SDR subspace). However, it is worthwhile to point out that the SDR subspace, S,

is not uniquely defined, for example Rp itself will always be a trivial solution. There-

fore, it’s natural to consider the smallest S such that the conditional independence

condition holds. Yin, Li and Cook (2008) proved that as long as X was supported by

an M -set, then the intersection of two SDR subspaces would be an SDR subspace.

Definition 1.2. Let S be the collection of all SDR subspace

S = {S ⊆ Rp : Y X | PSX}.

We assume ∩{S : S ∈ S} ∈ S, then ∩{S : S ∈ S} is called central subspace (CS),

and denote as SY |X. The dimension of SY |X is called the structural dimension.

Cook (2007) showed that there were in fact two more equivalent ways to define the

SDR subspace other than Definition 1.1, which are given by the following proposition:

Proposition 1.1. Let X : ΩX → Rp be a Borel measurable random vector, Y : ΩY →

R be a Borel measurable random variable and S be a d dimensional subspace of Rp.

Then Y X | PSX if and only if one of the following two points holds:

1. Y | X is distributed as the same as Y | PSX,

2. X (Y,PSX) is distributed as the same as X PSX.

The proof of Proposition 1.1 could be found in Cook (2007). The implication of

Proposition 1.1 is interesting: it classifies and establishes three main approaches for

SDR. Methodologies derived from Definition 1.1 depends on the joint distribution of

(Y,X) so they are called the joint approach; methodologies derived from statement

1 in Proposition 1.1 correspond to forward regression which are named after forward

approach and the last statements will lead to a class of methods that named as the

inverse approach.

2

1.2 Inference Targets in Sufficient Dimension Reduction

CS is a target for analysis as it’s the smallest subspace of Rp which contains all

the information between Y and X. However, with the goal of analysis was set to

infer about the regression function, which is known as the conditional expectation

E(Y | X), a different subject may be of more interests. Instead of studying CS,

which capture all the information in the conditional distribution of PY |X, central mean

subspace (CMS), introduced by Cook and Li (2002) that only captures information

in the conditional expectation itself is more of one’s interest. The definition of CMS

is also given similarly based on the statement of independence.

Definition 1.3. Let X : ΩX → Rp be a Borel measurable random vector, Y : ΩY → R

be a Borel measurable random variable and PS be the projection operator to S, where

S is a d dimensional linear subspace with d ≤ p. Central mean subspace (CMS),

written as SE(Y |X), is defined as

SE(Y |X) = ∩{S ⊆ Rp : Y E(Y | X) | PSX}

= ∩{S ⊆ Rp : E(Y | X) = E(Y | PSX)}.

The SE(Y |X) is more preferable than SY |X in some of the application such as

nonparametric regression, single index model or multi-index model, because SY |X in

these cases contains possible redundant information and SE(Y |X) could achieve greater

data reduction, which generates the most parsimonious results.

In other applications, where the people interest in other aspects of the conditional

distribution rather than the conditional expectation. Similar targets could be con-

structed to achieve the greatest reduction in terms of the dimension. Examples are:

central k-th moment subspace from Yin and Cook (2002); central variance subspace

from Zhu and Zhu (2009) and central quantile subspace from Kong and Xia (2012).

Luo, Li and Yin (2014) proposed a more general framework which unified the above

3

approaches by noticing that E(Y | X), Var(Y | X) and Qτ (Y | X) are all conditional

statistical functionals of the conditional distribution PY |X, where Qτ (·) represents the

τ -th quantile of a given distribution. They introduced the idea of T -central subspace,

with T stands for any conditional statistical functional of interest. The following

sections will provide definition and discussion in greater detail.

1.3 T -Central Subspace

Let (ΩX,FX, PX) and (ΩY ,FY , PY) be two probability spaces, with ΩX ∈ Rp and

ΩY ∈ R1, FX and FY are the corresponding σ-algebra for each probability space, PX

and PY are the corresponding probability measure which are absolutely continuous

with respect to some σ-finite measure µX and µY . Moreover, let (X, Y) be the random

vector taken value in (ΩX × ΩY ,FX × FY , PX × PY), with density fXY with respect

to µX × µY . Let G be the family of such density and furthermore, we assume that

this is a semiparametric family i.e. there exist Θ ⊂ Rr and a family F of functions

f : ΩX × ΩY × Θ → R1 such that G = ∪{Gθ, θ ∈ Θ} where Gθ = {f(·, ·, θ), f ∈ F}.

Moreover, if we let fX be the derivative of PX with respect to µX, then f(x, y, θ) =

fX(x)η(x, y, θ). That is, η(x, y, θ) is the conditional density of Y given X containing

all the information of θ.

Now let

GY |X = {η(·, ·, ·) : f(·, ·, ·) ∈ F},GX = {fX(·) : f(·, ·, ·) ∈ F}

We assume that G contains the true density of (X, Y). That is, there exist θ0 ∈ Θ,

fX0 ∈ GX, and η0 ∈ GY |X such that, f0 = fX0η0 is the true density of (X, Y).

Let GY |X = {η(·, ·, ·) : f(·, ·, ·) ∈ F}, and let H be a class of densities with respect

to µY that contains all η(x, ·, θ) for η ∈ GY |X, θ ∈ Θ and x ∈ ΩX.

4

Definition 1.4. Let T : H → R1 be the statistical functional then it induces a random

variable on ΩX as

x 7→ T (η(x, ·, θ)).

If there is a matrix γ ∈ Rp×d, with d ≤ p, such that T (η0(X, ·, θ0)) is measurable with

respect to σ(γTX), then we call S(γ) a sufficient dimension reduction subspace for

T . The intersection of all such spaces is called the central subspace for conditional

functional T , or the T -central subspace. We denote the T -central subspace by ST (Y |X).

Luo, Li and Yin (2014) developed their semiparametric estimator by further cate-

gorized the conditional statistical functional into three categories: the linear function-

als (L-functional), such as conditional means as conditional moments; the composite

functionals (C-functional) such as conditional variance; the implicit funcitonals (I-

functional) such as conditional quantile and conditional expectile. We will closely

follow their discussion in further development.

The T -central subspace is invariant under affine transformation (Luo, Li and Yin

2014). That is, let Z = ΣX
−1/2(X − E(X)), where ΣX stands for the covariance

matrix of X. Then ST (Y |Z) = ΣX
1/2ST (Y |X). Hence, the T -central subspaces under

Z-scale and X-scale are equivalent. We will work mainly with Z as the standardized

version of X without loss of generality.

1.4 Methodologies in Sufficient Dimension Reduction

Section 1.1 introduced a proposition that classified the methodologies of SDR into

three categories. And Section 1.2 further introduced some of the targets of interests

in SDR. In this section, we are going to review some of the popular methodologies

in SDR based on the former approach. However, these categories are not mutually

exclusive, i.e. some of the methods will not strictly fall into one category. So the first

approach here is just used as a guideline for the literature review.

5

There has been many existing methods over the past decades in sufficient dimen-

sion reduction, which could be typically classified into three categories: inverse, for-

ward and joint approach. Famous representatives of inverse approach include Sliced

Inverse Regression (SIR; Li 1991) which estimated the inverse moment by slicing;

Sliced Average Variance Estimation (Cook and Weisberg 1991) locally estimated the

conditional variance instead; Inverse Third Moment Estimator (Yin and Cook 2003)

which targeted on even higher moments and Inverse Regression Estimator (IRE; Cook

and Ni 2005) based on minimum discrepancy approach to improve the inverse ap-

proaches that depend on slicing. Fused method (Cook and Zhang 2014) provided

solution to the slice issue. A more general inverse approach include Contour Regres-

sion (CR; Li et al. 2005) which used a small variation of the response; Directional

Regression (DR; Li and Wang 2007) which depended on inverse second moment and

likelihood based approach (LAD; Cook and Forzani 2009). These methods depend on

singular value decomposition and hence run fast, but they typically require linear con-

dition and constant variance condition on the predictors so as to avoid conditioning

on high dimensional variable.

In joint approach, famous examples include principal Hessian direction (pHd; Li

1992; Cook 1998); Iterative Hessian Direction (IHT; Cook and Li 2002); Joint higher

moments methods (Yin and Cook 2004); Kullback-Leibler Distance based Method

(Yin et al. 2008); Fourier Transformation approach (Zhu and Zeng 2006; Zeng 2008)

and correlation approaching (Fukumizu et al. 2004, 2009).

Forward approach includes several outstanding semiparametric and nonparamet-

ric methods, and hence mitigate the condition put on predictors. A series of work

were focusing on semiparametric methods, such as Ma and Zhu (2012; 2013a; 2013b)

used semiparametric theory to establish an efficient estimator for central subspace;

(Luo and Li 2014) developed one step estimator for T -central subspace. For non-

parametric methods, Outer Product Gradient (OPG; Xia et al. 2002) and Minimum

6

Average Variance Estimator (MAVE; Xia et al. 2002) that utilized local polynomial

approximation to estimate CMS perhaps are the most famous among them. Other

derived methods include: Density MAVE (Xia 2007) targeting conditional density;

Slice Regression (Wang and Xia 2008) using indicator function and Family of MAVE

(Yin and Li 2011) estimating CS rather than CMS exhaustively. Different from in-

verse approach, these methods typically do not have strong assumption on predictors,

but have to deal with the issue of conditioning on high dimensional predictors which

slows down the estimation dramatically.

Our proposed method belongs to the last category. By imposing several conditions

on X, we are able to get away with the issue of conditioning on high dimensional vari-

able. And we provide a rather robust estimator by employing the regression fit as well

as maintaining a fast computation speed by applying singular value decomposition.

1.5 Overview of the Dissertation

Throughout this dissertation, we will be mainly focusing on the development of a

novel estimator for the T -central subspace, named as cubic kernel estimator (CK). In

Chapter 2, we will develop the CK estimator mainly for L-funcitonals. In particular,

method for CMS will be developed through conditional expectation and CS will be

developed through conditional Fourier transformation. In Chapter 3, development

will be focused on I-funcitonals with emphasis on conditional quantile and conditional

expectile. Moreover, we will propose some variable selection procedure that could be

applied to our method. Simulation results for our CK estimator will be given in the

relevant sections to study the advantage and disadvantage of our method. In Chapter

4, we will look at our estimators from a new perspective and provide an approach

that could improve the performance. Other future developments will be discussed as

well.

7

Copyright c© Weihang Ren, 2020.

8

Chapter 2 Moment Kernels for Estimating Central Mean Subspace and

Central Subspace

2.1 Introduction

Since Li (1991), there has been considerable interests in concentrating regression in-

formation about a response Y ∈ R in a low-dimensional projection of the random

predictor X ∈ Rp without loss of the regression information. Reducing the dimen-

sionality of the predictor could be quite useful in building a better model, especially

when the dimension of X is high. What constitutes a high-dimensional predictor de-

pends on the goal of the analysis. When a comprehensive low-dimensional graphical

display is desired, high dimension might mean p > 3. Or it could mean p in the

tens or hundreds, as in contemporary vernacular. In this chapter, we will propose a

new estimator based on the moment kernels to estimate T -central subspace, targeting

L-functionals.

The rest of this chapter is organized as follow: Section 2.2 provides a general

theory for our proposed method. Section 2.3 further develops our method for two

specific functionals: CMS and CS. Section 2.4 explains a method of order determina-

tion. Section 2.5 proposes a variable selection procedure for our method. Section 2.6

demonstrates the advantages of our estimator via simulation example and real data

analysis.

2.2 The Moment Kernels

The foundation of our approach rests on a loss function of the form

L(K(Z), T (Y)) = −T (Y)K(Z) + φ(K(Z)),

9

where φ is a convex function and T is a transformation on the response that leads to

the L-functional T . Thus, the loss function is convex in K(Z). Objective functions of

this form correspond to natural exponential families and cover the early work by Li

and Duan (1989) on ordinary least squares (OLS) and Cook and Li (2002) on mean

functions that are quadratic in Z.

Suppose that a ∈ R1 and b ∈ Rp. Let C be a p× p symmetric matrix, and let D

be a p × p × p array with k-th face Dk = (dijk), i, j, k = 1 . . . , p. We constrain the

Dk to be symmetric and the dijk to be invariant under permutations of its index ijk.

We may also treat D as a p2 × p matrix.

Consider now a fit of the cubic kernel K(Z) = a + b′Z + Z′CZ + (Z′ ⊗ Z′)DZ,

and define the objective function as the following risk:

R(a,b,C,D) = E(L(a+ b′Z + Z′CZ + (Z′ ⊗ Z′)DZ, T (Y))).

Many regression functions are smooth, and so can be approximated by polyno-

mials of different order. For example, OLS could be seen as a first-order polynomial

approximation. However, lower-order approximation typically has trouble capturing

useful directions: OLS fails to capture symmetric pattern while second-order polyno-

mial models are reluctant to pick up the linear trend. In regression, traditionally a

suggestion on using third-polynomial model is a good approximation, in addition to

its interpretability. However, fitting a third-polynomial may be difficult even if p is

moderate. For instance, the number of parameter for fitting a third-order polynomial

is (p+ 1)(1 + p
2

+ p(p+2)
6

). That is, for instance, when n = 100, p = 10, the model has

286 parameters, causing much trouble to fit a model.

Our goal is to construct a simple cubic kernel that could easily capture all impor-

10

tant directions. Let

βTZ = E(T (Y)Z), ΣTZZ = E[{T (Y)− E(T (Y))}ZZ′],

MTZZZ = E{T (Y)− E(T (Y))}Z⊗ ZZ′ − E(T (Y)Z)⊗ I

− I ⊗ E(T (Y)Z)− vec(I)E(T (Y)Z)′

where βTZ represents population OLS slope estimate for regression of T (Y) on Z,

ΣTZZ represents the population kernel for principal Hessian directions,MTZZZ is the

kernel for third moment (Yin and Cook 2004).

The toy example next gives a clear message: Consider Y = X1+X3
2 +X5

3 +ε, where

X1, X2, X3, ε ∼ N(0, 1) and jointly independent. In this case SE(Y |Z) = R3. With

T (Y) = Y , it is straight forward to verify that βTX = (1, 3, 15)′ and ΣTZZ = 03×3.

And

M′
TZZZ =


3 3 15 3 3 0 15 0 3

3 3 0 3 15 15 0 15 3

15 0 3 0 15 15 3 15 105


The true underlying model in this example is a polynomial of fifth-order, therefore,

we do expect some failure in the lower order kernels: linear kernel is only picking one

direction while the quadratic kernel fails to recover any direction. The cubic kernel in

this case works as expected, successfully recovering the higher order term. In general

we believe, if a smooth function can only be approximated well by an order higher

than 3, then those directions still can be highly correlated with the first three lower

orders. Thus, the model fitting may not be correct, but the full set of directions will

be captured. The use of the objective function does not imply the cubic is a true

model or is a good approximation of the data. However, the minimization problem

does provide a connection between the solution and ST (Y |Z) as shown in the following

result.

Proposition 2.1. Let α,β,Γ,∆ = arg mina,b,C,D R(a,b,C,D). Let ST (Y |Z) have

11

basis matrix γ, i.e. S(γ) = ST (Y |Z). Assume that E(Z | γ ′Z) is linear, Var(Z | γ ′Z)

is constant and M(3)(Z | γ ′Z) = 0, where M(3)(Z | γ ′Z) = E(Z⊗ ZZ′ | γ ′Z). Then

S(β,Γ,∆′) ⊆ ST (Y |Z).

Proposition 2.1 reveals that the column space spanned by population minimizer,

S(β,Γ,∆′), lies in ST (Y |Z), the desired T -central subspace. However, as mentioned

earlier, in practice, it would be rather difficult to directly solve the optimization

problem, which makes this proposition seems less practical.

The result next establishing a link between the minimizer and our kernels provides

a further connection that may lead to relatively easy computational algorithm. Let

α be a basis for S(βTZ,ΣTZZ,M′
TZZZ).

Proposition 2.2. If E(Z | α′Z) is linear, Var(Z | α′Z) is constant and M(3)(Z |

α′Z) = 0, then

S(β,Γ,∆′) ⊆ S(βTZ,ΣTZZ,M′
TZZZ).

If, in addition, E(Z | γ ′Z) is linear, Var(Z | γ ′Z) is constant and M(3)(Z | γ ′Z) = 0,

then

S(β,Γ,∆′) ⊆ S(βTZ,ΣTZZ,M′
TZZZ) ⊆ ST (Y |Z).

Proposition 2.2 requires three mild conditions on α′Z. However, it conveys an

important message that the column space spanned by the population minimizer,

S(β,Γ,∆′), provides information no more than the space spanned by columns of the

kernels, S(βTZ,ΣTZZ,M′
TZZZ). This information is valuable: we can rely on these

kernels to recover the directions rather than focusing on solving the optimization

problem.

12

2.3 T -Central Subspace for Particular Functionals

In this section, we develop two estimators for CMS and CS by using the mean func-

tional and the functional induced by Fourier transformation.

Central Mean Subspace

Studying the conditional mean E(Y | Z) via SE(Y |Z), is the first and perhaps the

most important step in regression. In such a case, T (Y) = Y . Many methods have

been proposed for study of the conditional mean, such as OLS (Li and Duan 1989),

principal Hessian direction (Li 1992, Cook 1998), Iterative Hessian Transformation

(Cook and Li 2002), Higher Moment Methods (Yin and Cook 2004), and rMAVE

(Xia et al. 2002). It is well-known that OLS fails to pick up the symmetric patterns,

while pHd is weak at detecting linear trends. However, Proposition 2.2 suggests

a high-order kernel that can use linear kernel, quadratic kernel and third moment

kernel in a concert. Such a combination mitigates the drawbacks of using individual

kernel separately, and thus results in an overall advantage as we illustrated in the

toy example. Nevertheless, each individual kernel may have different importance in

the model. To overcome this, we will fit a cubic model to find the weight for each

individual kernel. Thus, the combined space S(βY Z,ΣY ZZ,M′
Y ZZZ) is indeed very

useful. Therefore, we call it generally the cubic kernel (CK) method and, in particular,

we call it the cubic kernel for mean (CKM) for the central mean subspace.

The estimation of βY Z,ΣY ZZ,MY ZZZ can be done consistently by substituting

sample moments. However, there are still several caveats for implementing these

moment methods.

1. Yin and Cook (2003) pointed out that the three dimensional array can be

written as a p2 × p matrix, where this matrix can be considered as a col-

umn of p blocks with each block being a p × p matrix. However, this p2 × p

13

matrix contains only p(p+1)
2

unique ones. We then construct a new unique

kernel matrix, (M̃′
Y ZZZ)

p× p(p+1)
2

by removing the repeated columns, so that

S(M′
Y ZZZ) = S(M̃′

Y ZZZ).

2. Due to correlations among the linear, quadratic and third moment kernels, when

constructing the CK estimator, we may use the residuals instead of the original

response. To be more specific, take r1 = Y − a1 − b1Z
′βY Z, with a1, b1 ∈ R

being the OLS coefficients of Y on (1,Z′βY Z), then construct

Σr1ZZ = E(r1ZZ).

Take r2 = Y − a2 − b2Z
′βY Z − c2Z

′Σr1ZZZ, with a2, b2, c2 ∈ R being the OLS

coefficients of Y on (1,Z′βY Z,Z
′Σr1ZZZ) and construct

Mr2ZZZ = E(r2Z⊗ ZZ′)− E(r2Z)⊗ I − I ⊗ E(r2Z)− vec(I)E(r2Z)′

to eliminate possible bias. This idea is very much similar to the residual based

pHd (Li 1992), where the residuals from OLS is removed to improve the results,

A trivial generalization of propositions 3 and 4 in Yin and Cook (2004) shows

S(M′
r2ZZZ) ⊆ SE(Y |Z).

We are now ready to provide the details of our algorithm for CKM.

Algorithm for CMS: Let {Xi, Yi}, i = 1, 2, · · · , n be an i.i.d sample, and assume

that the structural dimension d for the CMS is known. Then

1. Standardize the predictor Ẑi = Σ̂
−1/2
X (Xi − X̄), for i = 1 · · · , n.

2. Construct kernel matrices:

β̂Y Z =
1

n

n∑
i=1

ẐiYi, Σ̂r1ZZ =
1

n

n∑
i=1

r̂1iẐiẐ
′
i,

14

where r̂1i is the estimated version of r1 for ith observation.

3. Construct M̂r2ZZZ and ˆ̃Mr2ZZZ. First we construct p2 vectors for j, k =

1, · · · , p:

m̂jk =
1

n

n∑
i=1

r̂2iẐi(e
′
jẐi)(e

′
kẐi)

− 1

n

n∑
i=1

r̂2i(e
′
kẐi)ej −

1

n

n∑
i=1

r̂2i(e
′
jẐi)ek −

1

n

n∑
i=1

r̂2i(e
′
jek)Ẑi,

where ei is a unit vector with ith element 1 and r̂2i is ith element in the residual

vector r̂2. Let M̂′
r2ZZZ = (m̂11, · · · , m̂pp), which is a p× p2 matrix. Then take

m̂jk with j ≥ k and let ˆ̃M′
r2ZZZ = (m̂11, m̂21, · · · , m̂pp), which is a p × p(p+1)

2

matrix consisting of all the unique columns for M̂′
r2ZZZ.

4. Construct S = (1, S1, S2, S3)′, with S1i = Ẑ′iβ̂Y Z, S2i = Ẑ′iΣ̂r1ZZẐi and S3i =

Ẑ′i⊗ Ẑ′iM̂r2ZZZẐi. Find the OLS fit of Y on S and denote the fitted coefficient

as ŵ = (ŵ0, ŵ1, ŵ2, ŵ3)′.

5. Construct M̂ = ŵ2
1β̂Y Zβ̂

′
TZ + ŵ2

2Σ̂r1ZZΣ̂′r1ZZ + ŵ2
3

ˆ̃M′
r2ZZZ

ˆ̃Mr2ZZZ, where ŵ′is

are obtained in step 4. Perform the eigen decomposition on M̂, our estimator

for the central mean subspace is given by

S(Σ̂
−1/2
X û1, Σ̂

−1/2
X û2, · · · , Σ̂−1/2

X ûd),

where ûi, i = 1 · · · d are the eigenvectors corresponding to the first d eigenvalues

of M̂.

Note that the weights ŵ′is in step 4 are a key component of the CK estimator: They

adapt the importance of the individual kernels, (β̂TZ, Σ̂TZZ,M̂TZZZ) in M̂. There-

fore, bigger values of ŵ′is will indicate that the corresponding kernel is more important.

15

Central Subspace

To estimate CS, we use CK approach via Fourier transformation. Fourier transfor-

mation was used by Zhu and Zeng (2006), Zhu, Zhu and Wen (2010), Weng and Yin

(2018) in sufficient dimension reduction. We study the conditional distribution of

Y | Z through the conditional characteristic function, E(exp(iωY) | Z), for ω ∈ R,

which leads to investigate (Z, exp(iω′Y)) for each ω in the regression mean. For ease

of discussion, we only discuss the univariate response Y here.

Yin and Li (2011) had a thorough discussion on the characteristic function. That

is, F = {exp(iωY), ω ∈ R} is a family of functions that is dense in L2(F). In addition,

their Theorem 2.1 indicates that the union of all directions in each of E(exp(iωY) | Z)

recovers the central subspace and their Theorem 2.2 suggests a finite number of ω’s

would be suffice to recover the central subspace. Combining these with CKM algo-

rithm leads to our new algorithm that we call the cubic kernel for Fourier transfor-

mation (CKF).

Algorithm for CS: Let {Xi, Yi}, i = 1, 2, · · · , n be i.i.d sample. Assuming structural

dimension of CS, d, is known.

1. Standardize the predictor Ẑi = Σ̂
−1/2
X (Xi − X̄), for i = 1 · · · , n.

2. Fix an integer H and a small number s, say 0.1, and generate H random

variables ωi from N(0, sπ2

median(Y 2)
). Then construct 2H n × 1 vectors Sij =

(Sij1, Sij2, . . . , Sijn)′, i = 1, 2; j = 1, . . . , H, where S1jk = cos(ωjYk) and S2jk =

sin(ωjYk) for k = 1, 2, . . . , n.

3. For each ij, treat Sij as a response vector and apply the CKM algorithm to

determine the kernel matrices i.e. M̂ij.

4. Construct M̂ =
∑2

i

∑H
j M̂ij. Perform the eigen decomposition on M̂, our

16

estimator for CS is given by

S(Σ̂
−1/2
X û1, Σ̂

−1/2
X û2, · · · , Σ̂−1/2

X ûd),

where ûi, i = 1 · · · d are the eigenvectors corresponding to the first d eigenvalues

of M̂.

In the following we describe our rational for generating the ω’s as described in step

2. Zhu, Zhu and Wen (2010) suggested a criterion based on the periodicity of Fourier

transformation, i.e. exp(iωY) = exp(i(ωY + 2π)), form ω ∼ N(0, σ2), and they

suggested |ωY | < π with high probability i.e. P (|ωY | > π) < s, where s is a small

number. Then applying Chebyshev’s inequality leads to the upper bound sπ2

E(Y 2)
on the

variance of ω. However, Durrett (2010) pointed out that Chebyshev’s inequality could

be too loose, especially when it is applied to the tail probability of a distribution. If

this is the case, problems may arise as the upper bound for the variance of ω would

be relatively small, limiting the variation of ω and, in consequence, resulting in bad

estimate. We suggest using sπ2

median(Y 2)
in place of sπ2

E(Y 2)
, a modification that in our

experience performs well in practice. On the other hand, the number of ω’s from 20

to 100 result in quite robust estimates based on our limited simulations. Thus, we

use 50 for the number of ω’s as the rule of thumb.

It is conceptually straightforward to establish asymptotic properties of our pro-

posals, though details could be tedious at times. Here, we provide a brief sketch

of an argument to show that our methods provided root n consistent estimator for

the central mean subspace and central subspace when their dimensions are known.

For CKM, because β̂TZ, Σ̂TZZ and M̂TZZZ are method of moments estimators, and

hence are
√
n-consistent. Let B̂ be a sample version of B = (βTZ,ΣTZZ,M′

TZZZ),

then its projection operator B̂(B̂′B̂)−1B̂′ is a smooth function of β̂TZ, Σ̂TZZ and

M̂TZZZ, involving only
√
n-consistent estimator of B(B′B)−1B′. As a consequence,

17

the estimated projection operator is indeed
√
n consistent for the respective popula-

tion projection operator, hence for ST (Y |X). For CKF estimator on CS, asymptotic

properties can by established based on Theorem 3.2 of Li, Wen and Zhu (2008) under

some mild conditions, which are easily satisfied since M̂ij is
√
n-consistent.

2.4 Order Determination

Practically, the structural dimension, d, needs to be estimated. Many methods are

available for order determination, including BIC-type criteria (Zhu and Zeng 2006)

and a bootstrap approach (Ye and Weiss 2003). For our cubic kernel method, we

adapt the ladle estimator (Luo and Li 2016) to estimate d.

The basic idea of the ladle plot is the following: for each possible working dimen-

sion 1 ≤ k ≤ p−1, we construct an estimated basis M̂k for the subspace of dimension

k using our CK method. Then we take bootstrap sample of size B, and for each boot-

strap sample, we obtain the corresponding estimated basis matrix M̂b
k, b = 1, · · · , B.

Define functions u(k), v(k), w(k) : {0, 1, · · · , p− 1} 7→ R, w(k) = u(k) + v(k), with

u(k) =
λ̂k+1

1 +
∑p−1

i=0 λ̂i+1

, v(k) =


0 if k = 0

B−1
∑B
b=1(1−| det(M̂′kM̂

b
k)|)

1+B−1
∑p−1
i=1

∑B
b=1(1−| det(M̂′iM̂

b
i)|

if k = 1, · · · , p− 1

where λ̂i denotes the ith largest eigenvalue of the basis matrix M̂p, and u(·) represents

a normalization of these eigenvalues. In v(·), 1−| det(M̂′
kM̂

b
k)| describes the discrep-

ancy between the sample estimate M̂k and the bootstrap estimate M̂ b
k. Therefore

the numerator of v(·), which is the bootstrap sample average of above discrepancy

measure, could be seen as the variability of bootstrap estimates around the sample

estimate. The denominator of v(·) is for normalization. The estimated d is the value

of k that minimizes the target function w(·).

18

2.5 Variable Selection

Reducing dimension by linear combination is very useful, especially for the prediction,

as once it is reduced to a small number of dimensions, many traditional methods can

be applied to the reduced variables. However, it is often difficult to interpret the

results, in particular, the reduced dimensions involve all the original variables. In

some cases, one may want to make decision based on a few relevant predictors rather

than all of them. In this section, we discuss how to perform variable selection base

on CK method.

Large n small p

Li (2007) formulated a generalized eigen-decomposition problem in a regression frame-

work with penalization. Chen, Zou and Cook (2010) proposed coordinate-independent

sparse estimation (CISE) by introducing a coordinate-independent penalty function.

We adapt the CISE procedure for our CK method.

Let M
1
2 = (m1,m2, · · · ,mp), where M could be the CK kernel matrix given in

step 5 of the CMS algorithm or step 4 of the CS algorithm. Let Γ = (γ1, γ2, · · · , γp)′

be any p × d matrix with Γ′ΣXΓ = Id, note γ′i, i = 1, 2, · · · , p represent the rows of

Γ. Then the CISE for CK could be obtained by solving the following optimization

problem:

Minimize:

p∑
i=1

‖Σ−1
X mi − ΓΓ′mi‖2

ΣX
+ θi‖γi‖ subject to Γ′ΣXΓ = Id.

Here ‖·‖ΣX
denotes the norm with respect to ΣX, ‖·‖ denotes the norm in Euclidean

space and θi, i = 1, 2, · · · , p denote the tunning parameters. Based on proposition 2

of Chen, Zou and Cook (2010), this can be reparametrized as a Grassmann manifold

optimization problem and the nondifferentiability of the penalty term is addressed

19

by local quadratic approximation, so as to minimize

tr(Γ′(−Gn +
1

2
Σ̂
−1/2
X D(0)Σ̂

−1/2
X)Γ)

with D(0) = diag(θ1

‖(Σ̂−1/2
X)′1Γ(0)‖

, θ2

‖(Σ̂−1/2
X)′2Γ(0)‖

, · · · , θp

‖(Σ̂−1/2
X)′pΓ(0)‖

), where (·)′i denotes the

ith row vector of a matrix, and Γ(0) being the initial value. This optimization prob-

lem can be easily solved by eigenvalue decomposition of Gn − 1
2
Σ̂
−1/2
X D(0)Σ̂

−1/2
X and

picking the first d principal components as the columns of Γ(1). Then repeat the pro-

cedure until it converges. Following the discussion in their paper, selection of tuning

parameter is done adaptively using AIC-type or BIC-type criteria. We name such a

procedure as CISE-CK.

Large p small n

When predictor has an ultra-high dimensions, i.e., p >> n, we add a variable screen-

ing procedure. There are many methods since Fan and Lv (2008) proposed their sure

independence screening procedure (SIS). For instance, the procedure by Li, Zhong

and Zhu (2012) who introduced DC-SIS via the distance correlation (DC; Székely,

Rizzo and Bakiro 2007). Recently, the SIS approach was improved by a new suffi-

cient variable selection procedure that was proposed by Yang, Yin and Zhang (2019).

They described three algorithms, marginal screening (MS), one stage variable selec-

tion (SV S1) and two stage variable selection (SV S2), where MS approach is the SIS

procedure. We incorporated these three algorithms of Yang, Yin and Zhang (2019)

into our CK method for ultra-dimensional data analysis. For clarity, we detailed one

of such an algorithms below, see Yang, Yin and Zhang (2019) for more details.

Algorithm for One Stage Variable Selection: Let {Xi, Yi}, i = 1, 2, · · · , n

be i.i.d sample.

1. Let r̂j = D̂C
2
(Xj, Y) for j = 1, · · · , p.

20

2. Let r̂−j = D̂C
2
(Xj, (X

′
−j, Y)′) for j = 1, · · · , p, where X−j denote the vector

removing j’s element.

3. Define p̂ = b n
logn
c. Select Xjs correspond to the p̂1 = b0.95p̂c largest r̂j values,

as well as p̂2 = b0.05p̂c largest r̂−j values that has not been selected. Denote

the reduced the sample as {X∗i , Yi}, i = 1, 2, · · · , n.

4. Perform CISE-CK to {X∗i , Yi}, i = 1, 2, · · · , n.

Note that the two sufficient variable screening procedures (SV S1, SV S2) of Yang,

Yin and Zhang (2019) was based on two sequential sufficient dimension reduction

procedures proposed by Yin and Hilafu (2015). We can further use their two sufficient

dimension reduction procedures combining the projective resampling idea developed

by Li, Wen and Zhu (2008) for CK approach as well.

2.6 Simulations and Applications

In this section, we compare the performance of the cubic kernel methods CKM and

CKF with the well-known sufficient dimension reduction methods SIR, SAVE, pHd,

IHT, PFC, DR, and rMAVE. We conducted simulations to show the usefulness of ladle

estimator on cubic kernels for the order determination. For accuracy comparison,

we used the distance of Li, Zha and Chairomonte (2005) between two subspaces of

Rp: Let S1 and S2 be two subspaces of Rp, and PS1 and PS2 be the corresponding

orthogonal projection, respectively. Let

∆F = ‖PS1 −PS2‖F ,

where ‖·‖F is the Frobenius norm. The smaller the ∆F is, the closer the two subspaces

are to each other.

21

Comparison of the Model accuracy

Define the p × 1 vectors β1 = (1, 1, 1, 0, · · · , 0)′, β2 = (1, 0, 0, 0, 1, 3, 0, · · · , 0)′, β3 =

(1, 0, · · · , 0)′, β4 = (0, 1, 0, · · · , 0)′, and β5 = (1, 0.5, 1, 0, · · · , 0)′. Let ε ∼ N(0, In)

that is independent of X. The simulation was conducted to make comparison for

combinations of the following configurations: n = 100, 200, 400, p = 10, 15, 20, 60,

using N = 200 replicated datasets. On each generated dataset, we applied different

methods and computed the distance ∆F between these estimates and the true central

mean subspace or the true central subspace. Then we calculate the average and

standard error from the resulting N distances. The simulated three models are:

(A) Y = 0.4(β′1X)2 + 3 sin(β′2X/4) + 0.2ε. This was mentioned in Li (2007). The

CMS is S(β1, β2). The first term in the model is symmetric about 0, so SIR

may fail to estimate this direction but not for SAVE, pHd and IHT. The second

term is roughly monotone, so SIR may recover it.

(B) Y = cos(2β′3X)− cos(β′4X) + 0.5ε. The CMS is S(β3, β4). The model, which

was used by Li (1992), tends to have a symmetric pattern. SIR may fail to

estimate both directions, but not for SAVE, pHd and IHT. We will use Model

(A) and (B) to demonstrate the efficacy of CKM

(C) Y = 0.1(β′5X)− exp(β′5X)ε. The CS for this model is S(β5). Methods target-

ing the CMS were removed from comparison while methods targeting the CS

such as csOPG and SR (Wang and Xia 2008) were added for comparison. Both

terms are monotone, so it is to the advantage of SIR. And we will illustrate the

efficacy of CKF.

For each model, we consider two different simulation setups for X. The first setup

is X ∼ N(0, Ip), so that this is an elliptic contour distribution while the other setup is

X+2
5
∼ Beta(0.75, 1) so that the linearity condition is violated. In these simulations,

22

0 50 100 150 200

0.
25

0.
30

0.
35

0.
40

p = 10

Number of ω s

∆ F

0 50 100 150 200

0.
30

0.
35

0.
40

0.
45

0.
50

p = 15

Number of ω s

∆ F

0 50 100 150 200

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

p = 20

Number of ω s

∆ F

Figure 2.1: Simulation results for ∆F vs Number of ωs based on Model (C).

Table 2.1: Accuracy for Model (A)

Normal Non-normal

p=10 p=20 p=60 p=10 p=20 p=60

n=200
RND 1.770 (0.132) 1.909 (0.059) 1.967 (0.019) 1.770 (0.132) 1.909 (0.059) 1.967 (0.019)
SIR 1.298 (0.169) 1.410 (0.062) 1.551 (0.048) 1.078 (0.272) 1.287 (0.156) 1.599 (0.071)
PFC 1.0613 (0.271) 1.203 (0.191) 1.509 (0.087) 1.8372 (0.218) 1.000 (0.200) 1.553 (0.106)
SAVE 0.759 (0.300) 1.523 (0.124) 1.867 (0.085) 0.937 (0.313) 1.512 (0.088) 1.876 (0.097)
pHd 1.361 (0.094) 1.455 (0.064) 1.762 (0.053) 1.369 (0.089) 1.457 (0.045) 1.768 (0.064)
IHT 1.238 (0.122) 1.235 (0.117) 1.462 (0.117) 1.345 (0.107) 1.380 (0.113) 1.575 (0.076)
DR 0.553 (0.109) 0.903 (0.181) 1.582 (0.088) 0.590 (0.125) 0.997 (0.186) 1.634 (0.128)
rMAVE 0.136 (0.029) 0.220 (0.033) 0.958 (0.193) 0.200 (0.038) 0.337 (0.059) 1.291 (0.198)
CKM 0.448 (0.096) 0.709 (0.113) 1.361 (0.101) 0.549 (0.141) 0.851 (0.130) 1.552 (0.114)

n=400
RND 1.770 (0.132) 1.909 (0.059) 1.967 (0.019) 1.770 (0.132) 1.909 (0.059) 1.967 (0.019)
SIR 1.224 (0.169) 1.341 (0.156) 1.459 (0.039) 0.856 (0.288) 1.012 (0.186) 1.381 (0.124)
PFC 0.933 (0.302) 1.089 (0.238) 1.398 (0.097) 0.600 (0.156) 0.744 (0.161) 1.275 (0.115)
SAVE 0.359 (0.073) 0.669 (0.117) 1.696 (0.062) 0.456 (0.084) 1.045 (0.271) 1.657 (0.093)
pHd 1.326 (0.098) 1.399 (0.074) 1.587 (0.045) 1.395 (0.036) 1.432 (0.027) 1.582 (0.031)
IHT 1.167 (0.143) 1.190 (0.147) 1.374 (0.107) 1.335 (0.082) 1.371 (0.066) 1.450 (0.122)
DR 0.371 (0.069) 0.566 (0.079) 1.148 (0.098) 0.388 (0.086) 0.625 (0.089) 1.177 (0.093)
rMAVE 0.077 (0.013) 0.124 (0.016) 0.498 (0.050) 0.125 (0.028) 0.186 (0.029) 0.707 (0.072)
CKM 0.312 (0.066) 0.481 (0.067) 0.972 (0.098) 0.410 (0.091) 0.591 (0.078) 1.113 (0.093)

we also assume that the true dimension d is known. For comparison purpose, we also

include a benchmark method by randomly choosing d directions in Rp, denote it as

RND, where d denotes the true dimensions corresponding to each model.

