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ABSTRACT OF DISSERTATION 
 
 
 
 

LANDSCAPE ECOLOGY AND POPULATION GENOMICS OF TWO SYMPATRIC 
PITVIPER SPECIES ACROSS A FRAGMENTED APPALACHIAN LANDSCAPE 

 
Understanding the link between landscape patterns and ecological and 

evolutionary processes is an important prerequisite for informed wildlife conservation 
and management, especially in rapidly changing landscapes. Until recently, the 
inaccessibility of spatial and genomic data sets of sufficient resolution limited our ability 
to incorporate the impacts of landscape patterns into predictions of ecological and 
environmental outcomes. In this dissertation, I utilized several high-resolution spatial and 
genomic data sets to address ecological questions in a rapidly fragmenting landscape in 
southeastern Kentucky. Overall, my results indicate that large-scale surface coal mining 
is causing widespread homogenization of landforms, resulting in a uniquely permanent 
form of habitat loss. This is likely causing significant fragmentation of remain forested 
habitat in many portions of the Cumberland Plateau of Kentucky, as evidenced by 
reductions in suitable overwintering habitat for the timber rattlesnake (Crotalus 
horridus). At the level of the individual, the high resolution and three-dimensional 
imagery provided by lidar remote sensing systems allows for a much more accurate 
assessment of the drivers of individual movement in C. horridus than using coarse 
topographic data sets alone. While this fragmentation might be expected to limit 
migration and increase genetic differentiation among population, patterns of genomic 
diversity in another common pit viper, the copperhead (Agkistrodon contortrix), suggest 
that contemporary surface mining is not associated with spatial patterns of genomic 
diversity. However, using a 2,140 SNP data set, I did find significant associations 
between a historic highway path and divergent genomic patterns, suggesting a time lag 
may be responsible for contemporary genomic patterns associated with a historic barrier 
to movement. When examining the landscape at broad spatial scales, the topographic 
rearrangement of land after mining followed steady patterns until approximately 2011. 
At this point, coinciding with federal policy shifts aimed at reducing the frequency of 
valley fill operations, mining impacts in stream bottoms decreased markedly, but 
ridgetops and upper slopes continued to be impacted at rates equal to or greater than 
before 2011. I recommend topographic restoration be highlighted as a worthy goal of 
reclamation, on par with vegetation establishment and erosion control. 
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CHAPTER 1: INTRODUCTION 

1.1  Fragmented landscapes, evolutionary processes, and biodiversity conservation 

 

Habitat loss is the most important driver of global biodiversity declines, and 

habitat loss is expected to accelerate in the 21st century (Wilcove et al. 1998, Haddad et 

al. 2015, Jantz et al. 2015). The process by which habitat suitable for a given species is 

replaced by unsuitable habitat typically occurs piecemeal, producing a mosaic of habitat 

and nonhabitat (Fahrig 2003). Thus while only a fraction of the total landscape may 

experience shifts in land cover or habitat quality, fragmentation of the habitat at the 

landscape scale may interfere with ecological and evolutionary processes that are 

important for populations to persist within remaining habitat fragments (Fahrig and 

Merrian 1994, Fahrig 2003). Discontinuities between patches of habitat often create 

interruptions in migration, which may subsequently reduce individual fitness within 

patches of remaining habitat (Keyghobadi et al. 2007). Even when patches of suitable 

habitat are structurally connected, movement of individuals and their alleles may be 

hampered due to behavioral, demographic, or ecological factors which affect mating, 

flowering, or movement of mature individuals. In this way, connectivity which is purely 

structural might be differentiated from connectivity which is functional and thus permits 

gene flow (Baudry and Merriam 1988, Taylor et al. 1993). 

Testing for functional connectivity using traditional ecological field studies is not 

straightforward. Mark-recapture or telemetry studies can be informative, but may miss 

scant individuals that cross putatively suboptimal habitat. Quantifying functional 

connectivity amongst patches of habitat using neutral genetic markers can more 
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thoroughly inform management of fragmented populations and has become a major 

application of evolutionary biology though the recently developed sub-discipline of 

“landscape genetics” (Manel et al. 2003, Manel and Holderegger 2013). An 

amalgamation of landscape ecology and population genetics, landscape genetics seeks to 

understand how evolutionary processes affect wild populations by relating patterns of 

genetic differentiation and gene flow to landscape structure (Manel et al. 2003, 

Holderegger and Wagner 2008). Measuring genetic structuring in a fragmented landscape 

can shed light on important factors such as population subdivision, relative permeability 

of landscape features, and genetic diversity among habitat fragments. This information 

can subsequently be incorporated into management plans or placed within the framework 

of deeper empirical research (Segelbacher et al. 2010). 

The loss of genetic diversity in small and isolated populations is a major concern 

for conservation biologists (Reed and Frankham 2003, Spielman et al. 2004, Frankham 

2005). Traditionally, it has been thought that as large and contiguous populations are 

broken up into smaller isolated populations due to habitat fragmentation, genetic diversity 

is likely to be lost due to counteracting effects of inbreeding and genetic drift (Soule et al. 

1987, Willi et al. 2006). Inbreeding increases homozygosity, which allows previously 

hidden deleterious recessive traits to undergo purifying selection, which further reduce 

population size and presumably increases the likelihood of future inbreeding on top of 

increased effects of drift due to the shrunken population size (Gilpin and Soule 1986). 

Increasing gene flow into these small populations can move populations off this pathway 

to potential extinction by replacing genetic diversity, in addition to other demographic 

benefits of higher population size such as buffering against stochastic events (Lande 
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1988). However, selection is known to overpower drift in very small populations 

(Koskinen et al. 2002), at times preserving genetic diversity through putative balancing 

selection in both wild and experimental populations (Aguilar et al. 2004, Fraser et al. 

2014, Schou et al. 2017). Furthermore, while gene flow is often taken as universally 

beneficial in landscape genetics literature (Richardson et al. 2016), genetic connectivity 

may be burdensome for some populations due to migration of maladaptive alleles and the 

potential for disease or invasive species to spread via movement corridors (Frankham et 

al. 2011, Simberloff et al. 1992).  

Regardless of the effect, however, quantifying functional connectivity remains a 

major application of evolutionary biology and landscape ecology. Properly identifying 

drivers of gene flow, mechanisms which reduce functional connectivity, and the 

landscape-level genetic implications of connectivity loss is an important perquisite for the 

development of informed wildlife conservation strategies (Frankham et al. 2017), and is 

likely to only become more important as habitat loss appears poised to accelerate 

throughout the 21st century (Jantz et al. 2015). 

 

1.2  Advances in data generation and the future of landscape genetics 

 

New tools and technologies have been key to the rise of landscape genetics 

(Manel et al. 2003, Holderegger and Wagner 2008). With the advent of molecular 

techniques, much more accurate estimates of migration, genetic differentiation, and 

genetic diversity became possible, immensely increasing the potential for evolutionary 
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principles to inform conservation and management of wild populations (Koenig et al. 

1996, Gibbs and Weatherhead 2001, Manel et al. 2003, Manel and Holderegger 2013). 

However, our ability to use genetic information for purposes such as population 

delineation and assignment of individuals to putative populations is highly dependent on 

the type and number of genetic markers employed in the analysis. Recent developments 

in reduced-representation sequencing, especially methods which can be applied to 

nonmodel organisms (e.g., Peterson et al. 2012), have greatly improved our ability to 

quantify genetic differentiation and to thus examine the associations between landscape 

and ecological factors and genetic structure of wild populations. Parallel to the advances 

in generating genetic data sets has been the rapidly expanding accessibility of geospatial 

data (Porter et al. 2012, Neumann et al. 2015). The development of accurate, high-

resolution elevation, vegetation, and landcover data sets via satellite and aircraft-mounted 

equipment has permitted the testing of a broad array of hypotheses regarding landscape 

effects on gene flow, and has allowed for the formulation of proactive management 

planning across a variety of landscapes (e.g., Milanesi et al. 2017).  

While rapidly increasing genetic and geospatial data sets have aided our ability to 

answer fundamental questions about the geographic arrangement of genetic diversity, 

many key areas have yet to be thoroughly examined (Balkenhol et al. 2016). These 

unexplored topics include temporal factors surrounding habitat fragmentation and genetic 

differentiation, the three-dimensional nature of habitat suitability and habitat loss, and 

potential strategies for understanding and mitigating habitat loss using newly accessible 

data sets. The landscape of central Appalachia in the eastern US is an optimal location for 

exploring these issues. 
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1.3 Surface mining and forest fragmentation in central Appalachia 

 

Central Appalachia contains one of the most biodiverse temperate forests on Earth 

(Ricketts et al. 1999, Hinkle et al. 2003), and has been a major source of coal for the 

eastern US since the early 20th century (Bernhardt and Palmer 2011). Since c. 1975, 

surface mining has gradually replaced underground methods of coal extraction, and today 

the majority of coal reserves in central Appalachia are recoverable only by surface 

mining (US EIA 2015). Surface coal mining, which often takes the form of so-called 

“mountaintop removal”, involves the removal of all flora, fauna, soil, subsoil, and 

bedrock strata overlying the targeted coal seam. The material which is removed, termed 

“overburden”, is deposited into nearby stream valleys creating what are often called 

“valley fills”. As a result, the surface mining process typically replaces mature forest with 

a flattened, denuded landscape devoid of the preexisting soil, subsurface structure, native 

vegetation, and hydrologic networks (Zipper et al. 2011). While only a fraction of the 

landscape is typically mined, the horizontal stratigraphic layout of coal seams, especially 

in high relief terrain, results in a patchwork of minelands separated by blocks of largely 

undisturbed forest, which increases the fragmentation of remaining forest even when a 

relatively small proportion of the land surface is mined (Wickham et al. 2007)..  

Beyond Appalachia, surface mining is becoming an increasingly popular method 

of resource extraction, with major consequences for habitat loss (Palmer et al. 2010, 

Yang 2013). The effects of surface mining and reclamation on aquatic fauna are serious 

and well-documented (e.g. Lindberg et al. 2011), but the effects on terrestrial fauna, in 
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Appalachia or elsewhere, are poorly understood (Wickham et al. 2013). This is especially 

true from a habitat fragmentation perspective: despite surface mines occupying more than 

20% of the land surface in some eastern Kentucky counties, the effects on gene flow 

among forest fragments has never been examined (US GAO 2009, Wickham et al. 2013). 

 

1.4 Relevant life history traits of the two study species 

 

To study the consequences of this rapidly changing landscape on ecological and 

evolutionary processes, I am focusing on the spatial ecology of two sympatric pitviper 

species, Agkistrodon contortrix and Crotalus horridus, inhabiting a formerly 

continuously forested Appalachian landscape now punctuated by large-scale surface coal 

mines and related infrastructure. Both species are well-suited study organisms for 

understanding the effects of habitat fragmentation. Both A. contortrix and C. horridus are 

forest-associated predators that require large territories for foraging, characteristics 

associated with sensitivity to habitat fragmentation (Holt et al. 1999, Davies et al. 2000, 

Ewers and Didham 2006, Keinath et al 2017). Moreover, their low dispersal capabilities, 

general philopatry, and site fidelity to thermal resources important for overwintering 

predispose them to fine-scale genetic structuring and have made them attractive study 

systems for landscape genetics research (Reinert 1993, Gibbs and Weatherhead 2001, 

Clark et al. 2008, Clark et al. 2010). Specific to my research goals, A. contortrix and C. 

horridus exhibit a strong association with undisturbed, mature deciduous forest, and both 

have been shown to be susceptible to habitat loss elsewhere in their range (Ernst and 

Ernst 2003, Clark et al. 2010, Steen et al. 2014, Bushar et al. 2015, Carter et al. 2015).  
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1.5  Overview of empirical chapters 

 

In the first empirical chapter of my dissertation, I explore the three-dimensional 

effects of surface coal mining on the topographically-influenced ecological communities 

of the Cumberland Plateau of Kentucky. By modeling the overwintering habitat 

preferences of a native pit viper, the timber rattlesnake, Crotalus horridus. I examine how 

surface mining is causing habitat loss not only directly through deforestation, but also 

through topographic homogenization. I further explore how landcover has shifted 

between 1992 and 2011 across different topographic positions. This chapter was recently 

published in Frontiers in Ecology and the Environment, and therefore is formatted 

according to that journal’s guidelines. 

In the next chapter, I use a genomic data set to assess the influence of landscape 

features on genetic dissimilarity in a different native pit viper, the copperhead, 

Agkistrodon contortrix. Here, while I found no evidence for genetic isolation resulting 

from spatial patterns of surface mining or contemporary highway networks, I did find that 

the path of a historic highway corresponded remarkably well with patterns of genomic 

differentiation. By subsampling my data set, I explored effects of data set size and data 

quality on my results. This chapter was recently published in the journal Molecular 

Ecology, and is formatted accordingly. 

 I also tested for the influence of a major federal policy shift on the topographic 

patterns of surface mining in the Cumberland Plateau of Kentucky. By examining annual 

patterns of new mining between 1986 and 2018 in conjunction with historic and recently 
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developed elevation data sets, I found a significant decrease in valley fills coinciding with 

a 2010 Obama administration federal policy reformulation. Despite reduced impacts of 

mining on stream valleys, my results indicate that, as an unintended consequence, 

ridgetops may be absorbing more mining activity as a result. This chapter is formatted for 

submission to a Nature Group journal. 

 In my final empirical chapter, I use high-resolution remote sensing imagery to test 

for fine-scale factors affecting thermoregulation in Crotalus horridus. Using linear mixed 

models, I found support for a strong, negative effect of vegetation height on the 

difference between air and internal body temperatures in C. horridus. My results suggest 

that a natural buffering capacity present in complex, three-dimensional forest habitats 

may allow some ectotherms to thermoregulate efficiently under diverse thermal regimes. 

This chapter is not yet formatted for any specific journal.
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CHAPTER 2: 

PERSISTENT GEOPHYSICAL EFFECTS OF MINING THREATEN 
RIDGETOP BIOTA OF APPALACHIAN FORESTS 

2.1 Abstract 

Surface coal mining can permanently alter the rugged topography of Appalachia, 

which plays an important role in creating and maintaining the structure, composition, and 

diversity of the region’s ecological communities. We used remote-sensing datasets to 

characterize the past and future topographic impacts of surface coal mining on the mixed-

mesophytic forests of eastern Kentucky. To provide context, we examined the 

consequences of widespread topographic rearrangement for an imperiled ridgetop-

associated predator, the timber rattlesnake (Crotalus horridus). We found that surface 

mining disproportionately impacts ridgetop habitats, causing large reductions in the 

suitable habitat for C. horridus and likely other ridgetop- dependent biota. Land 

permitted for surface mining is also concentrated in high topographic positions, thus 

patterns of habitat loss are likely to remain concentrated in these ecosystems. These 

permanent topographic shifts complicate restoration of preexisting microhabitats, 

creating homogenized landscapes, threatening long-term ecosystem health, and charting a 

new course towards less diverse ecological communities. 

 

2.2 Introduction 

For over a century, coal mining has provided a source of income for many 

communities in the Appalachian region of the eastern US. However, this process has 

caused landscape-level habitat loss and fragmentation of the forests that cover the 
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region’s mountains and foothills (Wickham et al. 2007). Mixed-mesophytic forests of 

central Appalachia display striking complexity, and are among the most biodiverse 

temperate forests on Earth (Hinkle et al. 1993, Ricketts et al. 1999). Much of this 

diversity is owed to a number of topographically-driven gradients which promote unique 

microhabitats and associated forest communities (Braun 1950, Whittaker 1956, 

Overstreet 1984). Narrow ridgetops, steep-sided slopes, and narrow, low-order stream 

valleys create a highly dissected landscape of tightly packed ridges and hollows, where 

interactions among aspect, slope, topographic position, and other factors result in 

variation among temperature, moisture, solar radiation, soils, and coarse woody debris 

density (Muller 2003). The commensurate rapid turnover of species across short spatial 

scales elevates beta diversity in canopy trees (Muller 1982), herbaceous flora (McEwan 

and Muller 2011), and a wide collection of fauna (Kiser and Meade 1993, Ford et al. 

2002, Krupa and Lacki 2002, Wood et al. 2006, Newell and Rodewald 2011). 

Although recently in decline due to increased competition from alternative energy 

sources, surface coal mining remains a popular method of coal extraction in central 

Appalachia and elsewhere. Much of the remaining Appalachian coal reserves, and a 

majority of the coal reserves in eastern Kentucky, are only accessible by surface mining 

(US EIA 2015). The surface mining process begins with the clearing of all vegetation, 

typically mature forest, in addition to topsoil and subsoil. Explosives are used to remove 

any overlying bedrock, providing direct access to the coal seams. The overlying rock, 

vegetation, and soil are disposed of by reconstructing local topography or by filling 

adjacent headwater stream valleys. Compliance with the 1977 Surface Mine Control and 

Reclamation Act (SMCRA) requires the “approximate original contours” (AOC) be 
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reestablished after mining has ceased. However reproducing AOC are often difficult due 

to stability issues and volume differences between fragmented and intact rock (Copeland 

2015). In addition, SMCRA allows for exceptions from this requirement in situations 

where beneficial post-mining land uses could compensate for the adverse effects of not 

returning the land to AOC (OSM 2000). Such waivers are often granted to “mountaintop 

removal mining”, a specific form of surface mining at or near ridge or mountain peaks. 

Other types of surface coal mining (such as contour mining) occurring on steep slopes 

have also taken the advantage of this AOC variance, and while not strictly defined as 

“mountaintop removal”, these forms of mining may also result in significant changes to 

topography. After mining, land is typically reclaimed by tightly packing remaining rock 

fragments using heavy equipment and sowing of alien (primarily) and native grasses, 

legumes, and sometimes planting trees and shrubs to immediately establish vegetative 

cover and reduce erosion.  Consequently, reclaimed minelands are usually dominated by 

non-native vegetation, and lack the soil and substrate heterogeneity which typified the 

previous environment. Natural succession is often severely arrested due to soil 

compaction, and regrowth of native forest without significant restoration is unlikely 

(Zipper et al. 2011). As of 2005, approximately 5700 km2 of forest had been converted to 

surface mine, and over 3200 km of streams had been buried throughout Appalachia (EPA 

2005, Bernhardt and Palmer 2011) 

While the impacts of surface coal mining on aquatic ecosystem function and 

biodiversity have been studied, the terrestrial implications remain less well understood. 

Wickham et al. (2007) found large decreases in interior forest as a result of mining, and 

Wickham et al. (2013) speculated that impacts could be major for terrestrial biodiversity, 



12 
 

especially for ecological communities occupying upper slopes and ridgetops. Recent 

research on 3-dimensional topographic effects of mining on aquatic ecosystems has 

documented changes in slope distributions across wide areas, driven by the lowering of 

mountain peaks and filling of headwater stream valleys (Ross et al. 2016). These deep 

and lasting topographic impacts are markedly different from more common drivers of 

habitat loss such as deforestation or urbanization, and require very different approaches 

for restoration.  