For CKF, Figure 2.1 shows that the estimates for the simulations based on Model

(C) is quite stable when the number of ωs goes beyond 50 or so. Thus, in our

simulations, we choose the number of ωs to be 50.

From Table 2.1 and Table 2.2 CKM is consistently better than the rest of methods

23

Table 2.2: Accuracy for Model (B)

Normal Non-normal

p=10 p=20 p=60 p=10 p=20 p=60

n=200
RND 1.790 (0.105) 1.897 (0.065) 1.961 (0.025) 1.790 (0.105) 1.897 (0.065) 1.961 (0.025)
SIR 1.820 (0.105) 1.908 (0.065) 1.970 (0.021) 1.524 (0.130) 1.711 (0.096) 1.909 (0.042)
PFC 1.648 (0.175) 1.749 (0.131) 1.946 (0.033) 1.382 (0.172) 1.511 (0.164) 1.852 (0.056)
SAVE 0.923 (0.250) 1.397 (0.206) 1.914 (0.067) 1.465 (0.148) 1.754 (0.103) 1.962 (0.024)
pHd 1.474 (0.047) 1.589 (0.086) 1.922 (0.044) 1.724 (0.106) 1.864 (0.070) 1.966 (0.023)
IHT 1.375 (0.182) 1.501 (0.239) 1.764 (0.226) 0.970 (0.210) 1.183 (0.133) 1.501 (0.204)
DR 1.109 (0.266) 1.582 (0.162) 1.935 (0.044) 1.437 (0.169) 1.748 (0.105) 1.944 (0.038)
rMAVE 0.822 (0.463) 1.431 (0.144) 1.934 (0.054) 0.841 (0.303) 1.317 (0.219) 1.902 (0.053)
CKM 0.760 (0.207) 1.332 (0.252) 1.917 (0.054) 1.189 (0.203) 1.550 (0.140) 1.888 (0.043)

n=400
RND 1.790 (0.105) 1.897 (0.065) 1.961 (0.025) 1.790 (0.105) 1.897 (0.065) 1.961 (0.025)
SIR 1.777 (0.129) 1.903 (0.068) 1.973 (0.022) 1.419 (0.148) 1.600 (0.105) 1.815 (0.062)
PFC 1.651 (0.166) 1.774 (0.132) 1.944 (0.035) 1.210 (0.190) 1.369 (0.147) 1.749 (0.064)
SAVE 0.609 (0.148) 0.928 (0.174) 1.532 (0.149) 1.331 (0.143) 1.580 (0.085) 1.922 (0.049)
pHd 1.446 (0.025) 1.501 (0.050) 1.718 (0.082) 1.617 (0.097) 1.811 (0.100) 1.968 (0.025)
IHT 1.349 (0.169) 1.472 (0.212) 1.762 (0.245) 0.807 (0.171) 1.041 (0.188) 1.345 (0.216)
DR 0.678 (0.153) 1.098 (0.234) 1.697 (0.097) 1.360 (0.140) 1.587 (0.109) 1.909 (0.061)
rMAVE 0.303 (0.236) 1.109 (0.397) 1.630 (0.138) 0.301 (0.114) 0.890 (0.277) 1.737 (0.119)
CKM 0.501 (0.120) 0.805 (0.164) 1.689 (0.082) 0.853 (0.186) 1.214 (0.166) 1.771 (0.059)

except for rMAVE in Model (A) and (B) with normal distribution. However, when

the dimension of predictor is relatively high, CKM perform better than or closer to

rMAVE. From Table 2.3, CKF performs similarly in Model (C). Note that local meth-

ods, such as rMAVE behave better as the sample size increases, but the computation

cost for rMAVE is also increasing. In Table 2.4 we compare the computational time

for rMAVE and our method, and we suggest that when the sample size is getting

larger, our method might be a better choice, as the accuracy of two methods are

approximately same while CKM saves a lot of computing time.

For the non-normal cases, which indicate there is violation of assumptions, Model

(A) suggests CKM is still the best among global methods, Model (B) suggests IHT

in this case perform a little better than CKM. Model (C) shows that CKF is quite

robust against departure from normality.

Overall, our method could provide a stable and well-rounded performance, while

24

Table 2.3: Accuracy for Model (C)

Normal Non-normal

p=10 p=20 p=60 p=10 p=20 p=60

n=200
RND 1.344 (0.090) 1.364 (0.075) 1.381 (0.045) 1.344 (0.090) 1.364 (0.075) 1.381 (0.045)
SIR 0.217 (0.059) 0.370 (0.082) 0.655 (0.061) 0.231 (0.053) 0.373 (0.065) 0.655 (0.061)
PFC 0.272 (0.067) 0.745 (0.080) 0.682 (0.062) 0.263 (0.060) 0.687 (0.059) 0.682 (0.062)
SAVE 0.399 (0.170) 1.351 (0.095) 1.407 (0.010) 0.471 (0.247) 1.384 (0.040) 1.407 (0.010)
pHd 0.908 (0.204) 1.120 (0.162) 1.352 (0.036) 1.021 (0.171) 1.171 (0.105) 1.352 (0.036)
DR 0.201 (0.053) 0.422 (0.080) 0.686 (0.083) 0.227 (0.066) 0.351 (0.052) 0.686 (0.083)
SR 0.180 (0.047) 0.407 (0.170) 1.096 (0.301) 0.174 (0.053) 0.355 (0.237) 1.096 (0.301)
csOPG 0.213 (0.077) 0.564 (0.256) 1.228 (0.146) 0.222 (0.075) 0.599 (0.300) 1.228 (0.146)
rMAVE 0.779 (0.291) 1.023 (0.221) 1.325 (0.093) 0.896 (0.250) 1.059 (0.188) 1.325 (0.093)
CKF 0.210 (0.056) 0.365 (0.071) 0.689 (0.067) 0.222 (0.065) 0.352 (0.065) 0.689 (0.067)

n=400
RND 1.344 (0.090) 1.364 (0.075) 1.381 (0.045) 1.344 (0.090) 1.364 (0.075) 1.381 (0.045)
SIR 0.165 (0.052) 0.274 (0.053) 0.517 (0.052) 0.184 (0.043) 0.247 (0.048) 0.386 (0.041)
PFC 0.220 (0.029) 0.323 (0.049) 0.504 (0.069) 0.217 (0.032) 0.300 (0.042) 0.464 (0.038)
SAVE 0.212 (0.068) 0.617 (0.245) 1.405 (0.012) 0.213 (0.045) 0.493 (0.178) 1.403 (0.014)
pHd 0.893 (0.224) 1.115 (0.128) 1.300 (0.046) 1.008 (0.168) 1.175 (0.091) 1.313 (0.049)
DR 0.148 (0.049) 0.262 (0.046) 0.511 (0.042) 0.146 (0.037) 0.226 (0.041) 0.400 (0.052)
SR 0.118 (0.039) 0.213 (0.055) 1.088 (0.316) 0.110 (0.034) 0.159 (0.030) 1.334 (0.371)
csOPG 0.128 (0.049) 0.256 (0.063) 1.268 (0.134) 0.125 (0.036) 0.212 (0.063) 1.124 (0.201)
rMAVE 0.760 (0.301) 0.969 (0.220) 1.230 (0.141) 0.798 (0.218) 0.952 (0.211) 1.298 (0.114)
CKF 0.160 (0.054) 0.274 (0.049) 0.510 (0.064) 0.169 (0.043) 0.240 (0.043) 0.420 (0.038)

Table 2.4: Comparison of Computation Time of rMave and CKM for Model (A)

n=200 n=400 n=600

p=10 p=15 p=20 p=60 p=10 p=15 p=20 p=60 p=10 p=15 p=20 p=60

rMAVE 1.507 (0.209) 1.950 (0.103) 2.583 (0.147) 11.184 (0.490) 3.919 (0.059) 5.657 (0.049) 7.930 (0.067) 38.977 (0.314) 7.812 (0.141) 14.688 (0.929) 20.260 (1.185) 84.538 (1.715)
CKM 0.061 (0.016) 0.134 (0.056) 0.251 (0.073) 7.053 (0.491) 0.107 (0.011) 0.260 (0.055) 0.485 (0.107) 12.972 (0.966) 0.154 (0.024) 0.458 (0.088) 0.768 (0.134) 21.026 (2.661)

maintaining a lower computational cost. Other methods may be superior for specific

combinations of model and predictor distribution, but none is consistently so and our

methods provide a balanced approach that is relatively robust to these concerns.

Comparison of Order Determination

We now provide results on order determination for the previous three models. Simu-

lations were conducted based on the following configurations: n = 400, p = 10 using

N = 200 random samples. We applied different methods with their original method-

ology to estimate d. To be more specific, pHd, rMAVE, DR, SIR, SAVE, csOPG and

25

Table 2.5: Order Determination for Model (A)

d=0 d=1 d=2 d=3 d=4 d≥5

n=400,p=10
SIR 0.000 0.675 0.310 0.015 0.000 0.000
SAVE 0.040 0.880 0.075 0.005 0.000 0.000
pHd 0.000 0.940 0.045 0.010 0.000 0.005
IHT 0.000 1.000 0.000 0.000 0.000 0.000
DR 0.035 0.950 0.015 0.000 0.000 0.000
rMAVE 0.000 0.000 1.000 0.000 0.000 0.000
CKM 0.000 0.000 1.000 0.000 0.000 0.000

SR were all tested using sequential test in the respective papers. For IHT, although

the author suggested sequential test, the paper did not provide the actual test statis-

tic in detail. So we applied the ladle estimator for IHT, CKM and CKF. Simulation

results can been found in Table 2.5, Table 2.6 and Table 2.7.

We can see that the ladle estimator in three cases worked fairly well. For Model

(A), CHM and rMAVE picked up the correct dimension perfectly, while most other

methods tended to underestimate it. In Model (B), our method had a bit underesti-

mate when the sample size is not large enough, but it still provided a well-rounded

performance, comparing with rMAVE which is the best. And in Model (C), CKF pro-

vided the best performance among other competitors, while no other method reached

to a satisfactorily level. In our simulation studies, we noticed that as p gets larger,

the ladle methods will not provide desirable results for some specific models, such as

Model (B). This may be partly due to the fact that the consistency of ladle estimator

is developed under n → ∞, requiring that n relative large to p, and Model (B) is

relatively harder to estimate than the other twos. In summary, the ladle estimator

for CKM and CKF performs very well and is quite stable.

Comparison of Variable Selection

We now provide results for variable selection. Simulations were conducted based on

the following configurations: n = 200, 400, p = 20 using N = 200 random samples.

On each sample, we used CISE (Chen, Zou and Cook 2010) for kernel matrix-based

26

Table 2.6: Order Determination for Model (B)

d=0 d=1 d=2 d=3 d=4 d≥5

n=400,p=10
SIR 0.875 0.110 0.015 0.000 0.000 0.000
SAVE 0.030 0.805 0.155 0.010 0.000 0.000
pHd 0.000 0.000 0.925 0.065 0.005 0.005
IHT 0.005 0.995 0.000 0.000 0.000 0.000
DR 0.250 0.650 0.085 0.015 0.000 0.000
rMAVE 0.000 0.000 1.000 0.000 0.000 0.000
CKM 0.010 0.005 0.985 0.000 0.000 0.000

Table 2.7: Order Determination for Model (C)

d=0 d=1 d=2 d=3 d=4 d≥5

n=400,p=10
SIR 0.000 0.880 0.100 0.020 0.000 0.000
SAVE 0.920 0.040 0.040 0.000 0.000 0.000
pHd 0.940 0.040 0.000 0.020 0.000 0.000
DR 1.000 0.000 0.000 0.000 0.000 0.000
SR 0.000 0.100 0.600 0.300 0.000 0.000
csOPG 0.000 0.080 0.620 0.300 0.000 0.000
rMAVE 0.000 0.100 0.520 0.220 0.140 0.020
CKF 0.000 1.000 0.000 0.000 0.000 0.000

methods such as SIR, PFC, SAVE, pHd and CK methods. We use Wang and Yin

(2008) for rMAVE, as CISE is not applicable to non-kernel method. We report

three statistics: Specificity, fraction of irrelevant variables that are not being selected;

Sensitivity, fraction of relevant variables that are being selected, and Run, fraction

of runs in which the methods select both relevant and irrelevant covariates exactly

right (Chen, Zou and Cook 2010), in Tables 2.8, 2.9 and 2.10.

In Model (A), when the predictor is normally distributed, we can see CKM is the

best among all CISE based methods. And its performance is comparable to the local

method, rMAVE. When the required assumption is violated, CKM is still quite good

in terms of the sensitivity, which is what the researchers more care about, as one does

not want to ignore the important signals.

In Model (B), where only symmetric terms are involved, pHd based on CISE

is the most accurate when the predictor is nicely distributed. In that case, CKM

provides comparable performance to pHd but outperforms other methods. However,

27

Table 2.8: Variable Selection for Model (A)

Normal Non-normal

sensitivity specificity runs sensitivity specificity runs

n=200, p=20
SIR 0.336 0.958 0.000 0.379 0.978 0.005
PFC 0.418 0.974 0.020 0.532 0.997 0.050
SAVE 0.586 0.866 0.000 0.513 0.942 0.000
pHd 0.765 0.653 0.005 0.760 0.630 0.000
rMAVE 1.000 0.762 0.055 0.990 0.747 0.065
CKM 0.950 0.743 0.040 0.982 0.250 0.000

n=400, p=20
SIR 0.546 0.962 0.000 0.604 0.990 0.200
PFC 0.619 0.977 0.030 0.849 0.999 0.495
SAVE 0.790 0.803 0.025 0.708 0.967 0.005
pHd 0.802 0.548 0.000 0.697 0.863 0.005
rMAVE 1.000 0.792 0.080 1.000 0.772 0.025
CKM 0.999 0.838 0.240 0.998 0.248 0.000

Table 2.9: Variable Selection for Model (B)

Normal Non-normal

sensitivity specificity runs sensitivity specificity runs

n=200, p=20
SIR 0.100 0.896 0.000 0.530 0.941 0.180
PFC 0.180 0.908 0.000 0.630 0.956 0.320
SAVE 0.850 0.924 0.580 0.360 0.871 0.020
pHd 0.980 0.997 0.940 0.580 0.939 0.140
rMAVE 0.963 0.979 0.715 0.747 0.962 0.335
CKM 0.910 0.990 0.820 0.790 0.967 0.500

n=400, p=20
SIR 0.100 0.900 0.020 0.770 0.968 0.420
PFC 0.180 0.908 0.000 0.910 0.987 0.780
SAVE 0.900 0.918 0.660 0.510 0.874 0.020
pHd 1.000 1.000 1.000 0.730 0.946 0.340
rMAVE 1.000 0.979 0.740 0.973 0.976 0.615
CKM 1.000 1.000 1.000 0.990 0.996 0.920

28

Table 2.10: Variable Selection for Model (C)

Normal Non-normal

sensitivity specificity runs sensitivity specificity runs

n=200, p=20
SIR 0.900 0.996 0.640 0.973 1.000 0.920
PFC 0.893 0.999 0.660 0.920 0.999 0.740
SAVE 0.280 0.724 0.000 0.180 0.834 0.000
pHd 0.900 0.158 0.000 0.980 0.082 0.000
rMAVE 0.932 0.429 0.000 0.972 0.227 0.000
CKF 0.893 1.000 0.680 0.927 1.000 0.005

n=400, p=20
SIR 0.980 0.999 0.920 1.000 1.000 1.000
PFC 0.987 1.000 0.960 1.000 0.999 0.980
SAVE 0.367 0.673 0.000 0.393 0.836 0.100
pHd 0.920 0.202 0.000 1.000 0.067 0.000
rMAVE 0.977 0.220 0.000 0.985 0.121 0.000
CKF 0.973 0.996 0.860 0.987 1.000 0.960

Table 2.11: Sparse Variable Selection for Model (A)

Normal Non-normal

sensitivity specificity runs sensitivity specificity runs

n=200, p=2000
SIR 0.500 0.999 0.000 0.692 1.000 0.285
PFC 0.590 1.000 0.160 0.928 1.000 0.735
SAVE 0.800 0.999 0.220 0.730 0.999 0.270
pHd 0.650 0.999 0.200 0.662 1.000 0.280
CKM 1.000 1.000 1.000 0.975 1.000 0.665

when the assumption is violated, CKM remains a solid performance while pHd shows

vulnerability against such violation.

In Model (C), where the signal is monotone, CKF based on CISE provides good

performance comparable to SIR and PFC no matter whether the assumption is met

or not.

In addition, we also conducted variable selection under the large p = 2000 small

n = 200 setup, and result is shown in Table 2.11. From the table, we can see that

CKM approach is again very good and stable. Overall, our methods have stable and

consistent performances across these models.

29

Auto MPG Data

We now consider a real dataset on 392 cases with complete record from UCI machine

learning repository (https://archive.ics.uci.edu/ml/datasets/auto+mpg). The

dataset was commonly used in predicting miles per gallon “mpg”, and it was studied

using sufficient dimension reduction methods (DCOV) by Sheng and Yin (2016). The

continuous response Y is miles per gallon (mpg) attribute. And X is a 7 dimensional

predictor vector consisting of: cylinders, displacement, horsepower, weight, accelera-

tion, model year and origin. Unlike DCOV, we did not drop the origin but treating

it as continuous variable, since cars made in United States (origin=1) tends to have

the most cylinders, and cars made in Japan(origin=3) tend to have the fewest cylin-

ders, while cars made in Europe(origin=2) tend to lie somewhere in the middle which

indicate the origin does have an ordered relationship. Also, we did not perform trans-

formation of predictors for normality to meet the assumption, since our simulation

suggested CKF was robust to departure from linear condition.

0 1 2 3 4 5 6

0.
05

0.
10

0.
15

0.
20

Working Dimensions

La
dl

e
V

al
ue

●

●

●

●
●

●
●●●

● ●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

● ●
●

●

●
●

●

●

●
●

●
●

●● ●●

●
●●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●● ●

●

●●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

● ● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

● ●

●
●

●

● ●
●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

4 5 6 7

10
20

30
40

First Direction

m
pg

(a) Ladle Plot (b) Response vs First Direction

Figure 2.2: Summary Plot for Auto MPG Data

The ladle plot results (Figure 2.2(a)) suggests the estimated d is 1. Figure 2.2(b)

shows the scatter plot of the response variable against the estimated CKF direction.

This direction indicates a strong linear trend, with some curvature. The result is

slightly different from DCOV, because we include one more variable (origin) in the

30

https://archive.ics.uci.edu/ml/datasets/auto+mpg

Table 2.12: Average Distance Using Bootstrap Sample

Methods pHd SR DR SIR SAVE rMAVE CKF

∆F 0.594 (0.354) 0.574 (0.259) 0.601 (0.257) 0.536 (0.256) 0.719 (0.299) 0.529 (0.247) 0.480 (0.257)

Table 2.13: Variable Selection on Bootstrap Sample

SIR PFC SAVE pHd rMAVE CKF
sensitivity 1.000 1.000 0.000 0.198 1.000 1.000
specificity 0.999 1.000 0.797 0.690 0.498 1.000
runs 0.995 1.000 0.000 0.000 0.095 1.000

analysis, which may reduce the dimension due to the association between origin and

rest of the variables.

For accuracy comparison, we used bootstrap method to generate 200 datasets

and calculated the distance between estimates from the data and from the bootstrap

sample. Results (Table 2.12) report the mean and error from these distance for each

method, and show that cubic kernel has a very good/stable performance. This may

be due to the fact that our method is robust against mild violation of the commonly

used conditions.

We use the following scheme to assess the accuracy of variable selection. We

generated the 200 datasets as follows: First, we set the sample of size 392 with

weight and model year, as weight and model year are two variables selected by most

methods. And then we independently selected 392 data points from the remaining

predictors and combined them to make one generated dataset. As a result, we forced

the relevant variables as weight and model year in the generated datset. Simulation

results for selecting the two variables: weight and model year, is shown in Table 2.13,

and CKF provided the best performance.

31

2.7 Discussion

In this chapter, we proposed a cubic kernel for estimating L-functional of the T -central

subspace, in particularly, we developed details for estimating central mean subspace

and central subspace and the respective variable selection. Simulation results show

the strength and usefulness of cubic kernel methods: CKM and CKF, especially, that

they are quite robust against distributions of the predictors and their performances

are not only very good but also stable.

There are also some interesting extension of our methods. For order determina-

tion, ladle estimator is quite effective for large n relatively to small p, as its con-

sistent result is developed under n → ∞. Otherwise, results will be broken down.

Thus developing new approach for Ladle estimator under p >> n may be interest-

ing, such as those developed by Zhu, Miao and Peng (2006) adapting information

theory. For CMS, we can simply extend univariate Y to multivariate Y ∈ Rq as

SE(Y|X) = ⊕qi=1SE(Yi|X), where Yi represent the ith element of Y, see Cook and Se-

todji (2003). And for CS, multivariate responses Y ∈ Rq, could also easily extended

by considering multivariate Fourier transformation. Note also, in stead of conditional

characteristic function, other transformation may be used to recover the CS. For in-

stance, {I(Y < y),X} for each y ∈ R, which leads to slicing methods (Wang and Xia

2008). However, its development will be very similar to our CKF.

Copyright c© Weihang Ren, 2020.

32

Chapter 3 Cubic Kernel Method for Implicit T -Central Subspace

3.1 Introduction

How to properly summarize high dimensional data is always an important topic

in statistics. Simplifying the high dimension data to a low dimension structure

could provide benefit for multiple statistical topics such as: data exploration, non-

parametric estimation, data visualization, etc. Therefore, dimension reduction is a

useful topic in statistics and many methods have been proposed to achieve such a

goal. The most important goal for reducing dimension is to preserve the information

of interests: co-variance structure of the predictors; relative distance between points;

correlation structures etc. Concentrating regression information about a response

might be the most important goal of regression, and SDR (Cook, 1996) offers such a

tool to achieve this goal. In this chapter, we will follow the work from Chapter 2 to

extend our estimator for T -central subspace targeting I-functional.

The rest of this chapter is organized as follow: Section 3.2 provides a general the-

ory for our proposed method. Section 3.3 further develops our method for two specific

functional: conditional quantile and conditional expectile. Section 3.4 explains meth-

ods of order determination. Section 3.5 establishes the asymptotic properties for

our proposed methodology. Sections 3.6 and 3.7 demonstrate the advantages of our

estimator via simulation example and real data analysis.

3.2 Cubic Kernel for I-functional

Similar to Chapter 2, we would like to make improvement to the CK estimator, which

only targets L-functional, so that I-functional could also be handled. We will still

restrict our attention to the loss function L(·, ·) that depends on Z only through the

33

kernel function K(Z) : Rp → R1:

L(K(Z), T (Y | Z)) = −T (Y | Z)K(Z) + φ(K(Z)),

where φ(·) is a convex function and T (Y | Z) is the conditional statistical functional

induced by an I-functional, T . So the loss function is convex in K(Z). K(Z) is a

polynomial defined by

K(Z) = a+ b′Z + Z′CZ + (Z′ ⊗ Z′)DZ,

with a ∈ R1, b ∈ Rp and C being a p× p symmetric matrix and D being a p× p× p

array such that if Dk be the k-th face of D and let dijk be the element of i-th row

and j-th column in the Dk. Then all dijk are the same for any permutation of the

index ijk, and D′k = Dk, we may treat D as a p2 × p matrix. Objective functions of

this form typically correspond to natural exponential families. We will develop our

theory with this more general forms but for our algorithms, we will mainly use square

loss.

K(Z) is the cubic kernel designed for summarizing the data. K(Z) itself does

not represent the belief that we hold for the true underlying regression function, but

rather an sufficient approximation to the truth. Polynomial with different orders

could be a good approximation for many regression function, as lots of them are

smooth. As the example in Chapter 2 showed, information picked by higher order

polynomials are often correlated with information picked by the cubic kernels. So

we believe a cubic kernel will be a perfect balance between the complexity of the

summarizing function and deepness of information that could be captured.

To handle the I-functional, the major change on the loss function that we made

lies in the target: T (Y), the transformation induced on Y by L-functional T , is

replaced by T (Y | Z), the random variable induced by the conditional I-functional,

34

which makes the loss function measurable to σ(Z).

On the population level, the estimate is assumed to be based on the risk:

R(a,b,C,D) = E{L[a+ b′Z + Z′C′Z + (Z′ ⊗ Z′)DZ, T (Y | Z)]}.

Based on above risk function, we reproduce Proposition 2.1 as follows:

Proposition 3.1. Let α,β,Γ,∆ = arg mina,b,C,D R(a,b,C,D). Let ST (Y |Z) have

basis matrix γ, i.e. S(γ) = ST (Y |Z). Assume that E(Z | γ ′Z) is linear, Var(Z | γ ′Z)

is constant and M(3)(Z | γ ′Z) = 0, where M(3)(Z | γ ′Z) = E(Z⊗ ZZ′ | γ ′Z). Then

S(β,Γ,∆′) ⊆ ST (Y |Z).

To better assist the development of our methodology, we need to point out that

estimation of T (Y | Z) can not be avoided, which indicates that we need to evaluate

T̂ (Y | Z) using some existing method. However, p, the dimension of Z, is typically

very high and lead to the curse of dimensionality. The high dimension of Z would

not only lead to a problematic results due to sparsity in the high volume space, but

also prevent the estimator from being efficacious. To improve the accuracy, reducing

the dimension before implementing our algorithm is necessary. In stead of including

T (Y | Z) in the loss function, we would consider T (Y | B′CSZ) instead, where

BCS ∈ Rp×d stands for a basis for the central subspace SY |Z, i.e. S(BCS) = SY |Z.

In such a case, the prediction problem is much easier to solve, because of the lower

dimension. It’s not hard to figure that we have no loss of information, as it’s clear that

T (Y | B′CSZ) = T (Y | Z) a.s.. In light of this, we also need to provide another version

of Proposition 3.1 so that it works under the framework with reduced dimension of

Z.

Denote Z∗ = B′CSZ. On the population level, the estimate is assumed to be based

35

on the risk:

R∗(a,b,C,D) = E{L[a+ b′Z∗ + Z∗′C′Z∗ + (Z∗′ ⊗ Z∗′)DZ∗, T (Y |Z∗)]}.

with a ∈ R1, b ∈ Rd, C being a d × d symmetric matrix and D being a d × d × d

array such that all dijk are the same for any permutation of the index ijk, and D′k is

a symmetric matrix.

The following proposition could be easily carried out.

Proposition 3.2. Let α∗,β∗,Γ∗,∆∗ = arg mina,b,C,D R
∗(a,b,C,D). Under the as-

sumption of Proposition 3.1, we have

S(BCSβ
∗,BCSΓ∗B′CS,BCS∆∗′(B′CS ⊗B′CS)) ⊆ ST (Y |Z).

The proof could be completed by using Proposition 3.1 along with the fact that

T (Y | B′CSZ) = T (Y | Z) a.s.. Proposition 3.2 reveals that our two-stage estimator

given by S(BCSβ
∗,BCSΓ∗B′CS,B

′
CS∆∗′(BCS ⊗BCS)) does lie in ST (Y |Z), the desired

T -central subspace. However, in practice, given the estimator for T (Y | Z∗), it’s

still quite difficult to solve the estimation problem. Difficulty arises in the following

perspective: This optimization problem has parameters of the order of O(d3), which

requires searching for solution on a tensor space. On the other hand, although by

assumption, the objective function is convex in the polynomial K(Z∗), it’s not neces-

sarily convex in the parameters, which making this proposition less useful. However,

we could get away with such obstacles by introducing the following kernels. Let

βTZ = E[T (Y | Z∗)Z∗] ΣTZZ = E {{{T (Y | Z∗)− E[T (Y | Z∗)]}Z∗Z∗′}}

MTZZZ = E {T (Y | Z∗)− E[T (Y | Z∗)]}Z∗ ⊗ Z∗Z∗′ − E[T (Y | Z∗)Z∗]⊗ I

− I ⊗ E[T (Y | Z∗)Z∗]− vec(I)E[T (Y | Z∗)Z∗]′

36

where βTZ represents OLS slope estimate for regression of T (Y | Z∗) on Z∗, ΣTZZ

represents the kernel for principal Hessian directions, MTZZZ is the kernel for third

moment (Yin and Cook 2004). The next result provides a further connection that

may lead to an easy computational algorithm.

Proposition 3.3. Suppose α serves as a basis for S(βTZ,ΣTZZ,M′
TZZZ). Assume

that E(Z∗ | α′Z∗) is linear, Var(Z∗ | α′Z∗) is constant and M(3)(Z∗ | α′Z∗) = 0.

Then

S(β∗,Γ∗,∆∗) ⊆ S(βTZ,ΣTZZ,MTZZZ)

If in addition, E(Z | B′CSZ) is linear, Var(Z | B′CSZ) is constant and M(3)(Z |

B′CSZ) = 0, then

S(BCSβ
∗,BCSΓ∗B′CS,B

′
CS∆∗′(BCS ⊗BCS))

⊆S(BCSβTZ,BCSΣTZZB′CS,BCSM′
TZZZ(B′CS ⊗B′CS))

⊆ST (Y |Z)

Proof for Proposition 3.3 is similar to Proposition 2.2 in Chapter 2. It conveys an

important message that the population minimizer provides information no more than

the existing kernels (βTZ,ΣTZZ,MTZZZ). This information combining Propositions

3.2 and 3.3 is valuable: we could rely on these kernels to recover the desired T -central

subspace and then utilize proposition 3.3 to perform a quadratic fit to improve the

result without providing extra information outside of the space spanned by the kernel

matrices.

The estimation of βTZ,ΣTZZ,MTZZZ can be done consistently by substituting

with the sample moments. However, there are still several caveats for implementing

the moment methods.

37

1. In theory, we do need a consistent estimator B̂CS for the basis of CS. In prac-

tice, we suggest choosing a consistent methodology but with a higher structural

dimension. As we want the estimate T̂ (Y | B̂CSZ) as close to T (Y | Z) as pos-

sible. So overfitting is the favor of this application. A more practical suggestion

is to treat the dimension of CS as a constant, as we do not need precise knowl-

edge of the structural dimension for CS, but rather prefer overfitting. Moreover,

we could save computational time, as the order determination for CS typically

much slower than the method itself. For our simulation study in Section 3.6,

we fixed the ”guess” of structural dimension of CS as 3, as all the models we

used did not go beyond 2 dimensions.

2. Similar to Chapter 2, constructing kernel matrices using the residual could

improve the efficiency of the estimator because of the correlations among the

linear, quadratic and third moment kernels. When constructing the CK esti-

mator, we may use the residuals instead of the original response. To be more

specific, take r1 = T (Y | Z∗) − a1 − b1Z
∗′βY Z, with a1, b1 ∈ R being the OLS

coefficients of T (Y | Z∗) on (1,Z∗′βY Z), then construct

Σr1ZZ = E(r1Z
∗Z∗′).

Take r2 = T (Y | Z∗)− a2 − b2Z
∗′βY Z − c2Z

∗′Σr1ZZZ∗, with a2, b2, c2 ∈ R being

the OLS coefficients of T (Y | Z∗) on (1,Z∗′βY Z,Z
∗′Σr1ZZZ∗) and construct

Mr2ZZZ = E(r2Z
∗ ⊗ Z∗Z∗′)− E(r2Z

∗)⊗ I− I⊗ E(r2Z
∗)− vec(I)E(r2Z

∗)′.

3. The three dimensional array can be written as a d2
CS × dCS matrix, where this

matrix can be considered as a column of dCS blocks with each block being

a dCS × dCS matrix. However, this d2
CS × dCS matrix contains only dCS(dCS+1)

2

38

unique ones. We then construct a new unique kernel matrix, (M̃′
TZZZ)

dCS×
dCS(dCS+1)

2

by removing the repeated columns, so that S(M′
TZZZ) = S(M̃′

TZZZ).

We are now ready to provide the details of our algorithm for estimating the T -

central subspace, which we named as Cubic Kernel for T -Central Subspace (CKT).

Algorithm for CKT: Let {Xi, Yi}, i = 1, 2, · · · , n be an i.i.d sample, and assume

that the structural dimension d for the T -central subspace is known. Then

1. Standardize the predictor Ẑi = Σ̂
−1/2
X (Xi − X̄), for i = 1 · · · , n.

2. Choose dCS ≥ d as a constant. Apply existing methodology for finding CS to

obtain the esitmated basis B̂CS;p×dCS for CS. Denote Ẑ∗i = B̂′CSẐi.

3. Use existing nonparametric estimator to obtain an estimate of T̂ (Yi | B̂CSẐi) =

T̂ (Yi | Ẑ∗i).

4. Construct kernel matrices:

β̂TZ =
1

n

n∑
i=1

Ẑ∗i T̂ (Yi | Ẑ∗i), Σ̂r1ZZ =
1

n

n∑
i=1

r̂1iẐ
∗
i Ẑ
∗′
i ,

where r̂1i is the estimated version of r1 for ith observation.

5. Construct M̂r2ZZZ and ˆ̃Mr2ZZZ. First we construct p2 vectors for j, k =

1, · · · , p:

m̂jk =
1

n

n∑
i=1

r̂2iẐ
∗
i (e
′
jẐ
∗
i)(e

′
kẐ
∗
i)

− 1

n

n∑
i=1

r̂2i(e
′
kẐ
∗
i)ej −

1

n

n∑
i=1

r̂2i(e
′
jẐ
∗
i)ek −

1

n

n∑
i=1

r̂2i(e
′
jek)Ẑ

∗
i ,

where ei is a unit vector with ith element 1 and r̂2i is ith element in the residual

vector r̂2. Let M̂′
r2ZZZ = (m̂11, · · · , m̂pp), which is a p× p2 matrix. Then take

39

m̂jk with j ≥ k and let ˆ̃M′
r2ZZZ = (m̂11, m̂21, · · · , m̂pp), which is a p × p(p+1)

2

matrix consisting of all the unique columns for M̂′
r2ZZZ.

6. Construct Si = (1, S1i, S2i, S3i)
′, with S1i = Ẑ∗′i β̂Y Z, S2i = Ẑ∗′i Σ̂r1ZZẐ∗i and

S3i = Ẑ∗′i ⊗ Ẑ∗′i M̂r2ZZZẐ∗i . Find the OLS fit of T̂ (Yi | Ẑ∗i) on Si and denote the

fitted coefficient as ŵ = (ŵ0, ŵ1, ŵ2, ŵ3)′.

7. Construct M̂ = ŵ2
1β̂Y Zβ̂

′
TZ + ŵ2

2Σ̂r1ZZΣ̂′r1ZZ + ŵ2
3

ˆ̃M′
r2ZZZ

ˆ̃Mr2ZZZ, where ŵ′is

are obtained in step 4. Perform the eigen decomposition on M̂, our estimator

for the T -central subspace is given by

S(Σ̂
−1/2
X B̂CSû1, Σ̂

−1/2
X B̂CSû2, · · · , Σ̂−1/2

X B̂CSûd),

where ûi, i = 1 · · · d are the eigenvectors corresponding to the first d eigenvalues

of M̂.

Note that the weights ŵ′is in step 4 are a key component of the CK estimator:

They adapt the importance of the individual kernels, (β̂TZ, Σ̂TZZ,M̂TZZZ) in M̂.

Therefore, bigger values of ŵ′is will indicate that the corresponding kernel is more

important.

3.3 T -Central Subspace for Particular Functionals

In this section, we are going to apply the theory developed in previous section on

several implicit conditional functional such as quantile and expectile. Luo, Li and

Yin (2014) provided an efficient estimator, which is not necessarily the best for finite

sample performance. Moreover, their estimator requires the derivation of the efficient

score and the efficient information for the semiparametric problem. In their paper,

formula for conditional mean, conditional variance and conditional quantile were de-

rived, but conditional expectile was left alone and not developed. In this section,

40

we are going to show that, under the framework of our methodology, its rather easy

to implement our algorithm as one does not need to derived different formulas for

different type of conditional statistical functional. As it was pointed out in previous

section, these approaches depend on an estimate of the conditional quantile or ex-

pectile. For those parts, we are going to rely on some of the existing nonparametric

estimators.

Conditional Quantile

Quantile regression (Koenker and Bassett, 1978) has been playing a prominent role

in a wide range of statistical applications and being a popular tool for many statis-

tical studies in the past few decades. Comparing to ordinary least square, quantile

regression is very useful when the behavior at different levels is of the main interests

rather than the mean behavior. This allows one to explore the changes in effect of

predictors at different levels. It also enjoys the benefit of robustness against extreme

values which makes it stand out from the traditional regression in mean. Being able

to handle heteroscedasticity in regression makes quantile regression earn its role in

modern statistical applications.

For any fixed τ ∈ (0, 1), then the τ -th conditional quantile of Y given X = x ∈ Rp

is defined as

Qτ (Y | X = x) = inf{y : P (Y ≤ y | X = x) ≥ τ} = arg min
m

E[ρτ (Y −m) | X = x],

with ρτ (t) = (2τ − 1)t+ |t|.

Many existing literatures considered the estimation of the conditional quantile

funciton, see for example: Koenker and Bassett (1978) for a direct approach; Chaud-

huri (1991), Hong (2003) for local polynomial estimators with Bahadur representation

and Takeuchi et al. (2006) for nonparametric estimator for conditional quantile.

41

In addition to its wide range of statistical application, conditional quantile is

also being studied in SDR. In fact, the idea of using conditional quantile to recover

CS was first introduced by Kong and Xia (2014) to address the inefficiency of the

some embedded estimation procedure using the conditional density or conditional

distribution function. Using conditional quantile estimate could alleviate the negative

effect brought up by the non-linearity of the conditional density, as the conditional

quantile function is at least piecewise linear in some of those cases, which results

in the larger bandwidth (more data to use). By applying conditional quantile in

their paper, they were able to gain advantage of: minimal assumption; exhaustively

estimation of CS; robust against outliers, etc. Aside from recovering CS, quantile

regression was also studied in Luo, Li and Yin (2014) where a one step estimator

under semi-parametric framework was proposed to extract the direction in a specific

quantile.

Let (ΩY , PY ,FY), (ΩZ, PZ,FZ) be the probability space associate with Y and Z,

respectively. Let FY |Z = {fz, z ∈ ΩZ : PY |Z=z(A) =
∫
A
fz dPY , ∀A ∈ FY } be a class

of densities with respect to PY of the conditional distribution PY |Z. If we consider

the functional T (1)
τ : F → R that is defined by the value of m that equates

∫
ΩY

ρτ (t−m)fzPY (dt)

to zero. Then each fz ∈ F uniquely defines the mapping

z 7→ T (1)
τ (fz),

which is the conditional τ -th quantile of Y | Z. Then, T (1)
τ (fz) is a version of condi-

tional τ -th quantile Qτ (Y | Z). Then the T -central subspace that induced by above

functional is τ -th Central Quantile Subspace (τ -th CQS), denote as SQτ (Y |Z). That

is, all the information of the conditional quantile of Y | Z is summarized in the given

42

subspace.

Since the conditional statistical functional has been defined, we could apply our

algorithm in Section 3.2 to obtain SQτ (Y |Z). As it was mentioned in the algorithm, an

estimator for Q̂τ (Y | B̂′CSZ) is necessary. In this chapter, we adopt the nonparametic

estimator proposed by Takeuchi et al. (2006), which is given as below:

Q̂τ (Y | B̂′CSZ) = arg inf
f
Rreg[f]

=
1

n

n∑
i=1

ρτ (Yi − f(B̂′CSZi)) +
λ

2
‖g‖2

H, with f = g + b and b ∈ R,

where ‖·‖2
H is RKHS norm and g ∈ H. Then the algorithm could be carried out by

simply taking T̂ ((Y | B̂′CSZ)) as Q̂τ (Y | B̂′CSZ). We name such a procedure as Cubic

Kernel for Quantile (CKQ).

Remark: The algorithm for τ -th CQS provides an sample estimate of the basis.

It naturally generalizes the idea of quantile and to think of stacking the information

across different τ -th CQS. As τ traversing (0, 1), quantile will contain all the informa-

tion of a certain distribution. One would expect that by choosing sufficiently dense

τ ∈ (0, 1), the union of all such τ -th CQS could exhaustively recover the CS.

This provides us a new method for estimating the CS:

Algorithm for CS: Let {Xi, Yi}, i = 1, 2, · · · , n be i.i.d sample.

1. Choose H points equally spaced points on (0, 1) as τ1, τ2, · · · , τH .

2. For each τi, i = 1, 2, · · · , H, construct kernel matrices using CKT for conditional

quantile, denote as M̂τi .

3. Let V̂ =
∑H

i=1 M̂τi , and choose dCS eigenvectors of V̂ that corresponding to

the first dCS largest eigenvalues, v̂1, v̂2, · · · , v̂dCS , where dCS represents the

43

dimensionality for CS. Then

S(Σ̂
−1/2
X B̂CSv̂1, Σ̂

−1/2
X B̂CSv̂2, · · · , Σ̂−1/2

X B̂CSv̂dCS),

provides an estimate for CS.

Conditional Expectile

In light of the previous algorithm for recovering the CS, statistical functional such as

conditional expectile could also be applied to recover the CS, because of the equiv-

alency between conditional quantile and conditional distribution. In this subsection,

we will take a look at another implicit conditional statistical functional: conditional

expectile functional.

Expectile, as an extension of mean, is another type of statistical functional of

interest which contains information of the full distribution for a random variable. It

incorporates the information of the expectation of an random variable Y conditional

on Y being in the tail of its distribution (Newey and Powell; 1987). Before we go

further, we introduce expectile and expectile regression. For τ ∈ (0, 1), the τ -th

expectile, denoted by Eτ (Y), is defined by

Eτ (Y) = arg min
m

E(|τ − I(Y < m)|(Y −m)2)

for a random variable Y . Note that the 0.5-expectile is the mean.

Moreover, expectile is another form of quantile. It’s the quantile of a distribution

that is related to the original distribution (Jones; 1994). To be more specific, τth-

expectile of Y is the τth-quantile of Ỹ where Ỹ has a cumulative distribution function

given by

FỸ (y) =
ν(y)− yFY (y)

{(2ν(y)− yFY (y)) + (y − E(Y))}2
,

44

where ν(y) =
∫ y
−∞ tPY (dt) and FY (y) =

∫ y
−∞ PY (dt).

Consequently, the τ -th expectile of Y given a random vector Z is defined as

Eτ (Y | Z) = arg min
m

E(|τ − I(Y < m)|(Y −m)2 | Z).

Expectile regression, typically viewed as an extension of standard regression analysis,

provides an effective diagnostic tool such as testing heteroscedasticity. Geometrically,

{Zi, Yi}, i = 1, 2, · · · , n is a point cloud in Euclidean space. If we viewed regression

as describing the middle of point cloud as a function of Z, then expectile regression

can be viewed as an investigation of the higher or lower region of the the point cloud

by introducing unequal weights to different regions (Newey and Powell 1987; Efron

1991).

To consider the problem of expectile regression in our framework. First consider

the functional T (2)
τ : F → R that is defined by the value of m that equates

∫
ΩY

ψτ (t−m)fzPY (dt)

to zero with ψτ (t) = (τ−I(t ≤ 0))|t|. Then each fz ∈ F uniquely defines the mapping

z 7→ T (2)
τ (fz)

which is the conditional τ -th expectile of Y | Z, i.e. Eτ (Y | Z).

Let’s denote the T -central subspace induced by this functional as τ -th Central

Expectile Subspace, (τ -th CES). Remark that if τ = 0.5, this should reduce to the

CMS. Using our previously stated propositions, an algorithm could be easily carried

out if we can provide an estimator for B̂CS, the basis matrix for CS and Êτ (Y | B̂′CSZ).

And for the conditional expectile, Yang and Zou (2015) and Yang, Zhang and Zou

(2018) established such an estimator through tree method and RKHS, which could

45

provide the sample estimate of Êτ (Y | B̂′CSZ). The detail is given as below

Êτ (Y | B̂′CSZ) = arg inf
f
Rreg[f]

=
1

n

n∑
i=1

ψτ (Yi − f(B̂′CSZi)) +
λ

2
‖g‖2

H, with f = g + b and b ∈ R,

where ‖·‖2
H is RKHS norm and g ∈ H. Then the algorithm could be carried out by

simply taking T̂ (Y | B̂′CSZ) as Êτ (Y | B̂′CSZ). We name such a procedure as Cubic

Kernel for Expectile (CKE).

3.4 Order Determination

In the previous sections, we have assumed the true structural dimension of the de-

sired T -central subspace is known. But in practice, this is a quantity that need to be

estimated. In SDR, many methods were proposed to provide an estimate for the true

dimensions, those methods could be roughly categorized in the following categories:

Sequential test methods, examples including: Bura and Cook (2001), Li (1991); In-

formation criteria methods, such as: Zhu, Miao and Peng (2006), Zhu, Zhu and Wen

(2010); cross validation type methods, which including, Wang and Xia (2008), Xia et

al. (2002); permutation and bootstrap type of methods: Yin, Li and Cook (2008),

Ye and Weiss (2003) and Luo and Li (2016). Sequantial testing methods requires

the knowledge of the asymptotic distribution which in our cases is hard to obtain.

Although it is hard for us to require the asymptotic distribution information of our

estimator, consistency is fairly easy to prove, as we will show in this section. Given

the consistency, information type of criteria and cross validation type methods are

guaranteed to provide consistent estimator of the structural dimension.

In this chapter, we are going to use the BIC information criteria and ladle estimate

(Luo and Li 2016) to provide estimate for the structural dimension. The advantage

that BIC type of criteria enjoys lies in the computational speed, as BIC criteria is just

46

a function of the eigenvalues, which requires much less computational power compar-

ing to cross validation. Moreover, our estimator requires estimating the structural

dimension of the CS and T -central subspace, so computational speed is crucial for

our methods. However, ladle estimator relies on bootstrap so it might require a bit

effort to calculate, but it typically provides better estimate based on our experiments.

BIC type of criteria

Denote the estimated kernel matrix from the CKT algorithm as M̂. Let λ̂i, i = 1 · · · p

be the corresponding eigenvalues, with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p and define

BICn(k) = n

∑k
i=1 λ̂

2
i∑p

i=1 λ̂
2
i

− Cn{
k(k + 1)

2
},

where Cn/n→ 0 as n→∞ and Cn →∞. Cn is typically chose as 2n3/4/p. The true

dimension is estimated by arg maxk BICn(k)(Li, Artemiou and Li 2011).

Ladle Estimator

Section 2.4 applied the ladle estimator to CK estimators, where the simulation results

showed that ladle estimator works quite well when estimating the CS and CMS. We

will skip the details here as the construction is very similar. Based on our past

experiences, however, the ladle estimator suffers from the expensive computational

cost, because it relies on bootstrap to assess the variability of eigenvectors. For our

CKT algorithm in this chapter, we choose to fix the CS dimension as a small constant,

dCS, in the first step. By implementing this step, we could significantly reduce the size

of kernel matrix and computational time because our estimator has computational

complexity of O(p4 + np3). Instead of considering a p dimensional problem, we are

considering a dCS dimensional problem instead. So it would be beneficial for us to

consider using ladle estimator due to its accuracy and reduced computational time.

47

3.5 Asymptotic

Assumption 3.1. Let BCS be the basis for desired T -central subspace and B̂CS be the

corresponding
√
n estimator, X be the compact support for X. Then for conditional

statistical functional estimator, T̂ (Y | B̂′CSX), we have

sup
x∈X
‖T̂ (Y | B̂′CSx)− T (Y | B′CSx)‖ = Op(1).

Note: Our estimator requires an initial estimate for the desired statistical func-

tional of interests, the asymptotic behavior depends on the choice of methodologies

applied. For commonly seen conditional statistical functionals such as conditional

quantile, this assumption would be easily met if we choose to use the right version

of the estimator. In the next paragraph, we will provide a simple argument to verify

that conditional quantile estimator that we used meets this assumption.

Let Qτ (Y | B′CSX) represent the τ -th quantile and Q̂τ (Y | B̂′CSX) be the corre-

sponding conditional quantile estimator. Observe that

‖Qτ (Y | B′CSX)− Q̂τ (Y | B̂′CSX)‖

≤‖Q̂τ (Y | B̂′CSX)− Q̂τ (Y | B′CSX)‖

+ ‖Q̂τ (Y | B′CSX)−Qτ (Y | B′CSX)‖.

supx∈X‖Q̂τ (Y | B̂′CSX) − Q̂τ (Y | B′CSX)‖ is Op(1), because of the Bahadur rep-

resentation (Chaudhuri 1991) and
√
n-consistency of B̂CS. And the second term

supx∈X‖Q̂τ (Y | B′CSX)−Qτ (Y | B′CSX)‖ is also Op(1), based on Guerre and Sabbah

(2012).

Assumption 3.2. Let X =

(
1,X′,X′ ⊗X′,X′ ⊗X′ ⊗X′

)′
, then we have the fol-

48

lowing moment conditions:

E‖XX′‖∞ <∞, E[T (Y | B′CSX)2‖XX′‖∞] <∞,

where ‖A‖∞ = maxij |aij| denotes the max norm of the matrix.

Given the assumptions above, the following Proposition 3.4 will demonstrate the

consistency of our proposed estimator.

Proposition 3.4. Let α be the basis for ST (Y |X) and M̂ the corresponding cubic kernel

defined in Algorithm 1. Then under the assumptions above, M̂ is the
√
n-consistent

estimate of α.

Proof. Please refer to the Appendix for the detailed proof.

3.6 Simulations and Applications

In this section, we compare the performance of cubic kernel CKQ with qMAVE from

Kong and Xia (2014). For the accuracy comparison, we used the distance of Li, Zha

and Chairomonte (2005) between two subspaces of Rp: Let S1 and S2 be two subspaces

of Rp, and PS1 and PS2 be the corresponding orthogonal projection, respectively. Let

∆F = ‖PS1 −PS2‖F

where ‖·‖F is the Frobenius norm. The smaller the ∆F is, the closer the two subspaces

are to each other.

Comparison of the Model accuracy

In this section, we consider the following five models to illustrate the efficacy of our

proposed methods. Let β1 and β2 be p dimensional vectors with (1, 0, 0, · · · , 0)′ and

(1, 0.5, 1, 0, · · · , 0)′, respectively. Let β3, β4 and β5 be p dimensional vectors with

49

(1, 0.1, 0, · · · , 0)′, (1, 1, 1, 1, 0, · · · , 0)′ and (0, · · · , 0, 1, 1, 1, 1)′. Let ε be a random

variable that is independent of X ∼ N(0, Ip). The simulation was conducted to

make comparison for combinations of the following configurations: n = 100, 200, 400,

p = 10, 20 and τ = 0.25, 0.50, 0.75 using N = 200 replicated data. On each generated

data, we applied different methods and computed the distance, ∆F , between these

estimates and the true τ -th CQS. Then we took average and standard error from the

resulting N distances. The simulated 5 models are:

(A) Y = β′1X + 0.1 exp(1− β′1X)ε

(B) Y = 0.1β′2X + exp(β′2X)ε

(C) Y = β′1X + ε

(D) Y = 1 + β′3X + (1 + 0.4β′1X)ε

(E) Y = β′4X + (β′5X)3 + ε

Model (A) is the first model considered in Takeuchi (2006). For all τ ∈ (0, 1), τ -th

CQS is S(β1). There is only one term involved, which makes it seems unnecessary to

apply the quantile esitmator, methods for CS or CMS would work instead. However,

error term changes dramatically when β′1X is negative, masking the true signal, this

leads the distribution of the error to have a heavy tail on the negative side. Under

such a heavy tail scenario, methods for CS and CMS may not work as desired. So

we are going to investigate the performance of quantile based estimator for this case.

Model (B) is Model (C) in Chapter 2. Similar to Model (A), this model also

involves a heavy tail, but on the positive side. And the τ -th CQS is also spanned by

a single direction, S(β2), which consists of the τ -th CQS for all τ .

Model (C) has been discussed in many papers, such as Example 4 from Zou and

Yuan (2008), where the error term ε is taken as t-distribution with 3 degrees of

freedom, different from previous examples, this distribution has heavy tail on both

50

Table 3.1: Quantile Accuracy Comparison for Model (A)

p = 10 p = 20

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

n = 100
qMAVE 0.209 (0.060) 0.210 (0.051) 0.261 (0.068) 0.350 (0.029) 0.336 (0.039) 0.363 (0.054)
CKQ 0.201 (0.052) 0.197 (0.049) 0.211 (0.048) 0.334 (0.031) 0.325 (0.037) 0.340 (0.042)

n = 200
qMAVE 0.136 (0.032) 0.142 (0.027) 0.167 (0.054) 0.208 (0.045) 0.223 (0.037) 0.245 (0.021)
CKQ 0.140 (0.028) 0.139 (0.025) 0.138 (0.013) 0.195 (0.032) 0.195 (0.043) 0.205 (0.038)

n = 400
qMAVE 0.097 (0.022) 0.102 (0.020) 0.116 (0.024) 0.136 (0.024) 0.151 (0.029) 0.181 (0.035)
CKQ 0.098 (0.022) 0.096 (0.022) 0.098 (0.015) 0.154 (0.028) 0.153 (0.028) 0.162 (0.030)

said. This is a classical example that demonstrating the central median subspace is

superior than the CMS to find the truth, as median is more robust to outliers than

mean. Here we will also investigate this classical model. In this model, the τ -th CQS

is S(β1).

Model (D) is Model VII in Luo, Li and Yin (2014), where τ -th CQS is S(β1 +

0.4Φ−1(τ)β1), which changes based on different value of τ . For this model, we are

going to see if our proposed estimator could provide a consistent results or not, in

terms of different τs.

Model (E) is constructed so that only first and third order term is involved, which

is to the favor of cubic kernel method. Here τ -th CS is S(β1, β2).

For the CKQ algorithm, we used dCS = 3 as the starting dimension in the first step

as none of the simulating models goes beyond 2 dimensions. And using dimension of

3 would make the estimator for the conditional quantile overfit the simulated data.

For the estimator of CS, we used Slice Regression (Wang and Xia 2008).

We also compared our results with qMAVE (Kong and Xia 2014). qMAVE was

first designed to recover the CS by stacking information in different τ -th CQS. To

make comparison, we retrieved the estimate from qMAVE for a fixed τ to obtain the

estimator for τ -th CQS.

From Table 3.1 Table 3.2 and Table 3.3, we can see that with the heavy tailed

51

Table 3.2: Quantile Accuracy Comparison for Model (B)

p = 10 p = 20

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

n = 100
qMAVE 0.652 (0.183) 0.815 (0.160) 0.388 (0.083) 0.832 (0.192) 0.840 (0.141) 0.674 (0.166)
CKQ 0.494 (0.202) 0.669 (0.241) 0.368 (0.073) 0.720 (0.125) 0.773 (0.136) 0.555 (0.184)

n = 200
qMAVE 0.413 (0.207) 0.750 (0.139) 0.300 (0.029) 0.555 (0.129) 0.912 (0.080) 0.430 (0.065)
CKQ 0.276 (0.080) 0.440 (0.187) 0.225 (0.042) 0.476 (0.162) 0.717 (0.229) 0.352 (0.058)

n = 400
qMAVE 0.205 (0.047) 0.567 (0.138) 0.209 (0.051) 0.425 (0.071) 0.809 (0.169) 0.328 (0.061)
CKQ 0.148 (0.046) 0.327 (0.121) 0.157 (0.062) 0.291 (0.062) 0.463 (0.180) 0.241 (0.063)

Table 3.3: Quantile Accuracy Comparison for Model (C)

p = 10 p = 20

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

n = 100
qMAVE 0.173 (0.056) 0.134 (0.021) 0.142 (0.028) 0.324 (0.233) 0.233 (0.058) 0.369 (0.223)
CKQ 0.168 (0.031) 0.167 (0.034) 0.164 (0.032) 0.252 (0.049) 0.260 (0.048) 0.267 (0.048)

n = 200
qMAVE 0.108 (0.026) 0.078 (0.024) 0.108 (0.018) 0.168 (0.036) 0.155 (0.035) 0.183 (0.055)
CKQ 0.123 (0.030) 0.114 (0.027) 0.116 (0.028) 0.176 (0.036) 0.177 (0.033) 0.186 (0.036)

n = 400
qMAVE 0.085 (0.024) 0.069 (0.017) 0.073 (0.012) 0.124 (0.023) 0.102 (0.026) 0.121 (0.017)
CKQ 0.085 (0.020) 0.084 (0.022) 0.081 (0.020) 0.115 (0.020) 0.116 (0.022) 0.117 (0.023)

Table 3.4: Quantile Accuracy Comparison for Model (D)

p = 10 p = 20

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

n = 100
qMAVE 0.420 (0.085) 0.342 (0.118) 0.313 (0.117) 0.673 (0.155) 0.514 (0.117) 0.505 (0.091)
CKQ 0.373 (0.087) 0.350 (0.082) 0.353 (0.103) 0.592 (0.147) 0.555 (0.114) 0.562 (0.132)

n = 200
qMAVE 0.308 (0.038) 0.209 (0.067) 0.223 (0.022) 0.537 (0.165) 0.379 (0.071) 0.339 (0.049)
CKQ 0.277 (0.060) 0.226 (0.048) 0.228 (0.042) 0.406 (0.067) 0.391 (0.055) 0.384 (0.064)

n = 400
qMAVE 0.235 (0.058) 0.162 (0.037) 0.149 (0.031) 0.369 (0.046) 0.258 (0.029) 0.244 (0.026)
CKQ 0.208 (0.052) 0.162 (0.028) 0.166 (0.025) 0.299 (0.028) 0.266 (0.027) 0.263 (0.026)

52

Table 3.5: Quantile Accuracy Comparison for Model (E)

p = 10 p = 20

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

n = 100
qMAVE 0.728 (0.204) 0.659 (0.236) 0.590 (0.207) 0.929 (0.071) 0.878 (0.139) 0.892 (0.142)
CKQ 0.527 (0.207) 0.521 (0.214) 0.530 (0.231) 0.806 (0.154) 0.794 (0.154) 0.786 (0.156)

n = 200
qMAVE 0.379 (0.160) 0.292 (0.107) 0.443 (0.220) 0.760 (0.180) 0.597 (0.232) 0.677 (0.178)
CKQ 0.310 (0.098) 0.298 (0.111) 0.296 (0.113) 0.515 (0.084) 0.510 (0.074) 0.508 (0.072)

n = 400
qMAVE 0.206 (0.058) 0.175 (0.038) 0.179 (0.050) 0.338 (0.074) 0.287 (0.022) 0.328 (0.051)
CKQ 0.150 (0.037) 0.158 (0.036) 0.166 (0.040) 0.334 (0.073) 0.335 (0.073) 0.339 (0.073)

error term, the quantile based method could provide a relatively accurate estimate.

Moreover, in these three cases, the models have the same τ -th central quantile sub-

space no matter what value does τ takes. Table 3.1 and Table 3.2 reveal, however,

that qMAVE does not provide an stable estimate based for different τs, which demon-

strate that qMAVE may not estimate a certain quatile very accurately. To be more

specific, whenever the tail behavior is not stable, the qMAVE would provide very

inaccurate results, this might due to the fact that qMAVE is a local based method,

therefore, relatively sensitive to erratic local changes. Compare to qMAVE, CKQ is a

method that is very stable across different value of τs, and in most cases, CKQ could

improve the performance of qMAVE.

We could further demonstrate this point from Table 3.4 where CKQ is still quite

stable across different values of τ , even when the τ -th CQS changes with τ . And in

this case, since there is also a direction in the error term, qMAVE also suffer from

the unstable results. And CKQ could dramatically improve the results in this case.

Table 3.5 summarized the results with more than one direction in the desired

τ -th central quantile subspace, where we could see that CKQ is still quite stable and

accurate compare to qMAVE. This is not a surprise to us, as the cubic structure in

this model is favorable to our cubic kernel method.

Model (B), (C) and (D) were also used for testing the performance of cubic kernel

53

Table 3.6: Expectile Accuracy Comparison for Model (B)

p = 10 p = 20

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

n = 200
eMAVE 1.355 (0.108) 1.366 (0.105) 1.361 (0.072) 1.365 (0.064) 1.364 (0.071) 1.366 (0.068)
CKE 0.886 (0.339) 0.906 (0.346) 0.796 (0.342) 0.919 (0.342) 0.947 (0.335) 0.927 (0.331)
CKM 1.139 (0.236) 1.249 (0.158)

n = 400
eMAVE 1.388 (0.038) 1.389 (0.046) 1.381 (0.042) 1.382 (0.041) 1.384 (0.049) 1.373 (0.065)
CKE 0.709 (0.331) 0.763 (0.338) 0.606 (0.273) 0.839 (0.347) 0.949 (0.307) 0.730 (0.320)
CKM 1.111 (0.250) 1.285 (0.158)

Table 3.7: Expectile Accuracy Comparison for Model (C)

p = 10 p = 20

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

n = 200
eMAVE 1.321 (0.119) 1.339 (0.120) 1.386 (0.046) 1.331 (0.098) 1.303 (0.124) 1.327 (0.128)
CKEcs 0.327 (0.132) 0.323 (0.120) 0.329 (0.121) 0.587 (0.207) 0.580 (0.207) 0.563 (0.172)
CKM 0.775 (0.220) 1.202 (0.135)

n = 400
eMAVE 1.365 (0.076) 1.392 (0.040) 1.405 (0.026) 1.343 (0.083) 1.321 (0.119) 1.329 (0.131)
CKE 0.237 (0.075) 0.238 (0.076) 0.247 (0.086) 0.277 (0.084) 0.275 (0.077) 0.283 (0.080)
CKM 0.524 (0.119) 0.986 (0.153)

for expectile algorithm. There is no other literature proposed a method for cen-

tral expectile subspace. In order to make a comparison, we modified the qMAVE

method to handle asymmetric least square problem instead of the asymmetric ab-

solute deviation, and call it as eMAVE. Moreover, as the 0.5th-CES is the central

mean subspace, we also added the CKM estimator from Chapter 2 at 0.5th-CES for

benchmark comparison.

Table 3.6, 3.7 and 3.8 shows that CKE is a much better estimator than eMAVE

for the three simulated models. The CMS estimated by CKE evaluated at τ = 0.5 is

also a decent estimator when compared with CKM.

54

Table 3.8: Expectile Accuracy Comparison for Model (D)

p = 10 p = 20

τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

n = 200
eMAVE 1.778 (0.150) 1.684 (0.215) 1.711 (0.191) 1.815 (0.117) 1.760 (0.161) 1.855 (0.122)
CKE 1.305 (0.170) 1.301 (0.177) 1.302 (0.174) 1.385 (0.102) 1.385 (0.102) 1.385 (0.102)
CKM 1.415 (0.086) 1.583 (0.102)

n = 400
eMAVE 1.757 (0.133) 1.818 (0.108) 1.783 (0.176) 1.855 (0.103) 1.762 (0.172) 1.843 (0.146)
CKE 1.229 (0.229) 1.228 (0.229) 1.228 (0.230) 1.371 (0.073) 1.371 (0.073) 1.371 (0.073)
CKM 1.302 (0.150) 1.499 (0.054)

Table 3.9: Variable Selection Results for Model (A)

τ = 0.25 τ = 0.50 τ = 0.75

sensitivity specificity sensitivity specificity sensitivity specificity

n = 100
p = 10 1.000 (0.000) 0.986 (0.038) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

p = 20 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.998 (0.011)

n = 200
p = 10 1.000 (0.000) 0.981 (0.043) 1.000 (0.000) 0.990 (0.032) 1.000 (0.000) 0.990 (0.032)

p = 20 1.000 (0.000) 0.998 (0.011) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.998 (0.011)

n = 400
p = 10 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

p = 20 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

Comparison of Variable Selection

We now provide results for variable selection. Simulations are conducted using the

same models (A)-(C), and same set up. On each sample, we used CISE (Chen, Zou

and Cook 2010) for CK methods. We also consider a ultra-high dimension (p � n)

simulation with n = 200, p = 1000 to test the performance for the one-stage variable

selection performance. We report two statistics: fraction of irrelevant variables that

are not being selected, i.e. specificity; fraction of relevant variables that are being

selected, i.e. sensitivity (Chen, Zou and Cook 2010). The bigger the indices is, the

better the estimate is.

From Table 3.9 and Table 3.11, we could tell CISE-CKQ, works fairly well as the

55

Table 3.10: Variable Selection Results for Model (B)

τ = 0.25 τ = 0.50 τ = 0.75

sensitivity specificity sensitivity specificity sensitivity specificity

n = 100
p = 10 1.000 (0.000) 0.118 (0.093) 0.971 (0.096) 0.068 (0.113) 0.928 (0.141) 0.180 (0.144)

p = 20 0.710 (0.367) 0.552 (0.249) 0.507 (0.388) 0.604 (0.244) 0.812 (0.221) 0.409 (0.169)

n = 200
p = 10 0.739 (0.245) 0.733 (0.184) 0.971 (0.139) 0.404 (0.231) 1.000 (0.000) 0.472 (0.230)

p = 20 0.826 (0.263) 0.317 (0.199) 0.986 (0.070) 0.317 (0.163) 1.000 (0.000) 0.105 (0.087)

n = 400
p = 10 1.000 (0.000) 0.174 (0.172) 0.812 (0.169) 0.323 (0.263) 1.000 (0.000) 0.255 (0.183)

p = 20 0.957 (0.115) 0.246 (0.169) 0.913 (0.206) 0.407 (0.184) 1.000 (0.000) 0.169 (0.107)

Table 3.11: Variable Selection Results for Model (C)

τ = 0.25 τ = 0.50 τ = 0.75

sensitivity specificity sensitivity specificity sensitivity specificity

n = 100
p = 10 1.000 (0.000) 0.875 (0.141) 1.000 (0.000) 0.929 (0.159) 1.000 (0.000) 0.821 (0.192)

p = 20 1.000 (0.000) 0.790 (0.181) 1.000 (0.000) 0.877 (0.149) 1.000 (0.000) 0.742 (0.176)

n = 200
p = 10 1.000 (0.000) 0.951 (0.140) 1.000 (0.000) 0.946 (0.130) 1.000 (0.000) 0.967 (0.068)

p = 20 1.000 (0.000) 0.831 (0.169) 1.000 (0.000) 0.870 (0.165) 1.000 (0.000) 0.879 (0.159)

n = 400
p = 10 1.000 (0.000) 0.870 (0.128) 1.000 (0.000) 0.967 (0.077) 1.000 (0.000) 0.875 (0.229)

p = 20 1.000 (0.000) 0.903 (0.150) 1.000 (0.000) 0.964 (0.070) 1.000 (0.000) 0.889 (0.175)

Table 3.12: Variable Selection Results for Model (D)

τ = 0.25 τ = 0.50 τ = 0.75

sensitivity specificity sensitivity specificity sensitivity specificity

n = 100
p = 10 0.522 (0.104) 0.962 (0.070) 0.543 (0.144) 0.935 (0.106) 0.565 (0.172) 0.957 (0.061)

p = 20 0.500 (0.000) 0.976 (0.028) 0.543 (0.144) 0.966 (0.047) 0.522 (0.104) 0.937 (0.097)

n = 200
p = 10 0.630 (0.224) 0.995 (0.026) 0.565 (0.172) 0.984 (0.043) 0.543 (0.144) 0.973 (0.053)

p = 20 0.739 (0.255) 0.940 (0.110) 0.761 (0.255) 0.935 (0.100) 0.739 (0.255) 0.882 (0.140)

n = 400
p = 10 0.543 (0.144) 1.000 (0.000) 0.652 (0.235) 0.946 (0.118) 0.826 (0.243) 0.995 (0.026)

p = 20 0.761 (0.255) 0.913 (0.122) 0.739 (0.255) 0.954 (0.096) 0.717 (0.253) 0.947 (0.085)

56

Table 3.13: Variable Selection Results for Model (E)

τ = 0.25 τ = 0.50 τ = 0.75

sensitivity specificity sensitivity specificity sensitivity specificity

n = 100
p = 10 0.761 (0.255) 0.962 (0.070) 1.000 (0.000) 0.986 (0.051) 0.609 (0.211) 0.924 (0.118)

p = 20 0.543 (0.144) 0.976 (0.040) 1.000 (0.000) 0.989 (0.022) 0.543 (0.144) 0.966 (0.036)

n = 200
p = 10 0.826 (0.243) 0.973 (0.106) 1.000 (0.000) 0.986 (0.038) 0.957 (0.144) 0.940 (0.091)

p = 20 0.674 (0.243) 0.954 (0.086) 1.000 (0.000) 0.984 (0.029) 0.804 (0.250) 0.940 (0.090)

n = 400
p = 10 1.000 (0.000) 0.946 (0.098) 1.000 (0.000) 0.990 (0.046) 1.000 (0.000) 0.967 (0.068)

p = 20 0.761 (0.255) 0.944 (0.085) 1.000 (0.000) 0.995 (0.015) 1.000 (0.000) 0.959 (0.077)

Table 3.14: Variable Selection Results for Model (A)-(E) with n = 200, p = 1000

τ = 0.25 τ = 0.50 τ = 0.75

sensitivity specificity sensitivity specificity sensitivity specificity

Model (A) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

Model (B) 0.826 (0.198) 0.984 (0.002) 0.696 (0.223) 0.984 (0.001) 0.797 (0.241) 0.984 (0.002)

Model (C) 0.500 (0.000) 0.995 (0.005) 0.500 (0.000) 0.992 (0.005) 0.500 (0.000) 0.992 (0.005)

Model (D) 0.587 (0.194) 0.992 (0.006) 1.000 (0.000) 0.995 (0.006) 0.565 (0.172) 0.993 (0.005)

Model (E) 0.957 (0.144) 0.992 (0.005) 0.957 (0.144) 0.993 (0.005) 0.957 (0.144) 0.992 (0.004)

sensitivity and specificity are very close to 1 in both cases. And from Table 3.14, this

is still the case when we consider the ultra-high dimension settings. This shows that

our variable selection procedure works very well.

According to Table 3.10, Table 3.12 and Table 3.13, CISE-CKQ has a reasonable

sensitivity but the specificity is relatively low. This indicates CISE-CKQ may pick

some of the non-important variable by mistake. Although this may cause some useless

information included in the follow up studies, most of the important information could

be captured. The high specificity Table 3.14 is because of the sparsity in the true

directions.

57

3.7 Real Data Analysis

Kong and Xia (2014) studied the factor that affects the volatility of a portfolio by

investigating the CS through qMAVE. Here we are going to compare the performance

of CKQ estimator and qMAVE for the same data set. Same to Kong and Xia (2014),

we pulled the daily return of portfolio, Y , from the following website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

To make a fair comparison, we used the same dataset with the same set of vari-

ables. To be more specific, we include daily data points from July 1st 1926 to Mar

28th 2013. The response variable Y was taken as the return of intersection of small

market equity and low ratio book equity and market equity. The explanatory variable

was constructed in the following way: X1, · · · , X5 represent the return of portfolio in

the previous five days; X6, · · · , X10 was taken as the absolute value of the past five

days return, which could be used as a good indicator of the volatility. X11, · · · , X15

was pulled from market return of the present day and past four days and X16, · · · , X20

are the corresponding absolute value of the market return.

Kong and Xia (2014) suggest to use the structural dimension of 2 which is the

structural dimension that we adopt to use here in this section. They have pointed

out that the first direction was in the CMS and the second direction was clearly

in the central variance subspace. In this section, we consider the τth-CQS for

τ = 0.25, 0.50, 0.75, so we are expecting to recover both directions when we tra-

verse through all the quantiles. So for each specific given quantile, we are going to

set the structural dimension of the CQS as 2. Similar directions were distracted from

the data for different τ , we only presenting the two directions from the 0.25th-CQS.