This homogenization of topographically-driven microhabitats is a major obstacle 

to ecological restoration efforts, notwithstanding more localized soil remediation and 

reforestation efforts. The extent and specific consequences of mining for the 

topographically-driven biodiversity of central Appalachia, however, remains 

unexamined. We examined patterns of surface coal mining and consequences for 

terrestrial biodiversity across the Cumberland Plateau (CP) of eastern Kentucky in three 

ways: (1) by comparing newly constructed pre-mining and post-mining geospatial 

datasets to quantify impacts on topographically-restricted terrestrial ecological 

communities, (2) by examining similar patterns in land permitted for surface mining, and 

(3) by estimating the impact of past and future mining on overwintering habitat of the 

timber rattlesnake (Crotalus horridus), a focal species we used to demonstrate the 

potential consequences for an imperiled ridgetop-dependent species. Our results allow for 

speculation and further analyses into the persistent effects of mining and suggestions for 

policy development, and for future projections based on mine permitting trends. 
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2.3 Methods 

2.3.1 Study Area 

Our study focused on the 14,021 km2 Cumberland Plateau (CP) in eastern 

Kentucky. Both a physiographic province and an ecoregion, the CP in Kentucky is 

characterized by horizontal Pennsylvanian sandstone, shale, and coal bedrock, steep-

sided low hills, narrow ridgetops and narrow headwater stream bottoms. Specifically for 

our C. horridus habitat modeling, we relied on hibernacula obtained through radio-

telemetry conducted in the University of Kentucky’s Robinson Forest (RF, 5267 ha) 

located in Breathitt, Knott, and Perry counties, Kentucky. Elevations at RF varied from 

243–500 m, and the topography and vegetation is typical of the CP (Overstreet 1984).  

 

2.3.2 Spatial Analyses of Mining 

We analyzed patterns of surface coal mining across the CP using a number of 

independent spatial datasets. No map displaying active and reclaimed surface mines in 

the CP is available publicly, thus we constructed one using USGS National Landcover 

Datasets (NLCD) from 1992 and 2011 in concert with satellite imagery and mining 

permit data (Vogelmann et al. 1992, Homer et al. 2015). Specifically, we focused on land 

within permit boundaries falling into landcover classes which are common among 

reclaimed minelands. These included bare rock, strip mines, open water, and transitional 

land for the 1992 NLCD dataset, and barren land, grassland/herbaceous classes, and open 

water when we examined the 2011 NLCD dataset. Landcover classes which were 

uncommon among reclaimed minelands, such as urbanized lands, row crops, or 

shrubland, were not included in our analysis. This resulted in a layer of mined (mines > 
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10 ha) and unmined land surface across the study area, which was used as a dichotomous 

mined/unmined filter for later analyses. We examined patterns of mining related to 

topographic position index (TPI), defined as a value based on proximity to the lowest or 

highest point with a local (1 km, circular) window. Using TPI instead of elevation allows 

for consistent comparisons between local ridgetops and valley floors regardless of 

gradual elevation changes across the study area by generating values tied to local 

topography. We generated TPI values using the Land Facet Analysis extension (Jenness 

Enterprises, Flagstaff, AZ) based on a pre-mining (c. 1980) USGS DEM raster and a 

post-mining (2013-2015) DEM raster created by the Kentucky Division of Geographic 

Information. Since the DEMs we used to generate TPI values were collected at different 

times and with different methods, we standardized TPI values using z-scores by using the 

formula: 

 

z = 
μ

σ
 

 

where z equals the standardized TPI z-score, x represents each TPI measurement, and μ 

and σ represent the mean and standard deviation of each TPI grid, respectively (Jenness 

2006). Conversion to z-scores creates a common scale of measurement whereby the mean 

is zero and standard deviation is 1. However, the distribution of the data remain 

unchanged, thus z-scores are useful for comparing the distributions of datasets where the 

measurement scales may differ. We topographically categorized the output TPI raster 

values as valley floor, lower slope, middle slope, upper slope or ridgetop based on pre-

mining one-fifth quantiles, and then conducted a likelihood ratio test (G-test) in JMP 10 



15 
 

(SAS Institute, Inc, Cary, NC, USA) to test whether certain topographic classes were 

mined or permitted for mining more frequently than expected due to chance. We 

augmented our mining analyses by using a dataset of active surface mining permits 

obtained from the Kentucky Division of Mine Permits (KDMP), current as of January 

2017. Lands under active permit are currently being mined, approved for mining, or 

currently being reclaimed. We filtered land undergoing secondary mining (“re-mining”) 

out of our permit-focused analyses. 

 We also quantified land subjected to elevation reduction associated with surface 

mining. We compared historic USGS DEMs from c. 1980 to a recently developed (2013-

2015) DEM layer created by Kentucky’s Aerial Photography and Elevation Data 

(KYAPED) program generated from LiDAR remote sensing imagery, similar to the 

methods of Ross et al. (2016). This LiDAR dataset covered 66.1% of the study area, and 

cell size was converted from 1.5m resolution to 30m to match the historic USGS data 

resolution. We then subtracted the 2013-15 layer from the pre-mining raster and filtered 

this surface for elevation losses >10 m within mined land only, thus removing small 

and/or confounding sources of elevation loss (e.g., highway construction). To quantify 

changes in landscape position and forest cover, we created temporal transition matrices 

between both our five topographic classes and relevant NLCD cover classes. We used our 

pre- and post-mining elevation datasets to quantify topographic changes, and compared 

1992 and 2011 NLCD datasets to compare landcover class changes. Due to changes in 

how NLCD classified forest types between the 1992 and 2011 datasets, we pooled Mixed 

Forest, Deciduous Forest, and Evergreen Forest into a single “All Forest” category. 
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2.3.3 Focal Species 

To give context to the impacts of ridgetop habitat loss, we examined 

consequences for the timber rattlesnake (Crotalus horridus). A large-bodied pitviper 

native to the eastern U.S. and southern Ontario, populations of C. horridus are believed to 

be decreasing (Hammerson 2007). C. horridus was extirpated from four states and 

provinces in the 20th century, and is endangered or threatened in 13 US States. In 

Kentucky, C. horridus is under no state protection, but is listed as a “species of greatest 

conservation need (SGCN)”. C. horridus plays an important predatory role in forest 

ecosystems, having the potential to control small mammal populations and perhaps 

subsequently influence disease dynamics (Clark et al. 2002, Kabay et al. 2013). Though 

loss of mature forest habitat imperils C. horridus populations generally, management is 

often focused on conservation of hibernacula, where snakes overwinter and to which 

individuals display intense site fidelity (Brown 1993). Especially in regions where C. 

horridus and other pitvipers overwinter communally, destruction of hibernacula can be 

expected to result in the instant elimination of whole populations, often by directly killing 

hibernating individuals. 

Between 2012 and 2015, we individually captured 17 adult C. horridus at RF. All 

snakes were transported to a nearby veterinary facility for surgery, which largely 

followed the methods of Reinert and Cundall (1982). We first used L.L. Electronics 

model LF1 transmitters but later switched to Advanced Telemetry Systems (ATS, Isanti, 

MN, USA) models R1535, R1540, and R1680. Animals were held briefly after surgery to 

ensure wound closure prior to being released at the precise point of capture, upon which 

tracking began immediately. Snakes were tracked continuously until they entered their 
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hibernacula in the fall, after which they were immobile until emerging in spring. 

Hibernacula sites generally consisted of rock crevices and small talus piles, typically 

encompassing between 0.5 and 10 m2.  Snake handling and processing were approved 

under University of Kentucky IACUC Protocol 2012-0954.  

 We used a Mahalanobis (D2) statistic to model potential hibernacula sites for C. 

horridus across the CP. D2 approaches are frequently used for habitat modeling with 

presence-only data, and have been used to quantify habitat suitability and separate 

suitable habitat from non-habitat for numerous taxa based on recent or historical presence 

records (Clark et al. 1993, Buehler et al. 2006). We relied on both natural history 

literature (Brown 1993) and previous partitioned D2 model-based findings for C. horridus 

(Browning et al. 2005) to select relevant predictor variables of occupancy; thus we used 

slope (deg), topographic position index (TPI), winter solar radiation (Wh/m2), and aspect 

(degrees from south, 0-180) as our inputs. Slope, aspect, and winter solar radiation values 

were generated via the appropriate tools in ArcMap 10.1 using a pre-mining 30m 

resolution USGS DEM. After creating our input variable layers, we generated our D2 

raster surface again using the Land Facet Analysis extension and our 17 hibernacula 

locations. We then obtained the 17 D2 values of our hibernacula locations from our raster 

surface and bootstrapped to create 90%, 95%, and 99% confidence intervals using 

R.3.3.0 (boot library, R statistical language, Canty 2005).  

 

2.4 Results 

Approximately 963 km2 (6.9%) of the CP in Kentucky was classified as mined as 

of 2011, and a further 709 km2 (5.1%) was unmined as of 2011 but is under active mining 
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permits as of January 2017 (WebTable 1(a)). Across the entire study area, mining 

removed disproportionately more ridgetop (281 km2, 29.2% of total mined, 10.0% of 

total ridgetop habitat in CP) than other topographic positions, a highly significant 

difference (G = 637.9, p < 0.0001) (WebTable 1(a), Figure 1 (a)). Accordingly, permits 

covered substantially more ridgetop (191 km2, 6.8% of total ridgetop habitat in CP) than 

other topographic positions (G = 287.8, 26.9% of permitted land, p < 0.0001) (Figure 

1(b)). Our transition matrices show substantial shifting of topographic classes and 

landcover (WebTable 1(b), (c)). Roughly half of mined land was moved to different 

topographic positions than their pre-mining topographic position classes, though much of 

this movement was to adjacent classes. Middle and upper slopes were most likely to 

retain their position, whereas lower slopes and valley floors shifted classes most 

frequently. Areas which experienced elevation reduction had elevated TPI compared to 

the CP as a whole (WebFigure1). In terms of landcover transition, the vast majority of 

land (93.5%) classified as strip mines in 1992 remained strip mines or became classified 

as grassland in 2011. Only 7.3% of 1992 surface mines had returned to forest class by 

2011 (WebTable 1(c)). However, areas classified as various “forest” types by the NLCD 

due to canopy closure since mining ceased may not be similar to the preexisting mixed-

mesophytic forest community. While 11.6% of forested land was classified as forest in 

both 1992 and 2011, these raster cells are located around the periphery of irregularly-

shaped mine polygons, and most likely represent boundary fluctuations between our 

raster and shapefile layers. 

Mean input variable statistics for our 17 C. horridus hibernacula sites 

(WebTable4) were substantially though not significantly different from the mean values 
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for the study area at large. Hibernacula sites had higher mean TPI ( 26.8 m above local 

mean) and winter solar radiation (5.5 x 105 Wh/m2) than the CP in general (-0.07, solar 

radiation = 5.1 x 105 Wh/m2), but had similar slope (CP = 20.4 deg, hibernacula = 19.7 

deg) and aspect (CP = 183.0 deg, hibernacula = 195.4 deg). Mined lands also showed 

elevated mean TPI (5.8 m) and solar radiation (5.3 x 105 WH/m2) compared to the CP in 

general, while slope (20.3 deg) and aspect (181.6 deg) were similar. We found that across 

the entire CP, a large amount of habitat suitable for hibernacula exists (38.3%-40.3% of 

the CP, WebTable2). Our model also estimated that 7.8-7.9% of suitable habitat in the CP 

region of Kentucky had been surface mined as of 2011 and a further 5.5% was currently 

permitted for surface mining, a substantially higher proportion than mined land across the 

CP generally. This disproportionate loss of habitat is principally driven by overlapping 

preferences of C. horridus and mining for high topographic positions, as maps of 

permitting and extant mines clearly show (WebFigure1, WebFigure2).  

Kernel density histograms show the homogenizing effect of mining on 

topography and topographically-driven abiotic variables (Figure 2, Figure 3). Slope in 

mined lands is driven sharply lower, whereas distributions of TPI and winter solar 

radiation are compressed to middle values at the expense of both high and low values; 

aspect is less affected. The homogenizing effect on solar radiation, a factor critically 

important to moisture and soil qualities, is particularly apparent.  
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2.5 Discussion 

 

Although market forces have reduced use of coal for electricity generation in the 

US, surface coal mining will continue in Appalachia for the near future and cause further 

loss of topographically-driven forest communities. In the short term, reclaimed sites are 

woefully poor replacements in terms of soil conditions (Haering et al. 2004), vegetation 

reestablishment (Simmons et al. 2008), and the frequency of invasive species (Oliphant et 

al. 2017). Indeed, our landcover transition analyses show that only a small amount of 

reclaimed minelands returned to forest or forest-like conditions between 1992 and 2011, 

a portion of which is accounted for by University of Kentucky experimental tree plots.  

Land surfaces constructed during the process of mine reclamation are seldom as 

hospitable to subsurface biota as those which existed before mining (Wood et al. 2017). 

For example, the compacted substrate typical of many reclaimed minelands has been 

associated with lower abundances of small mammals and salamanders (Larkin et al. 

2008, Wood and Williams 2013). While some studies have documented use of boulders 

and other uncompacted substrates by native wildlife (e.g. Chamblin et al. 2004, Gess et 

al. 2013), more research is needed to test the effectiveness of specific mine reclamation 

practices in regards to restoration of subsurface habitats important to native flora and 

fauna, including C. horridus.  

Our topographic analyses suggest that the long-term outlook for ecological 

restoration of surface mines will prove extremely challenging. Despite the planting of 

native flora and recovery of soils, topographic changes appear to prohibit reclaimed sites 

from harboring ecological communities similar to the preexisting topographically-defined 
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biota. When the entire CP is considered, density histograms reveal tangible impacts of 

pre-2011 mining on these topographic variables across the entire region (Figure 3). This 

suggests that, at a regional scale, surface mining is substantially altering the very 

topographic gradients which provide the foundation for elevated beta diversity in the 

mixed-mesophytic forest. In the case of C. horridus, mining appears to be pressuring 

slope, TPI, and solar radiation values away from preferred ranges, thereby altering 

critically important winter habitats. 

Habitat loss as a result of altered topographic position is especially consequential 

for the disproportionately affected ridgetop habitats, which host a unique suite of flora 

and fauna, including many threatened taxa (Jones 2004, WebTable 5). The causes of this 

outsized impact are likely cost-benefit driven: mineral deposits with less overburden are 

more economically desirable, thus high TPI habitats are the most endangered, a 

phenomenon mirrored in other mountainous parts of the world where surface mining is 

common (Yang et al. 2013). While ridgetops are almost twice as likely to be mined as 

other topographic positions, a sizeable portion of ridgetops remain in their original 

topographic class. Critically absent is research into the possibility of reestablishing 

topographically-restricted communities in the increasingly large swathes of reclaimed 

mineland which retain their topographic position. Indeed, simply reestablishing tree 

growth to any extent in these ecologically denatured areas has been challenging (Zipper 

et al. 2011). Likewise, impacts of habitat loss on genetic connectivity of native flora or 

terrestrial fauna have not been investigated. Considering that 16.8% of ridgetops across 

the CP are already mined or permitted for mining, landscape-scale forest fragmentation is 

doubtless already common, especially considering the uneven distribution of mining 
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across the CP whereby some watersheds have seen >20% of their total land surface 

mined or permitted for mining (WebTable 3). Furthermore, local and regional-scale 

microclimatic effects of surface mining are poorly understood, and our analyses 

underscore the potential for major influences at multiple scales (e.g. Wickham et al. 

2013). 

Our analyses are among the first efforts to quantify the aggregate current and 

future impacts of mountaintop removal mining on the topographic complexity of 

Appalachian ecosystems from c. 1980 to 2011. Our estimates are conservative for several 

reasons: we omitted early surface mining effects, as our “pre-mining” DEM datasets were 

collected c. 1980 and did not account for large, early surface mines (e.g., Starfire Mine in 

Knott County, KY). We also omitted isolated mines <10 ha in size, mines which opened 

and were reclaimed between 2011 and 2017 thus escaping both our mining and permit 

analyses, and any surface mines which operated outside of mining permit boundaries. By 

using NLCD to identify mined land, we may have missed land converted to atypical uses 

after mining, such as housing or row crops, instead of the more conventional barren, 

transitional, and herbaceous landcover classes we targeted. Accounting for these factors 

may substantially increase the total area of the CP mined since surface mining techniques 

became popular. While our reliance on grassland to delineate mined areas might have 

included grassland unrelated to mining, we believe this to be insignificant because (1) 

grasslands >10 ha in size are generally rare on unmined landscapes in the CP, and (2) 

such lands would need to fall within surface mining permit boundaries to be counted; 

indeed, only 1.7% of land we identified as mined was classified as agricultural fields or 

pastures in 1992 (WebTable1(c)). Two caveats pertaining to our C. horridus habitat 



23 
 

modeling deserve mention. First, our goal was not to construct the most parsimonious 

habitat suitability model but to apply previously established model selection findings to 

our region, and inclusion of fine-scale features may improve suitability estimation over 

small extents. Based on available literature (Brown et al. 1993, Browning et al. 2005), 

however, we feel that deviations from our model will have limited impact on our 

conclusions given the scale and patterns of surface mining in the CP. A second caveat 

involves the broad application of our model, which is based on hibernacula from a small 

(80 km2) area, onto the entire CP (14,021 km2). Nevertheless, topographic consistency 

within the ecoregion and our reliance on TPI instead of elevation may mitigate this 

concern. 

If coal from Appalachian surface mines continues to play a significant role in 

energy production, our data suggest that sacrificing the topographic drivers of 

biodiversity in Appalachian forests could be a major tradeoff. The homogenization of 

physical factors is setting reclaimed lands on a new geophysical trajectory (Ross et al. 

2016), and certain habitats seem unlikely to appear through natural processes on 

reclaimed land given major topographic shifts. While new reclamation methods may 

prove effective at mitigating this long-term mining-related habitat loss for C. horridus, 

much more research is needed to address gaps regarding the impacts of mining on other 

terrestrial biodiversity and the potential for reestablishment of topographically-restricted 

communities. Ridgetop communities in particular, including taxa associated with exposed 

ancient capstones and surrounding oak-pine forests, appear to be under threat of 

widespread destruction. Despite this, opportunities remain to minimize future losses. The 

majority of Appalachian ridgetop habitats in the CP remain intact, and improved 
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reclamation practices focused on preserving topographic complexity, such as research-

informed reconstruction of exposed ridgetop rock outcrops on reclaimed land or 

discouraging the filling of stream valleys, might mitigate losses (Copeland 2015). In 

terms of specific mining practices, to prevent instant elimination of uncommon or 

imperiled populations of ridgetop-associated flora or fauna such as those of C. horridus, 

mining in high TPI habitats should be discouraged especially during seasons when at-risk 

fauna are known to be vulnerable. Yet  to preserve the biodiversity of mixed-mesophytic 

forests in the CP, our research suggests that avoiding deep, permanent geophysical 

rearrangement like that which has defined contemporary surface mining is the most 

important action to be taken. 
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Table 2.1. Total land impacted by surface mining organized by topographic position, with 

percent of each class mined as of 2011 and not mined as of 2011 but permitted for mining 

as of 2017, and results of our likelihood ratio test (G-test) which we used to test for 

differences in the frequency of mining and permitting among topographic positions. 

Slope position 
class 

Total area 
in CP 
(km2) 

Total area 
mined 
(km2)

Total area 
permitted 

(km2)

Percent of 
class area 

mined, 2011 

Percent of class 
area permitted, 

2017
Valley Floor 2802 171 143 6.1 5.1
Lower Slope 2837 140 109 4.9 3.8
Middle Slope 2783 156 116 5.6 4.2
Upper Slope 2798 215 149 7.7 5.3

Ridgetop 2799 281 191 10.0 6.8
 

Total 
 

14020 
 

963
 

709
  

 
G-test results 

  
p<0.0001 
G = 637.9

 
p<0.0001 
G = 287.8
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Table 2.2. Transition matrix of topographic position, before (c. 1980) and after (2013) 

surface mining. Numbers refer to percent of c. 1980 totals whereas totals refer to total land 

area per class per year in km2. 

 c. 1980 Valley 
Floor

Lower 
Slope

Middle 
Slope

Upper 
Slope

Ridgetop Totals 
(km2)

2013-
15 

Valley 
Floor 

47.70 11.99 1.18 0.20 0.12 78 

Lower 
Slope 

27.12 40.28 16.47 2.69 0.97 108 

Middle 
Slope 

19.42 36.09 52.63 25.99 9.53 198 

Upper 
Slope 

5.57 11.30 28.45 58.59 35.42 231 

Ridgetop 0.19 0.35 1.28 12.53 53.96 137
Totals 
(km2) 

130 113 128 170 211 752 
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Table 2.3. Transition matrix of major landcover classes within the boundaries of 2011 

surface mines, 1992-2011. Numbers refer to percent of 1992 totals, whereas totals refer to 

total land area per class per year in km2. 

 1992 Open 
Water

Strip 
Mines

All Forest Grassland Totals (km2)

2011 Open Water 5.11 0.19 0.14 1.25 2
Strip Mines 45.58 18.57 27.36 21.08 245
All Forest 4.83 7.29 11.57 9.36 104
Grassland 44.49 73.89 60.85 68.18 581

Totals (km2) 3 103 810 16 932
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Table 2.4. Total C. horridus winter habitat, winter habitat mined as of 2011, and winter 

habitat permitted for surface mining as of 2017 under three confidence intervals. 

Confidence 
Interval 

Total 
Suitable 
Habitat 
(km2) 

Percent 
of Study 

Area 
Suitable

Total 
Habitat 
Mined 
(km2)

Percent 
of 

Habitat 
Mined

Total 
Habitat 

Permitted 
(km2) 

Percent of 
Habitat 

Permitted 

90% 5377 38.3% 423 7.9% 297 5.5%
95% 5527 39.4% 434 7.8% 306 5.5%
99% 5647 40.3% 443 7.8% 313 5.5%
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Table 2.5. Total area, percent area surfaced mined as of 2011, and percent area under 

active permits for surface mining as of January 2017 for each USGS 8-digit Hydrologic 

Unit in the study area. 

Watershed Area (km2) Area mined 
(km2)

Percent 
mined

Area permitted 
(km2) 

Percent 
permitted

Licking River 665 50 7.5 39 5.9
Tug River 1232 196 15.9 137 11.1
Big Sandy 

River 
137 3 2.2 2 1.5 

Upper 
Kentucky 

River 

20 1 5.0 2 10.0 

Lower Levisa 
Fork 

2816 203 7.2 201 7.1 

North Fork 
Kentucky 

River 

3169 385 12.1 245 7.7 

Middle Fork 
Kentucky 

River 

1410 103 7.3 174 12.3 

South Fork 
Kentucky 

River 

1695 36 2.1 121 7.1 

Upper Levisa 
Fork 

928 122 13.1 107 11.5 

Upper 
Cumberland 

River 

1949 75 3.8 150 7.7 
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Table 2.6. Mean and standard deviations (italicized) of C. horridus overwintering habitat 

model  parameters for the entire CP, hibernacula sites (n=17), for suitable habitat as 

determined by varying confidence intervals, for land classified as mined and for unmined 

land with active mining permits. 

 Area 
[km2]

Slope 
[deg]

Aspect 
[deg]

TPI [ft] Winter Solar 
Radiation [WH/m2]

Cumberland Plateau 14021 20.4 
(8.2)

183.0 
(103.1)

-0.07 
(86.7) 

512153.6 (98741.3) 

Hibernacula - 19.7 
(6.1)

195.4 
(84.1)

88.0 
(70.5) 

549631.3 (79386.7) 

Habitat 90% CI 5377 22.2 
(5.4)

196.6 
(74.9)

48.0 
(62.4) 

562893.2 (74348.5) 

95% CI 5527 22.2 
(5.5)

196.7 
(75.5)

47.5 
(62.9) 

561820.1 (75217.6) 

99% CI 5647 22.2 
(5.5)

196.7 
(76.0)

47.1 
(63.3) 

560965.2 (75903.8) 

Mined Land, 2011 963 20.3 
(8.0)

181.6 
(98.9)

18.9 
(93.7) 

527214.2 (97064.4) 

Permitted Land, 2017 709 22.6 
(7.3)

184.7 
(104.3)

11.9 
(95.5) 

507876.2 (106177.6)

  

 

 

 

 

 

 

 

 

 

 

 



31 
 

Table 2.7. Rare and threatened taxa associated with high TPI habitats in the Cumberland 

Plateau of Kentucky. Global status for animals is from IUCN, for plants from Kentucky 

State Nature Preserves Commission. NL = not listed, NT= near threatened, VU= 

vulnerable, T= threatened, FSC = federal species of concern, and E= endangered. Source 

refers to literature associating the species with ridgetops in the study area. 

Common Name Global Status US Federal Status Source
Red-cockaded 
woodpecker 

NT T Kalisz and 
Boechtter 1991

Allegheny woodrat NT FSC Lacki and Krupa 
2001

Cerulean warbler VU FSC Buehler et al. 
2007

Indiana bat NT E Kiser and Elliott 
1996

Sweet pinesap G3 FSC KSPNC 2012
Ovate catchyfly G3 NL KSPNC 2012

Soft-haired thermopsis G3 NL KSPNC 2012
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Figure 2.1. Percent of the total land area within each one-fifth quantile based slope 
position class (valley floor, upper, middle, and lower slope, and ridgetop) in the 
Cumberland Plateau (a) mined as of 2011 or (b) not mined as of 2011, but permitted for 
mining as of 2017. 
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Figure 2.2. Visual representation of fine-scale geophysical changes after mining. Above, 
a National Agriculture Imagery Program (NAIP) image of the area of interest in 2014, 
with mined areas overlaid in orange. Middle, the distribution of TPI and winter solar 
radiation before and after mining. Bottom, density plots for standardized topographic 
position index (TPI) and winter solar radiation before and after mining across all mined 
lands in the study area. 
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Figure 2.3. Kernel density plots for TPI, slope, aspect, and winter solar radiation for our 
hibernacula sites superimposed on each variable’s distribution across the entire 14,021 
km2 Cumberland Plateau of Kentucky before and after mining. TPI values have been 
standardized to z-scores. 
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Figure 2.4. Photograph of an adult C. horridus in the study area, credit Jake Hutton. 
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Figure 2.5. Boxplot of topographic position index (TPI) z-scores for C. horridus 
hibernacula (mean=1.02, sd=0.81), areas of >10m (mean=1.08, sd=0.79) and >30m 
(mean=1.47, sd=0.62) elevation loss from mining, and the entire Cumberland 
Plateau (mean=0.00, sd=1.00). Individual data points represent 30m raster cells. 
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Figure 2.6. Suitable C. horridus overwintering habitat (95% confidence) across the 
Cumberland Plateau, with surface mines and areas permitted for mining denoted. Inset 
refers to telemetry study area. 
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CHAPTER 3: 

A SPATIAL GENOMIC APPROACH IDENTIFIES TIME LAGS AND HISTORIC 
BARRIERS TO GENE FLOW IN A RAPIDLY FRAGMENTING APPALACHIAN 

LANDSCAPE 

3.1 Abstract 

The resolution offered by genomic data sets coupled with recently developed spatially 

informed analyses are allowing researchers to quantify population structure at 

increasingly fine temporal and spatial scales. However, both empirical research and 

conservation measures have been limited by questions regarding the impacts of data set 

size, data quality thresholds, and the time scale at which barriers to gene flow become 

detectable. Here, we used restriction site associated DNA sequencing to generate a 2,140 

SNP data set for the copperhead snake (Agkistrodon contortrix) and address the 

population genomic impacts of recent and widespread landscape modification across an 

approximately 1000 km2 region of eastern Kentucky, USA. Nonspatial population-based 

assignment and clustering methods supported little to no population structure. However, 

using individual-based spatial autocorrelation approaches we found evidence for genetic 

structuring which closely follows the path of a historically important highway which 

experienced high traffic volumes from ca. 1920 to 1970 before losing most traffic to a 

newly constructed alternate route. We found no similar spatial genomic signatures 

associated with more recently constructed highways or surface mining activity, though a 

time lag effect may be responsible for the lack of any emergent spatial genetic patterns. 

Subsampling of our SNP data set suggested that similar results could be obtained with as 

few as 250 SNPs, and a range of thresholds for missing data exhibited limited impacts on 

the spatial patterns we detected. While we were not able to estimate relative effects of 
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land uses or precise time lags, our findings highlight the importance of temporal factors 

in landscape genetics approaches, and suggest the potential advantages of genomic data 

sets and fine-scale, spatially informed approaches for quantifying subtle genetic patterns 

in temporally complex landscapes. 

 

 

3.2  Introduction 

Habitat loss and fragmentation resulting from natural resource extraction, 

agriculture, and urbanization is setting some populations on new demographic 

trajectories, with increasing and persistent genetic diversity loss (Haddad et al. 2015). 

Understanding the effects of this rapid landscape change on population structure and 

genetic diversity is critical for informing science-based conservation and management 

(Hilty et al. 2012, Keller et al. 2015, Waits et al. 2016). However, a variety of geographic 

and ecological factors can affect the amount and rate at which spatial genetic structuring 

builds in a given system, creating challenges for the development of proactive 

management plans (Epps and Keyghobadi 2015, Balkenhol et al. 2016, Richardson et al. 

2016). Thus, while migration may be limited by contemporary landscape factors, genetic 

structure may not be detectable until many generations after a barrier forms, especially if 

the power to detect such patterns is limited by the quantity or quality of genetic data 

available (Landguth et al. 2010, McCartney-Melstad et al. 2018). 

The use of large single nucleotide polymorphism (SNP) data sets has improved 

the detection of recent habitat fragmentation in several ways. First, increased genome-

wide sampling reduces the number of individuals needed to quantify differentiation 

among sampling locations (Willing et al. 2012, Nazareno et al. 2017). With this lower 
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threshold for per-locale individual sampling, genomic data can permit sampling schemes 

encompassing a broader geographic area and a more hierarchical design, thus allowing 

for more robust resolution of patterns at multiple spatial scales (Anderson et al. 2010, 

Balkenhol and Fortin 2016). Furthermore, while the relatively high mutation rate of 

microsatellites is advantageous for detecting recent genetic change (Epps and 

Keyghobadi 2015), the greater genome-wide sampling of large SNP data sets can 

potentially detect weaker spatial genetic patterns resulting from relatively recent or 

porous barriers to gene flow (Landguth et al. 2012). For example, McCartney-Melstad et 

al. (2018) found that with as few as 300-400 SNPs, genetic structure associated with the 

barrier effects of roads could be detected in amphibian populations where 12 

microsatellite loci had previously indicated no structure. SNP data sets of this size are 

now readily available through methods such as restriction site-associated DNA 

sequencing (RADseq), allowing for the generation of thousands of loci from non-model 

organisms with a range of ecological characteristics that may make them prone to the 

genetic effects of recent habitat fragmentation (Epps and Keyghobadi 2015). 

While traditional methods of testing for spatial genetic patterns, such as model-

based clustering (e.g., STRUCTURE, Pritchard et al. 2000) or non-parametric exploratory 

analyses (e.g., DAPC, Jombart et al. 2010) have been used to characterize genetic 

diversity across a given area (François and Waits 2015), other methods which are able to 

separate spatial and non-spatial genetic variation may be better equipped to detect 

patterns of genetic differentiation in recently fragmented systems or those with high rates 

of gene flow (Jombart et al. 2008, Galpern et al. 2014). These methods use spatial 

autocorrelation to tease apart patterns of inter- versus intra-population genetic variation, 
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improving the identification of population structure at fine geographic scales (Galpern et 

al. 2012). When coupled with genomic data, spatially informed analyses may also allow 

for the detection of weak spatial structure related to recent habitat fragmentation or 

incomplete barriers to migration (Richardson et al. 2016, Richardson et al. 2017, Combs 

et al. 2018, Combs et al. 2018a). However, alongside these methodological 

improvements, work remains to understand the amount of individual-level genomic data 

necessary to assess spatial genetic patterns (e.g., McCartney-Melstad et al. 2018), and the 

effects of genomic data quality on the resolution of recently evolved population structure. 

Identifying spatial genetic patterns associated with landscape features is especially 

pertinent in regions experiencing rapid and recent landscape change. Few regions have 

experienced this change as rapidly as central Appalachia in the eastern United States, 

chiefly as a result of the large-scale surface coal mining practices often referred to as 

‘mountaintop removal’ (Wickham et al. 2007, Drummond and Loveland 2010, Pericak et 

al. 2018, Maigret et al. 2019). Alongside mining, the wholesale construction of several 

high-traffic road systems in the 1970s and 1980s, in part to facilitate the transportation 

needs of the mining sector, have further subdivided what was formerly a relatively 

continuous forest landscape with scant high-traffic roads (KTC 2018). Despite the scale 

of these changes, the effects on native biodiversity are not well understood (Wickham et 

al. 2013). Given the historically rugged terrain of Appalachia, topographic 

homogenization produced by surface mining may facilitate dispersal of terrestrial fauna 

not encumbered by the radically altered soils, flora, and thermal regimes of reclaimed 

minelands (Wickham et al. 2013), and highways may also facilitate movement in some 

species (Trombulak and Fissell 2000). Alternatively, less vagile taxa that rely on sparsely 
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distributed microhabitats may be more sensitive to the effects of forest fragmentation, 

especially if they are susceptible to road mortality. 

We sought to understand the impact of recent and major landscape changes on the 

population structure of the copperhead (Agkistrodon contortrix), an abundant snake in 

eastern Kentucky (Barbour 1962) generally not capable of long-distance (> 1 km) 

individual movements (Sutton et al. 2017). Copperheads rely on rocky overwintering 

hibernacula located high on steep-sided and often south-facing slopes (Maigret and Cox 

2018), sites disproportionately destroyed by surface mining (Maigret et al. 2019). 

Copperheads are also generally intolerant of dense, invasive vegetation common to many 

reclaimed surface mines (Carter et al. 2015, Carter et al. 2017). Additionally, 

herpetofauna generally, and pit vipers in particular, have been shown to be especially 

vulnerable to vehicular traffic (Andrews and Gibbons 2005, Shepard et al. 2008), and 

elevated genetic differentiation associated with highways has been detected using 

microsatellite markers (Clark et al. 2010, DiLeo et al. 2013). Pertinent to this point, our 

study area contains several major highways [> 3,000 Annual Average Daily Traffic 

(AADT)] constructed between 1970 and 1985 which could be barriers to movement for 

A. contortrix. Nearly all these highways were constructed along new paths and do not 

follow major hydrological or topographic features for the majority of their route through 

the study area, thus facilitating a more straightforward analysis of the effects of these 

highways on gene flow. From at least 1900 until 1970, however, the only highway across 

the study area was KY State Route 476 (formerly old KY State Route 15; hereafter 

referred to as KY-476). Prior to 1970, KY-476 was a major thoroughfare through the 

region, following the sinuous course of Troublesome Creek, a tributary of the North Fork 
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of the Kentucky River. In the early 1970s, the new KY-15 was opened, leading to 

markedly decreased traffic volumes on KY-476 (~500 vehicles/day) and pushing most 

traffic, including many coal-industry commercial vehicles, to the new KY-15 (~ 5,000 

vehicles/day). 

Using RADseq data and nonspatial and spatially informed analyses, we 

investigated the potential for recently formed population structure across A. contortrix in 

eastern Kentucky as a result of this landscape change, with a particular focus on the 

effects of habitat fragmentation via surface coal mining and through the network of 

historic (c. 1920) and more recently-constructed (c. 1975) high-traffic roads. Specifically, 

we aimed to: (1) understand the extent and scale of spatial genomic structuring in 

copperheads across what was until recently a heavily forested landscape; (2) test for 

associations between current landcover classes and patterns of spatial genomic diversity; 

(3) test for associations between current or historic highways and contemporary patterns 

of gene flow, and (4) understand how the number of loci and quality of a data set can 

affect our ability to detect spatial genomic patterns. More broadly, for any barriers we 

could detect, we aimed to shed light on the temporal scale at which potential barriers to 

gene flow are detectable using SNP data sets, to investigate the role of spatially informed 

methods for identifying recent or weak genetic boundaries, and to provide a starting point 

for future research into the spatial genetic implications of increasingly popular methods 

of surface mining. 
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3.3 Methods 

 

3.3.1 Sampling Methods 

We sampled A. contortrix individuals from an approximately 1,000 km2 area of 

Breathitt, Knott, and Perry counties in eastern Kentucky, USA (Figure 1, Figure S1, 

Table S1). We used a hierarchical sampling strategy to acquire tissue samples. Our 

strategy was based on individual sampling sites, which  consisted of a location where a 

combination of artificial cover and visual encounter surveys were used to capture snakes. 

Overall, these were roughly grouped into five sampling clusters, each composed of at 

least four individual sampling sites, separated by 2-3 km, and arranged roughly in a cross 

or an ‘x’ as permitted by the landscape and property access (Figure S1). In turn, each 

sampling cluster was separated by roughly 10-20 km, providing comparisons at multiple 

spatial scales both within and between each cluster (Balkenhol and Fortin 2016). We 

sampled tissues at our individual sites between May 2014 and September 2016.  