As we can tell from the graph, we could see that CKQ successfully picked up the

first two directions, where the first direction is linear in the CMS and the second

58

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

●●●●●

●

●●●●
●●

●
●

●
●
●

●●●
●

●

●
●

●

●
●

●●
●●
●

●●

●●
●●

●

●

●
●

●●
●●

●
●●
●

●
●

●

●●

●
●

●
●●

● ●

● ●

●

●
●●●●●●●●●

●
●

●

●
●

●
● ●

●

●
●

●
●

● ●
●

●

●
●●●● ●

●
●

●

●
●
●●
●●

●

●●
●●

●
●
●
●●

●

●●●●
●

●●●
●

●
●●●●●
●●
●●

●

●●
●●

●
●
●●

●

●
●

●

●

●
●

●
●
●
●

●
●
●

●
●
●●

●

●● ●
●

●

●●●

●●

●
●●●●

●●●

●
●
●●

●

●

●
●●●●

●●●
●

●

●

●
●

●
●

●
●●●●

●

●
●

●
●

●
●

●
●●●●

●
●

●●
●●

●
●
●

●

●
●

●

●●
●

●
●●●
●

●

●

●
● ●

●
●
●

●●●

●

●

●●●
●

●●
●

●

●●●
●
●
●

●●
●●

●●●
●

●●
●

●
●

●●
●

●●●

●

●

●

●

●

●●

●

●
●●

●●●
●

●
●

●●
●

●●
●●●
●

●
●●
●●●
●
●●●

●● ●●

●

●

●

●
●

●
●

●
●

●
●

●●
●●●●●
●●●●

●

●
●
●

●●
● ●

●●
●

●
●
●●

●

●
●

●

●●

●● ●
●

●

●● ●●● ●
●●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●
●

●
●●●
●

●
●

●
●

●●
●

●
●●

●●

●

●●●●

●

●
●

●●
●

●
●●

●

●
●

●

●
●

●●

●
●●●

●
●●●

●

●

●

●

●

●
●

●

●
●●

●●
●

●●

●
●

●●●

●●

●

●

● ●
●

●
●●

●

●
●

●●
●
●
●●

●●

●

●

●

●

●●●
●

●

●
●●●

●●
●

●●
●

●●
●

●●●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●● ●
●

●

●
●

●●
●

●●●●

●
●●●

●
●

●●●●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●● ●●

●

●

●
●

●

●

●
●

●
●

● ●●

●
●
●
●●

●

●●
●●

●
●

●●

●
●

●

●
●

●●●
●

●
●
●

●
●●
●●

●●●●
●

●
●●

●
● ●

●●
●●●●●
●●

● ●●●
●

●●●●
●

●

●
●●●●●●● ●

●
●

● ●

●

●

●

●
●

● ●

●
●●
●

●
●

●
●
●●
●●
●

●● ●●

●●
●

●

●
●

●
●

●

●

●●
●

●●●
●

●

●
●●
●

●
●

●

●●
●
●

●

●
●●

●

●

●●●

●

●

●
●●●●

●

● ●
●

●●
●

●●
●

●

●

●
● ●

●

●

●
●●

●
●

●

●
●●

●
●

●● ●

●●
●●●

●●●●
●

●

●
●

● ●

●

●

●

●●
●

●
●●

●

●●

● ●●

●

●●●
●●

●
●●

●

●
●● ● ●

●

●●

●

●

●

●

●

● ●
●

●
●

●
●●

●
●●●

●

●
●

●●
●

●
●●

●

● ●●
●

● ●●
●

●

●
●

●

●
●●

●

● ●● ●

●
●

●

●

●
●●

●●
●

●
● ●

●●
●●●
●

●
●● ●●●●

●

●●●
●●●

●●
●●●

●

●●
●
●

●●●●●●

●

● ●
●

●
●

●

●●

●●●

●

●
●●

●

●
●

●●
●

●

●
●●

●●●
●

●●
●

●●
●

● ●

●

● ●

●● ●
●●● ●
●
●

●●● ●
●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●● ●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●
●

●
●

●
●
●●

●

●
●
●

●
●●

●
●

●
●

●
●

●

● ●

●

● ●●

●

●
●●
●

●●● ●

●

●
●

●

●
●●●●●

●

●●
●

●

● ●
●

●●
●●

●

●

●

●

●

●
●

●
●●
●●

●●
●
●●

●

●
●

●
●
●

● ●
●

●●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●
●●●

●
●

●
●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●
●

●

● ●
●

●

●●

●
●

●

●

●

●

●●

●●

●
●

●
●●

●

●

●●

●

●●

●
●

●● ●
●●

● ●
●

●

●

●●
●

● ●

●●

●
● ●

●●

●
●

● ●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●
●

● ●● ●

●
●

●

●
●

●

●

●
●

●●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
● ●

●
●●

●

●

●
●

●
●●

●
●
●●

●

●
●

●

●

● ●●

●

●

●

●
●
●
●

●

●

●

●

●

● ●

●

●●

●

●

●●●

●
● ●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●
● ●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●● ●

●

●
●

●

●

●●

●

●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●●

● ●

●

●●● ●

●

●

●●
●

●

●

●

●●

●

●

●●
●

●
●

●

● ●
●
● ●
●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●●
● ●

●●

●

●
●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●● ●

●

● ●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●
●

●

● ●

●

●

● ●
●

●

●
●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●●● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●
●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
●

●

●●

●
●

●●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●●

● ●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●
●

●

●
● ●●

● ●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
● ● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●
●

●●●●

●

●
●●

●

●

●●

●

● ●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

● ●●

●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●

●●

●
●
●

●
●●●●

●

●

●

●

●
●

●
●●

●
● ●

●

●
●

●

●

● ●

● ●

●
●●

●

●

●

●

●●

●

●●

●
●
●

● ●

● ●

●

●●
●

●

●

●

●

●●

●

●
● ●

●
●●

●

●

●

●

●●
●

●

●

●

●●
●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●
●

● ●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●●

●
●

●●

●

●

●●

●●●
●

●

●

●
●

● ●

●

●
●

●

●

●●
●

●

●
●

●
●

● ●● ●

●

●

●

● ●

●●

●

●

●
●
●●

●

●

●
●

●

●
●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●●●
●
●

●●●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●
●
●

●●●
●

●
●
●

●
●
●●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●●

● ●

●
●●
●

●

●

● ●
●

●

●

●●

●

●

●
●

●

●

●●

●
●●

●
●● ●
●

●

●
●

●

●
●

●
●

●

●●

●
●

●
●
●

●
●

●

●

●●

●

●●

●●

●
●

●
●

●

●●

●

●●●
●

●

● ●

●
●

●
●

●
● ●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●●●

●

●

●●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

● ●
●
●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●●● ●

●
●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●
●●

●

●

●

●
●● ●●

●

●●

●

●

●

●
●

●●

●
●

●

●
●

●

●
● ●

●●

●

●●●
●

●

●

●

●●●

● ●

●

●
●●
●

●

●●
●

●
●●

●
●

● ●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●●●
● ●

●
●●●●

●

●
●●●●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●
●

● ●

●●

●

●

●
●

●●●

●

●

●

●
●

● ●●●

●●

● ●●

●

●

●

●

●
●

●
●

●●●

●

●●
●● ●
●

●

●●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●
●

●
●●

●

●
●

●
●

●●
●

●

●

●●
●
●●

●●

●

●●

●●●●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●●●

●

●

●●

●

●●
●● ●

● ●

●
●

●●

●

●

●● ●
●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●● ●
●

●
●●

● ●

●

●

●
●●

●

●

●●●

●

●●●
●

●

●

● ●
●
●● ●

●
●

●●

●
● ●●

●●
●●

●
●

●

●
●

●
●

●

●
●

●
●

● ●

●●

●●
●

●
●

●●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●●

●● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●
●

● ●

●

●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

● ●

●
●●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●●

●
●●
●

●
●

●●

●● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●● ●
●

●

●

●

●

● ●●●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●●

●●
●

●

●

●●
●

●
●

●
●

●●

●
●

●

●

●

●●
●●

●

●
●

●

●

●

●
●
●

●●

●

●
●●
●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●●
●
●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●●●

●

●

●●
●
●

●

●

●●
●

●
●

●

●

●

●●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●
●●

●

●●

●●

●

●

●

●

●

●

●●●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●
●●

●

●

●●

●

●
●●

●

●

●

●

●

● ●
●

●

●

●●

●

●
●

●●

●●
●

●

●
●

●

●
●

●●
●

●●
● ●

●

●
●●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●
●●

●

●
●
●
●
●

●
●●
●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●●●

●
●
●

●

●●

●

●
●●
●

●
●●

●

●●
●●●●

●
●

●
●

●●
●

●●
●●

●
●
●

●
●

●
●

●

●
●
●●

●

●●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●●

●●
●●●
●
●

●
●

●
●

●
● ●●●
●

●
●

●●
●

●

●

●
●●●

●
●

●
●
●
●

●

●
●

●

●

●

●●●

●

●●●

●

●

●
●
●

●

●

●●

●

●

●
●

●
●
●●●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●

●●●
●

●
●

●●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●
●

●

●●
●

●●●
●

●
●

●●●
●

●
●

●
●
●●

●
●●

●

●●
●

●

● ●●
●
●

●
●●
●

●●●●
●

●

●
●

●

●●●●●
●

●
●

●●●●

●
●

●●●
●

●
●

●●
●

●

●

●●
●

●●
●

●
●

●
●

●

●●

●

●●●
●●●●
●● ●●●

●
●● ●●

●●
●

●

●
●
●

●
●

●

●

●●●
●

●

●
●

●●
●

●

●
●● ●●●
●
●

●

●
●

●
● ●●●

●

●●●

●
●

●

●●

●

●●
●●●●●●
●

●
●

●

●
●

●●●
●●

●
●

●

●

●●

●

●●●
●●

●
●

●
●

●

●●●
●

●

●

●●●

●

●●
●

●●

●

●●

●

●

●

●●
●●

●●●●

●

● ●

●
●
●●●●
●
●

●

●
●●●●

●●
●

●●

●
●

●●●●
●

●

●
●

●●
● ●

●

●
●●
●

●●
●

●●

●

●

●

●● ●●

●

●

●

●

●
●●

●

●
●

●●●

●

●
●●

●

●

●
●

●

●
●●

●

●●
●
●
● ●●

●
●

●
●

●●●
●

●

●●

●

●

●●●
●

●●

●● ●

●

● ●
●

●

●

●

●
●
●

●●
●

●

●
●

●
●●

●●●●

●

●●●●
●

●
●●●

●
●

●●

●
●

●
●

●

●●
●

●

●● ●
●●

●●
●●

●

●
●

●

●

●
● ●

●
●

●
●●

●

●●
●

●
●

●
●

● ●
●
● ●
●●●

● ●●
●

●●●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●●●●

●

●
●

●
●

● ●●

●● ●
●●

●
●●
●

●● ●
●●
●

●

●

●●● ●
●

● ●●●●
● ●

●●

●

●●
●●
●●●●

●●● ●
●

●

●●
●

●●

● ●●
●
●
● ●
●●●
● ●

●
●●●● ●

●●●●●
●●●
●
●

●
●

●

●
●●

●
●

●
●●
●●●●●
●

●
●

●●
●●●●●

●

●
●●

●
●

●

●●●●

●
●

●
●

●

●
●

●
●
● ●

●

●
●
●●
●●●●●

●●
●

●
●● ●●

●
●●

●
●●●

●●
●
●

●
●

●●
●

●●
●●

●
●●●

●
●
●
●●●●●●

● ●
●●
●●●
●

●●

●

●

●
●

●●●
●●●

●

●
●

●

●●
●●

●

●●
●
● ●
●

●
●●
●

●

●●
●

●

●
●

●●

●

●● ●●

●●
●●●

●

●
●

●
●●●

●
●

●

●●
●●●

●

●●●●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●●

●
●●

●
●●

●●

●●

●

●●

●●
●

●

●●●
●

●
●

●
●●

●●

●
●
●●
●

●

●

●
●

●●●●

●

●●●
●●

●

●●

●

●

●●

●

●●●●●●
●●●●

●

●
●●

●● ●
●●●●

●
●

●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●●●●●
●
●●

●
●
● ●●●

●●●●●
● ●

●

●●●
●

●●
●●●

●●●●
●

●
●●●

●
●●●

●●
●

●

●●

●●●●
●●

●
●●●
●●
●●●●

●●

●●

●

●

●

●
●●●

●

●
●●

●●●

●
●

●
●

●
●●●●

●●

●
●●

●●●●
●
●
●●●●●● ●●

● ●
●

●
●

●●●●

●

●●

●
●

●●
●●●●●
●

●
●●●●●●

●
●●

●
●
●

●●●●●● ●●
●

●●●●● ●
●●
●
●●

●●

●

●
●●

●
●●
●●●
●●

●
●●●

●

●

●
●●

●●
●●●
●● ●●
●●
●

●

●
●●

●
●

●●
●●●

●●●●●●●●
●
●

●
●●
●●
●
●
●
●
●●
●

●●●
●

●●
● ●

●●●
●●

●●
●

●
●●●

●●
●
●
●

●●

●●
●
●●●

●

●●●

●
●

●

●●

●
●

●

●

●●

●
●

●●●●●●
●

●●

●●

●
●

●●●●
●●●●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●●●
●

●●
●

●●
●●

●●

●

●●●●

●

●
●

●●

●

●●
●
●●

●

●●

●

●●

●

●●●●●●●
●●

●●
●●●
●●

●
●

●
●
●●

●

●
●●●●●

●●●●
●●

●●
● ●
●

●
●●●
●
●

●
●

●●
●

●●●

●

●
●
●●
●

●●

●

●
●●

●

●
●

●●
●●

●

●
●

●
●
●
●●
● ●

●●
●●●●
●
●
●●●●

●
●●

●

●●●
●

●●

●●
●
●

●
●●

● ●

●

●●
●

●

●
●●

●

●

●●
●

●
●

●

●●
●●

●

●
●

●
●

●●●
●●●●●
●●

●●●
●●

●●

●●
●

●●●
●●

●
●

●

●

●
●

●●
●●●

●●
●

●●
●●
●●●●

●●●

●●
●

●●●●

●

●

●
●●

●

●
●●

●
●

● ●

●

●

●
●

●
●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●●●

●●
●

●
●
●

●
●
●
●●●●

●

●

●

●
●

●

●●●
●
●●

●
●●●●●●●
●
●
●
●●●
●
●

●

●
●

●
●

●●

●
●

●●
●●●●
●●●

●●

●●

●
●

●

●
●

●

●
●

●●
●
●●

●●

●

●
●●

●

●

●

●●

●

●●

●
●

●●

●

●
●
● ●●
●

●
●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●
●

●

●

●

●
●●●

●●

●
●●

●

●

●

●

●
●

●●

●●

●
●
●

●

●●
●

●
●

●

●●●
●●●●

●●●●●●
●●●

●

●●

●

● ●
●

●

●●

●
●●●●●

●●
●
●

●●●
●
●●

●●
●

●●

●
●

●

●

●
●●

●

●
●

●
●●●

●●
●

●

●

●

●●

●
●

●

●

●
●
●
●

●
●
● ●●

●●
●●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●●● ●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●●●
●

●

●

●

●●●
●

●

●

●

●

●
●

●

●●
●

●

●
●

●●

●

●
●

●
●

●●

●

●

●
●●

●●

●

●
●

●
●

●

●
●●

●
●

●

●
●

●●
●●

●
●

●
●●●●●●

●
●

●

●

●

●●●
● ●

●
●

●
●

●

●

●●●●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●●
●
●

●

●

●
●●

●
●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●●
●●
●

●●●
●●

●●
●

●
●

●

●

●

●

●

●●

●●
●
●
●

●●

●●

●

●

●
●

●

●
●

●

●
●

●●
●

●●●

●

●●●●
● ●●●

●

●

●
●●

●● ●
●●●

●●
●

●

●

●

●

●

●

●
●●

●●

●
●●

●

●●●

●
●

●

●
●●●●●

●
● ●

●

●●
●
●

●

●

●
●●

●

●
●●●

●●
●

●
●●● ●●

●●
●

●
●●●

●

●●
●

●

●●●●

●

●
●●

●
●●
●●●●
●●
●

●●
● ●●

●
●
●

●
●

●
●

●● ●
●

●●●
●

●●●

●

●

●

●
●

●
●●

●

●
●

●●
●

●●
●
●

●● ●
●

●
●●●

●

●
●●●●

●
●

●●
●●●

●

●

●
●

●●

●

●
●
●

●

●

●
●
●

●
●

●
●●

●
●
●●●●
●

●●

●
●●

●
●

●

●
●●

●
●

●

●
●●

●

●
●

●
●●●

● ●●●●●●●

●●
●●●●

●●●

●
●●●

●●
●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●
●
●
●●●●

●
●

●●●● ●●●
●

●

●
●
●

●

●●
●

●●
●●

●
●

●
●

●●

●

●
●●●

●● ●●

●
●

●
●

●
● ●●●

●
●●

●
●
●

●

●

●
●●

● ●●

●
●

●
●

●●

● ●
●●●●

●

●
●

●●

●

●●
●

●●●
●

●●
●
●●

●●●●●●
●
●

●
●

●●●
●

●●
●

●

●

●

●●

●

●

●●
●

●
●

●●● ●
●

●

●●
●●

● ●
●●●●●●
●

●
● ●●●
●●

●●●
●●

●

●

●

●
● ●

●
●

●
●

● ●●●
●●

●●●●●●●
●●●
●●

●
●

●●●
●●●

●

●

●
●

●●●
● ●●●

●●●

●
●
●

●
●●

●●
●●●

●●
● ●●

●●●
● ●●

●

●
●●

●
●

●●

●
●●●●●
●

●●●●
●
●●●

●

●
●

●
●●

●●
●●●

●
●

●
●
●●

●●●
●●

●●
●

●
●

●●
●
●
●

●

●

●

●
●

●●
● ●

●

●

●
●●

●●

●
●
●●

●

●●●●
●

●●●●
●●

●●
●
●

●●
●
●●●●●●●●

●
●

●
●

●●●●
●

● ●
● ●

●
●
●

●
●●

●

●●
●
●●●

●
●

●
●

●

●

●●
● ●

●

●

●
●●

●
●
●●●
●
●

●
●●
●

●

●
●

●
●●●●

●●

●
●●

●● ●●●●
●●
●

●●

●●●●

●
●● ●●●●
●●

●
●●

●●●●●●
●
●
●●●●●●

●●

●

●●●●
●

●●
●

●
●

●

●

●

●

●
●

●

●
●●●●●●
●

●●●
●
●

●

●
●

●
●

●
●

●
●

●●●

●
●

●●
●
●
●●
●

●●●●●

●

●

●
●

●
●●

●

●
●

●●●
●
●●
●

●

●

● ●
●●●
●●

●

●● ●

●

●
●

●●●

●
●

●

●

●
●
●

●●●●

●
●

●

●●●●
●
●●
●
●●●●●● ●●●●●
●

●
●

●●

●

●

●●
●
● ● ●

●●●●

●
●

●

●

●

●

●

●

●
●
●

●● ●
●

●

●

●

●●●
● ●

●

●

●●
●

●
●●●●
●●● ●●
●●●●●

●
●●

●
●●●●●●

●
●

●

●

●
●

●●●
●●

●
● ●

●

●

●●
●

●
● ●●●

●
●

●●
●

●
●●●

●
●●●●

●

●
●

●
●

●
●

● ●

●

●
●

●●●
●
●

●●●●
●●

●
●

●

●

●●
●

●

●●

●
●●

●
●●

●●

●●
●●●●

●

●

● ●●
●

●

●
●●

●●

●

●

●●
●●● ●●●

●

●
●

●

●●
●
●●
●

●
●
●

●
●

●●●
●●

●●
●

●
●

●●●●
●

●●●●

●
●

●●
●●

● ●
●

●

●

●

●
●

●
●

●

●●

●

●●
●

●
●●

●
●●●●●

●● ●
●

●●

●
●●●●
●

●●●
●●

●●●
●●●● ●●●●

●

●
●

●

●
●●●●

●
●●●●
● ●

●
●●

●● ●●
●●

●●●
●●

●

●●

●
●

●
●●

●●●●
●●

●
●●

●●●
● ●●

●● ●
●●
●●●●●●
●
●

●
●●

●●●
●
●●

●●●
●●

●
●●●

●

●
●●●●●●

●●
●●

●●
●●●

●●●
●

●
●●●●
●
●●

●

●

●

●●

●●
●

●
●

●
●

●●
●

●

●
●

●
●●●
●
●

●●●
●

●
●● ●●

●

●●●
●●
●●●●●
●
●●●●●●●●●

●

●
●●●●●
●●
●●
●●

●●● ●

●●●●●●
●

●●●●●

●
●

●
●

●
●

●●●●
●●●

●●
●

●●

●
● ●●

●●●●●
●

●●●● ●●●●●●●●●●●●●●●
●●●

●
●

●● ●
●

●

●●●●

●●

●

●

●●●
●●●

●●
●●●●

●
●
●●

●●●●●●●
●

●●
●

●●●
●●●●●●●●

●
●
●●

●●●
●
●
●●●●●●

●●●●●●●
●●●●

●●●
●●●

●●●●●●●●●●●●●
●●●

●
●●●

●
●●●●●●

●●●●●●●● ●
●

●●
●

●●●●●●
●
●●●

●●●●●●
●
●●●

●●

●

●●
●

●●●●●●
●

●●●
●
●●●●●

●
●

●
●●
●

●●●●●●●●●●●●●
●
●●

●
●

●
●●●●
●●

●

●●
●

●
●

●
●●

●
●●
●
●●●
●●
●
●●●

●

●
●●

●●
●

●●●
●●

●●

●●●
●

●
●●●●

●

●
●●●●●●

●

●
●●

●

●
●

●●

●

●

●

●
●●●

●

●
●

●●
●

●

●●
●
●

●
●●●
●

●
●●

●
●●●●●

●

●●
●● ●●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●
●

●●●●
●●●

●●●●●●●●

●
●

●●●
●

●●
●●

●●
●●●●
●●●●●●●●

●●●
●

●●

●●
●
●
●

●

●
●

●
●●●

●
●

●

●

●

●
●●

●
●●●●●

●
●
●

●
●

●
●●

●

●●●
●●●●●●

●
●● ●●
●

●●
●●●

●
●●

●●
●●●
●●

●
●

●

●

●
●●

●
●●●
●● ●●
●

●

●●
●●

●●
●●
●●

●●
●●●●
●●●●
●
●

●
●●●●
●

●●●●●●●
●

●
●

●
●

●
●●

●●
●
●
●●

●
●●

●●
●
●●●

●
●●

●
●●

●●
●●

●●●
●

●●●
●●

●●

●

●●●●●
●

●●
●●●●●●●

●

●
●

●
●
●●●

●●
●

●
●●●●●
●●

●

●

●
●

●
●● ●●●

●
●●●●● ●●

●
●

●●●●●
●● ●

●●
●●

●
●●●●●●●●
●

●
●

●●

●●●●●
●● ●●●

●
●

●
●

●●●●
●●
●●●

●
●●

●●●●
●●● ●●
●●●●●
●

●●●

●
●●●●●●

●
●●●

●
●

●●

●

●
●
●●●
●●

●
●

●
●●
●

●
● ●●

●●
●
●
●●
●
●

●
●

●
●
●●●

●

●

●●●
●●

●

●
●

●
●

●
●
●

●

●

●
●
●●●

●

●●●●●●●●
●

●

●●

●●
●

●
●●●

● ●
●●●

●●● ●

●●

●

●

●

●
●

●●

●
●

●

●
● ●●

●
●

● ●●
●●●●●●
●

● ●
●●

●
●● ●

●

●

●

●

●
●
●
●● ●●

●

●
●

●●
●

●●
●●●●●●●●●● ●
●●
●

●●●●
●●●●●●●
●●●

●
●

●
●●

●
●

●

●
●

●●●●
●
●●
●

●

●●

●

●

● ●

●●●
●●
●●●●

●●
●●
●●

●
●●●●
●
●●●●
●●

●●●●●

●

●●

●●

●

●●
●

●

●

●

●

●●
●●

●●
●

●
●
●●

●
●●●

●●●
●

●

●
●

●●●● ●
●●●

●

●●
●●●●●●

●
●

● ●●
●●●●●
●●●●

●

●●
●●

●
●

●
● ●

●
●

●●●
●

●

●
●●

●●●●
●●

●
●●

●
●●

●

●
●

●●
●
● ●

●
●

●●●
●●

●
●
●●●●●●● ●
●
●●

●
●●● ●●

●
● ●

●

● ●●●●●
●

●●
●●

●●
● ●

●●● ●●●
●

●

●●

●●
●

●●
●

●

●

●

●

●
●
●●●
●

●

●
● ●

●
●

●
●●●●

●

●●

●●●
●●●●●●●●●●●●●●●●
●

●
●●

●
●

●

●

●●●
●●

●●●
●

●
●

●

●●

●●
●

●

●
●●

● ●●
●●

●●● ●●
●

●

●
●

●●
●

●

●

●
●●● ●

●
●●●

●●
●●

●●●●
●●

●
●

●
●●

●●
●●

●
●

●●
●●●

●
●●

●●

●● ●●●
●

●●●
●●

●●●
●

●●●●● ●
●●

●
●●●●

●●

●
● ●●

●●●
●●

●● ●
●

●

●

●
●
●

●

●

●

●

●

●●● ●●●●●

●●●●●
●●●

●
●●

●

●●
●●

●
●●●●●

●●
●●●

●●●
●●●
●●●●
●

●●
●●●●●

●●
●
●●● ●●●●●●●●● ●●

●●
●●●●●

●

●

●
●●● ●●●

●●

●

●
●●

●

●●●●
●

● ●●
● ●●
●
●●
●
●●

● ●

●
●●●

●
●

●
●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●●●
●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●