During the same time period, we augmented this design by including individuals 

captured opportunistically apart from designated individual capture sites; typically, these 

snakes were found alive or dead on roadways within the study area or were killed and/or 

donated by area residents who were able to provide precise locality information for each 

tissue sample. We found no major differences in the spatial configuration of samples 

acquired from live individuals versus tissue acquired from dead snakes; both sources of 

tissue were distributed fairly evenly across the study area. A total of 106 individual 

snakes were eventually included in our sequencing. Live-captured snakes were restrained 

and two ventral scales were removed, placed in 95% ethanol, and subsequently frozen at -

80°C (Maigret 2019). Muscular tissue from the tails of dead snakes was treated similarly. 
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3.3.2 DNA Sequencing and SNP calling 

We extracted genomic DNA using a Qiagen DNeasy Blood and Tissue Extraction 

Kit and prepared double digest RADseq (ddRADseq) libraries based on Peterson et al. 

(2012). DNA was quantified using a Qubit 2.0 flourometer (Thermo-Fisher). DNA 

extractions ≤ 2.0 ng/uL were amplified using a Qiagen REPLI-g high-fidelity whole 

genome amplification kit. We prepared ddRADseq libraries using ~1000 ng of DNA per 

individual. DNA was digested using EcoRI and SphI and subsequently cleaned with 

Agencourt Ampure XP beads (Beckman Coulter). Adaptor ligation was performed using 

one of 48 unique 5 bp barcodes in combination with a universal 6 bp single-index PCR 

adaptor. Samples were then pooled in groups of eight, bead cleaned, and size selected 

(526 bp ± 10%) with a Pippin Prep (Sage Science). Each 8-sample pool was then Qbit 

quantified and amplified using Phusion high-fidelity PCR (New England Biolabs) with a 

PCR primer with one of several unique barcodes, permitting each individual to be 

identified uniquely using a combination of the unique PCR barcode and a unique adaptor 

index. After cleaning and quantifying PCR product, we used an Agilent 2100 Bioanalyzer 

to confirm target fragment size distributions before 150 bp paired-end sequencing on two 

lanes of an Illumina Hi-Seq 2500. Individuals were randomly assigned to a lane with 

respect to geographic location to reduce downstream genetic artefacts (Meirmans 2015). 

We used Stacks v1.37 (Catchen et al. 2013) to identify orthologous loci across 

individuals. No overlap was expected between sequencing reads; therefore, we used a 

custom script to stitch together forward and reverse reads. We used process_radtags to 

demultiplex individuals and discard low-quality reads containing uncalled bases or a 
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mean quality score < 10 in a sliding window comprising 15% of the read. After quality 

filtering, reads were assembled using denovo_map, with a minimum stack depth of five 

(m = 5), three mismatches allowed between stacks within individuals (M = 3), and two 

mismatches allowed between stacks among individuals (n = 2). To increase confidence in 

our SNP calls, we used rxstacks to remove SNPs with a low log likelihood (Stacks v1.37 

option: --ln_lim = -25) and/or a high proportion of confounded loci (conf_lim = 0.25). 

After running rxstacks, cstacks and sstacks were re-run with the filtered loci. We sampled 

a single SNP per locus (--write-single-snp), using only SNPs with < 50% missing data, a 

minor allele frequency < 0.015, and no evidence of excess heterozygosity. Finally, we 

removed individuals with > 50% missing data. 

 

3.3.3 Summary statistics and distance-based analyses 

We generated a genetic dissimilarity matrix using the program bed2diffs v1 in the 

EEMS package (Petkova et al. 2016). This produced a matrix of average individual 

pairwise genetic dissimilarity (hereafter referred to as the “GDM”) based on allelic 

frequencies, similar to the proportion of shared alleles (Bowcock et al. 1994). We 

estimated effective population size using the molecular co-ancestry method of Nomura 

(2008), as implemented in the linkage disequilibrium method in NeEstimator (Do et al. 

2014). We estimated heterozygosity and nucleotide diversity using plink and vcftools, 

respectively (Purcell et al. 2007, Danecek et al. 2011). We calculated the relationship 

between geography and the GDM using the ecodist package in R (Goslee and Urban 

2007). Mantel correlograms were generated for multiple geographic distances, including 

Euclidean distance, the natural log of distance, stream (hydrological) distance, and the 

natural log of stream distance. The distance class size we used was based on estimates of 
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annual movement distances of adult copperheads, about 1 km in Euclidean distance 

(Sutton et al. 2017). We also created correlograms defined by one-tenth quantiles of the 

total distribution of all pairwise distances (about 2.5 km in Euclidean distance). We used 

1,000 permutations to determine significance. To quantify stream distances, we used the 

Origin-Destination Cost Matrix (ODCM) tool in ArcMap v10.1 (ESRI, Redlands, CA) 

and a shapefile of USGS stream paths obtained from the KY Division of Geographic 

Information. We chose to use stream paths as a proxy for potential elevation effects 

because streams represent the least-cost path between sites given the rugged terrain of the 

study area. Sites not adjacent to streams were connected using a minimum-distance 

connection in ArcMap’s ODCM tool. 

 

 

3.3.4 Nonspatial analyses of population structure 

To identify and characterize genetic clusters across our study area, we used both 

discriminant analysis of principal components (DAPC) in the adegenet R package 

(Jombart et al. 2010) and Bayesian clustering via STRUCTURE (Pritchard et al. 2000). For 

our DAPC analyses, we first used the find.clusters function, retaining all principal 

components (PCs) and selecting the K value with the lowest Bayesian information 

criterion (BIC). Individuals were then ordinated in PC space using the dapc function. To 

reduce the potential for over-fitting, we selected the number of retained PCs in light of 

diminishing returns from retaining excess PCs (Jombart et al. 2010).  

For our STRUCTURE analyses, we estimated population assignment of individuals 

using an admixture model with cluster numbers ranging from K = 1 to 10, without the 

LocPrior option. Five replicates were run for each K, each for 1,000,000 generations after 
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a burn-in of 100,000 generations. To investigate potential effects of including sampling 

locations on STRUCTURE output, we also performed analyses using an admixture model 

and the LocPrior option, with cluster numbers of K=1 and K=2 with five replicates and 

the same generation and burn-in parameters used without the LocPrior option. We used 

Structure Harvester v0.6.9.4 (Earl and von Holt 2012) to generate mean log likelihood 

values for each K and identify the optimal number of clusters for our data using ΔK 

(Evanno et al. 2005). We used the program CLUMPAK to compute cluster membership 

coefficients across replicates (Kopelman et al. 2015). Despite the potential for inaccurate 

results when genetic diversity is distributed continuously or populations are inbred, we 

chose to use STRUCTURE due to its continuing popularity, broad array of applications, and 

the lack of any hard thresholds associated with these potential drawbacks (Pritchard et al. 

2007). 

 

3.3.5 Spatially informed analyses of population structure 

To further test for genetic structure across our study system, we used three 

recently developed approaches that integrate spatial information into analyses based on 

genetic dissimilarity. First, we used MEMGENE (Galpern et al. 2014), a regression-based 

analysis based on the spatial autocorrelation among a given set of georeferenced 

individuals and a corresponding GDM. Individual samples are mapped based on 

geographic location, and predicted eigenvector scores from this regression are overlaid to 

provide a visualization of the uniquely spatial component of genetic dissimilarity among 

individuals. 

Second, we used the program sPCA (Jombart et al. 2008) implemented in the R 

package adegenet. sPCA is broadly similar to MEMGENE (but see Galpern et al. 
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2014:Appendix S4), but relies on an ordination approach based on Moran’s I index to 

identify eigenvectors that maximize variation in allele frequencies and spatial 

autocorrelation, and then maps these eigenvectors onto geographic coordinates. We used 

the function chooseCN to identify a connection network construction scheme; our 

analyses used a nearest-neighbor connection network with k = 40 neighbors to maximize 

connectivity across our large number of spatially distinct samples, accounting for 

potential long-distance dispersal events among aggregations of sampling sites. We relied 

on the eigenvalue variance and spatial components plots to select the optimal number of 

positive (“global”) and negative (“local”) axes to retain, we replaced any NAs in our data 

with mean allele frequencies, and we used the recommended multivariate significance 

test to identify significant global and local genomic structure. In this context, we use the 

term “global structuring” to refer to positive autocorrelation between nearby individuals, 

and “local structuring” to refer to negative autocorrelation between nearby individuals 

(sensu Jombart et al. 2010).  

Third, to take into consideration the impact of landscape features on gene flow, 

we estimated a resistance model using the R package ResistanceGA (Peterman 2018). 

ResistanceGA uses a genetic algorithm approach to parameterize the individual resistance 

values associated with a given resistance surface based on genetic dissimilarity data. By 

doing so, the optimization of surfaces undertaken by ResistanceGA bypasses the 

subjective assignment of resistance surface component values based on expert opinion or 

on modeling of individual movement patterns (Spear et al. 2016, Peterman 2018).  Model 

fit of the optimized surfaces are quantified using AIC values from linear mixed-effects 

models, both for each surface individually and for all combinations of individual 
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surfaces. Our ResistanceGA input landscape surfaces consisted of land cover 

classification data obtained from 2011 National Land Cover Data. We reclassified raw 

NLCD raster values into three different resistance surfaces of two categories each, 

including: (1) a mining surface with two categories, mined and unmined land, (2) a 

surface representing the route of current highways, with two categories, highway and 

non-highway, and (3) a surface representing the route of KY-476, also with two 

categories, highway and non-highway (Table S2). We tested both for effects of each of 

these three surfaces independently and each possible combination of the three. We 

reclassified NLCD raster classes using the Reclassify tool in the Spatial Analyst 

extension of ArcMap 10.3.3, producing our three putative resistance surfaces. We relied 

on historic road maps publicly available from the KY Transportation Cabinet to identify 

current and historic highway patterns in the study area from 1936 to the present, and 

historic topographic maps from the US Geological Survey’s Historical Topographic Map 

Explorer for information on routes before 1936. Our response data set was our individual 

pairwise GDM, and our predictor variable was a least cost paths matrix based on our land 

cover raster surfaces which were obtained using the ‘costDistance’ function in the R 

package gdistance (van Etten 2017). While lacking the comprehensive approach available 

with random walk commute times, least cost paths represent a much more 

computationally tractable approach for our spatial and genetic data set (Peterman 2018). 

 

 

3.3.6 Subsampling of our SNP data set 

We aimed to assess the relative ability of two of the spatially informed methods, 

sPCA and MEMGENE, to produce results similar to the full data set based on: (1) the 
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number of loci, and (2) the amount of missing data. To examine the effect of the number 

of loci, we randomly subsampled our full 2,140 SNP data set, producing subsets of 25, 

50, 100, 250, 500, and 1,000 loci. For each subset, ten replicates were generated using 

plink and analyzed in sPCA and MEMGENE as described above for the full data set. To 

examine the effects of missing data, we used our m=5 read depth SNP data (Table S3), 

without any filtering for missing data (n= 24,385 loci), and we set new missing data 

thresholds of 0.05 (i.e., retaining only loci present in ≥ 95% of individuals), 0.10, 0.25, 

0.40, 0.5, 0.75, 0.90, and 0.95. While these represented our thresholds, our realized data 

sets typically had smaller amounts of missing data, in aggregate, than each threshold. 

Only a single data set could be produced for each missing data threshold. 

Differences in how sPCA and MEMGENE are designed influenced how we 

quantified our subsampling and missing data threshold results. For sPCA, we first 

detected significant patterns of structuring, then tabulated the proportion of replicates 

with unrelated, similar, or identical spatial genomic patterns as detected in analysis of the 

full data set. Model outputs for sPCA include global (positive axes) and local (negative 

axes) permutation tests of structuring, the p-values of which were obtained for each level 

of subsampling and missing data thresholds; we then averaged these p-values across 10 

replicates for the former. MEMGENE, on the other hand, only analyzes significant spatial 

patterns, and nonsignificant patterns are not retained for downstream analyses. Thus, for 

MEMGENE, we obtained R2 values only for levels of subsampling and missing data 

thresholds where significant spatial patterns were observed, and we quantified spatial 

patterns which were unrelated, similar, or identical, in a similar fashion to our sPCA 

results. We defined “identical” patterns as being identical to those produced with the full 
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2,140 SNP data set in terms of which group each sample was categorized in (represented 

by the color of each sample) and the approximate strength of each categorical assignment 

(represented by the size of each symbol). “Similar” patterns, meanwhile, were those that 

displayed identical sample assignment of the majority of individuals within each 

sampling cluster (Figure S1), but different assignments of some individuals within 

clusters. “Unrelated” results denote visualizations where the majority of sites in one or 

more sampling clusters are assigned differently than when analyzed with the full data set. 

We summarized these collective results by charting p-values from local (negative 

autocorrelation) and global (positive autocorrelation) tests from sPCA alongside R2 

values from MEMGENE for each missing data threshold, and by charting both these 

statistical values and the proportion of identical, similar, and unrelated patterns for each 

subsampling level. While categorizing spatial patterns in terms of their similarity to those 

generated using our full data set required some qualitative assessment of the results, we 

deferred from using more substantial quantitative metrics for comparison given the 

limited number of sampling sites. 

 

3.4 Results 

3.4.1 Sequencing Results 

We generated ~239 million 150 bp paired-end reads, with a mean of 1,869,394 

reads per individual. Increasing or decreasing the minimum read depth between four and 

seven did not affect any summary statistics, and only marginally affected the number of 

loci in our data (Table S3). After quality filtering, we recovered genotypes for 77 

individuals from 34 different locations (Figure 1). This included a total of 2,140 loci, 
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with an average missing data rate of 23.5% of loci per individual (min. = 4.4%; max.= 

48.9%) and a mean minor allele frequency of 0.166 (Table S5). A total of 29 individual 

samples were not included in our final data set due to excessive missing data or poor read 

quality. 

 

3.4.2 Summary of Genetic Diversity 

Across our study area, we estimated HO = 0.193, HE = 0.24, π = 0.242, and FIS = 

0.195. We estimated an Ne of 635.8 (95% CI: 595.6, 681.6). Mantel tests identified weak, 

but sometimes significant correlations between genetic and different measures of 

geographic distances, including Euclidean (p = 0.79, R2 = -0.0003), natural log of 

Euclidean (p < 0.001, R2 =0.0037), hydrological distance (p < 0.001, R2 = 0.0054), and 

natural log of hydrological distance (p = 0.003, R2 = 0.0029). Mantel correlograms of 

correlation by distance class similarly showed minimal evidence of isolation-by-distance 

(Figure S2). 

 

3.4.3 Non-spatial Population Structure 

Neither DAPC nor STRUCTURE analyses supported the presence of multiple 

geographically distinct genetic clusters. BIC scores in DAPC were lowest for K = 1 

(Figure 2a), and an exploration of cluster assignments using the first PC axis and a K = 2 

did not produce individual assignments corresponding to sampling localities or 

geography (Figure S1). STRUCTURE analyses identified K = 3 as the best-fit clustering 

model for our data based on the ΔK statistic (Figure 2b). Evidence of convergence was 

seen in both the α parameter and FST estimates; however, at this level of clustering all 



54 
 

individuals were nearly equally assigned to all three clusters, indicating a lack of 

population structure. These results were similar at a K = 2. Using prior sampling location 

information (LocPrior) did not change these results (Figure S3). 

 

3.4.4 Spatially Informed Population Structure 

sPCA analyses identified significant global structure across the study area (p = 

0.002). The first global (positive) sPCA axis identified a population genetic break that 

closely followed the historic highway path of KY-476 (Figure 3a). Based on a scree plot 

and a plot of eigenvalues, this first global axis contained the most information relative to 

other axes, and support for any of the local (negative) axes was not of congruent strength 

(Figure S4a-b). Neither increasing or reducing the number of neighbors used in the 

analysis by ≤50% nor using other connection network schemes (e.g., distance-based 

delimitation) changed the identified pattern. 

The first variable identified as significant in the MEMGENE analysis explained a 

high proportion of the total variance across three retained axes (0.81). The proportion of 

overall genetic variance explained by spatial patterns associated with this first variable 

may appear to be modest (adj. R2 = 0.061), but this was similar to the proportion 

explained by other studies at similar spatial scales (e.g., Galpern et al. 2014, Combs et al. 

2018a). Visualization of the first and most explanatory MEM variable similarly identified 

a genetic break that partitioned populations on either side of KY-476 (Figure 3b). No 

genetic breaks identified an influence of landcover or current highway paths. 

Landscape resistance analyses in ResistanceGA supported a null model of no 

geographic structure, followed by a model of isolation by distance (Table S4). Models 
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that included the three individual resistance surfaces (landcover, current highways, or 

historic highways), or any combination of resistance surfaces, were not strongly 

supported. 

 

3.4.5 Subsampling of SNP Data Set 

sPCA analysis of subsampled SNP data sets produced significant detection of 

global structure (positive autocorrelation) with as few as 25 loci (average global p-value 

of ten replicates = 0.067, Fig. 4a), although data sizes ≥ 250 loci were needed to produce 

identical patterns to those generated with the full data set (mean global p = 0.0033). At ≥ 

500 loci identical patterns were produced in all replicates. Significant local structure 

(negative autocorrelation) was not supported for any level of subsampling (mean local p-

value = 0.34). MEMGENE analysis of subsampled SNP data sets produced identical 

patterns in a majority of replicates when sampling ≥ 100 loci (Fig. 4b). However, 

identical results were still detected in 50% of replicates when sampling 50 loci and 

produced in all replicates when sampling 1000 loci. 

 The performance of sPCA and MEMGENE was not adversely affected by the 

inclusion of higher levels of missing data, which naturally also increased the number of 

SNPs (Fig. 4(c)). Global p-values from sPCA analysis were significant at ≥ 25% missing 

data and remained so, even when the data set allowed for as much as 95% missing data 

per individual. Missing data levels ≤ 10% resulted in a loss of significant global spatial 

structure, and we note the peculiarity that data sets of smaller locus number resulted in 

significant detection of global structure in our subsampled data replicates, suggesting the 

potential for Type I error with small data sets. MEMGENE produced R2 estimates with 
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data sets permitting ≥ 40% missing and increased with higher levels of missing data, up 

to 75%. With stricter limits on missing data, no axes were retained. 

 

3.5 Discussion 

3.5.1 Non-spatial vs. spatially informed analyses of population structure 

Here, we present empirical evidence for the ability of some spatially informed 

methods to detect weak population structure in study systems where more traditional and 

non-spatially informed methods indicate a lack of structure. Patterns in both DAPC and 

Structure results were consistent with a K = 1 model, with no evidence for geographically 

distinct genetic clusters across the study area. In contrast, the spatially informed methods 

sPCA and MEMGENE returned similar results supporting geographic genetic structure with 

a break coinciding with the path of KY-476, a historically-important highway that served 

as a major traffic artery in the region between c. 1920-1975. The inference of weak 

population structure and genetic fragmentation on the landscape of our study system is 

bolstered by multiple lines of evidence. First, both sPCA and MEMGENE identified the 

same geographic genetic break. While these methods both use spatial autocorrelation in 

the analysis of genetic data, they operate in very different ways: sPCA relies on the 

integration of Moran’s I matrix via a connection network, while MEMGENE uses a forward 

selection method to identify significant MEM eigenvectors, and then uses a regression 

approach to generate predictions from the regressions that describe spatial patterns 

(Galpern et al. 2014). The congruence of these results indicates that our result is probably 

not a spurious pattern driven by an artefact of one particular analysis. Second, while the 

magnitude of population structure detected in our work was generally weak— MEMGENE-
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based regression analyses attributed ~6% of total genetic variation to spatial effects—this 

amount of spatially explained genetic variation is in the range of that detected with 

MEMGENE under simulated models of population fragmentation and higher than that 

detected for panmictic populations (Galpern et al. 2014). This level of spatially driven 

genetic variation is also similar to that detected in other studies of recently fragmented 

landscapes (Combs et al. 2018, Combs et al. 2018a). Our overall interpretation of these 

results is that the use of methods that specifically use spatial patterns of variation, such as 

sPCA and MEMGENE, seem to be able to identify patterns of weak population structure at 

temporal and spatial scales where more widely used non-spatial methods (even when 

using basic locality sampling priors) would fail to discern geographic population 

structure (Galpern et al. 2014). 

In contrast, our estimates of population structure using optimized landscape 

resistance generated using ResistanceGA did not support a link between genetic 

differentiation and landscape features. This lack of spatially informed population 

structure may be related to methodological aspects of this program, as it does not use the 

autocorrelation approach that is built in to sPCA and MEMGENE. Given the relatively 

weak nature of the spatial genomic signal associated with the route of KY-476, our 

ability to detect resistance to gene flow based on landcover classes may have been 

comparatively limited. Properly testing the hypothesized effects of our putative resistance 

surfaces on gene flow may require a much larger number of spatially distinct sampling 

locations, perhaps distributed in a more stratified and evenly-spread manner. 
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3.5.2 Data size and quality in the detection of weak population structure 

While our genomic data set may have also increased our ability to detect subtle 

spatial patterns, random subsampling of our data indicated that thousands of SNPs may 

not be necessary to detect weak population structure similar to that found with our full 

data set. In fact, we found that several hundred SNPs may be sufficient to consistently 

identify weak spatial structure. This result is similar to that of a recent study (McCartney-

Melstad et al. 2018), which showed that the use of a more limited set of independent 

SNPs (~300-400) was sufficient to recover fine-scale population structure using the non-

spatial method Admixture (Alexander et al. 2009) with results similar to those obtained 

with a larger, more-complete data set (3095 SNPs). Our subsampling work extends this 

finding, indicating that spatially informed methods of population structure may be 

equally efficient with relatively modest sized data sets of adequately informative loci 

(~250-500 loci). We do note that minimum locus thresholds will vary based on the 

intensity of the spatial genetic signal, the number of individuals sampled, and a variety of 

other factors. However, these developing empirical findings provide an optimistic 

outlook on the minimum data size required for the detection of weak landscape-level 

fragmentation. 

Our exploration of the inclusion of missing data yielded similarly optimistic 

results, where, under a wide range of thresholds, missing genotypes did not substantially 

alter our spatial landscape genomic findings. Using stringent missing genotype 

thresholds, which also lowered the number of SNPs in the data, actually decreased the 

spatial signal. Conversely, allowing for more missing data increased the signal of 

population structure in our data, with a plateau in the level of significance (sPCA) and 
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amount of spatial variation explained (MEMGENE). The effect of missing data in 

population and evolutionary studies has seen mixed results. Simulation-based results 

have indicated that missing genotypes in RADseq data can result in substantial biases in a 

range of population genetic summary statistics, including FST (Arnold et al. 2013). In 

contrast, the use of more liberal missing data thresholds in RADseq-based phylogenetic 

studies has provided opportunities to recover phylogenetic patterns not detected using 

more stringent thresholds (Wagner et al. 2013, Leaché et al. 2015, Eaton et al. 2017). 

This may be due to a bias whereby loci with higher mutation rates, but likely to contain 

population or phylogenetic information, are eliminated by stringent missing thresholds 

(Huang and Knowles 2014); however, this may also fail to remove loci with high error 

rates. The effect of missing data in landscape genomic studies has yet to be thoroughly 

explored, and we suggest based on our results that some spatially informed analyses may 

be robust to the recovery of patterns of weak population structure despite the inclusion of 

a high level of missing genotypes, but that parameter estimation at this geographic scale 

(e.g., migration rates) may be more strongly influenced. Therefore, when possible, we 

second the recommendation of others (Wagner et al. 2013, O’Leary et al. 2018) for 

researchers to explore the sensitivity of their results across a range of different missing 

data thresholds. 

 

3.5.3 Copperhead landscape genomics and temporal considerations 

Our results further emphasize an association between high-traffic roads and 

genetic differentiation in pit vipers (Clark et al. 2010, DiLeo et al. 2010, DiLeo et al. 

2013, Bushar et al. 2015, Herrmann et al. 2017; but see Weyer et al. 2014). These 
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findings are in addition to field studies that have suggested the outsized role played by 

road mortality in snakes, and herpetofauna more generally (Andrews and Gibbons 2005, 

Row et al. 2007, Shepard et al. 2008). Furthermore, our results suggest that the effects of 

high-traffic roads and associated intense human activity might persist for decades after 

traffic volumes decline, in line with predictions from simulations (Landguth et al. 2010).  

We did not find evidence for a strong influence of surface coal mining on genetic 

connectivity, which was surprising given the widespread nature of surface mining in the 

study area, and the wholesale shifts in vegetation, soils, topography, and fauna that 

characterize the mining and mine reclamation process. However, surface mines are not 

persistent and seamless barriers as highways often are, and effects of mining may be 

more difficult to detect due to the lack of a finely resolved footprint. Furthermore, surface 

mining of coal in Appalachia has a high degree of spatial and temporal variance. Portions 

of mines can exist in various states of reclamation from barren rock to early successional 

forest, and mining activity can cease for months to years as a result of fluctuating coal 

prices or labor disputes, thus providing opportunities for animals to maintain genetic 

connectivity in these novel landscapes. Additionally, the quality of habitat present on 

partially reclaimed, uncompacted, and/or revegetated mines has not been thoroughly 

studied. Regardless, we recommend further research into this generally understudied 

area, as the large scale and radical impacts of this mining practice may well result in 

detectable impacts in populations of other taxa (Wickham et al. 2013). This may be 

especially true for species with shorter generation times, smaller population sizes, and 

more exclusive associations with ridgetop forests (Epps and Keyghobadi 2015, Maigret et 

al. 2019). 



61 
 

We note that the connection between the identified genetic fragmentation and the 

historic highway KY-476 is a largely qualitative assessment, and several specific caveats 

deserve mention. The route of KY-476 corresponds not only to a highway path, but also 

to a swath of comparatively higher historic human population density and also to the 

route of Troublesome Creek, either of which could be factors more important than the 

highway itself. While modeling relative contributions of population density and road 

mortality is beyond the scope of our study, in terms of parallel geomorphology and 

hydrology, the historic highway path does not correspond to any major feature which 

might be expected to seriously reduce movement of copperheads (Figure S5). Other 

waterways dividing our sampling locations, including Lost Creek and Buckhorn Creek, 

are of similar size to Troublesome Creek. Moreover, copperheads and other pit vipers 

regularly cross bodies of water (T. Maigret, unpublished data; Clark et al. 2010), and 

studies have found that even hydropower reservoirs are ineffective barriers to gene flow 

in copperheads and similar species (Oyler-McCance and Parker 2010, Levine et al. 

2016). More generally, a second caveat is that while we intended our sampling to be 

hierarchical in design, the broad scales at which genomic patterns exist in our study area 

means that we are examining a single functional landscape. When possible, landscape-

scale replication would provide a more robust assessment of the effects of current and 

historic landscape features on gene flow in A. contortrix and similar taxa (Short Bull et 

al. 2011), though replication at this scale is usually cost-prohibitive. Moreover, assuming 

we have detected a spatial genomic pattern stemming from historic highway traffic, we 

have not determined the traffic threshold which would produce a noticeable spatial 

genetic pattern, the possibility of any interactions with snake behavior (e.g., scent 
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trailing), or the precise time lag which must pass before these patterns become detectable. 

Other research has suggested that even low amounts of traffic can produce genetic 

differentiation (Clark et al. 2010), and depending on a variety of demographic and 

behavioral characteristics, numerous generations may need to pass before genetic 

differentiation becomes apparent (Landguth et al. 2010, Epps and Keyghobadi 2015). 

Thus, while we may have detected the effect of a historic roadway, we have not 

conclusively ruled out impacts of current roadways, or even low-traffic and unpaved 

county roads not included in our analysis. In a similar manner, our findings regarding the 

spatial genetic implications of surface mines should also be understood tentatively.  

Our study adds to a growing list highlighting the potential for genomic data sets to 

detect weak, recent, or otherwise subtle spatial genetic patterns (Gonzàlez-Serna et al. 

2018, McCartney-Melstad et al. 2018, Murphy et al. 2018, Tan et al. 2018). Considering 

the problems time lags present for conservation planning, the use of SNP data sets and 

spatially informed analyses of genetic diversity will likely become increasingly important 

for placing patterns of population structuring in their proper genomic, temporal, and 

geographic contexts. 
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Table 3.1. List of individual tissue samples used in our analysis, with location 

information, sampling cluster membership, and inclusion status for the final 2,140 SNP 

data set. 

Individual 
Number 

Site 
Number 

Sampling 
Cluster Site Name Lat Long Inclusion 

2 24 b Mule Hol 37.46895 -83.1485 1

3 24 b Mule Hol 37.46895 -83.1485 1

5 25 b Cotton Hol 37.481 -83.1357 1

9 26 b
John 

Carpenter Fk 37.4831 -83.1324 1

10 26 b
John 

Carpenter Fk 37.4831 -83.1324 1

11 27 b White Oak Fk 37.3998 -83.1238 1

12 27 b White Oak Fk 37.3998 -83.1238 1

13 27 b White Oak Fk 37.3998 -83.1238 1

14 27 b White Oak Fk 37.3998 -83.1238 1

15 27 b White Oak Fk 37.3998 -83.1238 1

16 27 b Snag Ridge Fk 37.46438 -83.1191 1

17 27 b Snag Ridge Fk 37.46438 -83.1191 1

20 25 b Cotton Hol 37.481 -83.1357 0

24 24 b Mule Hol 37.46895 -83.1485 0

29 25 b Cotton Hol 37.481 -83.1357 1

34 27 b Old Cove Hol 37.46636 -83.1275 1

35 27 b White Oak Fk 37.3998 -83.1238 0

67 23 b Mart Br 37.45353 -83.1608 1

74 24 b Mule Hol 37.46895 -83.1485 0

75 24 b Mule Hol 37.46895 -83.1485 0

110 28 d Williams Br 37.3998 -83.1539 1

111 20 b Bear Br 37.46429 -83.1922 1

112 20 b Bear Br 37.46429 -83.1922 1

114 21 b
Little 

Buckhorn 37.44639 -83.1898 1

116 22 b
Engineering 

Bottom 37.4538 -83.1613 1

117 34 e Stewart Farm 37.39025 -82.9692 1

118 9 c Clear Fk 37.34391 -83.2884 1

121 28 d Williams Br 37.3998 -83.1539 1

122 34 e Stewart Farm 37.39025 -82.9692 0

124 15 a Hardshell 37.45625 -83.264 1

125 34 e Stewart Farm 37.39025 -82.9692 0
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Table 3.1 (continued). List of individual tissue samples used in our analysis, with location 

information, sampling cluster membership, and inclusion status for the final 2,140 SNP 

data set. 

126 4 a
Leatherwood 

Cr 37.41266 -83.3075 1

127 20 b Bear Br 37.46429 -83.1922 1

128 14 a Barge Cr 37.45656 -83.2826 0

132 2 a
Leatherwood 

Cr 37.43264 -83.3166 0

136 19 d Rowdy 37.40221 -83.2074 1

137 12 c Shinglepin Br 37.29126 -83.2792 0

138 10 c Napier Br 37.31974 -83.3094 1

139 34 e Stewart Farm 37.39025 -82.9692 1

140 14 a Barge Cr 37.45656 -83.2826 1

141 1 a Mill Br 37.44973 -83.3262 1

142 16 a Ganderbill Br 37.43878 -83.2963 1

143 16 a Ganderbill Br 37.43878 -83.2963 1

144 14 a Barge Cr 37.45656 -83.2826 0

146 14 a Barge Cr 37.45656 -83.2826 1

147 7 c Trace Fk 37.36081 -83.2936 1

150 12 c Shinglepin Br 37.29126 -83.2792 1

151 34 e Stewart Farm 37.39025 -82.9692 1

152 34 e Stewart Farm 37.39025 -82.9692 1

153 35 e Terry Br 37.38292 -82.9626 1

155 12 c Shinglepin Br 37.29126 -83.2792 0

156 22 b
Engineering 

Bottom 37.4538 -83.2963 1

157 12 c Shinglepin Br 37.29126 -83.2792 0

158 12 c Shinglepin Br 37.29126 -83.2792 0

159 12 c Shinglepin Br 37.29126 -83.2792 1

160 10 c Napier Br 37.31974 -83.3094 0

161 10 c Napier Br 37.31974 -83.3094 1

162 10 c Napier Br 37.31974 -83.3094 1

163 34 e Stewart Farm 37.39025 -82.9692 1

164 34 e Stewart Farm 37.39025 -82.9692 1

165 35 e Terry Br 37.38292 -82.9626 1

166 10 c Napier Br 37.31974 -83.3094 1

167 14 a Barge Cr 37.45656 -83.2826 0

168 31 d Toms Br 37.37692 -83.1869 1

169 1 a Mill Br 37.44973 -83.3262 0
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Table 3.1 (continued). List of individual tissue samples used in our analysis, with location 

information, sampling cluster membership, and inclusion status for the final 2,140 SNP 

data set. 

170 5 a River Caney 37.40012 -83.3316 1

171 20 b Bear Br 37.46429 -83.1922 1

172 11 c Rocklick Br 37.30327 -83.293 1

174 28 d Williams Br 37.3998 -83.1539 1

175 not listed (c) Spencer Fk 37.3438 -83.3266 0

176 1 a Mill Br 37.44973 -83.3262 0

180 7 c Trace Fk 37.36081 -83.2936 1

181 31 d Toms Br 37.37692 -83.1869 1

182 16 a Ganderbill Br 37.43878 -83.2963 0

183 31 d Toms Br 37.37692 -83.1869 0

184 2 a
Leatherwood 

Cr 37.43155 -83.3167 1

186 12 c Shinglepin Br 37.29126 -83.2792 1

187 35 e Terry Br 37.38292 -82.9626 1

188 33 e Hard Fk 37.39902 -83.0227 1

189 8 c Chavies 37.35668 -83.329 1

190 7 c Trace Fk 37.36081 -83.2936 0

191 7 c Trace Fk 37.36081 -83.2936 1

193 16 a Ganderbill Br 37.43878 -83.2963 1

194 31 d Toms Br 37.37692 -83.1869 0

195 31 d Toms Br 37.37692 -83.1869 0

197 not listed (d) 476 37.42618 -83.2116 0

199 31 d Toms Br 37.37692 -83.1869 0

201 22 b
Engineering 

Bottom 37.4538 -83.2963 0

202 9 c Clear Fk 37.34391 -83.2884 0

203 3 a
Leatherwood 

Cr 37.42997 -83.3152 1

204 1 a Mill Br 37.44973 -83.3262 0

205 9 c Clear Fk 37.34391 -83.2884 1

206 6 a Oatspatch Hol 37.39487 -83.3561 1

207 30 d Rowdy 37.37378 -83.2096 1

208 32 d Hunter Ch 37.35696 -83.1979 1

210 15 a Hardshell 37.45625 -83.264 0

212 15 a Hardshell 37.45625 -83.264 1

213 17 d Rowdy 37.4056 -83.2139 1

214 18 d Rowdy 37.40381 -83.2096 1
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Table 3.1 (continued). List of individual tissue samples used in our analysis, with location 

information, sampling cluster membership, and inclusion status for the final 2,140 SNP 

data set. 

215 15 a Hardshell 37.45625 -83.264 1

216 35 e Terry Br 37.38292 -82.9626 1

217 32 d Hunter Ch 37.35696 -83.1979 1

226 13 c Busy 37.27562 -83.2891 1

227 36 e Soft Shell 37.40261 -83.941 1

228 33 e Hard Fk 37.39902 -83.0227 1

229 33 e Hard Fk 37.39902 -83.0227 1

230 33 e Hard Fk 37.39902 -83.0227 1
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Table 3.2. Landcover reclassification scheme for our ResistanceGA resistance surface. 

NLCD 2011 Class Percent of 
Study Area 

Reclassified Class 

41 Deciduous Forest 60.6%  
1 Unmined land 42 Mixed Forest 0.5% 

43 Evergreen Forest 4.4% 
90 Woody Wetlands 0.004% 

95 Emergent 
Herbaceous Wetlands 

0.005% 

31 Barren Land 
(Rock, Sand, Clay) 

8.4% 2 Minelands 

52 Shrub/Scrub 0.1% 
71 

Grassland/Herbaceous 
17.5% 

21 Developed, Open 4.3% 1 Unmined land1 
22 Developed, Low 

Intensity 
2.0% 

23 Developed, 
Medium Intensity 

0.9% 

24 Developed, High 
Intensity 

0.2% 

81 Pasture/Hay 1.0% 
82 Cultivated Crops 0.3% 
Route of KY State 

Highways 15, 28, 80, 
and 550 

0.5% Current Highways 
(dichotomous raster, 

highway/non-
highway) 

Route of current KY 
476, northernmost 
portion of KY 15 

0.3% Historic Highways 
(dichotomous raster, 

highway/non-
highway) 

1Where portions of these categories overlap with Reclassified Classes 6 and 7 they are 
replaced by the reclassified class designation associated with the highway(s). 
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Table 3.3. Summary statistics for read depths from m = 4, m = 5, and m = 7, each using 

the same locus and individual filtering protocols as described in the text. 

Read 
Depth 

(m) 

Number 
of Loci 
After 

Filtering 

Number of 
Individuals 

after 
Filtering 

HO HE π FIS Ne (95% CI) 

4 2174 77 0.199 0.244 0.245 0.184 640.9 (600.7, 
686.8) 

5 2140 77 0.193 0.240 0.242 0.195 635.8 (595.6, 
681.6) 

7 2039 77 0.204 0.245 0.247 0.168 629.5 (588.0, 
577.1) 
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Table 3.4. Model output from our ResistanceGA least-cost path analyses. A null model of 

no geographic structure and a model of isolation-by-distance outperformed all 

combinations of resistance surfaces based on historic roads, current roads, and surface 

mining. 