●●

●●
●
●

●

●

●

●
●

●
●

●●
●

●●●

●
●

●

●

●●
●

●

●
●

●

●●

●

●

● ●

●

●●●●●
●●

●
●●

●
●

● ●●
●●

●
● ●●●●

●●
●●● ●●
●●

●
●●●

●●
●●

●
●

●
●
●

●
●

●
●

●

●●●●
●

●
●●
●
●

●

●●●
●●

●
●

●
●

●
●●

●
●●

●●●●●
●

●
●●
●

●

●●●

●
●●●
●●●

●●
●●●
●
●
●

●
●●●
● ●

●

●
●●

●
●
●●●●
●

●
●
●

●
●

●

●●
●

●

●
●●
●●
●

●
●

●
●●

●●

●●
●

●
●●

●●●
●●●
●●●

●

●
●

●
●●

●
● ●
●

●
●
● ●●

●
●●●

●

●
●●

●
●●●●
●
●

●
●

●
●

●
●

●

●●
●●

●

●

●

●
●●

●

●
●

●
●

● ●
●●

●
●●

●

●

●

●●

●
●●

●
●

●
●

●

●●
●●●●

● ●
●

●
●●

●●●●
●

●●
●

●
●●
●
●●

●

●
●●●

●

●
●

●●
●●●

●

●

●
●

●●
●

●
●
● ●●

●

●
●●
●
●●

●●●●●

●

●

●
●

●

●
●
●
●

●●
●

●●
●●

●
●●●

●●
●●●

●
●

●
●
●

●
●

●

●
●
●●

●

●

●●
●● ●●●

●●● ●●
●●
●●

●

●

●

●

●

●

●

●●
●●

●

●●
●●

●

●
●

●

●●●●●
●

●●
●

●
●

●
●
●

●●
●●●●●●●●●

●●●

●

●

●●
●●

●
●

●
●

●
●
●● ●●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●●

●

●
●

●

●●
●
●●●●●
●

●

●
●

●●
●

●

●
●●●●

●
●
●

●
●●●● ●●●
●●
●
●●

●●●
●●

●

●●
●●

●
●
●

●●
●●

●●●●●
●

●
●

●
●

●

●
●●

●
●●

●●
●
●

●●
●

●

●
● ●

●

●

●

●●● ●

●

●
●

● ●

●

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●
●●●

●●
●
●

●●●
●
●●

●
●●●

● ●
●●

●
●●

●
●●

●●

●

●

●

●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●●
●●●●

●
●

●
●●

●●

●●●
● ●●●●
●
●

●● ●●
●●●

●
●

●
●

●
●

●●●
●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●●●●

●

●

●●
●●●

●
● ●

●
● ●

●●
●

●
●

●●
●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●
●●●

●●

●●●
●
●

●

●

●●

●
●

●
●●
●
●●

●

●
●

●●
●

●
● ●●●
●

●●●

●

●●
●

●
●●

●
●
●● ●●●
●

●

●
●●● ●

●●
●

●●

●●●●●
●

●●●●●●
●

●

●
●

●
●

●
●

●

●
●●

●
●●

●●●●●●
●●

●●●
●

●
●●●

●●
●●●

●●
●●

●●
●
●

●

●
●

●
●●
● ●
●●

●

●●
●●

●

●

●
●
●●

●●
●●
●
●●
●●●●●

●

●

●●●●
●
●
●
●●

●

●

●
●

●●
●

●●
●

●
●

●
●

●

●●●
●●

●
●
●●
●

●
●

●
●
●

●
●
●
●

●●●
●●

●

●
●●●●●
●●

●
●

●
●●●●

●

●●●●
●
●●

●
●

● ●●

●
●

●
●

●●
●●

●

●

●

●

●
●

●●

●●
●●
●
●●●●
●●●● ●●

●●●
●
●●
●●●

●
●

●●●

●●●
●●●
●●●
●

●
●
●●
● ●
●●●●

●

●
●●

●
●●●

●
●●

●●

● ●●
●
●●●
●●

●

●
●

●
●●●●●

●●●
●

●●●●●●
●●●●
●

●
●●
●

●●●●
●●
●

●●●●●●●●●●
●●

●●
●

●
●●●●

●●

●

●●
●

●
●

●●●●●

●●●
●

●●●

●●
●●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●●

●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

● ●

●
●

●●●●

●

●
●

●●

●
●●●

●●●
●
●

●

●

●
●
●

●

●
●

●

●●

●
●●●
●

●
●
●

●●
●

●
●

●

●

●

●

●

●

●
●
●

●
●●

●●
●

●●
●●
●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●
●

●
●

●
●

●

●
●

●
●●

●

●●

●
●

●
●
●

●

●

●

●

●
●

●
●●●
●

●

●

●●
●

●●●●● ●

●●
●●

●

●

●

●
●

●●●
● ●●
●

●

●

●
●●

●

●
●●●●●● ●● ●
●

●
●

●●●
●

●●●●
●●●
●
●
●

●
●
●

●
●

●●●●●●●
●●●●●●

●●●●●●●
●

●
●●●●●●
●●●●●●●●
●●
●

●
●●●●

●●
●

●
●

●
●

●●●

●

●
●●●

●
●
●●●

●
●

●
●

●
●

●
●●●●● ●
●

●
●
●●●●●●
●●●●

●

●
●
●●●●

●●

●
●●
●
●●●

●●

●
●

●
●

●

●

●
●●
●●●●
●
●
●●

●
●●● ●●●

●

●● ●
●●

●●

●●●
●●●

●●●●

●

●

●

●

●

●
●
●

● ●●●●●
●
●●●●●●
●●●
●

●●

●●●
●●●

●●●
●●
●●●●●
●● ●
●●●
●●

●●●●●●●●●
●●●●
●

●●●●●●
●
●
●
●●●●●
●●●
●
●

●●
●●

●●●●●
●
●●●●●●●●●●● ●●

●
●●

●●
●●●●●●●

●●●●●●●●●●
●

●●● ●

●
●

●●●●
●●●
●●● ●●●●●●

●●
●●●
●
●●●
●
●
●

●●●●
●

●
●

●●●
●

●

●
●

●
●●

●
●●●●●●
●
●●●●●●●●

●
●
●●●
●

●●
●●

●
●●
●
●●●●●●●●●●
●●●

●
●

●

●
●●
●●
●●●

●
●
●●

●
●●●●

●●●●●●●●●●
●●

●●
●●●●

●
●

●
●

●●

●●●
●●●
●
●
●

●● ●
●
●●●●
●●
●

●●●●●
●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●
●●

●
●
●

●●●●●
●

●●●●●
●●

●●●●●●●
●●
●●●●●●

●
●●
●●
●

●●●●●
●
●●●

●●●
●●

●

●●●

●

●●

●

●●
●

●

●
●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●●

●●
●●
●●

●

●
●●●●●

●●
●●
●
●
●
●
●●●●
●●●

●
●●

●●●●●●●
●●●●●●●

●

●●●●●
●

●

●●
●●●●

●●
●●

●●●
●●●
●
●
●
●
●

●

●●
●

●
●
●●●

●●●
●
●●●

●

●●
●

●●●●●
●●●

●

●
●●●●
●
●●●

●

●

●
●●

●
●●●●●●
●
●
●●●
●
●
●●

●●
●●●
●
●●●

●

●
●●
●

●

●

●
●●

●
●

●
●
●●●

●●

●
●

●

●

●

●

●

●●

●
●

●●
●

●

●●●●●
● ●

●●
●
●●
●●

●

●
●●

●

●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●
●
●
●

●

●●●

●●

●

●●
●● ●●●●
●●

●
●

●
●

●
●

●

●

●

●●●
●●

●●
●

●●
●
●

●

●

●
●●

●

●

●

● ●

●
●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●●

● ●●

●

●
●

●

●
●● ●

●●

●

●●●●

●
●

●

●

● ●

●●

●

●

●

●

●
●

●

●
●●●●

●
●●

●

●
● ●
●
●

●●●

●
●

●

●
●

●
●

●●
●●●●●●

●
●

●●
●

●

●

●

●●
●

●
●

●
●●●

●
●
●

●
●●

●
●
●●

●

●
●●

●
●●

●
●

●●

●●
●

●

●●

●

●

●●
●

●
●● ●

●●●

●

●●
●
●
●

●●●
● ●●

●●●●
●

●
●●●●●

●

●

●
●

●

●
●

●

●

●●
●
●

●
●●
●
●●

●

●
●●●●●●

●

●
●

●
●

●

●●●●●

●

●

● ●

●

●

●

●

●

●●
●

●
● ●

●

●
●
●●●
●

●
●

●

●

●●
●

●
●●
●●●
●●●
●●●

●

●
●●●●●
●●
●
●●●
●●●

●
●

●●
●
●

●●●

●●
●●●●●●
●●●●

●●●

●

●
●●●

●

●●●
●

●●●
●
●

●
●●

●

●

●●●
●●

●

●
●

●●

●
●●

●
●●

●
●

●
●

●

●●

●

●

●

●
●●●

●

●●

●●
●
●●
●

●

●

●

●●
●●●●
●

●

●

●

●
●

●●

●
●

●●
●

●
●●
●

●

●

●
●

●

●

●
●

●
●●

●●

●
●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●
●

●

●●
●

●

●

●

●

●●●
●

●

●
●●●●●

●

●

●

●●●●●●●●●
●●

●

●
●
●●●●●

●●
●

●●
●

●●
●●

●

●
●

●
●

●
●

●

●●●
●●

●●●

●

●
●

●●●●
●●

●

●

●

●

●

●

●
●●

●●

●
●

●

●
●

●●
●

●
●
●●●
●●●

●●●

●
●

●
●
●
●●

●
●

●
●●●

●●●●●
●●●●●●●●

●
●

●
●

●
●
●
●

●●●●●
●●●
●●●●● ●●●
●

●●●
●

●
●

● ●

●
●●
●

●

●●
●

●
●

●

●

●

●

●●●

●●●

●●
●●●●●
●
●●●●
●●●●●

●●
●●

●
●

●

●
●●

●
●

●
●

●●

●
●●

●
●●●

●●
●●●●

●
●

●

●

●
●
●●●●

●

●●

●

●
●●●●

●●

●
●●●

●
●
●●

●●
●●

●●

●
●●●

●
●●
●●

●●
●

●
●
●

●

●

●
●

●

●●
●

●

●
●●

●
●●●

● ●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●
●
●
●

●
●●

●●

●●

●

●
●●
●

●

●
●

●●

●
●

●
●●●●

●
●●●

●
●

●

●
●
●

●

●

●

●

●

●●●
●●

●
●

●
●

●
●

●●
●

●●●
●

●●
●

●
●

●
●

●
●

●●

●
●●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●●●
●

●●●
● ●

●
●●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●●●●

●

●●●

●

●

●

●
●

●● ●
●

●●
●
●

●

●●
●

●

●

●

●

●
●●

●
●
●

●
●●●●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●
●

● ●●
●

●

●

●

●

●●

●
●
●

●●
●

●

●

●
●

●
●

●●
●
●

●

●●
●

●

●
●●●

●●
●●
●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●
●

●

●

●
●●

●●

●●

●

●

●
●●

●●●

●
●

●

●
●

●

●●

●

●
●

●
●

●●●

●
●●

●
●

●●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●
●

●
●

●●●
●●

●

●

●

●

●●

●

●●

●●●

●

●●●●●●
●

●●●

●

●●
●

●

●
●●

●

●●
●
●
●

●●
●●

●●

●
●

●●●

●
●●

●●
●
●

●

●●●
●
●
●
●

●
●
●●●●
●
●

●●●●●●
●●
●

●
●

●
●
●●●

● ●●

●
●

●
●
●

●●●●

●

●●● ●
●

●
●●
●●

●
●
●●

●
●

●●

●
●

●●

●
●

●

●

●●●

●
●

●●
●●●●
●

●

●●●
●

●
●●●●

●●
●

●

●

●

●
●●

●
●

●●

●

●

●

●
●

●●●●
●

●

●●
●
●

●

●●
●●●●

●●
●

●●

●

●
●

●
●●

●●
●●

●
●

●
●

●

●

●
●●●

●

●●
●
●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●
●●
●●

●

●
●

●

●

●

●

●

●●●
●●

●

●●
●

●

●
●●●

●●
●

●

●
●

●
●

●●
●
●

●

●●●
●●
●

●

●●

●
●

●
●

●

●●
●

●

●

● ●●

●●
●●●●●

●
●
●

●

●

●
●

●
●●

●
●

●
●●
●

●
●

●

●

●●
●●

●
●

●
●
●●●
●●

●
●
●●

●

●● ●
●

●●
●

●
●●

●
●

●

●

●●●●

●
●

●●
●

●
●●●

●●

●●

●●●
●●

●●
●

●●●
●
●

●●
●

●●●
●●●● ●

●●●
●

●

●
●

●
●

●
●

●●
●

●●

●●
●●

●●
●●

●
●

●●●
●
●●●

●
●●

●●
●●

●
●●● ●●

●●●●●●●●
●

●

●
●

●
●●
● ●

●●●
●●
●

●
●● ●

●●
●●
●

●●

●●
●

●
●

●●
●
●

● ●
●●
●●

●
● ●

●●
●●
●

●●●●
●

●●●
●

●
●●●

●
●●

●
●

●
●

●
●●●

●

●●
●

●
●●●●

●●
●●●

●

●●●
●

●

●
●

●

●
●

●
●

●
●

●
●●

●

●
●●

●●
●●●●●

●
●

●
●

●
●

●

●

●

●
●

●

●
●●●

●●●●●●●
●

●
●

●
●
●

●

●

●●

●●●

●
●

●●
●

●

●● ●

●

●

●●

● ●

●

●●
●
●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●

●●
●

●

●●●●
●

●

●

●

●

● ●●●
●
●
●

●

●
●● ●

●

●
●

●
●

●

●
●

●
●

● ●●

●●●

●

●
●●

●
●

●
●●●●

●●●
●

● ●
●

●
●

●●●
●
● ●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●●●
●

●

●

●●●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●
●
●

●

●●

●
●

●

●

●
●

●
●

●●

●●
●
●

●
●

●
●

●

●

●

●●

●
●

●●
●

●

●

●●●
●

●●

● ●●

●
●

●

●●

●
●●

●

●●

●
●●●●

●
●

●●
●

●
●

●●

●●●●

●
●●

●●

●●
●

●●●

●

●
●

●●●
●

●●
●● ●

●
●●

●
●

●

●
●

●●

●●

●
●

●●

●●

●

●●●●●●
●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●
● ●●

●
●

●
●
●

●
●

●
●

●

●●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●●

●
●

● ●
●●

●

●

●
●

●
●

●

●● ●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●●●
●

●
● ●

●

●● ●
●

●●

●
●●

●

●

●

●
●

●●

●●●

●●●

●

●
●

●

●●

●

●

●
●●●

●●
●

●
●

●●

●

●

●●●
●

●

●

●
●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●●●
●

●
●

●●

●
●●

●

●

● ●

●
●

●
●

●●●●

●

●
●●

●
●●

●●
●●

●

●
●

● ●
●

●
●

●
●●●

●●

●
●

●●

●
●

●
●●●●

●●
●

●●

●

●●

●

●●
●●

●
●

●
●

●
●

●
●●●

●●

●●
●

●●●
●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●●
●●

●
●

●●
●

●

●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●
● ●

●
●
●● ●

●●
●●

●●
●

●

●●
●

●
●●

●●
●

●

●●●
●

●

●●●●●●
●

●
●

● ●●
●

●
●●●

●●●
●
●

●
●●

●●

●
●●●
●●
●●

●

●

●
●●●

●●

●
●

●●

●
●●●

●

●●

●●●
●●●

●●
●

●●
●

●●
●

●

●●
●

●
●●

●

●
●

●●
●

●●
●●

●
●

●●
● ●●

●

●

●●●
●● ●

●●
●

●●
●●
●

●●●
●

● ●
●●●
●●

●●●●●
●

●

●

●
●
●

●

●
●●

●●
●●

●●●

●
●

●
●●

●●

●●●●●
●

●
●●●

●●
●

●
●●

●●
●●●
●●●
●

●
●

●●
●

●●
●

●●
●●●●

●
●●●

●
●

●●●
●

●
●●●

●

●
●●●

●●
●

● ●●
●●

●
●●

●
●

●●

●

●
●●

●

●

●●
●●

●●
●

●●
●

●
●

●

●

●
●●

●
●

●●●
●

●

●●
●

●●

●●

●
●●

●
●●●●●●●●●

●
●
●
●

●● ●
●●

●
●●

●●
●

●●

●
●
●●

●

●

●
●●

●●
●
●

●●●
●
●●

●

●

●
●●● ●●●●

●
●●

●
●●●●●●

●●●●●●●
●● ●●●

●
●

●
●

●

●●
●●●

●
●

●
●●●
●

●
●●

●

●
●●●●●● ●●
●

●
●●●●● ●●

●●●

● ●●

●
●

●
●●

●●
●
●●

●
●●●●●
●●
●

●
●

●
●●
●

●●
●●●

●●●
●●
●

●●

●

●●
●

●●

●●

●
●

●
●●●●●●●

●
●●

●
●

●

●
●
●●
●
●

●●●●●
●

●
●

●
●

●
●●●●

●●●
●●

●●
●

●

●
●

●●●

●

●●
●
●

●●●●

●
●

●
●●

●●

●
●

●

●
●
●●
●

●●●

●
●

●
●●

●

●

●●
●

●●● ●●

●●

●●●

●●
●●

●
●●

●●

●●

●●
●

●●
●●

●
●●

●
●

●
●

●
● ●●

●●
●

●
●

●
●

●
●●
●●

●

●●

●●●
●

●●●
●

●●●
●●●

●
●

●●
●●

●●
●

●
●●●
●●●

●●
●

●

●
●

●●
●●

●

●●

● ●●
●

●●
●

●●
●●●

●●
●

●●

●●●●●
●●
●●
●●

●●●

●●● ●
●

●●

●

●
●●●●

●
●

●
●●●●

●
●

●

●●
●●

●●●●●
●

●

●●●●●
●

●●
●

●●
●

●

●
●●●

●●

●
●

●●
●

●
●

●
● ●

●●
●

●●

●

●
●

●

●
●

●●
●

●
●●●
●● ●●

●

●

●●

●

●

●●

● ●

●
●

●

●

●

●

●

●●
●

●●

●●

●
●

●

●●
●

●
●

●
●

●

●

● ●
●

●

●●
●

●

●

●●●

●

●

●
●

●●

●●●

●

●

●

●
●
●

●

●

●
●●

●

●

●●
●●

●
●●

●

●

●

●●●
●

●
●●●
●●●
●

●

●
●●●

●

●●
●●
●
●
●

●
●

●

●●●

●

●

●
●●

●

●
●●

●●
●

●
●

●
●

●
●

●●●●
●●●●

●●

●

●

●

●

●
●

●
●●

●
●●●

●●●●

●

●●●

●●
● ●●

●

●●
●

●●
●●●

●●

●●
●

●

●
●●

●
●●●●

●

●
●

●●
●

●
●

●●●●●●
●●

●
● ●

●●
●

●

●
●●●
●●●●●●●
●

●
●

●●●

●

●●
●

●
●

●
●

●
●●

●●
●●

●●●●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●●
●

●
●●

●
●

●

●
●

●●

●

●

●
●●

●●

●●● ●●
●

●●
●●

●
●

●
●●●

●●●

●
●

●

●

●

●
●
●●●●●●●

●

●
●●

●

●

●
●

●
●●

●●
●

●

●●

●
●●

●

●●
●

●
●

●●

●●
●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
● ●

●

●
●

●●
●

●

●

●
●

●
●●●

●
●●●●

● ●●

●●
●●●●●

●●
●●

●

●
●●

●
●●●●●

●
●
●●●

●
●

●●
●

●●

●

●●
●
●

●
●

●

●
●

●
●

●
●●

●
●●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●●●

●

●

●●

●

●

●
●

●

●

●●

●
●●●

●
●●

●

●
●●

●
●

●

●

●
●

●

●●●
●

●

●
●

●

●

●
●●
●

●

●●
●●

●
●

●●
●●●

●

●
●●●

●●
●

●
● ●●●

●●

●

●●

●
● ●

●●
●

●

●
●

●

●
●

●●

●

●●●●

●●

●●
●

●
●●

●
●

●
●

●
●

●

●

●●
●

●

●●●●●
●

●●●●
●

●
●●

●

●
●●
●●
●

●
●●

●

●

●

●
●

●
●

●●

●●●●

●

●
●

●
●
●
●

●●●

●
●
●

●
●●

●●
●●

●
●

● ●
●●

●
●● ●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●●
●

●

●●
●

● ●
●●●

●
●

●

●●

●●
●●● ●●

●

●

●

● ●●

●

●
●●●●

● ●
●

●

●●

●●
●

●

●●●
●

●●●
●

●●

●
●

●

●

●
●

●

●

● ●

●
●
●

●●
●

●

●

●●

●

●

●

●
●●

●

●

●

●
●
●

●

●●
●

●●

● ●

●
●

●

●
●●

●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●●●

●●

●
●●●

●●●
●●
●

●
●

●●●

●
●
●

●
●
●
●

●
●

●

●
●●●

●●
●●

●●●

●

●
●

●

●
●

●

●●
●

●

●

●
●
●

●
●

●
●

●

●
●

●
●

●

●●
●●●

●
●

●●●●●●●●
●

●●

●

●
●

●

●
●●●

●

●●●
●

●

●
●

●

●●

●

●
●

●●
●

●

●●

●

●●

●
●
●
● ●

●●

●

●
●
●●●

●
●

●

●

●

●●●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
● ●

●●

●
●

●

●

●

●
●

●

●
●

●●
● ●

●

●●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●●

●

●
●

●

●
●

●●
●

●

●

●

●

●●
●

●●

●
●

●
●

●
●

●

●

●
●

●
●●

●

●

●
●

●
●

●●●●●

●

●
●
●
●

● ●
●

●● ●
●

●
●

●
●

●
●
●

●

●

●●
●

●●
●●●

●

●
●●

●

●
●

●●

●
●

●●●

●
●

●
●

●

●

●●

●
●●

●
● ●●

●

●

●●
●

●
●

●
●●
●●

●

●●
●●

●
●

●

●

●
●●

●

●
●
●

●

●
●

●

●●

●

●

●●●●

●●●
●

●●

●

●

●

●

●
●●●

●

●
●●●

●●●

●
●
●

● ●
●

●

●●●
●●

●
●

●
●
●

●
●

●●

●
●●●●

●●● ●●
●●

●
●●

●
●

●
●

●

● ●●●●●

●
●
●●●

●●
●●

●●● ●●●●●●
●

●● ●●●●
●

●●●
●●

●
●●

●●●●●●
●

●

●● ●

●●●●●●●●●
●

●

● ●●●
●

●●
●

●

●

●
●●

●

●

●
●
●●

●
●
●

●
●

●

●●
●

●●
●

●
●

●
●

●
●

●

●

●●
●

●●●

●
●●

●●
●

●●
●
●

●

● ●
●
●

●●
●

●●
●

●●
●●

●

●
●●

●●
●●

●●

●●●●
●

●

●
●

●
●

●●

●●●●
●

●
●

●
●

●●
● ●●

●
●●

●●

●
●

●●● ●
●●

●

●
●

●●●
●
●

●
●
●

●
●

●

●

●

●

●
●

●
●

●●●
●●●

●

●●●

●

●●●●
●●

●
●●

●
●

●●

● ●●● ●
●●

●● ●
●●

●
●●

●●●

●●●
●●

● ●
●●●
●●

●
●

●
●●●

●

●
●●● ●●● ●

●

●●

●

●●
●●●●

●

●

●●●●●●
●
●

●

●
●●

●
●●

●
●

●
●●●●

●
●

●

●
●●●●

●

●
●

●●●●●
● ●

●●●●
●

●
●

●
●
●●

●
●●●

●
●●

●

●●
●●

●
●

●

●

●●
●

●
●●●

●
●

●●●●
●

●
●●●

●●●●●● ●●
●

●●● ●
●●

●●
●●●●
●

●

●
●●●

●●
●

●●
●

●●●
●●●●● ●●●●

●

●
●●●●

●●
●
●

●●●●●
●

●●
●●●●

●●

●
●

●●
●

●●

●
●

●
●

●

● ●●

● ●
●●

●●
●●

●●
●●●

●●●●
●●

●
●
●

●
●●●

●

●

●

●

●
●

●●●
●

●

●● ●
●●

●●
●●

●
●●

●
●

●●●
●●

●●●
●

●●●●
●● ●

●
● ●●●●
●●

●
●

●
●

●
●

●
●

●
●●

●●
●
●

●
●

●
●

●●
●

●
●
●

●●
●

●

●
●

●●●
●●●

●●●●

●
●●
● ●●●

●
●●●●●●●●●

●
●●

●●●
● ●

●●
●

●●●
●

●
●●

●

●
●

● ●
●●

●●●

●
● ●

●●

●
●

●
●●
●

●
●

●●
●●

●●●
●

●

●
●●
●●

●●
●●

●
●●●

● ●
●●●●●●

●● ●●●

●

●
●●

●

● ●●
●

● ●
●●●●
●●●

●

●●

●

●●

●●

●
●

●●
●●

●
●

●●
●

●
●

●

●
●

●●

●●●●
●
●●

●
●●

●

● ●●●

●
●

●

●
●

●●

●

●

●
●

●●●
●
●●

●

●

●

●●
●●●●

●
●●●●

●
● ●

●
●●

●
●●●●●

●●●●●
●
●
●●

●

●
●

●
●

●●●●●●
●

●
●●

●● ●
●

●●●

●
●●

●

● ●

●●
●●

●
●

●

●
●
●
●
●

●
●●

●

●

●
●

●

●
●

●
●

●●

●
●

●
●

●
●●

●

●
●

●

●●● ●

●●●●
●●

●●
●

●

●●●
●●

●

●
●●

●●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●
● ●●

●●

●●●
●●

●
●●●●●
●●

●
● ●
●

●
●

●
●●●
● ●

●● ●●●
●●

●
●
●●●●● ●●
● ●● ●●
●

●
●●●●●

●
●●●

●●
●●

●
●●

●●●
●●

●
●

●●●
●

●
●●

●

●
●

●
●

●
●●●

●

●●
●●

●

●
●●

●
●

●●●

●

●
●

●●●
●

●
● ●●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●
●

● ●

●

●

●●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●

● ●

●●

●

●
●

●

●
●●

●●
●● ●●

●
●● ●

●

●

●●● ●●●●
●
● ●●

●

●
●●●●

●●

●
●

●●●●
●

●
●●

●●●

●

●

●

●

●

●
●

●
●●
●

●

●
●●

●
●

●●
●●

●
●

●
●

●●●
●

●

●

●
●
● ●

●

●
●

●

●●●
●

●●
●●●
●

●
●●●●
●

●
● ●

●
●

●●
●

● ●
●

●● ●●●● ●●
●● ●

●
●

●●
●●

●
●

●
●●●●●●

●
●

●●

●

●
●●●

●

●
●

●
●●
●●

●

●
●●●●●●● ●●

●●●●●
●●

●
● ●

●

●●●● ●●
●

●●●● ●
●

● ●●●
●

●
●●●
●

●
●

●
●●

●
●

●

●

●●
●

●
●

●●
●
●

●●●●● ●●●●●
●

●
● ●●●
●

●●●
●

●

●
●●●●●●●●●
●●●

●
●●
●
●●
●●●●

●
●

● ●
●

●●
●●●

●
●

●
●

●● ●
●
●●

●●●●●
●

●●

●
●

●
●●●

●
●●

●●
●

●●
●
●

●●
●

●
●

●●●● ●●●●●●●●●●
●

●●●
●

● ●
●●●
● ●
●●●

●

●●
●

●
●

●
●●●

●
●

●

●
●●●
●●

●
●

●

●

●
●●
●●

●●●●●●●

●

●●
●

●
●● ●● ●●

●
●

●
● ●●

●
●

●●●●
●

●
●●

●● ●
●●●

● ●
●●
●

●
●
●●

●●●●●
●

●
●

●●●●●●●●
●●
●

●

●

●
●

●

●
●
●

●

●
●

●

●
●

●
●

●

●

●

●
●
● ●
●●●

●●
●●●●

●
●●● ●●●●

●●●
●●

●

●

●●●
●●●

●
● ●

●●● ●
●

●

●

●

●
●

●
●

●

●
●

●
●●

●

● ●
●
●

●

●
●●

●●
●

●
●

●●

●

●
●
●
●
●

●
●

●
●

●
●● ●

●●
●
●

●●

●

●●●
● ●

●

●

●

●
●●●

●●●●●
●●●
●

●●●
●

●●●●●●●●
●

●
●

●●
●●

●
●●●

●

●
●●●●

●●● ●
●

● ●
●

●

●

●●● ●
●●

●
●●
●●

●

●● ●
●●
●●

● ●● ●

●

●
●

●

●●
●●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●
●

●●
●● ●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

● ●
● ●

●●●
●

●

●
●

●

●
●

●

●

●
●

●●
●

●
●●●

●

●●
●●●

●

●
●●
●

● ●

●●

● ●●● ●
●

●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
● ●

●
●

●●●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●●
●

●

●
●●

●
●

●
●
●
●

●

●
●●

●
●

●
●

●

●
●
●

●●
●●

●
●

●

●●

● ●
●

●●
●●

●
●

● ●
●
●●

●
●

●

●

●
●

●

●●
●
●

●●●●
●●

●●●● ●●●

●

●
●

●●
●

●●

●

●●

●
●

●

●
●

●
●

●●●
●●

●
●●
●
● ●●

●●●
●●

●●
●

● ●●●●●●●
●

●

●

●

●
●

●●
●

●●

●●
●●●

●

●
●

●●●
●
●●

●
●●●

●

●●
●

●

●

●

●
●

●●
●●
●

●
●

●
●

●

●
●

●●●●
●
●
●●

●
●●●
●●

●

●

●

●●

●●●
●
●● ●●
●●

●●
●

●●●

●●
●

●

● ●
●

●

●

●

●

●●
●

●●

●

●

●
●

●
●

●

●

●

●●
●●

●

●
●●

●●●
●●●

●

●
●

●●

●

●
●●

●

●●●●
●

●
●●

●

●
●●

●

●●●●●●
●
●

●
●

●
●

●●

●

●
●

●

●●●●

●

●

●●● ●
●●

●
●

●
●

●●
●●

●

●●
●

●●● ●
●

●

●
●●
●● ●●

●●●

●
●●

●
● ●

●

●

●

●

●
●●●

●
●

●

●
●

●
●

●
●
●●
●●

●●

●

●
●●●

●●
●●●●

●●
●

●●●●
●●● ●● ●

●

●
●●●●
●
●●

●
●

●
●

●
●

●
●
●●
●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●●●●
●

●

●●
●
●●●

●●●●
●●

●●
●●

●

●
●

●

●

●
●●

●
●●●●●●●
●●●

●●
●●
●●

●●
●●
●●
●
●

●
●

●
●

●

●●
●
●

●
●
●
●●●

●●
●

●

●

●
●●●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●●

●
●●

●● ●
●

●
●

●
●

●
●

●●
●

●●●
●

●

●

●
●

●
●

●●
●●●●●

● ●
●

●

●●●
●●

●
●

●●●●●
●

●●●
●●

●●●
●

●●
●●●

●
●●

●
●

●
●●●●

●●●●
●
●●

●●
●●

●●

●●●●
●

●
●●

●
● ●

●●
●
●● ●

●●●●●●●●●
●●
●●
●●●

●

●●
●●●●●

●

●
●

●
●

●
●

●●●●

●

●●
●●●●●●●
●
●
●●

●●●●●
●

●

●
●●●●

●●
●
●●

●
●

●
●●●
●●

●
●

●●
●

●

●●
●

●
●

●
●●●●●●●●

●

●●●

●
●

●
●●●
●
●

●

●

●●●●● ●
●●● ●●●●●

●●
●●●●

●●
●

●

●
●●

●●
●

●●
●●

●●

●

●
●

●●
●●●
●● ●●●●

●●●

●
●●

●

●

●
●

●

●

●

●

●●

●●

●●

●●

●●
●

●
●●
● ●●●●●●

●●

●

●

●
●

●
●

●●

●●
●
●●
●
●

●
●

●●
●
●

●
●
●● ●●

●

●●

●

● ●

●
●

● ●●●●
●●●
●

●●

●●●●
●●●●

●
●

●
●●●

●●
●●

●
●

●
●●●●●●

●●
●

●
●●●

●
●

●
●●

●●
●●

●
●

●
●●

●●●●
●

●
●

●

●

●

●●●
●

●●●●●
●

●●●●
●

●●

●
●

●●
●●

●
●●●

●●●●●
●

●

●

●
●●●

●

●
●

●
●

●

●
●●

●●

● ●
●

●
●●●

●

●●

●

●●●●●●
●●●●

●●●●

●
●●
●

●

●●
●●●
●
●●●●●

●

● ●●
●●●

●

●

●
●●
● ●

●●
●

●●●●●●●●●
●●●

●●
●●●●

●●

●
●●●

●●
●

●
●●●
●●●
●●

●

●
●

●
●
●●●●●●

●
●

●●
●●

●●

● ●●
●
●●●

●
●●
●●●

●
●●

●
●

●
●●

●
●
●●●

●
●●

●
●●●

●

●

●
●

●●●
●

●●
●●●

●●
●●●●

●
●

●●●●●●
●

●
●

●

●●
●

●●●●
●●●●

●
●

●●
●●●●

●

●●

●●●

●●

●

●

●●
●

●
●●
● ●

●
●

●●

●
●

●●
●

●
●

●

●
●

●
●

●

●●●
●●

●
●●

●●●
●

●
●
● ●

●
●●
●

●
●

●

● ●●
●●●

●

●
●

●
●

●
●

●

●

●

●

●

●
●●●●●●
●

●●●●●
●●●

●
●●●

●

●●●

●

●●

●
●●● ●●

●● ●●

●

●

●

●●
●

●

●●●
●

●

●
●●
●

●●●●

●

●
●●

●
●●

●

●
●
●
●●●●●●

●

●

●
●

●●

●●●●
●
●●●
●● ●

●

●●

●●

●
●●

●●
●●●
●●●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●●●
●

●
●●●●●

●

●●

●●

●●●
●

●

●
●

●●
●●
●●●●●

●
●●●●●
●

●

●

●
● ●●

●●●
●

●●●
●

●

●●●

●●

●

●

●●●

● ●
●●●●●
●●

●●●

●
●

●
●●●

●
●●

●

●

●

●
●

●
●

●

●
●

●
●

●●●
●

●

●

●

●
●

●●●
●

●
●●●

●●● ●
●●

●●
●●

●●
●

●●

●●

●●
●● ●

●●
●●

● ●
●

● ●
●

●
●●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●
●

● ●
●

●

●●
●

●●

●

●
●●

●
●

●
●

●

●
●

● ●
●
●●

●●
●

●
●● ●

●

●
●●●●●

●●
●●
●
●●

●● ●●●

●

● ●

●

●●
●

●

●
●● ●
●

●
●
●
●

●●

● ●●

●
●●●●●

●
● ●
●
●●

●

●
● ●

●●
●

●

●●

●●

●
●

●
●●

●

●
●
●●●

●●
●

●
●

●●●● ●●●●●
●

●
●●●● ●●●●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●●

● ●

●
●

●

●●

●

●

●

●●
●●●

●

●
●

●
●

●●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●●

●● ●●
●●

●
●

● ●●
●

●

●●●
●● ●

●

●

●

●
●●●
●

●
●●● ●

● ●●●●
●●
●●

●
●

●
●

●

●
●

●
●●●

●

●
●

●

●●●

●●

●
●●

●

●
●●●

●
●

●

● ●●

●

●

●

●

●

● ●
●● ●●

● ●

●

●

●●

●
●

●
●
●

●●

● ●
●

●
●

●
●

●●●
●

●
●●●

●
●

●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●●
●●

●

●

●
●●

●
● ●●●

●
●

●●●
●

●

●
●

●

●●
●

●●
●●

●
●

●

● ●
●

●
●

●

●
●
●●

●

●

●
●

●

●
● ●

●● ●

●
●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●
●

●

●
● ●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●

●
●

●●
●

●

●
●

● ●
●

●●

●
●

●

●
●●

● ●

●

●

●●

●

●

●

●●
●

●●
●

●
●●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

● ●

● ●
● ●

●
●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●●

●
●

●
●

●●●

● ●
●●

●

●●
●

●
●
●

● ●●
●

●

●
●

●

●
●

●
●

●

●
●

●●
●

●

●●

●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●●

●

●●
●●

●

●●
●

●
●

●

●
●

● ●

● ●

●

●

●●

●
●

● ●

●

●
●

●

●●
●

●●●

●
●●●●

●
●

●●

●

●
●
●●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●

●
●

●●

●●

●
● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●
●

●
●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●
●●●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●● ●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●
●

●

●

● ●
●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

● ●●●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
● ●

●

●

●

●
●

● ●

●

●

●

●●
●

●

●
●

● ●

●●

●●
●

●
●

●
●

●
●

●

● ●

●

●●

●●

●

●

●●
●

●

●

● ●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

● ●

●●
●

●

●

●●

●●

●
●

●●
●

●
●

●
●

●

●
●
●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●●
●

●

●
●

●

●

●●
●

●

●
●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●
●

●
●●

●

●

●
●
●

●
●

●
●

●●

●
●

●
●●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●

●

●
●

●
●

●● ●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●●●

●
●●

●●●

●
●●

●

●●
●

●

●

●●

●●

●

●
●●
●
●

●

●
●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

● ●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●
●●

●●

●

●●

●

●●

●

●●
●
●

●
● ●

●

●
●

●
●●

●

●

●

●

●
●●●●

●

●

●
●●

●

●

●
●

●●●

●
●

●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●●

●
●

●

●
●●

●

●
●●

●
●

●●● ●
●

●●
●
●

●
●●

●
●

●

●

●
●

●●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●
●●

●

●

●

●
●

●
●

●

●

● ●
●●

●

●●
●

●

●
●●●

●

●●●
●

●
●●

●

●
●

●

●

●
●

●
●

●
●●
●

●

●●

●

●

●

●●

●

●
●●

●

●
●

●
●●

●

●

●

●

●
●
●●

●●●

●

●

●

●

●
●

●

●
●

●●

●●
●

●

●●

●

●
●●
●●

●
●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●
●
●

●
●

●

●

●●
●
●●

●

●
●

●

●
●

●
●

●●
●●●
●
●

●

●

●
●●

●

●
●

●

●●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●●

●

●
●●

●
●

●
●●●

●

●

●●
●●

●
●

●
●

●●
●
●●

●

●
●

●
● ●

●

●
●

●

●●
●

●
●

●

●●
●

●

●

●●●
●●●

●
●

●
●

●●
●●
●

●
●

●
●

●
●

●

●
●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●●●●

●

●

●

●
●

●
●

●

●

●

●●
●●●

●●
●

●

●

●●

●

●

●
●●

●

●

●●

●
●●●

●●
●

●

●

●
●●

●

●

●●

●
●
●

●
●●
●●

●

●
●

●

●
●

●

●●

●

●
●

●
●

●●
●●●●

●

●
●

●
●

●

●
●●

●●
●

●
●

●

●

●
●
●●

●
●

●
●

●
●

●

●●●

●●

●●

●

●

●

●●

●

●●●●
●
●
●
●●●

●
●

●●●●
●
●●●
●

●

●●

●●

●

●
●
●●

●

●●

●

●●
●

●●●
●●

●●●
●

●
●
●
●

●

●●
●

●●●

●
●●

●●
●

●

●

●

●
●
●●
●

●

●

●●

●

●

●●
●
●

●

●●●●●●
●●

●

●

●

●

●
●
●

●●

●

●

●●
●

●

●
●

●
●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●●● ●

●

●

●

●
●

●

●

●

●

●

●●●●

●
●

●

● ●
●

●

● ●

●

●
●

●

●● ●
●

●

●

●
●
●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●●●

●

●
●●●

● ●

●

●

●●●
●

●

●

●●

●

●●●●

●
●

●

●

● ●

●

●

●●

●
●
●

● ●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●
●
●●●

●

●

●●
●●●

●

●
●

●

●

● ●●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●●●

●

●
●●

●

●
●

●

●

●●
●●

●●
●●

●
●

●
●

●
●

●
●●

●

●

●

●

●
●●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●●
●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●
●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●
●●●
●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

● ●●●●
●
●

●●
●

●
●●

●

●●
●
●
●●
●

●

●

●

●●

●●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●●●
●

●●
●●●●
●●

●●
●

●●
●

●

●

●

●

●

●●●●

●
●●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●●

●●

●

●

●
●

●

●

●

●●●●
●

●

● ●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●

●
●

●

● ●

●
●●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●●●

●●

●

●
●

●

●

●

●●

●

●
●●●

●●
●

●
●● ●

●●
●●

●

●
●

●

●

●
●

●●
●●

●
●●
●

●

●
●

●

●

●
●●●

●

●●
●

●
●

●

●●
●

●

●

● ●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●
●●
●●

●●

● ●
●

●
●●●

●

● ●●

●
●

●●
●●

●
● ●

●
●

●
●

●●
●

●●●
●

●

●●●
●
●●
●●

●

●
●

●

●
●

●

●
●
●●●
●

●

●
●

●

●

●
●

●
●●

●
●●

●

●●
●●

●●●

●

●
● ●
● ●●

−10 −5 0 5 10 15 20

−
10

−
5

0
5

10
15

20

R
et

ur
n

of
 P

or
tfo

lio

● ●●●●

●

●● ●●
● ●

●
●

●
●
●

●● ●
●

●

●
●

●

●
●

●●
●●

●
●●

●●
●●

●

●

●
●

●●
●●

●
●●

●
●

●

●

●●

●
●

●
●●

●●

● ●

●

●
●●● ●●●●●●

●
●

●

●
●
●

●●
●

●
●

●
●

●●
●

●

●
●●● ●●

●
●

●

●
●

●●
●●

●

●●
●●

●
●
●
●●

●

●●●●
●

●●●
●

●
●●
●●●

● ●
●●

●

●●
●●

●
●
●●

●

●
●
●

●

●
●
●
●

●
●

●
●
●

●
●

●●

●

●●●
●

●

●●●

●●

●
●●●●

●●●

●
●
●●

●

●

●
●● ●●
●● ●
●

●

●

●
●

●
●

●
●●●●

●

●
●

●
●

●
●

●
●●●●

●
●
●●

● ●
●

●
●

●

●
●
●

●●
●

●
●●●

●

●

●

●
● ●

●
●
●

●●●

●

●

●●●
●

●●
●

●

●●●
●
●

●
●●

●●

●●●
●

●●
●
●

●

●●
●

●●●

●

●

●

●

●

●●

●

●
●●

●●●
●

●
●
●●
●

● ●
●●

●
●

●
●●
● ●●

●
● ●●

●●● ●

●

●

●

●
●

●
●

●
●

●
●

●●
●●●●●
●●●●

●

●
●
●

●●
● ●

●●
●

●
●
●●
●

●
●

●

●●

●●●
●

●

●●●●●●
●●

●

●

●●

●

●
●
●

●

●

●

●

●●

●
●

●
● ●●
●

●
●

●
●

●●
●

●
●●

●●

●

●●●●

●

●
●

●●
●

●
● ●

●

●
●

●

●
●

●●

●
●●●

●
●●●
●

●

●

●

●

●
●

●

●
●●

● ●
●

●●

●
●

●●●

●●

●

●

●●
●

●
●●

●

●
●
●●
●

●
●●

●●

●

●

●

●

●●●
●
●

●
●● ●

●●
●

● ●
●
●●

●
●●●

●

●
●

●
●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

● ●
●

●●●●

●
● ●●

●
●

● ●●●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●
●

●
●

●●●

●
●
●

●●

●

●●
●●

●
●

●●

●
●

●

●
●

●●●
●

●
●

●

●
●●

● ●
●●● ●

●
●

●●

●
● ●

●●
●●● ●●

● ●
●● ●●
●

●●●●
●

●

●
● ●●●● ●●●
●
●

●●

●

●

●

●
●

●●

●
●●
●

●
●

●
●

●●
●●

●

●●●●

●●
●

●

●
●

●
●

●

●

● ●
●

● ●●
●

●

●
● ●

●

●
●

●

●●
●

●

●

●
●●

●

●

●●●

●

●

●
●●●●

●

●●
●

● ●
●

● ●
●

●

●

●
● ●

●

●

●
●●

●
●

●

●
●●

●
●

●●●

●●
●●●

●●●●
●

●

●
●

●●

●

●

●

●●
●

●
●●

●

●●

●●●

●

●●●
●●

●
●●

●

●
●●● ●

●

●●

●

●

●

●

●

●●
●

●
●

●
●●

●
●● ●

●

●
●

●●
●

●
● ●

●

●●●
●

●●●
●
●

●
●

●

●
●●

●

● ●● ●

●
●

●

●

●
●●

● ●
●

●
●●
●●
●● ●

●

●
●●●● ●

●

●

●●●
●●●

●●
●●●

●

●●
●

●
●●●●●●

●

●●
●

●
●

●

●●

●●●

●

●
● ●

●

●
●

●●
●

●

●
●●
● ●●

●
●●
●

● ●
●

● ●

●

●●

● ●●
●● ●●

●
●

●●● ●
●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●●●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●●

●

●●

●
●

●
●
●
●
●●

●

●
●

●
●

● ●
●
●

●
●

●
●

●

●●

●

●●●

●

●
●●

●
●●●

●

●

●
●

●

●
●●●● ●

●

●●
●

●

●●
●
●●

●●
●

●

●

●

●

●
●

●
●●

● ●

●●
●

●●
●

●
●

●
●

●
● ●

●

●●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●
●

●●

●

●

●

●
●● ●

●
●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●
●

●

●●
●

●

●●

●
●

●

●

●

●

●●

●●

●
●

●
●●

●

●

●●

●

● ●

●
●

● ●●
● ●

●●
●

●

●

●●
●

●●

●●

●
●●

●●

●
●

● ●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●●● ●

●
●

●

●
●

●

●

●
●

●●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●●

●
● ●

●

●

●
●

●
●●

●
●
●●
●

●
●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●●●

●
●● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●● ●

● ●

●

●●●●

●

●

●●
●

●

●

●

●●

●

●

●●
●

●
●

●

●●
●
●●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●
● ●

●●

●

●
●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●●●

●

●●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●
●

●

● ●

●

●

● ●
●

●

●
●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●● ● ●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●
●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
●

●

● ●

●
●

● ●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●

●●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●
●●●

●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●
●

●●● ●

●

●
●●

●

●

●●

●

●●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●●●

●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●●

●
●
●

●
●●●●

●

●

●

●

●
●

●
●● ●

● ●

●

●
●

●

●

● ●

●●

●
●●

●

●

●

●

●●

●

●●

●
●

●

●●

● ●

●

● ●
●

●

●

●

●

●●

●

●
●●

●
●●

●

●

●

●

●●
●

●

●

●

●●
●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●●

● ●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●●

●
●

●●

●

●

●●

●●●
●

●

●

●
●

●●

●

●
●

●

●

●●
●

●

●
●

●
●

●● ●●

●

●

●

●●

●●

●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●
●
●●

●

●

●

●

●

●●●
●

●

●●●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
● ●
● ●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●
●

●
●

●
● ●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●●

●●

●
●●

●
●

●

●●
●

●

●

●●

●

●

●
●

●

●

● ●

●
●●

●
● ●●

●

●

●
●
●

●
●

●
●

●

●●

●
●

●
●

●
●

●
●

●

● ●

●

●●

●●

●
●

●
●

●

●●

●

● ●●
●

●

●●

●
●

●
●

●
●●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●● ●

●

●

●●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●●
●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●●

●
●

●

●

● ●

●

●

●

●
●

●

●●●●

●
●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

● ● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●
●●

●

●

●

●
● ●●●

●

● ●

●

●

●

●
●
●●

●
●

●

●
●

●

●
●●

● ●

●

●●●
●

●

●

●

● ●●

● ●

●

●
●●
●

●

● ●
●

●
●●

●
●

●●
●

●
●

●

●
●

●

●

●

●●
●

●

●

● ●●
●●

●
●●●●

●

●
●●●●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●●

●●

●

●

●
●

●●●

●

●

●

●
●

●●
●●

●●

●●●

●

●

●

●

●
●

●
●

●●
●

●

●●
● ●●

●
●

●●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●●

●

●
●

●
●

●●
●

●

●

● ●●
● ●
●●

●

●●

● ●●●
●

●
●
●

●
●

●

●
●
●

●

●
●

●

●

●●
●

●
●

●

●
● ●●

●

●

●●

●

●●
●●●

●●

●
●

●●

●

●

●●●
●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●●

●●

●

●

●
● ●

●

●

●●●

●

●● ●
●
●

●

●●
●

●●
●
●

●

●●

●
●●●●●

●●
●

●
●

●
●

●
●

●

●
●

●
●
●●

●●

● ●
●

●
●

●●

●

●

●

●

●

●

●

● ●

●
●●

●
●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●
●

● ●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●●

●
●●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●●

●
●●
●

●
●

●●

●● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●● ●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

● ●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●●

●●
●

●

●

●●
●

●
●

●
●

●●

●
●

●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●●

●

●
●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

● ●
●

●

●●

●

●

●
● ●
●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●●●

●

●

●●
●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●
●●

●
● ●

●

●●

●●

●

●

●

●

●

●

●● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●
●

●

●●

●

●
●●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

● ●

●●
●
●

●
●

●

●
●

●●
●

●●
●●

●

●
●●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●
●●

●

●
●
●
●
●

●
●●
●
●

●

●

●●

● ●

●
●

●●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●●●

●
●

●
●

●●

●

●
●●
●
●
●●

●

●●
●●●●

●
●
●

●
●●

●

●●
●●

●
●

●

●
●

●
●

●

●
●
●●

●

●●

●

●
●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●
●●
●●

●●●
●
●

●
●

●
●

●
●●●●

●
●

●
●●
●

●

●

●
●●●

●
●
●

●
●

●

●

●
●

●

●

●

● ●●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●
●●●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●