Surface k AIC AICc R2m R2c LL ΔAICc Weight
null 1 -10766.7 -10770.6 0 0.7057 5386.35 0 0.563 

distance 2 -10764.8 -10768.6 1.30e-
05 

0.7057 5386.39 2.034 0.204 

new_rds 3 -10764.9 -10766.5 4.17e-
05 

0.7059 5386.44 4.110 0.072 

mines 3 -10764.8 -10766.5 2.23e-
05 

0.7057 5386.42 4.146 0.071 

old_rds 3 -10764.8 -10766.4 1.30e-
05 

0.7057 5386.39 4.210 0.069 

mines. 
+ 

new_rds 

5 -10764.8 -10761.9 1.30e-
05 

0.7057 5386.39 8.758 0.007 

mines. 
+ old_rds 

5 -10764.8 -10761.9 1.30e-
05 

0.7057 5386.39 8.758 0.007 

new_rds. 
+ old_rds 

5 -10764.8 -10761.9 1.30e-
05 

0.7057 5386.39 8.758 0.007 

mines. 
+ 

new_rds. 
+ old_rds 

7 -10764.8 -10757 1.30e-
05 

0.7057 5386.39 13.585 0.001 
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Table 3.5. Minor allele frequencies for each level of subsampling and missing data. 

Number of loci subsets 
(ten replicates each) 

 

Mean minor 
allele frequency 

Minor allele 
frequency range 

among ten replicates 
n = 25 0.181 (0.140, 0.251) 
n=50 0.163 (0.127, 0.193) 
n=100 0.165 (0.144, 0.187) 
n=250 0.165 (0.150, 0.176) 
n=500 0.169 (0.165, 0.182) 
n=1000 0.166 (0.163, 0.169) 

Missing data thresholds 
(a single data set per 

threshold) 

Minor allele frequency 
 

5% 0.059
10% 0.08
25% 0.112
40% 0.124
50% 0.129
75% 0.145
90% 0.161
95% 0.175
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Figure 3.1. Map of our study area and sampling localities superimposed over (A) the 

current and historic highway network, and (B) landcover, including surface coal mines, 

forest, and other non-forest habitat. The number of samples from each site is indicated by 

the size of each circle overlaying each sampling location and refers to samples included in 

our final analysis. For further information regarding sampling site locations and sampling 

cluster arrangement, see Figure S1. 
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Figure 3.2. Results of nonspatial population structure analyses, including (a) ln(K), ΔK, 

and individual assignment plots from Structure for K = 3 and K = 2, and (b) BIC and 

individual assignment plots from DAPC. Letters beneath each individual assignment plot 

correspond to the geographically distinct sampling clusters depicted in Figure S1. 

 

 

 

 

 

 

 

 

 

 

 

 



74 
 

 

 

Figure 3.3. Results of our spatially informed population structure analyses. (a) Results of 

sPCA analyses visualized using interpolated vector scores, showing divergence coinciding 

with the historic highway path (designated in this study as KY-476), but not with landcover 

or current highway infrastructure. (b) Results of MEMGENE analysis, which suggests similar 

patterns of population structure associated with KY-476. Circle color and size represent 

the association and genetic similarity, respectively, along the first MEM variable axis. 
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Figure 3.4. Effects of the number of loci and missing data on (a) sPCA and (b) MEMGENE 

results, and the effects of missing data levels on both sets of results (c). For (a) and (b), 

the left y-axis represents the proportion of results which were identical, similar, or 

unrelated to the results obtained from the full data set depicted in Figure 3. Visualization 
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results from each replicate are available in Figure S6. The right y-axis for (a) represents 

p-values from global (positive autocorrelation) and local (negative autocorrelation) tests 

for structuring. The x-axis of (c) displays the missing data threshold for inclusion, the 

actual missing data prevalence, and the number of loci for each level of analysis. 
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Figure 3.5. Map of study area with sampling locations marked individually (1-36) and by 

sampling cluster membership (a-e). Cluster numbers correspond to Figure 2 assignment 

plots, while sampling location numbers correspond to locations listed in Table S1.    
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Figure 3.6 (previous page). Mantel correlograms for individual genetic differentiation 

versus (a) Euclidean distance, lag of 1 km (b) natural log of Euclidean distance, lag of 

0.5, (c) stream distance, lag of 10 km and (d) natural log of stream distance, lag of 0.5. 

Filled circles represent significant values at α = 0.05. Parts (e) – (h) represent the same 

categories as (a) –(d), only with double the lag distance. Parts (i) – (l) represent lag 

distances with equivalent sample sizes in each class: each class is defined by one-tenth 

quantile boundaries. 
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Figure 3.7. Individual assignment plot resulting from our Structure analyses conducted 

with prior information regarding sampling location (LocPrior). 
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Figure 3.8. Eigenvalue plot (a) and scree plot (b) of local (negative) and global (positive) 

axes obtained from our sPCA analyses. The first global axis, in red, was the only axis 

retained, and displays unique separation from other potential axes in the scree plot 

(labeled as λ1). 
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Figure 3.9. Digital elevation model of study area, with sample points corresponding to 

Figure 1. 
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Figure 3.10. Visualizations of results from each of the ten replicates for each random 

subset of loci, and each level of missing data. Includes (a) interpolated vector scores from 

sPCA, (b) plotted scores from sPCA, and (c) plotted MEM scores for significant results. 

 

 

 

 

 



84 
 

 

Figure 3.10 (continued). Visualizations of results from each of the ten replicates for each 

random subset of loci, and each level of missing data. Includes (a) interpolated vector 

scores from sPCA, (b) plotted scores from sPCA, and (c) plotted MEM scores for 

significant results. 
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Figure 3.10 (continued). Visualizations of results from each of the ten replicates for each 

random subset of loci, and each level of missing data. Includes (a) interpolated vector 

scores from sPCA, (b) plotted scores from sPCA, and (c) plotted MEM scores for 

significant results. 
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CHAPTER 4: 

SHIFTING ENERGY POLICY PRIORITIES REGULATE IMPACTS OF COAL 
MINING ON EARTH’S TOPOGRAPHY 

4.1 Abstract 

Long a primary source of energy, coal will continue to be a major fuel for 

electricity generation in developing and developed countries alike (IEA 2018, Normile 

2018). However, as surface mining methods have increased in popularity, coal extraction 

has radically altered the topography of many coal-producing regions worldwide, with far-

reaching consequences for terrestrial and freshwater ecosystems (Palmer et al. 2010, 

Wickham et al. 2013, Ross et al. 2016). Advances in geospatial technology now allow 

researchers to create accurate time-series data sets of land use change, permitting 

longitudinal analyses of the landscape-level effects of resource extraction (Vierling et al. 

2008, Pericak et al. 2018); yet the extent to which regulatory policies can mitigate the 

environmental consequences of coal extractive activities, including methods known as 

“mountaintop removal” mining, remains unclear.  Here we used historical topographic 

maps and current three dimensional LiDAR imagery to show evidence for an abrupt shift 

in the topographic patterns of surface coal mining across a major eastern US coalfield, 

which followed directly after a 2010 realignment of federal policies imposing stricter 

regulation of the filling of stream valleys with mining spoil. While mining impacts on 

stream valleys showed a substantial decline since 2010, our data suggest an unintended 

consequence of this policy shift may be that mining has become more concentrated in 

ridgetops. Furthermore, while the new policy has caused stream valleys to be restored to 

elevations more similar to pre-mining elevations, patterns of elevation loss for ridgetops 

continue unabated. Our results are evidence for the efficacy of federal policies aimed at 
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protecting aquatic ecosystems from surface mining, but also their inadequacy towards 

preserving terrestrial ecosystem biodiversity. We recommend that LiDAR-derived 

elevation data continue to be gathered to investigate the future impacts of surface mining 

as energy and environmental policies change with the political winds in the US and 

elsewhere. 

 

4.2 Main Text 

 

Coal was a crucial source of energy for the industrialization of developed nations 

throughout the 19th and 20th centuries, and coal is projected to remain a dominant fuel 

for electricity generation in developing countries in the 21st century (Chabukdhara and 

Singh 2016, IEA 2018, Zeng et al. 2018, Tongia and Gross 2019). While underground 

coal mining methods remain in use, surface coal mining has become increasingly 

adopted, both due to improvements in surface mining technology and because surface 

mining can extract a higher proportion of coal than underground mining. In regions 

where mining takes place, the economic benefits of the coal industry for local 

communities can be transformative, catapulting rural hinterlands into wealth and political 

influence. For example, surface coal mining has recently helped propel the economy of 

Ordos City, in Inner Mongolia, China, from among the poorest to among the wealthiest 

cities in China, with a GDP per capita rivaling that of Hong Kong and Macau (Zeng et al. 

2018). However, the drawbacks of surface coal mining operations are also noteworthy, as 

this practice has been implicated as the cause of numerous environmental problems 

ranging from water and air pollution to deforestation and landscape homogenization 
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(Wickham et al. 2007, Palmer et al. 2010, Lindberg et al. 2011, Maigret et al. 2019). This 

is especially true in mountainous terrain, where mining spoil is most cost-effectively 

disposed of by the filling of adjacent stream valleys in a practice often described as 

“mountaintop removal” mining (Palmer et al. 2010). Burying freshwater streams under 

large amounts of mining spoil not only destroys the streams which are buried, but can 

increase pollutants downstream of valley fills, and numerous studies have documented 

significant negative consequences for aquatic life across multiple trophic levels (Pond et 

al. 2008, Lindberg et al. 2011, Muncy et al. 2014).  

To mitigate these negative externalities, many governments have sought to 

implement statutes regulating surface coal mining operations. In the United States, where 

for decades most coal has been produced from surface mines, surface mining is generally 

regulated at the federal level by two mechanisms: the Surface Mining Control and 

Reclamation Act (SMCRA), enforced by the Office of Surface Mining (OSM), and the 

Clean Water Act (CWA), enforced by the Army Corps of Engineers (ACE) in tandem 

with the Environmental Protection Agency (EPA). While SMCRA requires ‘approximate 

original contours’ of mined land to be restored, variances from this requirement are 

frequently granted by OSM because restoration of steep-relief topography with 

fragmented rock is often impossible, and strict enforcement of this rule would effectively 

prohibit surface mining in rugged terrain (Copeland 2015). Federal permits granted by 

ACE are required for the dumping of spoil into stream valleys (“valley fills”) and are thus 

mandated for most large-scale surface mining operations. Although for decades these 

stream fill permit applications were typically assessed without any additional scrutiny by 

EPA, in 2009 the Obama administration directed EPA and ACE to more strictly oversee 
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the granting of permits for stream valley fills associated with surface coal mining in 

Appalachia, a major coal-producing region of the eastern US, to combat negative 

consequences of surface mining for aquatic ecosystems (US EPA 2009, 2011). This 

resulted in more stringent reclamation requirements for valley fills, and in many cases 

permits which would have passed scrutiny under past administrations were no longer 

granted or were delayed to the point where the potential mining operations were 

unprofitable (Copeland 2015).  

The primary motivation for this shift in federal policy was the concern regarding 

the impacts of surface coal mining on freshwater ecosystems (US EPA 2009), but the 

effects on terrestrial ecosystems are comparably severe despite being generally 

overlooked by researchers and policymakers (Wickham et al. 2013). Restoration of 

surface mining sites is challenging, as mining reclamation often produces landscapes 

where reforestation is impeded due to soil compaction, herbivory, and competition from 

invasive species (Zipper et al. 2011, Oliphant et al. 2017, Hackworth et al. 2018). The 

radical landscape-scale homogenization of topography, which characterizes many surface 

mining operations, is likely to produce less diverse landscapes by eliminating 

microhabitats associated with topographic diversity (Wickham et al. 2013, Maigret et al. 

2019). Thus while the motivations for the circa 2010 policy shift were based on research 

into the surface mining impacts on freshwater ecosystems, the impacts on terrestrial 

ecosystems are considerable, but have not been at the forefront of policy formulation. 

Recently, three-dimensional LiDAR-based remote sensing technologies have 

allowed researchers to examine the influence of surface mining on the geomorphologic 

trajectories of coal-producing landscapes, and new uses of long time series of Landsat 
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imagery have allowed for accurate estimates of mining activity across time (Vierling et 

al. 2008, Ross et al. 2016, Pericak et al. 2018, Yu et al. 2018, Maigret et al. 2019). We 

used geospatial data of active mining extent derived from Landsat imagery to quantify 

newly mined land in Appalachian Kentucky, a major coal-producing region of the eastern 

US, on an annual basis for the period of 1986-2018. To explore the topographic trends of 

surface coal mining across time in light of shifting federal policy priorities, we used 

historic pre-mining elevation data to categorize the land into five landform categories 

based on topographic position index (TPI), and tested for change points and outliers in 

the proportion of newly mined land assigned to different topographic positions during 

each year (see Methods). We considered the possibility that factors alongside policy can 

affect topographic trends of surface mining in our study area and used an autoregressive 

modeling approach to estimate the importance of policy among a set of alternative 

variables associated with mining activity. By making comparisons to post-mining Lidar-

derived elevation data, we found patterns in how mined land transitioned between 

different landforms across three decades of mining and how raw elevation of landforms 

were transformed as mining practices adapted to different regulatory conditions. 

Our longitudinal analyses revealed a substantial shift in the topographic effects of 

surface mining coinciding with the circa 2010 shift in federal policy, which made permits 

for the filling of streams more difficult to acquire. While trends in the topographic effects 

of surface mining held relatively constant from 1986-2004, a gradual decline beginning 

in 2005 slowly reduced the proportion of newly mined land that consisted of stream 

valleys. This gradual trend was hastened in 2010 by a sudden precipitous drop in the 

proportion of newly mined land consisting of stream valleys (Figure 1). Commensurately, 
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the proportion of mined land positioned in upper slope areas increased gradually from 

2005 until plateauing in 2010, while land with very high topographic positions (i.e., 

ridgetops) experienced a steep increase in proportional new mining beginning in 2010. 

Beginning in 2016, this trend sharply reversed. Stream bottom, lower slope, and middle 

slope land became mined more frequently, and upper slope and ridgetop positions less 

frequently. However, the total amount of land newly mined annually from 2015-2018 

was only about half that during the period from 2010-2015, and about a quarter of a 

typical year before 2010. 

We detected a significant level-shift outlier in 2011, whereby the percentage of 

total land mined that fell into the lowest TPI category (“stream bottom”) significantly 

declined (Figure 2). This pattern was found across a panel incorporating two distinct TPI 

classification schemes and three spatial scales of analysis (see Methods; Figure S3). 

Along similar lines, our calculations of topographic transition show that during and 

before 2010, land with very low topographic position (“stream bottom”) frequently 

transitioned to land with middle topographic position, consistent with valley-filling 

practices (Figure 3). This trend, however, shifts abruptly after 2010, contemporaneous 

with a trend of land with very high (“ridgetops”) and very low topographic position 

remaining in its original classification more frequently. We were unable to assess 

topographic transitioning after 2015 due to a lack of recent elevation data; the last year of 

LiDAR-derived data available was 2017. 

Contemporaneously, both the amount of coal produced from Appalachian surface 

mines and the amount of land mined decreased precipitously beginning in the late 2000s 

(Figure 1); thus the effects of the policy may be diluted among the general decline in 



92 
 

mining due to economic and efficiency factors such as the price of coal, declining cost-

effectiveness of mining, and declining reliance on coal for electricity generation in the 

US. Yet when modeling the annual proportion of newly mined land that fell into the 

lowest and the highest topographic class, both generalized least-squares (GLS) models 

and autoregressive models with order 1 (AR-1) designs were the best fit when the 

variable representing policy was integrated as a predictor (Table S1). For modeling the 

trend in the proportion of mined land consisting of stream bottom, the best fit GLS and 

AR-1 models included policy and coal price; the best-fit AR-1 model contained policy 

alone (GLS AICc = 124.9, AR-1 AICc = 122.5). For ridgetops, the GLS model included 

policy and coal mining efficiency in the best fit model; the best-fit AR-1 model included 

policy alone (GLS AICc = 153.7, AR-1 AICc = 148.7).. Out of the top five models in 

each of the four model categories (GLS and AR-1 for stream bottom and ridgetop), only 

three of the top twenty models weighted by AICc did not include policy as a predictor, all 

for ridgetop proportion. Moreover, our 32-year data set includes several boom-bust 

cycles, where the amount of land mined fluctuated substantially, and no topographic 

shifts like those seen in 2010-2018 are visible during previous cycles (Figure 1, Figure 

S2). 

Our analysis not only demonstrated the efficacy of the Obama’s environmental 

policy in protecting stream bottoms, but also uncovered a potential unintended 

consequence of this policy shift. As permits for valley fills became less common, the 

proportion of mined land which would have been stream bottoms was not redistributed 

proportionally to other topographic classes; rather, ridgetops and upper slopes become a 

greater proportion of the total land affected by mining (see example, Figure 4). In 
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addition, we found that while changes in mine reclamation post-2010 have resulted in 

stream bottoms possessing post-mining raw elevations more similar to pre-mining 

elevations, ridgetops experienced elevation losses of a nearly identical nature both before 

and after 2010 (Figure 3). Between 2011-2015, land that transitioned from stream bottom 

to middle slope and lower slope positions was about 12.4 m and 5.0 m lower, 

respectively, than the pre-2010 average. In contrast, ridgetop that transitioned to middle 

slope and upper slope between 2011 and 2015  was only about 0.7 m higher and 0.4 m 

lower, respectively, than the pre-2010 average.  This suggests that companies operating 

large mines may be adapting to the new regulatory environment by depositing spoil atop 

land flattened by mining that occurred years or decades beforehand, allowing for 

continued mining of ridgetops without the need for valley fills; however, the extent of 

this practice has not been investigated. The results did show that post-2010, ridgetops are 

more likely than in previous years to maintain their original topographic position, and 

since less land is being mined overall, gross impacts were lower from 2011-2015 than in 

previous years. Yet due to the inertia of this policy shift, if new markets or higher 

domestic demand for coal causes a return of surface mining at the scale of the 1990s or 

2000s, the potential now exists for even greater disproportionate losses of ridgetops than 

the disparity which preceded the policy shift (Figure 1). The topographic distribution of 

mining permits for unmined land also suggests a disproportionate emphasis on ridgetops 

in the years to come (Maigret et al. 2019). Meanwhile, data from 2016-2018 appear to 

show a much lower proportion of newly mined land consisting of ridgetop. This may be 

due to new mining along the contours of middle and lower topographic positions, which 

now constitutes a larger proportion of total mined land than in years past. Contour mining 
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typically does not result in valley fills (Figure S3), though new elevation data will need to 

be collected to determine the extent to which elevation change is occurring in mined 

stream bottoms and lower slopes post-2015. 