●●●
●

●
●

●●

●

●

● ●

●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●
●

●

●●
●

●●●
●

●
●

●●●
●

●
●

●
●
●●

●
●●
●

●●
●

●

●● ●
●
●

●
●●●

●●●●
●

●

●
●

●

●●●●●
●

●
●

●●●●

●
●

●●●
●

●
●

●●
●

●

●

●●
●

●●
●
●

●

●
●

●

●●

●

●●●
● ●●●

●● ●●●
●

● ●●●
●●
●

●

●
●
●

●
●

●

●

●●●
●

●

●
●

● ●
●

●

●
●●●● ●

●
●

●

●
●

●
●●●●

●

●●●

●
●

●

●●

●

●●
●●● ●●●

●

●
●

●

●
●

●●●
●●

●
●

●

●

●●

●

●●●
● ●

●
●

●
●

●

●●●
●

●

●

●●●

●

●●
●
●●

●

●●

●

●

●

●●
●●

●●●●

●

●●

●
●

●●
●●
●
●

●

●
●●●●

●●
●
●●

●
●

●●●
●
●

●

●
●

●●
●●

●

●
●●
●

●●
●
●●

●

●

●

●●●●

●

●

●

●

●
●●

●

●
●

●●●

●

●
●●

●

●

●
●

●

●
●●

●

● ●
●

●
●●●
●
●

●
●

●●●
●

●

●●

●

●

●●●
●

●●

●● ●

●

●●
●

●

●

●

●
●

●

●●
●

●

●
●

●
●●

●●●●

●

●●● ●
●

●
● ●●

●
●

●●

●
●

●
●

●

● ●
●

●

● ●●
●●
●●

●●

●

●
●

●

●

●
●●

●
●

●
● ●

●

●●
●

●
●

●
●

● ●
●

●●
● ●●

●●●
●

●●●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●

●●●●

●

●
●

●
●

●●●

●●●
●●

●
●●
●
● ●●
● ●
●

●

●

●● ●●
●

●●●●●
●●

●●

●

●●●●
●●●●

●●●
●

●
●

●●
●

●●

● ●●
●

●
● ●
●●●
● ●
●

●●●●●
●●●● ●
●●●
●
●

●
●
●

●
●●
●

●

●
●●

●●●●●
●

●
●

●●
●● ●●●

●

●
● ●

●
●

●

●●●●

●
●

●
●

●

●
●

●
●

●●
●

●
●
● ●

●●●●●
●●

●
●
●●●●

●
●●

●
●●●

●●
●

●
●

●

●●
●

●●
●●
●
●●●

●
●

●
●●●● ●●

●●
●●
●●●
●

●●

●

●

●
●

●●●
●●●

●

●
●

●

●●
●●

●

●●
●

●●
●

●
●●

●

●

● ●
●

●

●
●

●●

●

●● ●●

●●
●●

●

●

●
●

●
●●●

●
●

●

●●
●●●

●

●●●●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●●

●
●●

●
● ●

●●

●●

●

●●

●●
●

●

●● ●
●

●
●

●
●●

●●

●
●
●●
●

●

●

●
●

●●●●

●

●●●
●●

●

● ●

●

●

●●

●

●●●●●●
●●● ●

●

●
●●

●● ●
●●●●

●
●

●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●●●●●
●
●●
●

●
●●●●

●●●●●
●●

●

●●●
●
●●

●●●

●●●●
●

●
●●●
●
●●●

●●
●

●

●●

●●●●
●●
●

●●●
● ●

●●●●

●●

●●

●

●

●

●
●●●
●

●
●●

●●●

●
●

●
●

●
●●● ●

● ●

●
●●

●●●●
●
●
●●●●●● ●●

●●
●

●
●

●●●●

●

●●

●
●

●●
●●●●●
●

●
● ●●●●●

●
●●

●
●

●
●●● ●● ●●●

●
●●●●●

●
●●●

●●
●●

●

●
● ●

●
●●

●●●
●●

●
●●●

●

●

●
●●
●●

●●●
●● ●●
●●
●

●

●
●●

●
●

● ●
●●●

●● ●● ●●●●
●
●

●
●●

● ●
●

●
●
●

●●
●
●●●

●
●●
● ●

●●●
● ●

●●
●

●
●●●

●●
●
●
●

●●

●●●
● ●●

●

● ●●

●
●

●

●●

●
●

●

●

●●

●
●

●●●●● ●
●

●●

●●

●
●

●●●●
● ●●●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●
●

●●
●

●●● ●
●●

●

●●●●

●

●
●

●●

●

● ●
●
●●

●

●●

●

●●

●

●● ●●●●●
●●

●●
●●●
●●

●
●
●
●
●●

●

●
●● ●

●●
● ●●●

●●
● ●

●●
●

●
●●●
●
●

●
●

●●
●

●●●

●

●
●

●●
●

●●

●

●
●●

●

●
●

●●
●●
●

●
●

●
●
●

●●
●●

● ●
●●●●
●

●
●●●●

●
●●

●

● ●●
●

● ●

●●
●
●

●
●●
● ●

●

●●
●

●

●
●●

●

●

●●
●
●
●

●

● ●
● ●

●

●
●

●
●

●●●
●● ●●●
●●

●●●
●●

●●

● ●
●
●●●

●●
●

●

●

●

●
●

●●
●●●

●●
●

●●
●●
● ●●●

●●
●

●●
●
● ●●●

●

●

●
●●

●

●
●●

●
●
●●

●

●

●
●

●
●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

● ●

●●●

●●
●

●
●

●

●
●

●
●●●●
●

●

●

●
●

●

●●●
●

●●

●
●●●●● ●

●
●

●
●

● ●●
●
●

●

●
●

●
●

●●

●
●

●●
●● ● ●

●●●
●●

●●

●
●

●

●
●

●

●
●

●●
●

●●
●●

●

●
●●

●

●

●

●●

●

●●

●
●

●●

●

●
●

●●●●
●

●

●

●

●
●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●
●●●

● ●

●
●●

●

●

●

●

●
●

●●

●●

●
●
●

●

●●
●

●
●

●

●●●
●●●●
● ●●●

●●
●●●

●

●●

●

●●
●

●

●●

●
●●●●●

● ●
●

●
●●●

●
●●

●●
●

●●

●
●

●

●

●
●●

●

●
●

●
●●●
●●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●●●
●●

●●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●●●
●

●

●

●

●●●
●

●

●

●

●

●
●

●

●●
●

●

●
●
●●

●

●
●

●
●

●●

●

●

●
●●

● ●

●

●
●

●
●

●

●
●●

●
●

●

●
●

●●
● ●

●
●

●
● ●●●●●

●
●

●

●

●

●●●
● ●

●
●

●
●
●

●

●●●●

●

●

●

●●●

●
●

●

●
●

●
●

●

●●
●
●

●

●

●
● ●
●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●●●
●●

●●
●

●
●

●

●

●

●

●

●●

● ●
●

●
●

●●

●●

●

●

●
●

●

●
●

●

●
●

●●
●

●●●

●

●●● ●
●● ●●

●

●

●
●●

●●
●

●●●

● ●
●

●

●

●

●

●

●

●
●●

●●

●
●●

●

●●●

●
●

●

●
●● ●●

●

●
● ●
●

●●
●
●

●

●

●
●●

●

●
●● ●

●●
●

●
●●● ●●

●●
●

●
●● ●

●

●●
●

●

●●●●

●

●
●●
●

●●
● ●●●
●●
●

●●
●●● ●

●
●

●
●

●
●
●● ●

●
●●●

●

●●●

●

●

●

●
●

●
●●

●

●
●

●●
●

●●
●

●

●● ●
●

●
●●●

●

●
●●●●

●
●

●●
●●●

●

●

●
●

●●

●

●
●
●

●

●

●
●

●

●
●

●
●●

●
●
●●●●

●

●●

●
●●

●
●

●

●
● ●

●
●

●

●
●●

●

●
●

●
●●●

●●●●●●●●

●●
● ●● ●

●●●

●
●●●

●●
●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●
●
●
●●●●

●
●

●●●●
●●●

●
●

●
●
●

●

●●
●

●●
●●

●
●

●
●

●●

●

●
●●●

● ●●●

●
●

●
●

●
● ●●

●

●
●●

●
●
●

●

●

●
●●

●●●

●
●

●
●

●●

● ●
●●●●

●

●
●

●●

●

●●
●

●●●
●
●●

●
●●

●●●●●●
●

●

●
●

●●●
●

●●
●

●

●

●

●●

●

●

●●
●

●
●
●●●●

●
●

●●
●●

●●
●●

●●
●●
●

●
●●●●
●●

●●●
● ●
●

●

●

●
● ●
●

●

●
●

● ●●●
●●

●●●●●●●
●●●
●●
●

●
●●●

●●●
●

●

●
●
●●●●●●●

●●●

●
●

●
●
●●

●●
●●●

●●
● ●●

●●●
● ● ●

●

●
●●

●
●

●●

●
●●●●●

●
●●●●
●

●●●

●

●
●

●
●●
●●

●●●

●
●
●

●
●●

●●●
●●
●●

●
●

●

●●
●

●
●

●

●

●

●
●

● ●
● ●

●

●

●
●●

●●

●
●

●●

●

●●●
●

●
●●● ● ●●
●●

●
●

●●
●

●●●● ●●●●
●
●

●
●

●●●●
●

●●
● ●
●
●

●
●
●●

●

●●
●

●● ●

●
●

●
●

●

●

●●
●●
●

●

●
●●

●
●

●●●
●
●

●
●●
●

●

●
●

●
●●● ●

●●

●
●●

●●●●●●
●●
●

●●

● ●●●

●
●●●●●●

●●
●

●●
●●●●● ●

●
●

●●●●●●

●●

●

●●●●
●

●●
●

●
●

●

●

●

●

●
●

●

●
●●●●●●

●
●● ●
●

●

●

●
●

●
●

●
●

●
●

●●●

●
●

●●
●

●
●●
●

●● ●●●

●

●

●
●
●

● ●

●

●
●
●●●

●
●●
●

●

●

● ●
●● ●
●●

●

●●●

●

●
●

●●●

●
●

●

●

●
●
●

●●●●

●
●

●

●●●●
●

●●
●
● ●●● ●●
●●●●●

●
●
●

●●

●

●

● ●
●

●● ●
●●●●

●
●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●●●
●●

●

●

●●
●

●
●●● ●
●●●●●

●● ●●●
●

●●

●
●●●● ●●

●
●

●

●

●
●

●●●
●●

●
●●

●

●

●●
●

●
●● ●●

●
●
●●

●
●

●●●
●
●●●●

●

●
●

●
●

●
●

●●

●

●
●

●●●
●
●

●●●●
●●

●
●

●

●

●●
●

●

●●

●
●●

●
●●

●●

●●
●●●●

●

●

●●●
●

●

●
●●

●●

●

●

●●
●●●●●●

●

●
●
●

●●
●

●●
●

●
●

●
●
●

●●●
●●
●●
●

●
●

●●●●
●

●●●●

●
●

●●
●●

● ●
●

●

●

●

●
●

●
●

●

●●

●

● ●
●
●

● ●

●
●●●●●

● ●●
●

● ●

●
●●●●
●

●●●
● ●

● ●●
●●●●●●●●

●

●
●

●

●
●●●●

●
●●●●

● ●
●

●●
● ●●●

●●
●● ●

●●
●

●●

●
●
●
● ●

●●●●
●●

●
●●

●● ●
●● ●

●●●
● ●

● ●●●●●
●
●

●
●●

●●●
●

●●

● ●●
●●

●
●●●

●

●
●●●●

●●
●●
●●

●●
●●●

●●●
●

●
●●●
●
●
●●

●

●

●

●●

●●
●

●
●

●
●

●●
●

●

●
●

●
●●
●
●

●
●●●

●
●

●●● ●
●

●●●
● ●
●●● ●●
●

●●●●●●●●●
●

●
●●●●●

●●
●●
● ●

●●
●●

●●●●●●
●

●●●●●

●
●

●
●

●
●

●●●●
●●●

●●
●

●●

●
●●●

● ●●●●
●

●●●●
●●●●●●●●●●●●●●●

●●●
●

●

●●●
●

●

●●●●

●●

●

●

●● ●
●●●
●●

●●●●

●
●

●●
●●●●●●●●

●●
●

●● ●
●●●●●●●●

●
●

●●
●●●●

●
●●●●●●

●●●●●●●
●●●●

●● ●
●●●

●●●●●●●●●●●●●
●●●

●
●●●

●
●●●●●●

●●●●●●●● ●
●

●●
●

●●●●●●
●

●●●
●●●●●●
●

●●●
●●

●

●●
●

●●●●●●
●

●●●
●

●●●●●

●
●

●
● ●

●
●●●●●●●

●●●● ●●
●
●●

●
●

●
●●●●
●●

●

●●●
●

●

●
●●
●

● ●
●

●●●
●●

●
●●●

●

●
●●

●●
●

●●●
●●

●●

●●●
●

●
●●●●

●

●
●●●●●●

●

●
●●
●

●
●

●●

●

●

●

●
●●●

●

●
●

●●
●

●

● ●
●
●

●
● ●●

●
●
●●
●

● ●●●●

●

●●
●●●●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●

●
●●●●

●●●
●●●●●●●●

●
●

●●●
●

●●
●●
●●

● ●●●
●● ●●●● ●●
●●●

●
●●

●●
●
●

●

●

●
●

●
●●●

●
●

●

●

●

●
●●

●
●● ● ●●

●
●

●
●
●

●
●●

●

● ●●
●●●●●●
●
● ●●●

●
●●

●●●
●
●●

●●
●● ●

● ●●
●

●

●

●
●●

●
●●●

● ●●●
●

●

● ●
●●

●●
●●

●●
●●
●●● ●

● ●●●
●

●
●

●●●●
●

●●●●●●●
●
●

●
●

●
●
●●

● ●
●

●
●●

●
●●
●●

●
●●●

●
●●
●
●●

●●
● ●

●●●
●

●●●
●● ●●

●

●●●●●
●
● ●
●●●● ●●●
●

●
●

●
●

●●●
●●

●
●

●●●●●●●

●

●

●
●

●
●●●●●

●
● ●● ●● ●●

●
●

●● ●●●
●●●
●●

●●
●

● ●●●●●●●●

●
●

●●

●● ●●●
●●●●●
●
●

●
●

●●●●
●●
● ●●

●
● ●
●●●●●●●●●

● ●●
●●

●
●●●

●
●●●●

●●

●
●●●●

●

●●

●

●
●

● ●●
● ●

●
●
●

● ●
●

●
●●●

● ●
●

●
●●
●
●
●
●

●
●
●●●

●

●

●●●
● ●

●

●
●

●
●

●
●

●
●

●

●
●

● ●●

●

●●●
●●●● ●

●

●

●●

●●
●
●

●●●

●●
● ●●

●●●●

●●

●

●

●

●
●

●●

●
●

●

●
●●● ●

●
●●●

●●●●●●
●

●●
●●

●
● ●●
●

●

●

●

●
●

●
●● ●●

●

●
●

●●
●

●●
●●●●●●●●●●●

● ●
●

●●●●
●●●●●●●
●● ●

●
●

●
●●

●
●

●

●
●

● ●●●
●
●●
●

●

●●

●

●

●●

● ●●
●●
●●●●

●●
●●

●●
●

●●●●
●
● ●

●●
● ●
●● ●●●

●

●●

●●

●

●●
●

●

●

●

●

●●
●●

●●
●

●
●
●●

●
●●●

●●●
●

●

●
●

●●●
●●

●●●

●

●●
●●●●● ●
●

●
● ●●

●●● ●●
●●●●

●

●●
● ●

●
●

●
●●

●
●
●●●

●

●

●
●●
● ●●●

●●
●

●●

●
●●

●

●
●

●●
●

●●
●
●

●●●
●●

●
●

●● ●●● ●●●
●
●●

●
●● ●●●●
●●

●

●●●●●●
●

●●
●●

●●
●●

● ●●●●●
●

●

●●

● ●
●

●●
●

●

●

●

●

●
●
●●●
●

●

●
●●

●
●

●
●●●●

●

●●

●●●
●●

●●●●●●●●●●●
●●●
●

●
● ●

●
●

●

●

●●●
●●
●●●

●

●
●

●

●●

●●●

●

●
●●

●●●
●●

● ●●●●
●

●

●
●

●●
●

●

●

●
●●
●●

●
●●●
●●
●●
●●●●

●●
●

●

●
●●

●●
●●

●
●
●●

●●●
●

●●
●●

●●● ●●
●
●●●

●●
●●●

●
●●●●●●
●●

●
●●●●

●●

●
● ●●
●●●
●●

●●●
●
●

●

●
●
●

●

●

●

●

●

●●●●●●
●●

●●●●●
●●●

●
●●
●

●●
●●
●
●●●●●

●●
●●●

●●●
●●●
● ●● ●

●
●●

●● ●●●
●●

●
●●●●●●●●●●●● ●●

●●
●●● ●●
●

●

●
●●●●●●

●●

●

●
●●

●

●●●●
●

●●●
●●●
●
●●
●
●●
● ●

●
●●●

●
●

●
●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●●●
●●

●

●

●
●
●
●
●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●●
●

●

●●

● ●
●

●

●

●

●

●
●

●
●
●●
●

●●
●

●
●

●

●

●●
●

●

●
●

●

● ●

●

●

●●

●

●● ●
●● ●●

●
● ●

●
●

●●●
● ●

●
● ●●●●

● ●
●●● ●●

●●

●
●● ●
●●

●●
●

●
●

●
●

●
●

●
●

●

●●●●
●
●
● ●
●
●

●

●●●
● ●

●
●

●
●

●
● ●

●
●●

●●●● ●
●
●
●●
●

●

●●●

●
● ●●
●●●

●●
●●●

●
●
●
●

●●●
●●

●

●
●●
●

●
●●●●
●

●
●
●

●
●

●

●● ●

●

●
●●

●●
●

●
●

●
●●

●●

●●
●
●

●●
●●●

● ●●
●●●

●

●
●

●
●●

●
●●

●
●

●
●●●

●
●●●

●

●
●●

●
●●●●

●
●

●
●

●
●

●
●

●

●●
●●

●

●

●

●
●●

●

●
●

●
●

●●
●●

●
●●

●

●

●

●●

●
●●

●
●
●

●
●

●●●●●●
● ●

●

●
●●

●●●●
●

●●
●

●
●●

●
●● ●

●
●●●

●

●
●

●●
●●●

●

●

●
●

●●
●
●

●
●●●

●

●
● ●

●
●●

● ●●
●●

●

●

●
●
●

●
●

●
●

●●
●
●●

●●
●

●●●
●●
●●●

●
●

●
●

●
●
●
●

●
●
●●

●

●

●●
●●●●●●●●●●

●●
●●
●

●

●

●

●

●

●

●●
●●

●

●●
●●

●

●
●

●

● ●●●●
●
●● ●

●
●

●
●
●

●●
●● ●●●●●●●
●● ●

●

●

●●
●●

●
●

●
●
●
●
● ●●●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

● ●

●

●
●
●

● ●
●

●●●●●
●

●

●
●

●●
●

●

●
●●●●

●
●

●
●

●●●● ●● ●
● ●

●
●●

●●● ●●
●

●●
●●

●
●
●

●●
●●

●●●●●
●

●
●

●
●

●

●
●●

●
●●
●●

●
●

●●
●

●

●
● ●

●

●

●

●● ● ●

●

●
●

●●

●

●
●

●
●●

●●
●●

●
●

●
●●

●

●
●

● ●●
●●

●
●

●●●
●
●●

●
●● ●

●●
●●

●
●●

●
● ●

●●

●

●

●

●

●
●

●
●

●
●

●
●●

● ●
●

●
●

●
●●

●●●●
●
●

●
● ●

●●

●●●
●●●●●
●

●
●●●●

●●●

●
●

●
●
●
●

●●●
●

●
●

●
●●

●

●

●
●

●

●

●
●

●
● ●●●

●

●

●●
●●●

●
●●

●
● ●
●●

●

●
●

● ●
●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●●●
●●

●●●
●
●

●

●

●●

●
●

●
●●
●

●●

●

●
●

●●
●

●
●●●

●
●

●●●

●

●●
●

●
●●

●
●

● ●●● ●
●

●

●
●●● ●

●●
●

●●

●●●●●
●

●●●●●●
●

●

●
●

●
●
●

●

●

●
●●

●
●●

● ●●●
● ●

●● ●●●
●

●
●●●●
●

●●●
●●
●●

●●
●

●
●

●
●

●
● ●

●●
●●

●

●●
●●

●

●

●
●
●●

●●
●●●

●●
●● ●●●

●

●

●●●●
●

●
●

● ●
●

●

●
●

●●
●
●●

●

●
●
●
●

●

●●●
● ●

●
●

●●
●

●
●

●
●

●

●
●
●

●

● ●●
●●

●

●
●●●●● ●●

●
●

●
●●●●

●

●●●●
●
●●

●
●

●●●

●
●

●
●

●●
●●

●

●

●

●

●
●

●●

● ●
●●

●
●●●●
● ●●● ●●

●●●
●

●●
●●●

●
●

●● ●

●●●
●●●
●●●

●
●

●
●●

●●
●●●

●

●

●
●●

●
●●●

●
●●

●●

●●●
●
● ●●

●●
●

●
●

●
●●●●●

● ●●
●

●● ●●●●
●● ●●
●

●
●●
●

●●●●
●●
●

●●●●●●●
●●●
●●

●●
●

●
●● ●●

●●

●

●●
●

●
●

●●●●●

●●●
●

●●●

●●
●●
●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●●

●

● ●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

● ● ●●

●

●
●
●●

●
●●●

●●●
●
●

●

●

●
●
●

●

●
●

●

●●

●
●●●
●

●
●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●
●●

●●
●

●●
● ●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●● ●

●

● ●
●

●
●

●
●

●
●

●

●
●

●
●●
●

●●

●
●

●
●

●
●

●

●

●

●
●

●
●● ●

●
●

●

●●
●

●●●●
●●

●●
●●

●

●

●

●
●

●●●
●●●
●

●

●

●
●●

●

●
● ●●●●●●●●

●

●
●

●●●
●

●● ●●
●●●

●
●
●

●
●

●
●
●

●● ●●●●●
●●●●●●

●●●●●●●
●

●
●●●●●●
●●●●●●●●

● ●
●

●
●●●●
●●

●
●

●

●
●

●●●

●

●
●●●
●

●
●●●

●
●

●
●

●
●

●
●●● ●●●

●
●

●
●●●●

●●
● ●●●

●

●
●
●●● ●

●●

●
●●

●
●●●

●●

●
●

●
●

●

●

●
● ●

●●● ●
●
●
●●

●
●●

● ●● ● ●

●● ●
●●
●●

●●●
●●●
●●● ●

●

●

●

●

●

●
●
●

●●●●●●
●
●●

●●●●
● ●●

●

●●

●●
●

●●●
●●●
●●
●●●●●

●● ●
● ●●
●●
●●●●●●●●●

●●●●
●
●●
●●●●
●

●
●
●●●●●●●●

●
●
●●

●●
●●●

●●
●
●●●●●● ●●●●● ●●

●
●●

●●
●●●●●●

●
●●●●●●●●●●
●
●●● ●

●
●
●●●●

●●●
●●●●●●
●●●

●●
●●●

●
●●●
●
●
●

●●●●
●

●
●
●●●
●

●

●
●

●
●●

●
●●●●●●

●
●●● ●●● ●●
●
●
●●●
●

●●
● ●
●
●●

●
●●
●●●●●

●●●
●●●

●
●

●

●
●●

●●
●●●

●
●
● ●

●
●●
●●
●●● ●●●●●●●

●●

●●
●●●

●
●

●
●
●
●●

●●●
●●●

●
●
●

●●●
●
●●●●

●●
●

●●●●●
●●●●●●●●●●●●
●

●●

●

●●●
●●●●●●●●

●
●●

●
●
●

●●●●●
●

●●●●●
●●

●●●●●●●
●●
●●●● ●●

●
●●

●●
●

●●●●●
●

●●●
●●●
●●

●

●●●

●

●●

●

●●
●
●

●
●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●●

●●
●●

●●

●

●
●●●●●

●●
●●

●
●

●
●

● ●●●
●●●
●

●●
●●●●●●●

●●●●●●●

●

●●●●●
●

●

● ●
●●●●
● ●

●●
●●●

●●●
●

●
●
●
●

●

●●
●
●

●
●●●
●●●
●

●●●

●

●●
●

●●●●●
●●●

●

●
●●

●●
●
●●●
●

●

●
●●
●

●●●●● ●
●

●
●●●
●
●
●●
●●

●●●
●
●●●

●

●
● ●
●

●

●

●
●●

●
●

●
●

●●●

●●

●
●

●

●

●

●

●

●●

●
●

●●
●

●

●●●
●

●
●●

●●
●

●●
●●

●

●
●●

●

● ●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●
●

●

●

●●●

●●

●

● ●
●●●●●●

●●

●
●

●
●

●
●

●

●

●

●●●
●●

●●
●

●●
●
●

●

●

●
●●

●

●

●

●●

●
●

●
●
●
●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●
●●●

●●

●

●●●
●

●
●

●

●

●●

● ●

●

●

●

●

●
●

●

●
●●●●

●
●●

●

●
●●
●

●

●●●

●
●

●

●
●

●
●

●●
●●●●●●

●
●

●●
●

●

●

●

●●
●

●
●

●
●●●

●
●
●

●
●●

●
●

●●

●

●
●●

●
●●
●

●
●●

●●
●

●

●●

●

●

●●
●

●
●● ●

●●●

●

● ●
●

●
●
●●●
●●●

●●●●
●

●
●●●●●

●

●

●
●

●

●
●

●

●

● ●
●
●

●
●●
●
●●

●

●
●● ●

●●●

●

●
●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●

●●
●

●
●●

●

●
●
●●●

●

●
●

●

●

● ●
●

●
●●
●●●

●● ●
●●●
●

●
●●●● ●
●●

●
●●●
●●●

●
●
●●
●
●

●●●

●●
● ●● ●●●

●●● ●
●● ●

●

●
●●

●

●

●●●
●
●●●

●
●

●
●●

●

●

●●●
●●

●

●
●

●●

●
●●

●
●●
●

●

●
●

●

●●

●

●

●

●
●●

●
●

● ●

●●
●
●●
●

●

●

●

●●
●●●●
●

●

●

●

●
●

●●

●
●

●●
●

●
●●
●

●

●

●
●

●

●

●
●

●
●●

●●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●
●

●

●●
●

●

●

●

●

● ●●
●

●

●
●●●●

●

●

●

●

●●●●●●●●●
●●

●

●
●

●●●●●

●●
●

●●
●

●●
●●

●

●
●

●
●

●
●

●

● ●●
●●
●●●

●

●
●

●●●●
●●

●

●

●

●

●

●

●
●●

●●

●
●

●

●
●

●●
●
●

●
●●●

●●●●●
●

●
●

●
●

●
●●

●
●

●
● ●●

●●●●●
●●●●●●●●

●
●
●

●
●

●
●
●

● ●●
● ●

●●●
●● ●●●

●●●
●

●●●
●
●
●

●●

●
●●●

●

●●
●

●
●

●

●

●

●

●●●

●●●

●●
●●●●●

●
●●●●
●●●●●

●●
●●

●
●

●

●
●●

●
●

●
●

●●

●
●●

●
● ●●

●●
● ●●●

●
●

●

●

●
●

●●●●
●

●●

●

●
● ●●●

●●

●
●●●

●
●

●●

● ●
●●

●●

●
●●●
●

●●
●●

●●
●
●
●
●

●

●

●
●

●

●●
●

●

●
●●

●
● ●●

● ●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●
● ●

●●

●●

●

●
●●
●

●

●
●

●●

●
●

●
●●

●●
●

●●●
●
●

●

●
●
●

●

●

●

●

●

● ●●
● ●

●
●

●
●
●

●

●●
●

● ●●
●

●●
●

●
●
●

●
●

●
●●

●
● ●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●●●
●

●●●
● ●

●
●●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●●●●

●

●●●

●

●

●

●
●

●●
●

●

●●
●
●

●

●●
●
●

●

●

●

●
●●

●
●

●
●

●●●●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●
●

● ●●
●
●

●

●

●

●●

●
●
●

●●
●

●

●

●
●

●
●
●●
●

●

●

●●
●

●

●
●●●

●●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●
● ●

●●

● ●

●

●

●
●●

●●●

●
●

●

●
●

●

●●

●

●
●

●
●

●●●

●
●●

●
●

●●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●
●

●
●
●●●
●●
●

●

●

●

●●

●

●●

●●●

●

●●●●●●
●

●●
●

●

● ●
●

●

●
●●

●

●●
●
●

●

●●
●●

● ●

●
●

●●●

●
●●

●●
●
●

●

●●●
●
●

●
●

●
●

●●●●
●
●

●●● ●●●
●●

●

●
●
●

●
● ●●

●●●

●
●

●
●
●

●●●●

●

●●
●
●

●
●

●●
● ●

●
●
●●

●
●
●●

●
●
●●

●
●

●

●

●●●

●
●

●●● ●
●●

●

●

●●●
●

●
●●●●

●●
●

●

●

●

●
●●

●
●

● ●

●

●

●

●
●
● ●●●

●
●

●●
●

●

●

●●
●●●●

●●
●
●●

●

●
●

●
●● ●●
●●

●
●

●
●

●

●

●
●●●

●

●●
●
●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●

●●●
●●

●

● ●
●

●

●
●●●

●●
●

●

●
●

●
●

●●
●

●
●

●●●
●●
●

●

●●

●
●

●
●

●

●●
●
●

●

●●●

●●
●●●●●

●
●

●
●

●

●
●

●
●●

●
●

●
●●
●

●
●

●

●

●●
● ●

●
●

●
●

●●●
●●

●
●

●●

●

●● ●
●

●●
●

●
●●

●
●

●

●

●●●●

●
●

●●
●

●
●●●

●●

●●

●●●
●●

● ●
●

●●●
●

●
●●

●
●●●

●●●●
●
●●●

●

●

●
●

●
●

●
●

●●
●
●●

●●
●●

●●
●●

●
●

●●●
●

● ●●

●
●●
●●

●●
●
●●● ●●

●●●●●●●●●
●

●
●

●
●●
● ●

●●●
●●
●

●
●●●

●●
●●
●
●●

●●
●

●
●
●●
●

●
●●

●●
● ●

●
●●

●●
● ●

●
●●●●
●
●●●

●

●
●●●

●
●●

●
●

●
●

●
●●●

●

●●
●

●
●●●●

●●
●●●

●

●●●
●

●

●
●

●

●
●

●
●
●

●
●
●●

●

●
●●

●●
●●● ●●

●
●

●
●

●
●

●

●

●

●
●

●

●
●●●

● ●●
●●●●
●
●
●

●
●
●

●

●

●●

● ●●

●
●

●●
●

●

●● ●

●

●

●●

●●

●

●●
●
●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●

●●
●

●

●●
●●

●

●

●

●

●

●●●●
●

●
●

●

●
●● ●

●

●
●

●
●

●

●
●

●
●

●●●

●●●

●

●
●●

●
●

●
●●●●

●●●
●

●●
●

●
●

●● ●
●

●●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●●●
●

●

●

●●●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●
●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●●