Our findings highlight both the long-term and annually temporal trend of 

regulatory mechanisms for mitigating portions of the environmental damage caused by an 

increasingly popular yet highly controversial method of coal extraction. While future 

work seeking to predict topographic influences of mining could benefit from big data 

encompassing multiple geographically distinct regions and the implementation of more 

sophisticated time-series analyses, our results offer a starting point for understanding the 

crucial effects policy formulations can have on the topographic trajectory of coalfield 

regions. Although consequences for ridgetops and other topographic positions remain 

mostly unaddressed, future regulations formulated by OSM or EPA to prioritize the 

restoration of original topographic contours could potentially mitigate the unintended 

consequence of exacerbating the disproportionate mining of ridgetops.  Despite our 

concerns regarding terrestrial ecosystems, protecting aquatic ecosystems at such a large 

scale in a major American coalfield is a substantial step towards controlling the 

environmental impacts of surface coal extraction. Given the ability to detect these 

topographic patterns afforded by new technologies, we recommend the continued 

gathering of LiDAR imagery from American coalfields to facilitate future research as the 

policy priorities of the Trump administration continue to play out. In coal-producing 

regions across the globe where surface mining is growing in popularity, we anticipate that 

increasingly informative geospatial data sets will continue to inform policymaking and 

help to optimize tradeoffs between economics, energy, and environmental outcomes. 
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4.3 Methods 

We focused our attention on the Cumberland Plateau (CP) of eastern Kentucky, a 

14,020 km2 physiographic province representing the vast majority of the eastern 

Kentucky coalfield, which is itself an important component of the more extensive 

Appalachian coalfield in the eastern United States. The CP is best characterized as a 

highly-dissected plateau, containing steep-sided low hills, narrow ridgetops, and narrow 

low-order stream valleys. Elevations rise gradually from 160m in the northwest to a peak 

of 995m at Pine Mountain, a thrust-fault mountain that marks the southeastern boundary 

of the region. The CP is known for its mixed-mesophytic deciduous forests, which are 

among the most diverse temperate forests on Earth (Braun 1950, Ricketts et al. 1999). 

Topographic gradients due to the tightly-packed physiography promote high beta 

diversity, and many flora and fauna are associated with specific microhabitats and 

microclimates (Whittaker 1956). 

We utilized three sources of data for our analyses: (1) a filtered subset of the 

annual GIS shapefiles of mined land throughout Appalachia generated by Pericak et al. 

(2018), (2) a pre-mining digital elevation (DEM) model of the CP based on circa 1970 

USGS topographic maps obtained from the Kentucky Division of Geographic 

Information, and (3) a post-mining DEM of a portion of the CP based on LiDAR data 

collected in 2017 by the Kentucky Division of Geographic Information. The Pericak et al. 

(2018) data set was constructed from annual Landsat imagery, and identified minelands 

using a formula based on normalized difference vegetation index (NDVI). To reduce 

potential Type-I errors, we filtered the Pericak et al. (2018) shapefiles of minelands using 

a shapefile of past and present surface mining permits obtained from the KY Division of 
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Mine Permits. Since we were interested in newly mined land, and not the mining of land 

which had already been mined previously or was mined repeatedly across multiple years, 

we clipped each permit-filtered shapefile for each year by a combined shapefile of all 

previous years in ArcMap.  

Our pre-mining DEM was based on USGS topographic maps constructed from 

approximately 1950-1980, before most surface mining was conducted. Any portions of 

the pre-mining DEM that showed signs of surface mining were removed from the 

analysis by drawing polygons around areas where mining signatures were found; and the 

land that appeared to have been mined before 1980 totaled 193.6 km2, about 1.4% of the 

CP. For our analyses of topographic transition, we relied on a post-mining DEM based on 

LiDAR data gathered in 2017, which covered 5041.3 km2, or approximately 36.5% of the 

study area (Figure S1).  

We converted the DEMs to topographic position index (TPI), a standardized 

measure of elevation based on the difference between a local elevation and a regional 

average, which provides a more reliable identification of ridgetops and valleys than is 

possible by using elevation alone (Weiss 2001). Due to potential influences of spatial 

scale on geomorphological classification, we used three different geographic window 

sizes to generate TPI: 91.4m, 457.2m, and 914.4m (corresponding to 10, 50, and 100 30-

ft raster cells). We next classified TPI from the historical DEM layer as one of five 

topographic position categories (stream bottom, lower slope, middle slope, upper slope, 

and ridgetop) using one of two classification schemes. The first scheme classified land 

into discrete topographic positions based on standard deviations of TPI, while the second 

scheme classified land based on even one-fifth quantiles of TPI. By clipping our shapefile 
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of newly mined land by our TPI classification raster in ArcMap, we were able to estimate 

the proportion of each topographic class which was mined each year from 1986-2015. 

Using an identical TPI and classification protocol for the post-mining DEM, we were 

able to identify what topographic class this land transitioned to after mining, and how this 

transition process has changed across three decades.  

 To test for differences in the topographic composition of surface mines across 

time, we used change point detection methods in the R statistical packages changepoint 

(Killick and Eckley 2012) and tsoutliers (Lopez-de-Lacalle 2016). These packages 

allowed us to identify the year at which the proportion of different topographic classes 

changed within our annual newly mined land data set, and identify the magnitude, nature, 

and temporal location of any outliers in our data.  

Shifting policy was only one factor that could explain long-term topographic 

trends in surface coal mining throughout our study area. To determine the extent to which 

policy may have been a contributing factor, we used both a generalized least squares 

(GLS) approach and an auto-regressive model with order 1 (AR-1) to estimate which 

factors were most important in determining the proportion of newly mined land in the 

lowest and highest topographic classes on an annual basis between 1986 and 2015. We 

selected independent variables thought to be important indicators of pressures affecting 

the coal industry, these included: (a) policy coded as 0-1 categorical variable, with values 

of 1 beginning in 2011, (b) annual inflation-adjusted per-ton coal prices for eastern 

Kentucky surface-mined coal, (c) the annual percent of US electricity generation from 

coal, and (d) an estimate of the efficiency of coal mining, consisting of a ratio of total 

annual land disturbed by surface mining (m2) divided by tons of surface-mined coal 



98 
 

produced from eastern Kentucky surface mines for each year between 1986 and 2015. 

Our data for coal prices came from the Kentucky Geological Survey (KGS) database of 

coal production (KGS 2019), and our comparative energy data were derived from data 

published by the US Energy Information Administration (US EIA 2019). Our estimate of 

land disturbed per ton of coal produced came from our filtered Pericak et al. (2018) 

shapefiles, using the annual total amount of land being mined instead of newly mined 

land used elsewhere in our analyses and using eastern Kentucky surface coal production 

data from KGS. Model selection for both the GLS and AR frameworks relied on 

Akaike’s information criterion (AIC) to identify the best-fit model among all possible 

modeling configurations. 
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Table 4.1. Model results and AICc values for each of the four models used to estimate the 

effects of four independent variables on topographic trends in surface coal mining in the 

study area from 1986-2015. 

 

Model 1: Stream-bottom, generalized least-squares, lm 

Global model call: gls(model = str ~ energ + policy + price + effic) 

Model Intrcpt effic energ policy price df loglik AICc delta weigh 

13 21.33   -5.229 -0.115 4 -57.76 124.9 0 0.904 

15 18.11  0.0615 -4.241 -0.114 5 -59.13 130.5 5.52 0.057 

14 21.33 0.0005  -5.236 -0.115 5 -59.86 131.9 6.99 0.027 

16 8.49 0.134 0.2136 -3.878 -0.094 6 -59.51 134.2 9.29 0.009 

8 -9.10 0.322 0.443 -4.303  5 -62.89 138 13.06 0.001 

5 15.58   -7.319  3 -65.88 138.6 13.65 0.001 

11 8.98  0.252  -0.131 4 -65.31 140 15.1 0 

12 -3.41 0.187 0.443  -0.100 5 -64.97 142.2 17.21 0 

7 11.09  0.087 -5.880  4 -66.90 143.2 18.28 0 

6 15.12 0.0748  -8.312  4 -67.04 143.5 18.56 0 

4 -23.81 0.397 0.718   4 -67.94 145.3 20.36 0 

10 25.36 -0.192   -0.180 4 -70.52 150.5 25.53 0 

3 -3.86  0.374   3 -73.55 153.9 28.97 0 

9 25.17    -0.209 3 -75.94 158.7 33.75 0 

2 16.44 -0.282    3 -83.77 174.4 49.41 0 

1 13.80     2 -88.80 182 57.05 0 

Model 2: Stream-bottom, AR(1) 

Global model call: gls(model = str ~ energ + policy + price + effic, correlation = corAR1(form = ~year)) 

Model Intrcpt effic energ policy price df loglik AICc delta weigh 

13 21.33   -5.086 -0.115 5 -55.15 122.5 0 0.695 

5 15.30   -6.192   -57.82 125.1 2.56 0.193 
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Table 4.1 (continued). Model results and AICc values for each of the four models used to 

estimate the effects of four independent variables on topographic trends in surface coal 

mining in the study area from 1986-2015. 

 

15 18.71  0.0483 -4.422 -0.111  -56.59 128.4 5.89 0.037 

14 21.14 0.015  -5.264 -0.113  -57.05 129.3 6.82 0.023 

7 10.11  0.105 -5.061   -58.66 129.5 7.03 0.021 

6 14.57 0.0758  -6.385   -59.06 130.3 7.82 0.014 

8 -0.97 0.205 0.296 -4.667   -57.76 130.7 8.23 0.011 

16 10.76 0.112 0.170 -4.238 -0.092  -57.32 133.1 10.61 0.003 

9 22.02    -0.151  -63.54 136.5 13.99 0.001 

11 10.01  0.230  -0.129  -62.15 136.5 14.01 0.001 

1 13.08      -65.01 136.8 14.33 0.001 

3 -0.077  0.294    -64.17 137.8 15.24 0 

4 -12.13 0.232 0.502    -63.06 138.3 15.83 0 

2 9.66 0.157     -65.29 140 17.5 0 

12 0.54 0.138 0.373  -0.104  -62.65 140.5 18.02 0 

10 23.77 -0.072   -0.169  -64.98 142.2 19.66 0 

Model 3: Ridgetop, generalized least-squares 

Global model call: gls(model = rid ~ energ + policy + price + effic) 

Model Intrcpt effic energ policy price df loglik AICc delta weigh 

6 30.55 -0.217  4.069  4 -72.14 153.7 0 0.415 

5 29.22   1.182  3 -74.12 155.1 1.35 0.211 

1 29.51     2 -75.74 155.9 2.17 0.14 

8 41.96 -0.334 -0.209 2.181  5 -72.26 156.7 3.02 0.092 

7 21.02  0.160 3.816  4 -74.43 158.3 4.57 0.042 

4 49.42 -0.372 -0.348   4 -74.46 158.3 4.63 0.041 

14 32.55 -0.241  5.058 -0.0371 5 -74.02 160.3 6.54 0.016 
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Table 4.1 (continued). Model results and AICc values for each of the four models used to 

estimate the effects of four independent variables on topographic trends in surface coal 

mining in the study area from 1986-2015. 

 

16 56.43 -0.489 -0.397 2.531 -0.0771 6 -72.69 160.6 6.89 0.013 

2 29.91 -0.0427    3 -77.41 161.6 7.93 0.008 

3 30.73  -0.0257   3 -77.62 162.1 8.36 0.006 

13 29.56   1.304 -0.0067 4 -76.45 162.3 8.62 0.006 

12 64.19 -0.524 -0.547  -0.0727 5 -75.10 162.4 8.71 0.005 

9 28.60    0.0167 3 -78.14 163.1 9.4 0.004 

15 21.21  0.159 3.862 -0.0032 5 -76.78 165.8 12.07 0.001 

10 28.66 -0.0553   0.0252 4 -79.61 168.7 14.94 0 

11 29.53  -0.0144  0.0122 4 -79.93 169.3 15.57 0 

Model 4: Ridgetop, AR(1) 

Global model call: gls(model = rid ~ energ + policy + price + effic, correlation = corAR1(form = ~year)) 

Model Intrcpt effic energ policy price df loglik AICc delta weigh 

5 28.90   1.373  4 -69.61 148.7 0 0.48 

1 29.29     3 -71.35 149.5 0.87 0.311 

6 30.03 -0.146  2.913  5 -70.15 152.5 3.87 0.069 

7 23.73  0.103 2.72  5 -70.40 153 4.36 0.054 

2 29.70 -0.0444    4 -72.77 155 6.31 0.02 

3 29.95  -0.0152   4 -72.82 155.1 6.41 0.02 

13 29.15   1.50 -0.0057 5 -71.54 155.3 6.65 0.017 

9 28.50    0.0137 4 -73.40 156.2 7.56 0.011 

8 33.56 -0.186 -0.0642 2.434  6 -70.86 156.9 8.28 0.008 

4 40.63 -0.210 -0.197   5 -73.16 158.5 9.89 0.003 

14 31.33 -0.152  3.355 -0.0251 6 -72.09 159.4 10.76 0.002 
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Table 4.1 (continued). Model results and AICc values for each of the four models used to 

estimate the effects of four independent variables on topographic trends in surface coal 

mining in the study area from 1986-2015. 

15 23.74  0.0991 2.628 0.0029 6 -72.31 159.9 11.2 0.002 

11 28.67  -0.0047  0.0136 5 -74.69 161.6 12.94 0.001 

10 28.82 -0.0453   0.0157 5 -74.77 161.8 13.1 0.001 

16 46.19 -0.337 -0.2349 2.706 -0.0577 7 -72.43 163.3 14.67 0 

12 51.84 -0.338 -0.3524  -0.0478 6 -74.87 165 16.31 0 
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 Figure 4.1. Topographic position of newly surface mined land in the Cumberland Plateau 

of Kentucky, 1986-2015, based on TPI classifications conducted using the five landform 

class protocol with a 457.2 m window. 
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Figure 4.2. Outlier detection results for the 457.2 m five class TPI classification scheme 

for the topographically lowest TPI class (“stream bottom”). Above, red dot indicates 

outlier, gray line indicates actual percent of stream bottom mind while blue line indicates 

hypothesized trend if the outlier was not present; below, magnitude of 2011 outlier. 
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Figure 4.3. (a) Heatmap of topographic transitioning, 1986-2009 and 2010-2015, for 94.1 

m five-class SPL TPI classification scheme. Numbers refer to the percent of land from each 

class in the right column that transitioned to each class in the top row; for example, an 

average of 48.13% of stream bottom land mined between 1986 and 2009 transitioned to a 

middle slope topographic position after mining, while from 2010 to 2015 this number 

declines to 33.29% (b) Heatmap of raw elevation changes (m above sea level) from 1986-

2009 and 2010-2015, for each topographic class transition as defined in (a). 
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Figure 4.4. Patterns of surface mining at a mine near Lower Bad Creek in Leslie County, 

Kentucky, 2001-2015, demonstrating pre-2011 valley fills and post-2010 avoidance of 

valley filling despite continued ridgetop mining. At center, a digital elevation model 

(DEM) of the site with elevation changes after mining before and after 2010 (areas mined 

after 2010 are marked by a blue boundary.); above, the pre-mining and post-mining DEMs. 

Below, a density plot of the elevation changes shows the lack of positive elevation values 

(i.e., “valley fills”) after strict federal regulations were put in place in 2010. 
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Figure 4.5. Portion of the Cumberland Plateau covered by LiDAR data gathered by the 

Kentucky Division of Geographic Information in 2017; surface mines included in our 

topographic transition analyses are also shown. 
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Figure 4.6. Topographic position of newly surface mined land in the Cumberland Plateau 

of Kentucky, 1986-2015, for both TPI classification schemes and all three spatial scales. 
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CHAPTER 5: 

IMPROVING MODELS OF THERMOREGULATORY BEHAVIOR IN TIMBER 
RATTLESNAKES (CROTALUS HORRIDUS) USING AIRBORNE LIDAR 

IMAGERY 

 

5.1 Abstract 

The ability of organisms to thermoregulate efficiently is key to surviving in a 

changing environment. Especially for ectotherms, the use of microhabitats to maintain 

homeostasis is dynamic and occurs in three dimensions and at a variety of spatial and 

temporal scales. Newly developed remote-sensing imagery may improve our ability to 

understand the drivers of thermoregulatory behavior in ectotherms, especially in complex 

environments such as mature deciduous forests. We used a combination of high-

resolution (0.61 m) Lidar imagery and temperature-sensitive radiotelemetry data to model 

thermoregulatory movements in the timber rattlesnake, Crotalus horridus, in a mature 

mixed-mesophytic forest of southeastern Kentucky, USA. We collected 516 location-

specific temperatures from 13 individuals across four years, and using a centrally-located 

weather station, we calculated the time-specific difference between air and internal body 

temperatures. Using this difference as a response variable, we identified key predictors of 

thermoregulation using linear mixed models. Temporal factors such as time of day and 

day of year strongly influenced thermoregulation, as did air temperatures. However, 

vegetation height was strongly negatively associated with the difference between body 

and air temperatures, and canopy closure was weakly associated. Topographic factors 

were less important, though aspect was slightly influential. Both anthropogenic and 

natural features were used for basking, including features associated with recent timber 

harvesting. Vegetation height was most predictive when averaged over a 25m wide 
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circular buffer centered on the snake’s location, suggesting that incorporating hill slope 

and sun angle effects might improve our model. Overall, we found that local features and 

microhabitats play an important role in thermoregulation in C. horridus, and our results 

underscore other research highlighting the important thermal buffering capacity present 

in forest ecosystems in light of potential consequences of climate change. 

 

5.2 Introduction 

Understanding the relationship between organisms and their thermal environment 

is becoming increasingly important as global climate change continues to threaten 

ecosystems. While much attention has been paid to global and regional predictive 

modeling and data analysis, downscaling predicted climate conditions to scales relevant 

to the experience of individual organisms has been comparatively overlooked 

(Dobrowski 2011, Suggitt et al. 2011, Potter et al. 2013). Shifts in temperature regimes 

resulting from anthropogenic climate change will ultimately be filtered by local 

thresholds related to topography, surface and subsurface geology, and vegetation, among 

other fine-scale variables (Daly 2006, Suggitt et al. 2011). However, while downscaling 

these effects can help translate global climate changes into local consequences, 

predicting the impacts of shifting thermal regimes on surface-dwelling organisms is 

challenging, especially across heterogeneous landscapes and habitats such as high-relief 

terrain or dense forest (Sunday et al. 2014, Oyler et al. 2015).  