●●
●

●
●

●

●
●

●

●

●

●●

●
●

●●
●

●

●

●●●
●

●●

●●●

●
●

●

● ●

●
●●

●

●●

●
●●●●

●
●

●●
●

●
●

●●

●●●●

●
●●

●●

●●
●

●●●

●

●
●

●●●
●

●●
●●●

●
●●

●
●

●

●
●

●●

●●

●
●

●●

●●

●

●●●●●●
●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●
●●●

●
●

●
●

●

●
●

●
●

●

● ●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●●

●
●

●●
●●

●

●

●
●

●
●

●

●● ●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●● ●
●

●
● ●

●

●●
●

●

● ●

●
●●

●

●

●

●
●

●●

●● ●

●● ●

●

●
●

●

● ●

●

●

●
●●
●

●●
●

●
●

●●

●

●

●●●
●

●

●

●
●
●

●
●

●

●

●

●
●
●●

●

●

●

●

●●
●

●●●
●

●
●

● ●

●
● ●

●

●

●●

●
●

●
●

●●●●

●

●
● ●

●
●●

●●
●●

●

●
●

●●
●

●
●

●
●●●

●●

●
●

● ●

●
●

●
●●

●●
●●
●

●●

●

●●

●

●●
●●

●
●

●
●

●
●

●
●●●

●●

●●
●

●●●
●
●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●●
●●
●

●

●●
●

●

●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●
●●

●
●

●●●
●●

● ●
●●
●

●

●●
●

●
●●

●●
●

●

●● ●
●

●

●●● ●●●
●

●
●

● ●●
●

●
●●●

●●●
●
●

●
●●

●●

●
● ●●

●●
● ●

●

●

●
● ●●

●●

●
●

●●

●
●●●

●

●●

● ●●
●●●

● ●
●

● ●
●

●●
●

●

●●
●

●
●●

●

●
●

●●
●

●●
●●

●
●

●●
●●●

●

●

●●●
● ●●
● ●

●

●●
●●

●
●●●

●

●●
● ● ●

●●
●●●●●

●

●

●

●
●
●

●

●
●●

●●
●●

● ●●

●
●

●
●●
●●

●●●●●
●

●
●●●

●●
●
●

●●
●●

●●●
●●●
●

●
●

●●
●

●●
●

●●●●●●

●
●●●

●
●

● ●●
●

●
● ●●
●

●
●●●

●●
●

●●●
● ●

●
●●

●
●

●●

●

●
●●

●

●

● ●
●●

●●
●

●●
●

●
●

●

●

●
●●

●
●

●●●
●

●

● ●
●

●●

●●

●
●●

●
● ●●●● ●●●●
●
●
●

●
●●●

●●

●
●●

●●
●

●●

●
●
●●

●

●

●
●●

●●
●

●

●●●
●
●●

●

●

●
●●●●●●●

●
●●

●
●●●●●●

●● ●●●●●
●●
●●●

●
●

●
●

●

●●
● ●●

●
●

●
●●●

●

●
●●

●

●
●●●●●●

●●
●
●

● ●●●●
●●

●●●

●●●

●
●

●
●●

●●
●
● ●

●
●●●●●

● ●
●

●
●

●
●●
●
●●

●●●
●●●

●●
●

●●

●

●●
●
●●

●●

●
●

●
●●●●●●●

●
●●

●
●

●

●
●
● ●
●
●

●●●● ●●
●
●

●
●

●
●●●●

●●●
●●
●●

●
●

●
●

●●●

●

●●
●
●

●●●●

●
●

●
●●

●●

●
●

●

●
●

●●
●

●●●

●
●

●
●●
●

●

●●
●

●● ●●●

●●

●●●

●●
●●

●
●●

●●

●●

●●
●

●●
●●
●

●●

●
●

●
●

●
●●●

●●
●

●
●

●
●

●
●●
●●

●

●●

●●
●
●
●●●

●
●●●

● ●●

●
●
●●

●●
●●

●

●
●●●

●●●

● ●
●

●

●
●

● ●
●●

●

●●

●●●
●

●●
●

●●
●●●
●●

●

●●

●●●●●
● ●

●●
●●
●●●

●●● ●
●

●●

●

●
●●●●

●
●

●
●●●

●
●

●

●

●●
●●

●●●● ●
●

●

●●● ●●
●

●●
●

●●
●

●

●
●●●

●●

●
●

●●
●

●
●

●
●●

●●
●

●●

●

●
●

●

●
●

●●
●
●

●● ●
● ●●●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●●
●

●●

● ●

●
●

●

●●
●

●
●

●
●

●

●

●●
●
●

●●
●

●

●

●●●

●

●

●
●
● ●

●●●

●

●

●

●
●
●

●

●

●
●●

●

●

●●
●●

●
●●

●

●

●

●●●
●

●
●● ●

●●●
●

●

●
●● ●

●

● ●
●●
●
●
●

●
●

●

●●●

●

●

●
● ●

●

●
●●

●●
●

●
●

●
●

●
●

● ●●●
●●●●

●●

●

●

●

●

●
●
●

●●

●
●●●

●●●●

●

●●●

●●
●●●

●

●●
●

●●
●●●

●●

●●
●

●

●
● ●

●
●●●●

●

●
●

● ●
●
●

●
●●● ●●●

●●
●

●●
● ●

●
●

●
●●●

●●● ●●●●
●

●
●

● ●●

●

●●
●

●
●

●
●

●
●●
●●
●●

●● ● ●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●●
●

●
● ●

●
●

●

●
●
●●

●

●

●
●●

●●

●●●
●●
●

●●
●●

●
●
●

●●●
●●●

●
●

●

●

●

●
●

●●●●●●
●

●

●
●●

●

●

●
●
●

●●
●●

●

●

●●

●
●●

●

●●
●

●
●

● ●

●●
●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●●

●

●
●

●●
●

●

●

●
●

●
●●●

●
● ●● ●

●●●

●●
●●●●●

● ●
●●

●

●
●●

●
●●● ●●

●
●
●●●

●
●
●●

●

●●

●

●●
●

●

●
●

●

●
●

●
●

●
●●

●
●●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●●●

●

●

●●

●

●

●
●

●

●

● ●

●
●● ●

●
●●

●

●
● ●

●
●

●

●

●
●

●

●●●
●

●

●
●

●

●

●
●●
●

●

●●
●●

●
●

●●
●●
●

●

●
●● ●

●●
●

●
●●● ●

●●

●

● ●

●
●●

● ●
●

●

●
●

●

●
●

●●

●

●●●●

●●

●●
●

●
●●

●
●

●
●

●
●

●

●

● ●
●

●

●● ●
●●

●

●●● ●
●

●
●●

●

●
● ●

●●
●

●
●●

●

●

●

●
●

●
●

●●

●●●●

●

●
●

●
●

●
●

●●●

●
●

●
●

●●

●●
● ●

●
●

●●
●●

●
●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●●●

●

●●
●

●●
●●●

●
●

●

●●

●●
●●●●●

●

●

●

●●●

●

●
●● ●●

● ●
●

●

●●

●●
●

●

●●●
●

●●●
●
●●

●
●

●

●

●
●

●

●

● ●

●
●

●
●●

●
●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●●
●

●●

●●

●
●
●

●
●●

●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●●●

●●

●
●● ●

●●●
●●

●
●

●
●●●

●
●

●

●
●

●
●

●
●

●

●
●●●

●●●●
●●●

●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●
●

●●
●●●

●
●

● ●● ●●●●●
●

●●

●

●
●

●

●
●● ●

●

●●●
●

●

●
●

●

●●

●

●
●

●●
●

●

● ●

●

●●

●
●
●
●●

●●

●

●
●
●●●

●
●

●

●

●

●●●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
● ●

●●

●
●

●

●

●

●
●

●

●
●

●●
●●

●

●●

●

●

●

●

●

●

●● ● ●

●

●
●

●

●

●●

●

●
●

●

●
●

●●
●

●

●

●

●

●●
●

●●

●
●

●
●

●
●

●

●

●
●

●
●●
●

●

●
●

●
●

●●●
●●

●

●
●

●
●
●●

●

● ●●
●

●
●
●

●
●

●
●

●

●

●●
●

●●●●●

●

●
●●

●

●
●

●●

●
●

●● ●

●
●

●
●

●

●

●●

●
● ●

●
●●●

●

●

●●
●

●
●

●
● ●

● ●
●

●●
●●

●
●

●

●

●
●●

●

●
●

●
●

●
●

●

●●

●

●

●● ●●

●●●
●

● ●

●

●

●

●

●
● ●●

●

●
●●●

●●●

●
●
●

●●
●

●

●●●
●●

●
●

●
●

●
●

●
●●

●
●●●●
● ● ●● ●

●●
●
●●

●
●

●
●

●

●●●●●●

●
●

●●●

●●
●●

●●●●●●●●●
●

●● ●●●●
●

●●●
●●

●
●●

●●● ●●●
●

●

●●●

●●●●●●●●●
●

●

●●●●
●

●●
●

●

●

●
●●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●●
●

●
●

●
●

●
●

●

●

●●
●

●●●

●
●●

●●
●

●●
●
●

●

●●
●
●
●●
●
●●

●
●●

●●

●

●
● ●

●●
●●

●●

●●●●
●

●

●
●

●
●

●●

● ●●●
●

●
●

●
●

●●
●●●

●
●●

●●

●
●
●●●●

●●

●

●
●
●●●
●
●

●
●
●

●
●

●

●

●

●

●
●

●
●

●●●
●●●

●

●●●

●

●●●●
●●
●

●●
●

●

●●

● ●●●
●

●●
●●●

●●
●

●●
●●●

● ●●
●●

●●
●●●

●●
●

●
●

●● ●
●

●
●●● ●●● ●

●

●●

●

●●●●●●
●

●

●●●●●●
●
●

●

●
●●

●
●●

●
●

●
●●●●

●
●

●

●
●●●●

●

●
●

●●● ●●
●●

●●● ●
●

●
●

●
●

●●
●

●●●

●
●●

●

●●
●●

●
●

●

●

●●
●

●
●●●

●
●

●● ●●
●

●
●●●

●●●●●●●●
●

●●●
●
●●
●●
●● ●●
●

●

●
●● ●

●●
●

●●
●

●●●
●●●●●●●●●
●

●
●●●●

●●
●
●

●●●●●
●

●●
●●●●

●●

●
●
●●
●

●●

●
●

●
●

●

● ●●

●●
●●

●●
●●

●●
●●●

●●●●
●●

●
●

●
●

●●●
●

●

●

●

●
●

●●●
●

●

●●●
●●

●●
●●

●
●●

●
●

●●●
●●

●●●
●

● ●●●
● ●●

●
●●●●

●
●●

●
●

●
●

●
●

●
●

●
●●

●●
●

●

●
●

●
●

●●
●

●
●

●
●●

●

●

●
●

●●●
●●●

●●●●

●
● ●

●●
●●

●
● ● ●●●● ● ●●

●
● ●

●●●
●●

●●
●

●●●
●

●
● ●

●

●
●

●●
●●

●●●

●
● ●

●●

●
●

●
● ●
●

●
●

● ●
●●

●●●
●

●

●
● ●
●●

●●
●●

●
●●●

●●
●● ●●●●

●●●●●

●

●
●●

●

●●●
●

●●
●●●●

●●●
●

●●

●

●●

●●

●
●

●●
●●

●
●

●●
●

●
●

●

●
●

●●

●●●●
●

●●
●

●●
●

●●●●

●
●

●

●
●

●●

●

●

●
●

●●●
●

●●

●

●

●

●●
●● ●●

●
●●●●

●
●●

●
●●

●
●●● ● ●

● ●●●
●

●
●

●●
●

●
●

●
●

●●●●●●
●

●
●●

●● ●
●
●●●

●
●●

●

● ●

●●
●●

●
●

●

●
●
●

●
●

●
●●

●

●

●
●

●

●
●

●
●

●●

●
●

●
●

●
●●

●

●
●

●

●●● ●

●●●●
●●

●●
●

●

●●●
●●

●

●
● ●

●●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●
●●●

●●

●● ●
●●

●
●●●●●
●●

●
● ●
●

●
●

●
● ●●
●●

●●● ●●
●● ●

●
●●●● ●●●
●●● ●●
●

●
●●●●●

●
● ●●

●●
●●

●
●●

●●●
●●

●
●

● ●●
●

●
●●

●

●
●

●
●

●
●●●

●

●●
●●

●

●
● ●

●
●

●●●

●

●
●

●● ●
●

●
●●●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●●

●

●

●●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

● ●

●

●●

●●

●

●
●

●

●
● ●

●●
●●●●

●
●●●

●

●

● ● ●●● ●●
●

● ●●

●

●
●●●●

●●

●
●

●● ●●
●

●
●●

●●●

●

●

●

●

●

●
●

●
●●

●

●

●
●●

●
●

●●
●●

●
●
●

●
●●●

●
●

●

●
●

●●

●

●
●

●

●●●
●

●●
●●●

●

●
●●● ●
●

●
●●

●
●

●●
●
●●

●

● ●●● ●● ●●
●●●
●
●

●●
●●
●

●
●

●● ●●●●
●

●

●●

●

●
●●●

●

●
●

●
● ●
●●

●

●
●●● ●

●● ●
● ●
●●●●●●●
●

●●

●

●●● ●●●
●

●●● ●●
●

●●●●
●

●
●●●

●

●
●

●
●●

●
●
●

●

● ●
●
●

●
●●

●
●

●● ●●●●●●●●
●

●
●●●●

●
●● ●
●

●

●
●●●●●●●●●

●●●
●

●●
●
●●
●●●●

●
●

●●
●

●●
●●●

●
●

●
●

●●●
●

● ●
●●●● ●

●
● ●

●
●

●
●●●
●

●●
●●

●
●●

●
●

●●
●

●
●

●●● ●●●● ●●●●●●●
●

●●●
●

●●
●● ●

●●
●● ●

●

●●
●

●
●

●
●●●

●
●

●

●
●●●

● ●
●

●

●

●

●
●●
● ●
●●●●●●

●

●

●●●
●

●●● ●●●
●
●

●
●●●

●
●
●●●●

●
●

● ●
●●●
●● ●

● ●
●●
●

●
●
●●

●●●●●
●

●
●

●●● ●●● ●●
●●
●

●

●

●
●

●

●
●
●

●

●
●

●

●
●
●

●

●

●

●

●
●

●●
●●●

●●
●●●●

●
● ●●●●●●● ●●

●●

●

●

● ● ●
● ●●

●
●●

●●●●
●

●

●

●

●
●

●
●

●

●
●

●
●●

●

●●
●

●
●

●
●●

●●
●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●● ●
●●

●
●

●●

●

●● ●
●●
●

●

●

●
●●●
●● ●●●

●●●
●

●●●
●

●●●● ●●●●
●

●
●

●●
●●

●
●●●

●

●
●● ● ●
●●● ●

●
●●

●
●

●

●●● ●
●●
●
●●

●●
●

●●●
●●

●●

● ●● ●

●

●
●

●

●●
●●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●
●

●●
●●●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●
● ●

●●●
●

●

●
●

●

●
●

●

●

●
●

●●
●

●
●●●

●

●●
●●●

●

●
●●
●

●●

●●

●●●●●
●
●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
● ●

●
●

●●●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●
● ●
●

●

●
●●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●

●
●
●

●●●●

●
●

●

●●

●●
●

●●
●●

●
●

●●
●
●●
●

●

●

●

●
●

●

●●
●

●
● ● ●●

●●
●● ●● ●● ●

●

●
●

●●
●

● ●

●

●●

●
●

●

●
●

●
●

●● ●
●●

●
● ●

●
● ●●

●● ●
●●

●●
●

●●●●●●●●
●

●

●

●

●
●

●●
●

●●

●●
●●●

●

●
●

●●●
●
●●

●
●●●

●

●●
●

●

●

●

●
●

●●
●●●

●
●

●
●

●

●
●

●●●●
●
●
●●

●
●● ●

●●

●

●

●

● ●

●●●
●
● ●●●

●●●●
●

●●●

●●
●

●

●●
●

●

●

●

●

●●
●
●●

●

●

●
●

●
●

●

●

●

●●
●●

●

●
●●

●●●
●●●

●

●
●

●●

●

●
●●

●

●●●●
●

●
●●

●

●
● ●
●

●●●●●●
●
●

●
●

●
●

●●

●

●
●

●

●● ●●

●

●

●●●
●

●●

●
●

●
●

●●
●●

●

●●
●

●●●●
●
●

●
● ●

● ●●●
●●●

●
●●

●
●●

●

●

●

●

●
●●●

●
●

●

●
●

●
●

●
●
● ●
●●

●●

●

●
●●●

●●
●●●●
●●

●
●●
●●

●●● ●● ●
●

●
●●

●●
●
●●

●
●

●
●

●
●

●
●
● ●
●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●●
●●

●

●

●●
●
● ●●
●●● ●
●●

●●
●●

●

●
●

●

●

●
● ●

●
●●●●●●●

●●●
●●
●●
●●

● ●
●●
●●
●

●
●
●

●
●
●

●●
●

●

●
●

●
●●●

●● ●
●

●

●
● ●●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●●

●
● ●
●●●

●

●
●

●
●

●
●

●●
●

●●●
●

●

●

●
●

●
●

●●
●●●●●

● ●
●

●

●●●
●●

●
●

●●●●●
●

●●●
●●

●●●
●

●●
●●●

●
●●

●
●

●
●●●●

●●●●
●

● ●
●●●●

●●

●●●●
●

●
●●

●
●●

●●
●

● ●●
●●●●● ●●●●

● ●
●●

●●●
●

●●
● ●●●●●

●
●

●
●

●
●

●●●●

●

●●
● ●●●● ●●

●
●

●●
●●● ●●

●

●

●
●●●●

● ●
●
●●

●
●

●
●● ●

● ●

●
●
●●
●

●

●●
●

●
●

●
●●●●●●●●
●

●●
●

●
●

●
● ●●

●
●

●

●

●●● ● ●●
●● ●●●●●●

●●
● ●●●

●●
●

●

●
● ●

●●
●

●●
●●

●●

●

●
●

●●
● ●●
●●●●
●●

●●●

●
●●

●

●

●
●
●

●

●

●

●●

●●

●●

●●

●●
●

●
● ●
●●●

●
●●●

●●

●

●

●
●
●

●

●●

●●
●

●●●
●
●
●

●●
●
●

●
●

● ●●●
●

●●

●

● ●

●
●
●●●●●
●●●

●
● ●

●●●●
●●●●

●
●

●
●●●

●●
●●

●
●

●
● ●●

●●●
●●

●
●

●●●
●

●
●
● ●

●●
●●

●
●

●
●●

●●●●
●

●
●

●

●

●

● ●● ●
●●●●
●

●
●●●●
●

● ●

●
●

●●
●●

●
●●●

●●●●●
●

●

●

●
●●●

●

●
●

●
●

●

●
●●

●●

●●
●

●
●● ●

●

●●

●

●●●●●
●
● ●●●

●●●●

●
●●
●

●

●● ● ●●
●
●●●
●●

●

●●●
●●●

●

●

●
●●
● ●
●●

●
● ●
● ●●●●●
● ●●●
●●
●●●●

●●

●
●●●

●●
●

●
●●

●
●●●
●●

●

●
●

●
●
●●●●●●

●
●

●●
●●

●●

●●●
●

●●●
●
● ●

●● ●
●

●● ●
●

●
●●

●
●
●● ●

●
●●

●
●● ●

●

●

●
●

●●●
●

●●
●●●

●●
●●
●●

●
●

●●●●●●●
●

●
●

●●
●

●●● ●
●●●●

●
●

●●
●●●●

●

●●

●●●

●●

●

●

● ●
●

●
●●

●●
●
●

●●

●
●

●●
●

●
●

●

●
●

●
●

●

●●●
●●

●
●●

●●●
●

●
●

●●

●
●●
●
●

●

●

●● ●
●●●

●

●
●

●
●

●
●

●

●

●

●

●

●
●●●●
● ●

●
●● ●●●

● ●●
●

●● ●
●

●●●

●

● ●

●
●●●●●
●●●●

●

●

●

●●
●

●

●●●
●

●

●
●●
●

●●●●

●

●
●●

●
●●

●

●
●

●
●● ●●●●

●

●

●
●
● ●

● ● ●●
●
● ●●
● ●●
●

●●

●●

●
●●

●●
●●●
●●●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●●●
●

●
●●●●●

●

●●

●●

●●●
●

●

●
●

●●
● ●
●●●●●

●
●●●●●
●

●

●

●
●●●
● ●●

●
●●●
●

●

●●●

●●

●

●

●● ●

●●
●●●●

●
●●

●●●

●
●

●
● ●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●●●
●

●

●

●

●
●

● ●●
●

●
●●

●
● ●●●

●●

● ●
●●

●●
●

● ●

●●

●●
● ●●

●●
●●

● ●
●
●●

●

●
● ●

●

● ●

●

●
●
●

●
●

●

●
●

●

●

● ●
●

●
●

●●
●

●

● ●
●

●●

●

●
●●

●
●

●
●

●

●
●

●●
●
● ●

●●
●

●
● ●●
●

●
●●● ●●

●●
● ●
●

● ●
●●●●●

●

● ●

●

●●
●

●

●
●●●

●

●
●
●

●
● ●

● ●●

●
●●●● ●

●
●●
●
● ●
●

●
● ●

●●
●

●

●●

●●

●
●

●
●●

●

●
●

● ●●
●●

●
●

●
●●●●
●●●●●

●
●
●●●●

●●●●
●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●●

●●

●
●

●

● ●

●

●

●

●●
●●●

●

●
●

●
●

●●●

●

●

●

●
●

●
●

●
●
●

●

●

●
●

●

●
●●

● ●● ●
●●

●
●

●●●
●

●

●●●
●●●

●

●

●

●
●●● ●

●
●●●●

●●●●●
●●
●●

●
●

●
●

●

●
●
●

●●●

●

●
●

●

● ● ●

●●

●
●●

●

●
●●

●
●

●

●

●●●

●

●

●

●

●

●●
● ●●●

● ●

●

●

● ●

●
●
●

●
●

●●

●●
●

●
●

●
●

●●● ●
●

●●●

●
●

●

●
● ●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●
● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●●
●●

●

●

●
●●

●
● ●● ●

●
●

●●●
●

●

●
●

●

●●
●

●●
●●

●
●

●

●●
●

●
●

●

●
●
● ●

●

●

●
●

●

●
●●

●● ●

●
●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●
●

●

●
●●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●●
●

●

●
●

●●
●

●●

●
●

●

●
●●

●●

●

●

●●

●

●

●

●●
●

●●
●

●
●●

●

●
●

●

●

●
●

●
●

● ●

●
●

●

●

●●

●

●
●

●

●

●

● ●

●●
● ●

●
●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●
●

●
●

●

●●

●
●

●
●

●● ●

●●
●●

●

●●
●
●
●
●

●● ●
●

●

●
●

●

●
●
●

●

●

●
●

●●
●

●

●●

●

●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

● ●
●●

●

●●
●

●
●

●

●
●

●●

● ●

●

●

● ●

●
●

●●

●

●
●

●

● ●
●
●● ●

●
● ●●●

●
●

●●

●

●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●

●
●

●●

●●

●
●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●
●

●
●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●
●●●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●●

●
●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●●●●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●
● ●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

● ●

●●

●●
●

●
●

●
●

●
●

●

●●

●

●●

●●

●

●

● ●
●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●●

●●

●

●

●

●
●
●

●●

●●
●

●

●

●●

●●

●
●

●●●

●
●

●
●

●

●
●

● ●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●●
●

●

●
●

●

●

●●
●

●

●
●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●
●

● ●

●
●

●
●●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●
●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●●●

●
●●

●●●

●
●●

●

●●
●

●

●

●●

●●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●
●●

●●

●

● ●

●

● ●

●

●●
●
●

●
●●

●

●
●

●
●●

●

●

●

●

●
●●
●●●

●

●
●●

●

●

●
●

●●
●

●
●

●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●
●

● ●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●●

●
●

●

●
●●

●

●
●●

●
●

●●● ●
●

●●
●

●
●

●●

●
●

●

●

●
●
●●●●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●●
●●

●

●●
●

●

●
●●●

●

●●●
●

●
●●

●

●
●

●

●

●
●

●
●

●
●●

●
●

●●

●

●

●

●●

●

●
● ●

●

●
●

●
●●

●

●

●

●

●
●
●●
●●
●

●

●

●

●

●
●

●

●
●

●●

●●
●

●

●●

●

●
●●

●●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●
●

●
●

●
●

●

●●
●

●●

●

●
●

●

●
●
●

●
●●
●●●
●
●

●

●

●
●●

●

●
●
●

●●●
●●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●●
●

●
●●

●
●

●
●●●

●

●

●●
●●

●
●

●
●

●●
●
●●

●

●
●
●

●●

●

●
●

●

●●
●

●
●

●

●●
●

●

●

●●●
●●●

●
●

●
●

● ●
●●
●

●
●

●
●

●
●

●

●
●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●●●●

●

●

●

●
●

●
●

●

●

●

●●
●●●

● ●
●

●

●

●●

●

●

●
●●
●

●

●●

●
●●●

●●
●

●

●

●
●●
●

●

●●

●
●
●

●
●●

● ●

●

●
●

●

●
●

●

●●

●

●
●

●
●

●●
●●●●

●

●
●

●
●

●

●
●●
●●

●
●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●●●

●●

●●

●

●

●

● ●

●

●● ●●
●

●
●
●●
●

●
●

●●●●
●

●●
●

●

●

●●

●●

●

●
●

●●

●

●●

●

●●
●

●●●
●●

●●●
●

●
●

●
●

●

●●
●

●●●

●
●●

●●
●

●

●

●

●
●
●●
●

●

●

●●

●

●

●●
●
●

●

●● ●●●
●
●●

●

●

●

●

●
●
●

●●

●

●

●●
●

●

●
●

●
●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●

● ●●●

●
●

●

●●
●

●

●●

●

●
●

●

●● ●
●

●

●

●
●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●
●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●●●

●

●
●●●

● ●

●

●

● ●●
●

●

●

●●

●

●●● ●

●
●

●

●

●●

●

●

●●

●
●
●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●
●

●●●

●

●

●●
●●●

●

●
●

●

●

● ● ●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●●●
●

●
●●

●

●
●
●

●

●● ●●
●●

●●
●

●

●
●

●
●
●

●●
●

●

●

●

●
● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●
●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●●●●
●

●

●●
●

●
●●

●

●●
●
●
●●

●

●

●

●

●●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

● ●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

● ●●
●

●●
● ●●●
●●
●●

●

●●
●

●

●

●

●

●

●●●●

●
●●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

● ●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●●

● ●

●

●

●
●

●

●

●

●●●●
●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●●

●
●

●

● ●

●
●●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●●●

● ●

●

●
●

●

●

●

●●

●

●
●●●

● ●
●

●
●● ●

●●
●●

●

●
●

●

●

●
●
●●

●●

●
●●
●

●

●
●

●

●

●
●●●

●

●●
●

●
●

●

●●
●

●

●

● ●
●

●

●

●
●

●

● ●

●
●

●
●
●

●

●

●

●

●
● ●
●●

●●

●●
●
●
●●●

●

●●●

●
●

●●●●
●

● ●

●
●

●
●

●●
●

●●●
●

●

●●●
●
● ●
●●

●

●
●

●

●
●

●

●
●
●●●

●

●

●
●

●

●

●
●

●
●●

●
●●

●

●●
● ●

●●●

●

●
●●

●● ●

0 5 10 15

−
10

−
5

0
5

10
15

20

R
et

ur
n

of
 P

or
tfo

lio

(a) Response vs First Direction (b) Response vs Second Direction

Figure 3.1: 0.25th-CQS for Return of Portfolio

one shows a change in the variation, which is also consistent with our intuition and

Kong and Xia (2014). To further access the performance of our estimator, we used

bootstrap method for further simulations studies. We bootstrapped the data with

replacement and then perform CKQ on each bootstrap sample. Then we record the

distance, ∆F , of each bootstrap estimation and the original estimation. N = 200

samples were taken and Table 3.15 shows the results.

Table 3.15: Model Accuracy for Real Data

τ = 0.25 τ = 0.50 τ = 0.75

qMAVE 1.429 (0.139) 1.437 (0.145) 1.425 (0.147)
CKQ 0.755 (0.182) 0.837 (0.216) 0.884 (0.164)

Table 3.15 shows that our estimator are very stable across different τs. And also

it provided a better performance than qMAVE. This might indicate that our CKQ

estimator might fit this data better.

Moreover, beyond the qMAVE, our method are also capable of variable selection.

Kong and Xia (2014) accessed the variable importance by simply looking at the

59

Table 3.16: Variable Selection Results for Real Data

τ = 0.25 τ = 0.50 τ = 0.75

sensitivity specificity sensitivity specificity sensitivity specificity

CKQ 1.000 (0.000) 0.999 (0.010) 1.000 (0.000) 1.000 (0.000) 0.998 (0.035) 0.999 (0.007)

magnitude of the coefficients. It works fine for this data set, as the features are

constructed from the same variables, which indicates that all the variables are of the

same scale. However, in a more general frame work, assessing importance of features

by magnitude may not lead to desirable results. But for our method, we could adopt

our variable selection procedure to find what are some of the important features.

CISE-CKQ on the original data showed that variable X11 and X16 are important

variables when τ = 0.25, 0.50, 0.75. Variable X11 represents the market return of the

present day and X16 represents market volatility of the present day. These findings

were inline with Kong and Xia (2014) where they pointed out that capital asset

pricing model (CAPM) would suggest return of a portfolio strongly depend on the

present day market performance. To better assess the stability of our estimator, we

did another simulation study using bootstrap. At each iteration, we bootstrapped

data from the original data set, permuting all the variables except for holding X11

and X16 fixed. By doing so, we manually made X11 and X16 to be relevant. N = 200

iterations were run and our results is summarized in Table 3.16.

From Table 3.16, we can tell that our estimator provided a very stable variable

selection procedure for this data as both sensitivity and specificity are close to 1.

3.8 Discussion

In this chapter, we proposed a cubic kernel for estimating I-functional of the T -central

subspace, in particularly, we developed details for estimating τ -th CQS, τ -th CES and

respective variable selection. Simulation results show the strength and usefulness of

60

cubic kernel methods: CKQ and CKE.

Copyright c© Weihang Ren, 2020.

61

Chapter 4 Minimum Discrepancy Approach of Moment Kernels with

Applications in T -Central Subspace

4.1 Introduction

This chapter will reformulate our SDR methods in Chapter 2 and Chapter 3, so that

we have an optimal solutions. This follows the work of Cook (2004), Cook and Ni

(2005) and Cook and Zhang (2014) together with Qian,Ding and Cook (2019) for

large p small n problem.

This chapter contains the following parts. In Section 4.2, we establish the frame-

work for the minimum discrepancy approach on cubic kernel. Section 4.3 outlines

the detailed algorithm for solving the optimization problem. Section 4.4 develops

hypothesis tests for estimating the structural dimension and Section 4.5 discusses the

future works.

4.2 Proposed Framework

Cubic Kernels on T -Central Subspace.

Chapter 2 introduced cubic kernel (CK) to recover the desired T -central subspace.

CK was obtained by minimizing an objective function of the form [T (Y)−a−β′TZZ−

Z′ΣTZZZ − (Z′ ⊗ Z′)MTZZZZ]2, where βTZ,ΣTZZ,MTZZZ are kernel matrices con-

structed similar to OLS, pHd and third moment matrix. In Proposition 2.2, we

showed that under mild conditions, S(βTZ,ΣTZZ,M′
TZZZ) ⊆ ST (Y |Z). Under this

setup, the T -central subspace, ST (Y |Z) could be estimated by a basis matrix M such

that the column space of S(M) = S(βTZ,ΣTZZ,M′
TZZZ), if the coverage condition is

62

assumed in addition. And M was obtained by the following construction

M = ω2
1βTZβ

′
TZ + ω2

2ΣTZZΣ′TZZ + ω2
3M′

TZZZMTZZZ,

where the ωi, i = 1, 2, 3 are the appropriate weight correspond to each kernel. Al-

though, this approach combined different kernels with a weight function, the downside

is its ignorance on the covariance information between different kernels. In this chap-

ter, we are going to construct M from a different aspect.

Minimum Discrepancy Approach

We begin this section by introducing some additional notations: Let B(0) ∈ Rp×d

denote the basis for desired T -central subspace, i.e. S(B(0)) = ST (Y |Z). Denote ξ as

the matrix column binding the kernel matrices,

ξ = (βTZ,ΣTZZ,M′
TZZZ) = (ξ1︸︷︷︸

βTZ

, ξ2, · · · , ξp+1︸ ︷︷ ︸
ΣTZZ

, ξp+2, · · · , ξp2+p+1︸ ︷︷ ︸
M′TZZZ

).

For each i = 1, 2, · · · , p2 + p + 1, there exists a vector ci such that ξi = B(0)c
(0)
i .

Let C(0) = (c
(0)
1 , c

(0)
2 , · · · , c(0)

p2+p+1) ∈ Rd×(p2+p+1), we have

ξ = B(0)C(0).

The idea of estimating ST (Y |Z) is then by finding a d dimensional subspace that

is ”closest” to ξ. ”Close” is in terms of a quadratic distance with optimality in some

sense. Let vec(·) denote the linear operator that converts the columns of a matrix

into a column vector. Then, the quadratic distance is defined through the following

definition (Cook and Ni 2005):

D(B,C) = [vec(ξRn)− vec(BC)]′Vn[vec(ξRn)− vec(BC)],

63

Here Vn ∈ Rp(p2+p+1)×p(p2+p+1) is a positive definite matrix. Rn ∈ R(p2+p+1)×(p2+p+1)

is a non-singular matrix which represents how we manipulate the columns of ξ. In

Chapter 2, we used least square procedure to find weights for each column of ξ, Rn

in that case would be a diagonal matrix with weights that given by their method-

ology filled on the diagonal. B(0) ∈ Rp×d represents a basis and C(0) ∈ Rd×(p2+p+1)

represents the coordinates of ξRn relative to B.

It’s clear that this problem is over parameterized: B,C are an over-parameterized

version of ξ. However, this gives us some advantage to get rid of Rn in the question,

the non-uniqueness of this problem make sure that if we took C̃ = CR−1
n , then the

problem could be re-written as

D(B,C) = [vec(ξ)− vec(BCR−1
n)]′(Rn ⊗ I)Vn(R′n ⊗ I)[vec(ξ)− vec(BCR−1

n)]

D(B, C̃) = [vec(ξ)− vec(BC̃)]′Ṽn[vec(ξ)− vec(BC̃)]

Since we are minimizing over B,C, it’s equivalent to minimize over C̃ so that Rn

is absorbed in this procedure. In this way, we see that, as long as Rn is taken as

a sequence of matrices that converges to a non-singular non-stochastic matrix, then

it’s equivalent to rewrite the problem in this way. Because Rn represents how one

manipulates the columns of ξ, there is little reason for one to choose Rn as singular

matrix, otherwise we may throw important information away.

As for the choice of Vn, the logic follows from the idea of generalized method

of moment (GMM). And it could be shown that if Vn taken to be the asymptotic

covariance matrix, then the minimizer could achieve the optimal in the sense of

efficiency. To that end, one may need to show that the asymptotic distribution of

our estimator should be normal while satisfying some additional requirements along

with some assumptions. Therefore, we will discuss more details in the next section.

64

Asymptotic Behavior

Denote

ξ̂ = (β̂TZ, Σ̂TZZ,M̂′
TZZZ).

We need to find the asymptotic distribution of
√
nvec(ξ̂ − ξ):

Proposition 4.1. Assume that the data (Xi, Y), i = 1, 2, · · · , n are simple random

variable with finite sixths moment. Then

√
nvec(ξ̂ − ξ)→ N(0,Γ),

where Γ = cov{[TX′, (TX⊗X)′, (TX⊗X⊗X)′]′}.

Proof. We expect to finish the proof in Appendix in the future.

By showing the asymptotic normality, we further provide the asymptotic efficiency

results for proposed estimator.

Proposition 4.2. Assume that the data (Xi, Y), i = 1, 2, · · · , n are simple random

variable with finite sixths moment. Let d = dim(ST (Y |X)) and (B̂, Ĉ) = arg minB,CD(B,C).

Let

∆ξ = (
∂vec(BC)

∂vec(B)
,
∂vec(BC)

∂vec(C)
) |(B(0),C(0))= (C(0)′ ⊗ Ip, Ip2+p+1 ⊗B(0))

Then we have the following results:

1. vec(B̂Ĉ) is asymptotically efficient and
√
n(vec(B̂Ĉ)−vec(B(0)C(0))) is asymp-

totically normal with mean 0 and covariance matrix ∆ξ(∆ξΓ
−1∆ξ)

−∆ξ,

2. nD̂(B̂, Ĉ) has chi-square distribution with degrees of freedom (p−k)(p+p2−k),

3. S(B̂) is a consistent estimator of ST (Y |X).

Proof. Please refer to Appendix for the detailed proof.

65

4.3 Computation Methods

Having establish the framework for the minimum discrepancy approach, we need to

provide a practical working algorithm. In addition to constructing the CK kernel

matrices, we need to deal with some questions in regards the detail. Minimizing the

objective function will be the major task, but in order to deal with the quadratic

form, we need to discuss how to find the appropriate sequences of matrices Vn.

Vn in our approach is chosen as the inverse of the asymptotic covariance matrix.

As it was given in theorem, the asymmptotic covariance matrix could be written in

close form as a function of the sample, so it’s natural to construct Vn by plug-in the

sample.

Given the choice of Vn, now we can talk about how to minimize the objective

function. The discrepancy function D̂ defined in previous section has two free pa-

rameters B,C. As Cook and Ni (2005) pointed out, although there are some general

optimization algorithm for this unconstrained quadratic objective function, the al-

ternating least squares method is probably more efficient as it utilized the special

structure of the objective function. The idea of this method is to fix one of the pa-

rameters and solve for the other one using a least square method: Fixing B, then

vec(C) will be the solution of regressing V
1/2
n vec(ξ̂) on Vn(I⊗B); and then fixing C

will result in d least square problems where each one is regressing vec(ξ̂−B(−k)C(−k))

on (C ′k ⊗ I)QB(−k) , where Bk and Ck represent the kth column and row of B and

C respectively. B(−k), C(−k) represent the matrix after removing Bk and Ck from B

and C. Q(·) represents the projection operator that project the matrix onto column

null space of the given argument matrix. At each iteration, the minimization of the

quadratic optimization problems became d + 1 linear regression problem. We name

this algorithm as Minimum Discrepancy Approach for Cubic Kernel (MDA-CK). Now

the detailed version of the algorithm is given as follow:

Algorithm for MDA-CK: Let {Xi, Yi}, i = 1, 2, · · · , n be an i.i.d sample, and

66

assume that the structural dimension d for the CMS is known. Then

1. Standardize the predictor Ẑi = Σ̂
−1/2
X (Xi − X̄), for i = 1 · · · , n.

2. Construct kernel matrices:

β̂Y Z =
1

n

n∑
i=1

ẐiYi, Σ̂r1ZZ =
1

n

n∑
i=1

r̂1iẐiẐ
′
i,

where r̂1i is the estimated version of r1 for ith observation and r1 = Y − a1 −

b1Z
′βY Z, with a1, b1 ∈ R being the OLS coefficients of Y on (1,Z′βY Z).

3. Construct M̂r2ZZZ and ˆ̃Mr2ZZZ. First we construct p2 vectors for j, k =

1, · · · , p:

m̂jk =
1

n

n∑
i=1

r̂2iẐi(e
′
jẐi)(e

′
kẐi)

− 1

n

n∑
i=1

r̂2i(e
′
kẐi)ej −

1

n

n∑
i=1

r̂2i(e
′
jẐi)ek −

1

n

n∑
i=1

r̂2i(e
′
jek)Ẑi,

where ei is a unit vector with ith element 1 and r̂2i is ith element in the residual

vector r̂2, r2 = Y −a2−b2Z
′βY Z−c2Z

′Σr1ZZZ with a2, b2, c2 ∈ R being the OLS

coefficients of Y on (1,Z′βY Z,Z
′Σr1ZZZ) and Σr1ZZ = E(r1ZZ). Let M̂′

r2ZZZ =

(m̂11, · · · , m̂pp), which is a p× p2 matrix.

4. Construct ξ̂ = (β̂TZ, Σ̂TZZ,M̂′
TZZZ) and V̂n = Γ̂−1, where Γ̂ = ˆcov{[TX′, (TX⊗

X)′, (TX ⊗X ⊗X)′]′}. Choose an initial B = (B1, B2, · · · , Bd) and calculate

least square coefficient

vec(C) = [(I⊗B)′V̂n(I⊗B)]−1(I⊗B)V̂nvec(ξ̂)

.

5. For k = 1, 2, · · · , d:

67

• Assign

αk = vec(ξ̂ −B(−k)C(−k))

and find a new Bk such that is orthogonal to B(−k) by

B̂k = QB(−k) [QB(−k)(C
′
k ⊗ I)V̂n(Ck ⊗ I)QB(−k)]

−QB(−k)(C
′
k ⊗ I)V̂nαk

• Update B = (B1, B2, · · · , Bk−1, B̂k/‖B̂k‖, Bk+1, · · · , Bd)

• Update C = arg minC∗ D̂(B,C∗)

6. Repeat step 5 until ‖D̂(B,C)t+1 − D̂(B,C)t‖ < 10−6.

Remark 4.1. The above algorithm has some instant extensions:

1. The above algorithm is designed specifically for CMS, central mean subspace.

This algorithm could be easily extended to the case with linear functional (L-

functional), by replacing the Yi as T (Yi), where T (·) stands for the transforma-

tion on the response that induced by the given conditional statistical functional.

The underlying theorem that support this claim could be find in Chapter 2.

2. To extend the results implicit functional (I-functional). An approach that is

similar to Chapter 3 could also be adopted here: We first find a basis of the

central subspace using some existing method denote as B̂CS. And then based

on the reduced dimension, we find a nonparametric estimator of T̂ (Yi | BCSXi)

depends on which type of statistical functional of interests. Then treat T̂ (Yi |

BCSXi) as Yi in above algorithm, we could find the desired T -central subspace.

See Chapter 3 for further technical detail.

68

4.4 Order Determination

Sections 2.4 and 3.4 used ladle estimator proposed by Luo and Li (2016) and BIC

methods (Li Artemiou and Li 2011) to determine the structural dimension for a given

T -central subspace. Ladle estimator is great in a sense that it could remove ambigu-

ity by combining information from the variability and magnitude of the eigenvector

and eigenvalue of the kernel matrices with high accuracy. However, the ladle estima-

tor itself relies on bootstrap to access the variability information, which leads to a

high computational burden. Although similar approach could be taken for MDA-CK

method, but with the increasing complexity in algorithm itself, ladle estimator may

not be desirable, as the computation time for a single run could be long. Luckily

we have established Proposition 4.2, which would be a great setup for the structural

dimension hypothesis test. So for MDA-CK, we decide to adopt a similar testing

procedure proposed by Cook and Ni (2005)

For order determination, we will be mainly considering the following sequence of

marginal dimension hypotheses:

H
(k)
0 : d = k v.s. H

(k)
1 : d > k, for k = 0, 1, . . . , p− 1.

Then the structural dimension d will be determined by the first hypothesis that is

not being rejected. For each fixed k, the hypothesis is a marginal dimension test. And

deriving the distribution of test statistics under H
(k)
0 would lead to a test statistic.

However, the exact distribution could not be derived easily, so we are using the

asymptotic distribution for the development of test statistics.

According to Proposition 4.2, under H
(k)
0 , nD̂(B̂, Ĉ) has an asymptotic chi-square

distribution with degrees of freedom (p− k)(p+ p2− k). Notice here nD̂(B̂, Ĉ) could

be seen as a function of the structural dimension k. So for each H
(k)
0 , the test statistic

69

π(k) under level α is given by

φ(k) =


0 if nD̂(B̂, Ĉ) < χ1−α;(p−k)(p+p2−k)

1 if nD̂(B̂, Ĉ) ≥ χ1−α;(p−k)(p+p2−k)

And the estimated structural dimension d̂ is given by:

d̂ = min{k : φ(k) = 0}.

4.5 Discussion and Future Work

In this chapter, we proposed the minimum discrepancy approach for the cubic kernel

(CK) targeting T -central subspace. In particular, we developed details for the L-

functionals and its corresponding asymptotic theory and order determination. In

addition to the existing results, we will also study arge p small n problem following

the approach from Qian, Ding and Cook (2019) in the future. Moreover, simulation

studies will be conducted for recovering the CMS: We will start with the choice of

Vn = I, block diagonal matrix and then move to the asymptotic covariance matrix.

MDA-CK could also be extended to I-functionals as it was done in Chapter 3.

Asymptotic theory will be developed and simulations will also be conducted to study

the central quantile subspace and central expectile subspace.

Copyright c© Weihang Ren, 2020.

70

Appendices

A Chapter 2 Detailed Proofs for Proposition 2.1 and 2.2

In this appendix, we will provide detailed proofs for Proposition 2.1 and Proposition

2.2 in in the main text. To do so, we will prove two lemmas first.

Lemma D1. Let α be any p×q matrix where q ≤ p. Assume that E(Z|α′Z) is linear,

Var(Z|α′Z) is constant, and that M(3)(Z|α′Z) = 0. Then for some p × 1 vector b0,

we have

E((Z′ ⊗ Z′)DZ|α′Z) = (Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ + (Pαb0)′Z

Proof. Recall that D is a p× p× p array with k-th face Dk having element dijk in its

i-th row and j-th column. Then all dijk are the same for any permutation of the index

ijk, and D′k = Dk, we may also treat D as a p2×p matrix. PS denotes the projection

operator with respect to the standard inner product on S, where S is represent any

linear subspace. And define QS = I − PS . In this proof, we are taking S = S(α),

space spanned by column of α.

E((Z′ ⊗ Z′)DZ|α′Z) =tr(E((Z′ ⊗ Z′)DZ|α′Z))

=E(tr((Z′ ⊗ Z′)DZ|α′Z))

=E(tr(Z(Z′ ⊗ Z′)D|α′Z))

=E(tr(D′(Z⊗ Z)Z′|α′Z))

=E(tr(D′(Z⊗ ZZ′)|α′Z))

=tr(D′E((Z⊗ ZZ′)|α′Z))

=tr(D′M1),

71

where M1 = E((Z⊗ ZZ′)|α′Z). Next, develop a different expression for M1, Notice

M(3)(Z|α′Z) = E(Z⊗ ZZ′|α′Z)

− E(E(Z|α′Z)⊗ (Z− E(Z|α′Z))(Z− E(Z|α′Z))′|α′Z)

− E((Z− E(Z|α′Z))⊗ E(Z|α′Z)(Z− E(Z|α′Z))′|α′Z)

− E((Z− E(Z|α′Z))⊗ (Z− E(Z|α′Z))E(Z|α′Z)T |α′Z)

− E(Z|α′Z)⊗ E(Z|α′Z)E(Z|α′Z)′

= M1 −M2 −M3 −M4 −M5,

where M2, . . . ,M5 are defined implicitly as the corresponding terms in the expres-

sion. The no skewness conditionM(3)(Z|α′Z) = 0 impliesM1 =M2+M3+M4+M5

and we claim

tr(D′Mi) =


(Pαb1)′Z for i = 2, 3, 4

(Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ for i = 5

(4.1)

Therefore, by the no skewness condition and (4.1) we have

E((Z′ ⊗ Z′)DZ|α′Z) =tr(D′M1) =
5∑
i=2

tr(D′Mi)

=(Pαb1)′Z + (Z′ ⊗ Z′)(Pα ⊗Pα)

And the proof is complete if we can show (4.1) holds. To show (4.1) holds, let’s denote

W = E(Z|α′Z) and V = Z−E(Z|α′Z) and let Q(i, j) be a p2×p2 permutation matrix

such that permuting the i-th and j-th row. Then we have

tr(D′M2) = E(tr(D′(W ⊗VV′))|α′Z) = E(tr(V′D′(W ⊗V)))

tr(D′M3) = E(tr(D′(V ⊗WV′))|α′Z) = E(tr(V′D′(V ⊗W)))

tr(D′M4) = E(tr(D′(V ⊗VW′))|α′Z) = E(tr(W′D′(V ⊗V)))

72

(W⊗V) is a p2 × 1 vector whose [(i− 1)p+ j]-th row is wivj. And [(j − 1)p+ i]-th

row of (V ⊗W) has the same element wivj. Therefore

(W ⊗V) =
∏
i

∏
j

Q((i− 1)p+ j, (j − 1)p+ i)(V ⊗W)

And, by restriction of the array D, D′ is a p×p2 matrix whose [(i−1)p+j]-th column

and [(j − 1)p+ i]-th column are the same. Thus

D′
∏
i

∏
j

Q((i− 1)p+ j, (j − 1)p+ i) = D′

Therefore, we could show tr(D′M2) = tr(D′M3) by

tr(D′M2) = E(tr(V′D′(W ⊗V)))

= E(tr(V′D′
∏
i

∏
j

Q((i− 1)p+ j, (j − 1)p+ i)(V ⊗W)))

= E(tr(V′D′(V ⊗W)))

= tr(D′M3)

we could also show tr(D′M3) = tr(D′M4) by

tr(D′M3) = E(tr(V′D′(V ⊗W)))

= E(tr(V′(
∑
i

D′ivi)⊗W))

= E(tr(
∑
i

W′(Divi)⊗V))

= E(tr(W′(
∑
i

D′ivi)⊗V))

= E(tr(W′D′(V ⊗V)))

= tr(D′M4)

73

Then let’s show tr(D′M4) = (Pαb1)′Z

tr(D′M4) = tr(D′vec(Qα)Z′Pα)

= tr(Z′PαD′vec(Qα))

= vec(Qα)′DPαZ

= (Pαb1)′Z

where b1 = D′vec(Qα).

To complete the case for i = 5 in (4.1), it remains to show tr(D′M5) = (Z′⊗Z′)(Pα⊗

Pα)DPαZ

tr(D′M5) = tr(D′(Pα ⊗Pα)(Z⊗ ZZ′)Pα)

= tr(D′(Pα ⊗Pα)(Z⊗ Z)Z′Pα)

= tr(Z′PαD′(Pα ⊗Pα)(Z⊗ Z))

= (Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ

= (Pαb1)′Z

Based on Lemma 1, we develop the following lemma.

Lemma D2. Let the columns of α forms a basis for S(βTZ,ΣTZZ,M′
TZZZ) then

E((TY − E(TY)))(Z′ ⊗ Z′)DZ|α′Z)

= E[(TY − E(TY))(Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ + (TY

− E(TY))(Pαb0)′Z]

where, TY = T (Y) for ease of notation.

74

Proof. Recall that βTZ represents population OLS slope estimate for regression of

T (Y) on Z, ΣTZZ represents the population kernel for principal Hessian directions,

MTZZZ is the kernel for third moment (Yin and Cook 2004).

By the construction of βTZ,ΣTZZ,MTZZZ and the fact that columns of α forms a

basis for S(βTZ,ΣTZZ,M′
TZZZ), we have:

MTZZZ = E((TY − E(TY))(Z⊗ ZZ′))− E(TY Z)⊗ I

− I ⊗ E(TY Z)− (I ⊗ I)vec(I)E(TY Z)′

MTZZZ = (Pα ⊗Pα)MTZZZPα

= E((TY − E(TY))(Pα ⊗Pα)(Z⊗ ZZ′)Pα)− E(TY Z)⊗Pα

−Pα ⊗ E(TY Z)− (Pα ⊗Pα)vec(I)E(TY Z)′

Therefore, we have

E((TY − E(TY))(Z⊗ ZZ′))

= E((TY − E(TY))(Pα ⊗Pα)(Z⊗ ZZ′)Pα)

= + E(TY Z)⊗Qα + Qα ⊗ E(TY Z)

+ (I ⊗ I −Pα ⊗Pα)vec(I)E(TY Z)′

(4.2)

tr(D′E((TY − E(TY))(Pα ⊗Pα)(Z⊗ ZZ′)Pα))

= E((TY − E(TY))tr(D′(Pα ⊗Pα)(Z⊗ ZZ′)Pα))

= E((TY − E(TY))tr(Z′PαD′(Pα ⊗Pα)(Z⊗ Z)))

= tr(E((TY − E(TY))(Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ))

= E((TY − E(TY))(Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ)

(4.3)

75

(I ⊗ I −Pα ⊗Pα)vec(I)

= ((Pα + Qα)⊗ (Pα + Qα)−Pα ⊗Pα)vec(I)

= (Qα ⊗Qα + Pα ⊗Qα + Qα ⊗Pα)vec(I)

= vec(Qα)

(4.4)

Therefore,

E((TY − E(TY))(Z′ ⊗ Z′)DZ)

= tr(E((TY − E(TY))(Z′ ⊗ Z′)DZ))

= tr(E((TY − E(TY))D′(Z⊗ ZZ′)))

= tr(D′E((TY − E(TY))(Z⊗ ZZ′)))

= tr(D′E((TY − E(TY))(Pα ⊗Pα)(Z⊗ ZZ′)Pα))

+ tr(D′E(TY Z)⊗Qα) + tr(D′Qα ⊗ E(TY Z))

+ tr(D′(I ⊗ I −Pα ⊗Pα)vec(I)E(TY Z)′)

= E((TY − E(TY))(Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ)

+ E[(TY − E(TY))tr(D′(PαZ⊗Qα + Qα ⊗PαZ

+ (I ⊗ I −Pα ⊗Pα)vec(I)Z′Pα))]

= E((TY − E(TY))(Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ)

+ E[(TY − E(TY))tr(D′(M2 +M3 +M4))]

The forth equality is because of (4.2), and the fifth equality is due to (4.3). And in

the last equality, Mi, i = 2, 3, 4 is the same notation as the one in Lemma D1. And

the equality holds because of (4.4). Hence, we have completed the proof.

Proof of Proposition 2.1. Recall that a ∈ R1, b ∈ Rp and C is a p × p

76

symmetric matrix. Since φ(·) is a convex function, γ is basis for T -central subspace.

R(a,b,C,D) = E(−TYK(Z) + φ(K(Z)))

= E(−E(TY |γ′Z)K(Z) + φ(K(Z)))

= E(−E(TY |γ′Z)E(K(Z)|γ′Z) + φ(K(Z)|γ′Z))

≥ E(−E(TY |γ′Z)E(K(Z)|γ′Z) + φ(E(K(Z)|γ′Z)))

Now we are going to deal with E(K(Z)|γ′Z). Notice that

E(ZZ′|γ′Z)

= E(Z|γ′Z)E(Z|γ′Z) + Var(Z|γ′Z)

= PγZZ′Pγ + Qγ

E(K(Z)|γ′Z)

= a+ b′E(Z|γ′Z) + E(Z′CZ|γ′Z) + E((Z′ ⊗ Z′)DZ|γ′Z)

= a+ b′E(Z|γ′Z) + tr(E(ZZ′C|γ′Z)) + E((Z′ ⊗ Z′)DZ|γ′Z)

= a+ b′PγZ + tr(PγZZ′PγC + QγC) + (Pγb0)′Z + (Z′ ⊗ Z′)(Pγ ⊗Pγ)DPγZ

= (a+ QγC) + (b + b0)′PγZ + tr(PγCPγZZ′) + (Z′ ⊗ Z′)(Pγ ⊗Pγ)DPγZ

(4.5)

That is

R(a,b,C,D) ≥ R((a+ tr(Qγbb′)),Pγ(b + b0),PγCPγ, (Pγ ⊗Pγ)DPγ)

Since we have assume that the (α, β,Γ,∆) is unique, therefore, we have shown that

S(β,Γ,∆′) ⊆ ST (Y |Z)

Otherwise, we could always find that Pγβ,PγΓPγ, (Pγ ⊗Pγ)∆Pγ has a smaller risk

77

than the risk of using β,Γ,∆.

Proof of Proposition 2.2. Notice that Since

R(a,b,C,D) = E(−(TY − E(TY))K(Z)− E(TY)K(Z) + φ(K(Z))

φ(·) is convex, E(TY)K(Z) is also a convex function, thus without loss of generality,

we can assume E(TY) = 0.

Moreover, we have

b′E(TY Z) = (Pαb)′E(TY Z)

and

E(TY Z′CZ) = E(TY Z′PαCPαZ)

Combining these, by using Jensen’s Inequality, it is similar to show that

R(a,b,C,D) =E(L(a+ b′Z + Z′C′Z + (Z′ ⊗ Z′)DZ, TY))

=E(−TY ((Pαb)′Z + Z′PαCPαZ + (Pαb0)′Z

+ (Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ)) + E(φ(K(Z)))

=E(−TY (a+ tr(QαC) + (Pα(b + b0))′Z + Z′PαCPαZ

+ (Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ)) + E(φ(K(Z)))

and

E(φ(K(Z))) =E(E(φ(K(Z))|α′Z))

≥E(φ(E(K(Z)|α′Z)))

=E(φ(a+ tr(QαC) + (Pα(b + b0))′Z + Z′PαCPαZ

+ (Z′ ⊗ Z′)(Pα ⊗Pα)DPαZ))

78

Therefore,

R(a,b,C,D) ≥ R((a+ tr(Qαbb′)),Pα(b + b0),PαCPα, (Pα ⊗Pα)DPα)

And by the uniqueness of the β and same argument, the result follows.

79

B Chapter 3 Detailed Proof for Proposition 3.4

In this supplementary files, we will provide detailed proofs for Proposition 3.4 in the

main text. To do so, we will present the following lemma from Pollard (1991).

Lemma D3. Let bn(θ) be a sequence of random convex function defined on a convex,

open subset Θ of Rd. Suppose b(·) is a real-valued convex function on Θ for which

bn(θ)→ b(θ) in probability, for each θ in Θ. Then for each compact subset K of Θ,

sup
θ∈Θ
‖bn(θ)− b(θ)‖ P→ 0

Proof for Proposition 3.4

The idea for this proof is to approximate the target by a quadratic function whose

minimizing value has an is Op(n
−1/2) and then to show that the sample version

estimator lies close enough to that minimizing value to share its asymptotic properties.

Let’s first define a new quantity to help us proof the
√
n-consistent. Define

b̂n(θ) =
n∑
i=1

(T̂ (Y | B̂CSXi)−
(

1,X′i,X
′
i ⊗X′i,X

′
i ⊗X′i ⊗X′i

)
θ)2 −

n∑
i=1

T̂ 2(Y | B̂CSXi)

=− 2(
n∑
i=1

T̂ (Y | B̂CSXi)

(
1,X′i,X

′
i ⊗X′i,X

′
i ⊗X′i ⊗X′i

)
)θ

+ θ′
n∑
i=1

(
1,X′i,X

′
i ⊗X′i,X

′
i ⊗X′i ⊗X′i

)′(
1,X′i,X

′
i ⊗X′i,X

′
i ⊗X′i ⊗X′i

)
θ,

for θ ∈ R1+p+p2+p3 . and define Θ = {θ =

(
a,b′, vec(C)′, vec(D)′

)′
: a ∈ R,b ∈

Rp,C is a p × p symmetric matrix., D is a 3 dimensional p × p × p array.} Notice if

we take θ ∈ Θ, then

(
1,X′i,X

′
i ⊗X′i,X

′
i ⊗X′i ⊗X′i

)
θ = a+ X′ib + X′iCXi + X′i ⊗X′iDXi = K(Xi).

80

Denote θ∗ =

(
a∗,b∗′, vec(C∗)′, vec(D∗)′

)′
, where a∗,b∗,C∗,D∗ is the population

minimizer as we defined in section 3.2, and denote Xi =

(
1,X′i,X

′
i ⊗X′i,X

′
i ⊗X′i ⊗X′i

)′
Then for θ ∈ Θ, we have

b̂n(θ∗ +
θ√
n

) =b̂n(θ∗)− 2√
n

n∑
i=1

T̂ (Y | B̂CSXi)X
′
iθ +

1

n
θ′

n∑
i=1

XiX
′
iθ

=b̂n(θ∗)− 2√
n

n∑
i=1

T̂ (Y | B̂CSXi)X
′
iθ + θ′E(XX′)θ + op(1)

Furthermore, if we take

bn(θ) = b̂n(θ∗ +
θ√
n

)− b̂n(θ∗) +
2√
n

n∑
i=1

T̂ (Y | B̂CSXi)X
′
iθ

P→ θ′E(XX′)θ = b(θ),

we could surely know that bn(θ) is a sequence of convex function defined on Θ that

converge in probability to a convex function b(θ) for each θ ∈ Θ, given 2√
n

∑n
i=1 T̂ (Y |

B̂CSXi)X
′
iθ is bounded in probability for each θ. Then we could apply the convexity

lemma to improve the result that this convergence is uniform on any compact set

K ∈ Θ.

Now we are going to show 2√
n

∑n
i=1 T̂ (Y | B̂CSXi)Xi is bounded in probabil-

ity to complete above claim. It’s suffice to show that the second moment is finite.

However, this quantity depends on data, so we consider 2√
n

∑n
i=1 T (Y | BCSXi)Xi

first. Define function t : R1+p+p2+p3 → R such that t(y,Bx) = T (y|Bx) and let

T = {t : E‖t2(Y,BCSX)XX′‖ <∞, ‖t‖∞ <∞}, then

sup
t∈T

E(
2√
n

n∑
i=1

t(Y,BCSXi)Xi)(
2√
n

n∑
i=1

t(Y,BCSXi)Xi)
′ ≤ sup

t∈T

4

n

n∑
i=1

t2(Y,BCSXi)‖XiX
′
i‖ <∞

This implies 2√
n

∑n
i=1 T (Y | BCSXi)Xi a bounded random variable because T (Y |

BCSXi) is in T. Also, by previous lemma, we know that T̂ (Y | B̂CSXi) for n large

enough. This implies that 2√
n

∑n
i=1 T̂ (Y | B̂CSXi)Xi is also bounded in probability.

81

By far, we are ready to provide the argument for the
√
n-consistency. As it was

pointed out previously, we are going to show that M̂ is close to θ∗. It’s equivalent

to show that M̂ is within a θ/
√
n ball of θ∗, {θ∗ + θ/

√
n : ‖θ‖ < C,θ ∈ Θ} with

high probability. In another word, outside of the θ/
√
n ball of θ∗, we could not find

sample minimizer that could beat θ∗ with high probability, i.e.

P (inf
θ≥C

b̂n(θ∗ + θ/
√
n)− b̂n(θ∗) > ε)→ 1.

To see this holds, we already have

b̂n(θ∗ +
θ√
n

)− b̂n(θ∗) = − 2√
n

n∑
i=1

T̂ (Y | B̂CSXi)X
′
iθ + θ′E(XX′)θ + op(1)

on any compact set in Θ. This quantity is quadratic in θ and hence dominated by

θ′E(XX′)θ, which means the quantity is bounded away from zero with probability

tends to 1.

C Chapter 4 Detailed Proof for 4.1

In this supplementary files, we will provide detailed proofs for Propositions in the

main text.

82

Proof of Proposition 4.1

In this proof, we are going to use the following notation:

µ1 = E(X) µ̂1 =
1

n

n∑
i=1

Xi

µ2 = E(X⊗X) µ̂2 =
1

n

n∑
i=1

Xi ⊗Xi

µ3 = E(X⊗X⊗X) µ̂3 =
1

n

n∑
i=1

Xi ⊗Xi ⊗Xi

θ1 = E(TZ) θ̂ =
1

n

n∑
i=1

TiZi

θ2 = E(TZ⊗ Z) θ̂2 =
1

n

n∑
i=1

TiZi ⊗ Zi

θ3 = E(TZ⊗ Z⊗ Z) θ̂3 =
1

n

n∑
i=1

TiZi ⊗ Zi ⊗ Zi

ξ0 = E(T) ξ̂0 =
1

n

n∑
i=1

Ti

ξ1 = E(TX) ξ̂1 =
1

n

n∑
i=1

TiXi

ξ2 = E(TX⊗X) ξ̂2 =
1

n

n∑
i=1

TiXi ⊗Xi

ξ3 = E(TX⊗X⊗X) ξ̂3 =
1

n

n∑
i=1

TiXi ⊗Xi ⊗Xi.

83

Now we first notice that

θ1 =E(Σ−1/2T (X− µ1)) = Σ−1/2[E(TX)− µ1ξ0] = Σ−1/2(ξ1 − µ1ξ0)

θ2 =E(TΣ−1/2(X− µ1)⊗ Σ−1/2(X− µ1)) = (Σ−1/2 ⊗ Σ−1/2)[ξ2 − µ2ξ0

− µ⊗ ξ1 − ξ1 ⊗ µ+ 2ξ0µ⊗ µ]

θ3 =E(TΣ−1/2(X− µ1)⊗ Σ−1/2(X− µ1)⊗ Σ−1/2(X− µ1))

=(Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ3 − ξ2 ⊗ µ1 − E(YX⊗ µX) + ξ1 ⊗ µ1 ⊗ µ1

− µ1 ⊗ ξ2 + µ1 ⊗ ξ1 ⊗ µ1 + µ1 ⊗ µ1 ⊗ ξ1 − 3ξ0µ1 ⊗ µ1 ⊗ µ1

− ξ0µ3 + ξ0µ2 ⊗ µ1 + ξ0E(X⊗Xµ1X) + ξ0µ1 ⊗ µ2].

Then we know that for

√
n(θ̂1 − θ1) = Σ̂−1/2(ξ̂1 − µ̂1ξ̂0)− Σ−1/2(ξ1 − µ1ξ0)

= Σ̂−1/2Σ1/2Σ−1/2(ξ̂1 − µ̂1ξ̂0)− Σ−1/2(ξ1 − µ1ξ0)

= (Σ̂−1/2Σ1/2 − I + I)Σ−1/2(ξ̂1 − µ̂1ξ̂0)− Σ−1/2(ξ1 − µ1ξ0)

= (Σ̂−1/2Σ1/2 − I + I)Σ−1/2(ξ̂1 − ξ1 + ξ1 − µ1ξ0 + µ1ξ0 − µ1ξ̂0 + µ1ξ̂0 − µ̂1ξ̂0)

−Σ−1/2(ξ1 − µ1ξ0)

= (Σ̂−1/2Σ1/2 − I + I)Σ−1/2(ξ̂1 − ξ1 + (ξ1 − µ1ξ0) + µ1(ξ0 − ξ̂0) + (µ1 − µ̂1)ξ̂0)

−Σ−1/2(ξ1 − µ1ξ0)

= (Σ̂−1/2Σ1/2 − I)Σ−1/2(ξ̂1 − ξ1 + (ξ1 − µ1ξ0) + µ1(ξ0 − ξ̂0) + (µ1 − µ̂1)ξ̂0)

+Σ−1/2(ξ̂1 − ξ1 + µ1(ξ0 − ξ̂0) + (µ1 − µ̂1)ξ̂0)

= Σ−1/2(ξ̂1 − ξ1 + µ1(ξ0 − ξ̂0) + (µ1 − µ̂1)ξ̂0) +Op(
1

n
).

The last equality holds because we have (Σ̂−1/2Σ1/2 − I)Σ−1/2(ξ̂1 − ξ1) = Op(
1
n
);

(Σ̂−1/2Σ1/2− I)Σ−1/2µ1(ξ0− ξ̂0) = Op(
1
n
); (Σ̂−1/2Σ1/2− I)Σ−1/2(µ1− µ̂1)ξ̂0 = Op(

1
n
);

(Σ̂−1/2Σ1/2 − I)Σ−1/2(ξ1 − µ1ξ0) = 0;

84

It’s clear to see that in the last line, under our assumption, a multivariate central

limit theorem would hold which gives us

√
n[(ξ̂′1, µ̂

′
1, ξ̂0)′ − (ξ′1,µ

′
1, ξ0)]

D−−−→ N(0,Γ∗1),

and
√
n(ξ̂1 − ξ1)

D−−−→ N(0,Γ1),

with Γ1 = cov(TX).

Take A2 = (Σ̂−1/2Σ1/2)⊗ (Σ̂−1/2Σ1/2). Then for
√
n(θ̂2 − θ2) we have

√
n(θ̂2 − θ2) =(Σ̂−1/2 ⊗ Σ̂−1/2)[ξ̂2 − µ̂2ξ̂0]− (Σ−1/2 ⊗ Σ−1/2)[ξ2 − µ2ξ0] +Op(

1

n
)

=(A2 − I + I)(Σ−1/2 ⊗ Σ−1/2)[ξ̂2 − ξ2 + (ξ2 − µ2ξ0) + µ2(ξ0 − ξ̂0)

+ (µ2 − µ̂2)ξ̂0]− (Σ1/2 ⊗ Σ−1/2)[ξ2 − µ2ξ0] +Op(
1

n
)

=(A2 − I)(Σ−1/2 ⊗ Σ−1/2)[ξ̂2 − ξ2 + (ξ2 − µ2ξ0) + µ2(ξ0 − ξ̂0)

+ (µ2 − µ̂2)ξ̂0] + (Σ−1/2 ⊗ Σ−1/2)[ξ̂2 − ξ2 + µ2(ξ0 − ξ̂0)

+ (µ2 − µ̂2)ξ̂0] +Op(
1

n
)

=(Σ−1/2 ⊗ Σ−1/2)[ξ̂2 − ξ2 + µ2(ξ0 − ξ̂0) + (µ2 − µ̂2)ξ̂0] +Op(
1

n
).

The last equality holds because we have (A2 − I)(Σ−1/2 ⊗ Σ−1/2)[ξ̂2 − ξ2] = Op(
1
n
);

(A2−I)(Σ−1/2⊗Σ−1/2)[ξ2−µ2ξ0] = 0; (A2−I)(Σ−1/2⊗Σ−1/2)[µ2(ξ0− ξ̂0)] = Op(
1
n
);

(A2 − I)(Σ−1/2 ⊗ Σ−1/2)[(µ2 − µ̂2)ξ̂0] = Op(
1
n
).

It’s clear to see that in the last line, under our assumption, a multivariate central

limit theorem would hold which gives us

√
n[(ξ̂′2, µ̂

′
2, ξ̂0)′ − (ξ′2,µ

′
2, ξ0)]

D−−−→ N(0,Γ∗2),

85

and
√
n(ξ̂2 − ξ2)

D−−−→ N(0,Γ2),

with Γ2 = cov(TX⊗X).

Take A3 = (Σ̂−1/2Σ1/2) ⊗ (−̂Σ
1/2

Σ1/2 ⊗ Σ̂−1/2Σ1/2)). Then for
√
n(θ̂3 − θ3) we

have

√
n(θ̂3 − θ3) =(Σ̂−1/2 ⊗ Σ̂−1/2 ⊗ Σ̂−1/2)[ξ̂3 − µ̂3ξ̂0]−

(Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ3 − µ3ξ0] +Op(
1

n
)

=(A3 − I + I)(Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ̂3 − ξ3 + (ξ3 − µ3ξ0) + µ3(ξ0 − ξ̂0)

+ (µ3 − µ̂3)ξ̂0]− (Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ3 − µ3ξ0] +Op(
1

n
)

=(A3 − I)(Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ̂3 − ξ3 + (ξ3 − µ3ξ0) + µ3(ξ0 − ξ̂0)

+ (µ3 − µ̂3)ξ̂0] + (Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ̂3 − ξ3 + µ3(ξ0 − ξ̂0)

+ (µ3 − µ̂3)ξ̂0] +Op(
1

n
)

=(Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ̂3 − ξ3 + µ3(ξ0 − ξ̂0) + (µ3 − µ̂3)ξ̂0] +Op(
1

n
).

The last equality holds because we have (A3 − I)(Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ̂3 − ξ3] =

Op(
1
n
); (A3 − I)(Σ−1/2 ⊗ Σ−1/2 ⊗ Σ−1/2)[ξ3 − µ3ξ0] = 0; (A3 − I)(Σ−1/2 ⊗ Σ−1/2 ⊗

Σ−1/2)[µ3(ξ0− ξ̂0)] = Op(
1
n
); (A2− I)(Σ−1/2⊗Σ−1/2⊗Σ−1/2)[(µ3− µ̂3)ξ̂0] = Op(

1
n
).

It’s clear to see that in the last line, under our assumption, a multivariate central

limit theorem would hold which gives us

√
n[(ξ̂′3, µ̂

′
3, ξ̂0)′ − (ξ′3,µ

′
3, ξ0)]

D−−−→ N(0,Γ∗3),

and
√
n(ξ̂3 − ξ3)

D−−−→ N(0,Γ3),

with Γ3 = cov(TX⊗X⊗X).

86

Proof of Proposition 4.2

Recall that

D̂(B,C) = [vec(ξ̂)− vec(BC)]′Vn[vec(ξ̂)− vec(BC)]

and notice that Vn is a sequence of random matrices that converge in probability to

a positive definite matrix V. First step in this proof will be showing that replacing

the sequence of random matrix by their limit will not change the limiting distribution

of nD̂. i.e. let

F (B,C) = [vec(ξ̂)− vec(BC)]′Vn[vec(ξ̂)− vec(BC)],

then we need to show that arg minB,C D̂
d
= arg minB,C F , where

d
= represent equally

distributed. First we will show that minB,C nD̂
d
= minB,C nF

Since Vn
P→ V, for ∀ε > 0, limn P [(1− ε)V < Vn < (1 + ε)V] = 1 and also

P [(1− ε)V < Vn < (1 + ε)V] <

P [{vec(ξ̂)− vec(BC)}′(1− ε)V{vec(ξ̂)− vec(BC)}

< {vec(ξ̂)− vec(BC)}′Vn{vec(ξ̂)− vec(BC)}

< {vec(ξ̂)− vec(BC)}′(1 + ε)V{vec(ξ̂)− vec(BC)}].

So we have

1 = lim
n
P [(1− ε)V < Vn < (1 + ε)V] <

lim
n

inf P [(1− ε)D̂ < F < (1 + ε)D̂] ≤ 1.

87

The minimum of (1− ε)D̂, F and (1 + ε)D̂ have the same ordering, so we have

1 ≤ lim inf P (|minB,C D̂

minB,C F
− 1| < ε) = 1

That is minB,C D̂
P→ minB,C F and this implies nD̂ and nF will yield the same

limiting distribution by Slutsky theorem.

Furthermore, we also want to show arg minB,C D̂
d
= arg minB,C F does not depend

on the choice of Vn as long as the sequence converge in probability to some V. To

illustrate this point, we will give out exact asymptotic distribution.

Let θ = (vec(B)′, vec(C)′)′ ∈ Rp; θ0 = (vec(B0)′, vec(C0)′)′ be vectorized version

of the true value that minimize the generalized quadratic form on population level

and θ̂ = (vec(B̂)′, vec(Ĉ)′)′ be the sample minimizer that minimize D̂. Let g(θ) =

vec(BC) and set D(θ) = ∂g(θ)
∂θ

and D0 = D(θ0). Define G(θ) = D′(θ̂)Vn(ξ̂ − g(θ))

and ∆G(θ) = −D′(θ̂)VnD
′(θ̂) be the partial derivative of G with respect to θ.

Now expanding G around the point θ̂:

G(θ0) = G(θ̂0) + [

∫ 1

0

∆G(θ̂ + t(θ0 − θ̂)) dt](θ0 − θ̂).

Also, because θ̂ is minimizer of D̂, by taking first derivative of D̂ with respect to

θ we have

−2D′(θ̂)Vn(ξ̂ − g(θ̂)) = 0.

i.e. G(θ̂) = 0.

88

Therefore, we have

√
nD′(θ̂)Vn(ξ̂ − g(θ0)) =

√
nG(θ0)

= −
√
n[

∫ 1

0

∆G(θ̂ + t(θ0 − θ̂)) dt](θ0 − θ̂)

= −
√
n[

∫ 1

0

−D′(θ̂)VnD
′(θ̂ + t(θ0 − θ̂)) dt](θ0 − θ̂)

P→ −
√
nD0VD′0(θ0 − θ̂).

The third equal sign follows from the fact that θ̂
P→ θ0 and the last convergence

follows from Bounded Convergence Theorem.

This implies that

√
n(θ̂ − θ0)

D→ N(0, (D′0VD0)−1D′0VΓVD0(D′0VD0)−1),

√
n(vec(B̂Ĉ−B0C0)

D→ N(0,D0(D′0VD0)−1D′0VΓVD0(D′0VD0)−1D0).

Above arguments shows that the asymptotic distribution of vec(B̂Ĉ) is indepen-

dent of the choice of {Vn} as long as Vn
P→ V. However, it does have some implicit

assumptions such as the smoothness of g(θ) and the topological property about the

point θ0. However, this is easily satisfied, as the proof itself is also indicates that

the reparametrization of B,C does not affect the results so we can use the following

construction to met the requirement:

Let’s consider the following reparametrization of B̂ by proper manipulation the

order of column vectors: let B̂ = (B̂′1, B̂
′
2)′, with B̂1 ∈ Rd×d, which is non-singular

and B̂2 ∈ R(p−d)×d, then

B̂Ĉ =

B̂1

B̂2

 Ĉ =

 Id

B̂2B̂
−1
1

 B̂1Ĉ.

89

Under this specific reparametrization, we have defined a full-rank transformation

which could easily make the topological requirement satisfied given the fact that vec(·)

operator is analytic.

The remaining part in this proposition will be using the F to establish the asymp-

totic properties of the quadratic forms D̂. The following development will require us-

ing a lemma from Shapiro (1986) which was named as Shapiro’s discrepancy function

in Cook and Ni (2005). The lemma was stated as follow without proof:

Lemma D4. (Shapiro 1986; Cook and Ni 2005) Suppose that θ is a q-dimensional

parameter vector that lies in an open and connected parameter space Θ ⊆ Rq. Let

θ0 denote the true value of θ. Define g(θ) = (g1(θ), . . . , gm(θ))′ : Θ → Rm, where

gi(θ) is twice continuously differentiable on Θ, i = 1, . . . ,m. The Jacobian matrix

∆ = ∂g(θ)
∂θ
|θ=θ0 need not be of full rank, so g can be overparameterized. Also assume

the following:

1. τn is an asymptotically normal estimate of the population value g(θ0) :
√
n(τn−

g(θ0))
D→ N(0,Γ), where n is the sample size.

2. For a known inner-product matrix V, the discrepancy function

H(τn,g(θ)) = (τn − g(θ))′V(τn − g(θ))

satisfies the following properties:

a) H(a,b) ≥ 0∀a,b ∈ Rm.

b) H(a,b) = 0 iff a = b.

c) H is at least twice continuously differentiable in a,b.

d) There are positive constants δ and ε such that H(a,b) ≥ ε whenever ‖a−

b‖ ≥ δ, where ‖·‖ represents ordinary Euclidean distance.

90

3. The point θ0 is regular.

4. rank(∆) = rank(∆′V∆)

Then the following holds:

1. Letting Ĥ = H(τ,g(θ̂)) denote the value of the discrepancy function minimized

over Θ, the asymptotic distribution of nĤ is the same as the distribution of the

quadratic form W′UW, where W ∼ N(0,Γ), U = V −V∆(∆′V∆)−∆′V =

V1/2QΦV1/2, and Φ = V∆.

2. If ΓUΓUΓ = ΓUΓ, then nĤ
D→ χ2

trace(UΓ).

3. The estimate g(θ̂) that minimizes the discrepancy function is a consistent esti-

mator of g(θ0) and
√
n(g(θ̂)−g(θ0)) has an asymptotically normal distribution

with mean 0 and covariance matrix V−1/2PΦV1/2ΓV1/2PΦV−1/2.

4. When Γ is nonsingular, g(θ̂) is asymptotically efficient and nĤ
D→ χ2

m−rank(∆),

if and only if V = (Γ + ∆D∆′)−1, where D is an arbitrary symmetric matrix.

It’s not hard to verify that D̂ met the assumptions for this lemma, so we have

finished the proof by taking τn = vec(ξ̂).

Copyright c© Weihang Ren, 2020.

91

Bibliography

Bura, E., & Cook, R. D. (2001). Estimating the structural dimension of regressions

via parametric inverse regression. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 63(2), 393-410.

Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their

local Bahadur representation. The Annals of statistics, 19(2), 760-777.

Chen, X., Zou, C., & Cook, R. D. (2010). Coordinate-independent sparse sufficient

dimension reduction and variable selection. The Annals of Statistics, 38(6), 3696-

3723.

Christou, E., & Akritas, M. G. (2016). Single index quantile regression for het-

eroscedastic data. Journal of Multivariate Analysis, 150, 169-182.

Cook, R. D. (1996). Graphics for regressions with a binary response. Journal of the

American Statistical Association, 91(435), 983-992.

Cook, R. D. (1998). Principal Hessian directions revisited. Journal of the American

Statistical Association, 93(441), 84-94.

Cook, R. D. (2004). Testing predictor contributions in sufficient dimension reduction.

The Annals of Statistics, 32(3), 1062-1092.

Cook, R. D., & Li, B. (2002). Dimension reduction for conditional mean in regres-

sion. The Annals of Statistics, 30(2), 455-474.

Cook, R. D., & Ni, L. (2005). Sufficient dimension reduction via inverse regression:

A minimum discrepancy approach. Journal of the American Statistical Association,

100(470), 410-428.

92

Cook, R. D., & Setodji, C. M. (2003). A model-free test for reduced rank in multi-

variate regression. Journal of the American Statistical Association, 98(462), 340-351.

Cook, R. D. & Weisberg, S. (1991). Sliced Inverse Regression for Dimension Reduc-

tion: Comment. Journal of the American Statistical Association, 86(414) 328-332.

Cook, R. D., & Zhang, X. (2014). Fused estimators of the central subspace in suffi-

cient dimension reduction. Journal of the American Statistical Association, 109(506),

815-827.

Durrett, R. (2010). Probability: theory and examples. Cambridge university press.

Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Sta-

tistica Sinica, 93-125.

Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional

feature space. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 70(5), 849-911.

Fukumizu, K., Bach, F. R., & Jordan, M. I. (2004). Dimensionality reduction for

supervised learning with reproducing kernel Hilbert spaces. Journal of Machine

Learning Research, 5(Jan), 73-99.

Fukumizu, K., Bach, F. R., & Jordan, M. I. (2009). Kernel dimension reduction in

regression. The Annals of Statistics, 37(4), 1871-1905.

Guerre, E., & Sabbah, C. (2012). Uniform bias study and Bahadur representation

for local polynomial estimators of the conditional quantile function. Econometric

Theory, 28(1), 87-129.

Hong, S. Y. (2003). Bahadur representation and its applications for local polyno-

mial estimates in nonparametric M-regression. Journal of Nonparametric Statistics,

15(2), 237-251.

93

Jones, M. C. (1994). Expectiles and M-quantiles are quantiles. Statistics & Proba-

bility Letters, 20(2), 149-153.

Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal

of the Econometric Society, 33-50.

Kong, E., & Xia, Y. (2012). A single-index quantile regression model and its esti-

mation. Econometric Theory, 28(4), 730-768.

Kong, E., & Xia, Y. (2014). An adaptive composite quantile approach to dimension

reduction. The Annals of Statistics, 42(4), 1657-1688.

Li, B., Artemiou, A., & Li, L. (2011). Principal support vector machines for linear

and nonlinear sufficient dimension reduction. The Annals of Statistics, 39(6), 3182-

3210.

Li, B., & Wang, S. (2007). On directional regression for dimension reduction. Journal

of the American Statistical Association, 102(479), 997-1008.

Li, B., Wen, S., & Zhu, L. (2008). On a projective resampling method for dimension

reduction with multivariate responses. Journal of the American Statistical Associa-

tion, 103(483), 1177-1186.

Li, B., Zha, H., & Chiaromonte, F. (2005). Contour regression: a general approach

to dimension reduction. The Annals of Statistics, 33(4), 1580-1616.

Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the

American Statistical Association, 86(414), 316-327.

Li, K. C. (1992). On principal Hessian directions for data visualization and di-

mension reduction: Another application of Stein’s lemma. Journal of the American

Statistical Association, 87(420), 1025-1039.

94

Li, K. C., & Duan, N. (1989). Regression analysis under link violation. The Annals

of Statistics, 17(3), 1009-1052.

Li, L. (2007). Sparse sufficient dimension reduction. Biometrika, 94(3), 603-613.

Li, R., Zhong, W., & Zhu, L. (2012). Feature screening via distance correlation

learning. Journal of the American Statistical Association, 107(499), 1129-1139.

Luo, W., Li, B., & Yin, X. (2014). On efficient dimension reduction with respect to

a statistical functional of interest. The Annals of Statistics, 42(1), 382-412.

Luo, W., & Li, B. (2016). Combining eigenvalues and variation of eigenvectors for

order determination. Biometrika, 103(4), 875-887.

Ma, Y., & Zhu, L. (2012). A semiparametric approach to dimension reduction.

Journal of the American Statistical Association, 107(497), 168-179.

Ma, Y., & Zhu, L. (2013a). Efficient estimation in sufficient dimension reduction.

The Annals of Statistics, 41(1), 250.

Ma, Y., & Zhu, L. (2013b). Efficiency loss and the linearity condition in dimension

reduction. Biometrika, 100(2), 371-383.

Newey, W. K., & Powell, J. L. (1987). Asymmetric least squares estimation and

testing. Econometrica: Journal of the Econometric Society, 819-847.

Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators.

Econometric Theory, 7(2), 186-199.

Qian, W., Ding, S., & Cook, R. D. (2019). Sparse minimum discrepancy approach

to sufficient dimension reduction with simultaneous variable selection in ultrahigh

dimension. Journal of the American Statistical Association, 114(527), 1277-1290.

95

Shapiro, A. (1986). Asymptotic theory of overparameterized structural models.

Journal of the American Statistical Association, 81(393), 142-149.

Sheng, W., & Yin, X. (2016). Sufficient dimension reduction via distance covariance.

Journal of Computational and Graphical Statistics, 25(1), 91-104.

Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing

dependence by correlation of distances. The annals of statistics, 35(6), 2769-2794.

Takeuchi, I., Le, Q. V., Sears, T. D., & Smola, A. J. (2006). Nonparametric quantile

estimation. Journal of Machine Learning Research, 7(Jul), 1231-1264.

Wang, H., & Xia, Y. (2008). Sliced regression for dimension reduction. Journal of

the American Statistical Association, 103(482), 811-821.

Wang, Q., & Yin, X. (2008). A nonlinear multi-dimensional variable selection

method for high dimensional data: Sparse MAVE. Computational Statistics & Data

Analysis, 52(9), 4512-4520.

Weng, J., & Yin, X. (2018). Fourier transform approach for inverse dimension

reduction method. Journal of Nonparametric Statistics, 30(4), 1049-1071.

Xia, Y. (2007). A constructive approach to the estimation of dimension reduction

directions. The Annals of Statistics, 35(6), 2654-2690.

Xia, Y., Tong, H., Li, W. K., & Zhu, L. X. (2002). An adaptive estimation of dimen-

sion reduction space. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 64(3), 363-410.

Yang, B., Yin, X. & Zhang, N. (2019). Sufficient Variable Selection using Indepen-

dence Measures for continuous Response. Journal of Multivariate Analysis, 173,

480-493.

96

Yang, Y., & Zou, H. (2015). Nonparametric multiple expectile regression via ER-

Boost. Journal of Statistical Computation and Simulation, 85(7), 1442-1458.

Ye, Z., & Weiss, R. E. (2003). Using the bootstrap to select one of a new class

of dimension reduction methods. Journal of the American Statistical Association,

98(464), 968-979.

Ye, Z., & Weiss, R. E. (2003). Using the bootstrap to select one of a new class

of dimension reduction methods. Journal of the American Statistical Association,

98(464), 968-979.

Yin, X., & Cook, R. D. (2002). Dimension reduction for the conditional kth mo-

ment in regression. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 64(2), 159-175.

Yin, X., & Cook, R. D. (2003). Estimating central subspaces via inverse third

moments. Biometrika, 90(1), 113-125.

Yin, X., & Cook, R. D. (2004). Dimension reduction via marginal fourth moments

in regression. Journal of Computational and Graphical Statistics, 13(3), 554-570.

Yin, X., Li, B., & Cook, R. D. (2008). Successive direction extraction for estimating

the central subspace in a multiple-index regression. Journal of Multivariate Analysis,

99(8), 1733-1757.

Yin, X., & Li, B. (2011). Sufficient dimension reduction based on an ensemble of

minimum average variance estimators. The Annals of Statistics, 39(6), 3392-3416.

Yin, X., & Hilafu, H. (2015). Sequential sufficient dimension reduction for large

p, small n problems. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 77(4), 879-892.

97

Zeng, P. (2008). Determining the dimension of the central subspace and central

mean subspace. Biometrika, 95(2), 469-479.

Zhu, L., Miao, B., & Peng, H. (2006). On sliced inverse regression with high-

dimensional covariates. Journal of the American Statistical Association, 101(474),

630-643.

Zhu, L. P., & Zhu, L. X. (2009). Dimension reduction for conditional variance in

regressions. Statistica Sinica, 19(2), 869.

Zhu, L. P., Zhu, L. X., & Wen, S. Q. (2010). On dimension reduction in regressions

with multivariate responses. Statistica Sinica, 1291-1307.

Zhu, Y., & Zeng, P. (2006). Fourier methods for estimating the central subspace

and the central mean subspace in regression. Journal of the American Statistical

Association, 101(476), 1638-1651.

Zou, H., & Yuan, M. (2008). Composite quantile regression and the oracle model

selection theory. The Annals of Statistics, 36(3), 1108-1126.

Copyright c© Weihang Ren, 2020.

98

Vita

Education

• University of Kentucky, Ph.D. in Statistics, expected May 2020, Lexington, KY

• Sichuan University, B.S. in Mathematical Statistics, June 2015, Chengdu, China

99

	MOMENT KERNELS FOR T-CENTRAL SUBSPACE
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	1 Introduction
	1.1 Sufficient Dimension Reduction
	1.2 Inference Targets in Sufficient Dimension Reduction
	1.3 T-Central Subspace
	1.4 Methodologies in Sufficient Dimension Reduction
	1.5 Overview of the Dissertation

	2 Moment Kernels for Estimating Central Mean Subspace and Central Subspace
	2.1 Introduction
	2.2 The Moment Kernels
	2.3 T-Central Subspace for Particular Functionals
	2.4 Order Determination
	2.5 Variable Selection
	2.6 Simulations and Applications
	2.7 Discussion

	3 Cubic Kernel Method for Implicit T-Central Subspace
	3.1 Introduction
	3.2 Cubic Kernel for I-functional
	3.3 T-Central Subspace for Particular Functionals
	3.4 Order Determination
	3.5 Asymptotic
	3.6 Simulations and Applications
	3.7 Real Data Analysis
	3.8 Discussion

	4 Minimum Discrepancy Approach of Moment Kernels with Applications in T-Central Subspace
	4.1 Introduction
	4.2 Proposed Framework
	4.3 Computation Methods
	4.4 Order Determination
	4.5 Discussion and Future Work

	Appendices
	A Chapter 2 Detailed Proofs for Proposition 2.1 and 2.2
	B Chapter 3 Detailed Proof for Proposition 3.4
	C Chapter 4 Detailed Proof for 4.1

	Bibliography
	Vita