Fine-scale thermal habitat characteristics can be especially consequential for 

ectothermic organisms, which must rely on individual-level optimization of the costs and 

benefits of thermally heterogeneous environments for effective thermoregulation (Huey 
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and Slatkin 1976, Stevenson et al. 1985, Rice et al. 2006). As global temperature 

averages rise, many ectothermic taxa may see local temperature regimes approach 

critical thresholds, and opportunities for mating and foraging may be lost by avoiding 

extreme heat (Sinervo et al. 2010). Even moreso than changes in temperature averages, 

the effect of temperature fluctuations and especially the range of temperatures 

experienced by ectotherms on a daily basis can have important consequences for rate 

processes such as development, growth, and reproduction (Clusella-Trullas et al. 2011, 

Paaijmans et al. 2013). However, the use of microhabitats, especially in three-

dimensionally complex ecosystems such as forests, provides a broad spectrum of thermal 

environments which might accommodate a diversity of species with a plethora of 

optimal temperature ranges, providing a buffer against both fluctuations and higher 

average temperatures in particular (Scheffers et al. 2014, Agha et al. 2018). Predicting 

the effects of altered temperature patterns originating from global climate change for a 

scenario involving a specific ectotherm therefore depends both on temporally 

informative temperature data and accurate, high-density three-dimensional data sets. 

Technological advances now permit researchers to more closely examine the 

influence of fine-scale habitat variables on thermoregulatory behavior of animals, 

including ectotherms such as reptiles and amphibians. On top of the greater availability, 

resolution, and geographic coverage of geospatial data sets in general, three-dimensional 

LiDAR data sets have allowed for more accurate models of thermal behavior for a wide 

variety of species in situ (Vierling et al. 2008). Additionally, the development of 

miniaturized temperature-sensitive radiotransmitters capable of being attached to or 

implanted inside herpetofauna has permitted the widespread collecting of body 
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temperature data associated with a specific time and geographic location. These advances 

hold promise for augmenting our understanding of the relationship between ectothermic 

organisms and their environments, including forest-dwelling fauna which rely on 

microclimates for thermoregulation (Davies and Asner 2014, Algar et al. 2018). 

We explored the relationship between habitat structure and thermoregulation in 

adult timber rattlesnakes (Crotalus horridus) by modeling the relationship between the 

difference in internal body temperatures (IBT) of adult snakes radiotracked across four 

years and temporally corresponding air temperatures using an array of raw and 

transformed environmental variables gathered from high-resolution LiDAR imagery. Our 

goals were (i) to quantify temporal factors affecting thermoregulatory behavior in 

radiotracked C. horridus, (ii) to test for associations between three-dimensional habitat 

variables and thermoregulation in radiotracked C. horridus, and (iii) to construct a 

parsimonious model which explains differences between C. horridus IBT and air 

temperature as a function of local and landscape-level variables. More broadly, our study 

aims to explore potential uses of high-resolution imagery for quantifying the drivers of 

individual movement and thermoregulatory behavior in ectotherms, and also to 

investigate how fine-scale forest microhabitats are used by organisms to maintain 

homeostasis in thermally unstable environments, especially in light of potential future 

shifts in temperature patterns. 
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5.3 Methods 

5.3.1 Study Site and Focal Species 

We conducted our study in the University of Kentucky’s Robinson Forest (RF), a 

5267 ha research forest located in Breathitt, Knott, and Perry counties, in eastern 

Kentucky, USA. Elevations in RF vary from 243-500 m, and the topography is typical of 

the broader Cumberland Plateau physiographic region in which RF is located; namely, 

the terrain consists mostly of very steep-sided hills and narrow rocky ridgetops heavily 

dissected by tightly-packed, narrow, low-order stream valleys. Vegetative cover consists 

principally of mature second-growth hardwood forests, best characterized as mixed-

mesophytic, with up to 30 co-dominant canopy tree species (Braun 1950, Overstreet 

1984). Stream valleys are characterized by deeper alluvial soil and hemlock, beech, and 

maple forests, while ridgetops generally contain oak, hickory, and pine assemblages with 

thinner soil and frequent exposed sandstone outcrops. Canopy cover across RF averages 

approximately 93%; open areas are generally small and scattered throughout the 

landscape. However, portions which were harvested between 2008 and 2010 averaged 

approximately 63% canopy cover when our geospatial data sets were collected (Staats 

2015; for details of harvests see Witt 2012). Additionally, small portions of RF and 

larger portions of the surrounding land is composed of active and abandoned surface coal 

mines, which display a homogenized and flattened topography, little to no canopy cover, 

and are typically dominated by alien herbaceous vegetation, unpaved roads, and 

abandoned mining infrastructure (Maigret et al. 2019). 

Our study species, the timber rattlesnake (Crotalus horridus), is a large-bodied pit 

viper native to eastern North America. Like most pit vipers, timber rattlesnakes depend 
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on the surrounding environment to maintain homeostasis, and thus are typically reliant 

on insolation and often engage in basking behavior to accomplish this (Brown et al. 

1982, Brown 1993). After emerging from hibernacula, adult timber rattlesnakes move in 

a roughly circular pattern during the late spring, summer, and early fall before ingress 

and overwintering; typically, they return to the same hibernacula each year (Brown 

1993). While movements may be motivated by foraging (Reinert et al. 2011), mate-

seeking (Anderson 2015), or perhaps predator avoidance, thermoregulation is thought to 

be a primary factor in habitat selection (Brown et al. 1982, Brown 1993). Preferences for 

forest clearings and field edges are likely based on access both to prey and thermally 

suitable environments (Brown 1993, Wittenberg 2012). This is especially true in gravid 

females, which often have very reduced home ranges consisting almost entirely of 

basking sites (Gardner-Santana and Beaupre 2009). Yet despite these preferences for 

small clearings exposed to sun, previous research has found that large-scale timber 

harvests did not produce detectable changes in broad behavioral patterns or habitat 

preferences (Reinert et al. 2011a). 

 

5.3.2 Radiotelemetry and Internal Body Temperature Data 

Collection 

 

Between 2014 and 2015, we captured 13 adult C. horridus at RF. Snakes were 

located by carefully examining basking areas, in addition to opportunistic captures by RF 

personnel. All snakes were transported to a local veterinary facility for implantation 

surgery, which generally followed the methods of Reinert and Cundall (1982). We used 
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Advanced Telemetry Systems (ATS, Isanti, MN, USA) models R1535, R1540, and 

R1680 VHF transmitters, with a thermosensitive component which varies the pulse rate 

based on the device’s temperature, allowing for remote measurement of the temperature 

each time the animal is located. Animals were held briefly after surgery to ensure wound 

closure prior to being released at the precise point of capture, upon which tracking began 

immediately. Snakes were tracked continuously until they entered their hibernacula in 

the fall, after which they were immobile until emerging in spring. Snake handling and 

processing were approved under University of Kentucky IACUC Protocol 2012-0954. 

Between 1 April and 1 November each year, we recorded air temperatures for 

each individual snake at each relocation if the individual was at least partly visible. Local 

air temperatures were gathered from a Campbell Scientific CR10X (Campbell Scientific, 

Logan, Utah, USA) data logger associated with a permanent weather station centrally 

located in RF (Figure 1); temperatures were recorded every 15 minutes. Thus, 

temperature data were accessible within 7.5 minutes for each snake location, with the 

exception of a small number of missing air temperatures due to weather station 

technological malfunctions from April 19th 2017 to May 10th 2017; these points were 

not included in our analyses. 

 

5.3.3 Geospatial and Airborne Lidar Data Collection 

 

We utilized a high density (~25 points/m2) airborne lidar dataset collected across 

RF during leaf-on season between May 28-30th, 2013. Data were gathered using a Leica 

ALS60 system, at an average height of 1305 m above ground and an average flight speed 
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of 105 knots. The swath width was 183.0 m with 50% swath overlap, resulting in 

approximately 95% of each swath consisting of a usable central portion (Staats 2015, 

Hamraz et al. 2016). Nominal pulse spacing was <0.2m on average, with a 0.1 m average 

footprint dimeter. Raw lidar returns were processed by the vendor using TerraScan to 

discriminate ground from non-ground points. 

To construct a GIS layer representing estimates of vegetation height, we first 

constructed a digital elevation model (DEM) based on a layer of lidar ground returns 

identified by the vendor. We used the LAS to Raster tool in ArcMap 10.6.1 to create a 

0.61 m resolution DEM raster based on these points, assigning cells based on averages 

and filling voids using natural neighbors. We then calculated vegetation height by 

subtracting the DEM from a layer of the highest lidar points, representing the canopy and 

emergent layer of the forest. To create a layer depicting canopy cover, we discriminated 

ground and above-ground points from our entire lidar data set and created 0.61 m 

resolution rasters of the total number of above-ground points and total points in each cell 

using the LAS Point Statistics as Raster tool in ArcMap 10.6.1. We then divided the 

count of above-ground points by the total number of points in each 0.61 m cell, resulting 

in a layer which estimates the proportion of lidar returns which did not reach the ground 

in each cell. 

Geomorphological variables used in our analyses included aspect and topographic 

position index (TPI). Aspect was estimated using our 0.61m DEM and the Aspect tool in 

ArcMap 10.6.1. TPI is a relative estimate of elevation based on the distance (in meters) 

between each cell and a local elevation mean of all cells within a given radius. Using TPI 

instead of raw elevation allows for consistent comparisons of landforms, whereby valley 
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floors and ridgetops exhibit strongly negative and positive values, respectively. We 

estimated TPI using a 100m window in the Land Facet Analysis extension (Jenness 

Enterprises, Flagstaff, AZ).  

 

5.3.4 Thermoregulation Modeling 

 

We used the difference in contemporaneous air temperature and internal body 

temperature (hereafter ΔT) as our response variable. To evaluate potential predictors for 

the variation we observed in ΔT, we used a mixed effects linear regression model.  We 

included year and individual nested within year as random effects, and air temperature, 

time of day, day of year, TPI, aspect, vegetation height (ft), and canopy closure (percent) 

as fixed effects. Variables with nonlinear patterns including aspect, time of day, and day 

of year were included as second-degree polynomials. To screen out potential 

multicollinearity, we removed variables with excessive variance inflation factors (>5). 

which were calculated in JMP 14.0.0 (SAS Institute Inc., Cary, North Carolina). The 

scale at which average vegetation height and canopy closure estimates were analyzed 

was determined by sequential multivariate tests of vegetation height and canopy closure 

averaged at different scales. Values were averaged across all cells within circular buffers 

of variable radii, including 0.25m (the individual raster cell at which the snake’s location 

was recorded), 1m, 2m, 5m, 10m, 25m, 37.5m, and 50m. Candidate models composed of 

each predictor variable, including optimally scaled vegetation height and canopy closure, 

were compared using Akaike’s Information Criterion (AIC) in JMP 14.0.0. 
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5.4 Results 

 

We tracked eight male and five female timber rattlesnakes in RF between 2014 

and 2017. Snakes were tracked across a minimum of two years; eight snakes were 

tracked across two years, four snakes were tracked across three years, and one snake was 

tracked for four years (Table S1). Of the five females tracked, two were gravid for at 

least one season. We included 516 temperature-location combinations after filtering for 

missing data or locations where the individual snake was not visible. Our ΔT values were 

normally distributed with a mean of -0.211 and standard deviation of 3.85 (Figure 2).  

No variance inflation factor exceeded our limit for inclusion into our candidate 

models. The best-supported scale for our vegetation predictor variables was a 25m 

average for vegetation height and a 5m average for canopy closure (Table S2). Our best-

fit linear model (Table 1) included the predictor variables time of day and aspect as 

second-degree polynomials, in addition to day of year, air temperature, and the variables 

vegetation height (25m average) and canopy cover (5m average). Random effects were 

found to be significant at the level of the individual nested within year (p=0.0012).  

Among the variables included in the best-supported model, effects were generally 

stronger for air temperature, time, and day of year than for remotely-sensed vegetation 

variables. Nonetheless, a highly significant effect of vegetation height was found (p = 

0.0001), and while canopy cover was not significant (p = 0.098), the best fit model 

included canopy cover effects. Topographic predictors explained less variance; aspect 

(treated as a second degree polynomial) was identified as a significant predictor of ΔT  
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(p = 0.01), but topographic position index was unrelated and not included in the best-fit 

model.  

5.5 Discussion 

 

Integrating lidar-derived vegetation height and canopy closure significantly 

improved models predicting the difference between air temperatures and 

contemporaneous IBTs of timber rattlesnakes. While in the past high-density lidar data 

sets have been used to predict suitable habitat (Graf et al. 2009), species richness and 

diversity (Simonson et al. 2014), and resource selection functions (George et al. 2017), 

our results are the first we know of using Lidar-derived vegetation data to quantify direct 

impacts on in-situ individual body temperatures. Our empirical results underscore 

broader, model-based analyses which have suggested the important role three-

dimensional data sets will play in improving both our understanding of the landscape 

pattern-ecological process relationship in forest dwelling fauna and the potential for 

proactive management of wildlife populations (Algar et al. 2018). This is 

notwithstanding, however, the significant influence of seasonal and diurnal associations 

on ΔT, as we also found thermoregulation to be more pronounced in spring and fall and 

during morning and evening (Figure 3). 

Increasingly, the thermal buffering capacities of forests are hypothesized to be 

important bulwarks against elevated risk of hyperthermia resulting from rising global 

temperatures (De Frenne et al. 2019). Our results add to other research highlighting the 

importance of forest microhabitats for thermoregulation in herpetofauna (Scheffer et al. 

2014, Sillero and Goncalves-Seco 2014) including previous behavioral research 
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conducted on C. horridus (Gardner-Santana and Beaupre 2009). Measurements of ΔT 

indicate that differences of up to 5 degrees C are well within the normal range of 

thermoregulation for timber rattlesnakes within our study area (Figure 2). Our modeling 

results further indicate that thermoregulation is occurring at very fine spatial scales in 

timber rattlesnakes due in large part to vegetation height (25 m) and canopy closure (5 

m). The utility of vegetation data for modeling thermoregulation in ectotherms in 

apparent both when examining usage of anthropogenic basking areas (e.g., forest roads) 

and also naturally occurring features (e.g., storm damage) (Figure 4). This effect appears 

to occur regardless of topographic position though is somewhat related to the cardinal 

direction of exposure.  

Aside from climate-related concerns, our findings add to the broader complexity 

in relationship between timber extraction and herpetofauna populations. While some 

species reliant on streams or humid microhabitats have seen marked declines (Peterman 

and Semlitsch 2009, Maigret et al. 2012), other species seem to prefer the disturbance 

regimes produced by some forms of timber harvest (Sutton et al. 2013), even harvests 

resulting in relatively small (< 1.0 ha) canopy gaps (Agha et al. 2018). We found 

numerous instances of small gaps in vegetation being used by snakes for 

thermoregulation, including gaps created by timber harvest (Figure 4). Overall, our 

findings appear to be most in line with studies indicating that some fauna, including C. 

horridus, have been comparatively unaffected by timber harvests, and may even take 

advantage of increased basking opportunities (Reinert et al. 2011a). These potential 

advantages will nevertheless need to be balanced against direct killing of snakes during 

harvesting, and we second the recommendation of Reinert et al. (2011a) for increased 
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communication between wildlife agencies and logging workers which stresses the 

importance of preventing the killing of rattlesnakes by individuals.  

As our model outputs and summary statistics allude, more comprehensive data 

sets and analyses are needed to capture a greater share of the variation in predictor 

variables driving thermoregulation in C. horridus. We found significant variation in 

thermoregulation at the level of individuals, likely resulting from our inclusion of both 

adult males, nongravid females, and gravid females, the last of which typically displays 

higher body temperatures during gestation (Gardner-Santana and Beaupre 2009). Future 

analyses may profit from including a great number of animals or a single category of 

adult snakes (e.g., gravid females or adult males). Other studies have also indicated that 

depending on the season, thermoregulation may be less important than foraging in terms 

of resource selection (George et al. 2017). Furthermore, our model did not account for 

potentially influential meteorological variables cloud cover, rainfall, or wind speed. 

More specifically, however, we suspect that the vertical gap between the hillside 

and canopy creates inaccuracies when attempting to map canopy gaps in two dimensions. 

A more comprehensive model which uses trigonometry to integrate sun angle, insolation 

intensity, canopy gaps, canopy height, and hill slope could potentially predict sun 

penetration into the forest floor much more effectively. Such a model may be 

cumbersome, but could likely be constructed with sufficiently high-density lidar return 

data similar to those used in this study. In addition, an accurate three-dimensional model 

of solar heating and canopy density could be used to determine thresholds of canopy size 

and vegetation height which could be useful in assessing impacts of forest management 

techniques such as canopy harvests (Agha et al. 2018).  We suspect that the lack of 
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accuracy in our forecasting of canopy gaps may partially explain why vegetation height 

was found to be more much more powerful in explaining body temperature than canopy 

closure, and why vegetation height had more explanatory power at a relatively coarse 

scale (25 m) than at fine scales.  

Based on three-dimensional remote sensing imagery, we found significant effects 

of vegetation cover on the thermoregulatory behavior of timber rattlesnakes inhabiting a 

mature mixed-mesophytic deciduous forest. Our fine-scale results confirm broader-scale, 

model-based findings which have indicated the importance of integrating three-

dimensional vegetation data into predictions of thermoregulation in ectotherms, 

especially in forests (Algar et al. 2018). We expect that as more high resolution and 

three-dimensional data sets become accessible, our ability to understand the drivers of 

thermoregulation in ectotherms will continue to improve, allowing for both better forest 

management and a more comprehensive understanding of the local and individual-level 

effects of a warming climate. 

 

  

 

 

 

 

 



123 
 

Table 5.1. Model fit results, quantified by AIC and log likelihood, for the fixed effects of 

each candidate model describing ΔT in C. horridus. Each model also includes a random 

effect of individual nested within year. 

 

Model AIC ΔAIC LL 

ΔT  = date + air + asp + asp2 + time + time2 + vh25 
+ cc5 

2584.48 - -2559.86 

ΔT  = date + air + asp + asp2 + time + time2 + 
vh25 

2585.16 0.68 -2562.63 

ΔT  = date + date2 + air + asp + asp2 + time + time2 
+ vh25 + cc5 

2585.72 1.24 -2559.00 

ΔT  = date + date2 + air + asp + asp2 + time + time2 
+ vh25 

2586.75 2.27 -2562.13 

ΔT  = date + date2 + air + asp + asp2 + time + 
time2 + tpi + vh25 + cc5 

2586.79 2.31 -2557.95 

ΔT  = date + air + asp + asp2 + time + time2 + cc5 2596.62 12.14 -2574.10 

ΔT  = date + air + asp + asp2 + time + time2 2606.71 22.23 -2586.28 
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Table 5.2. Components and parameter estimates for the best-fit model describing ΔT in 
C. horridus. 

 
Random effects 

Variance 
component 

Estimate Standard 
Error 

95% Confidence 
Interval 

p-value 

year(individual) 4.20 1.30 (1.65, 6.75) 0.0012 

 

Fixed effects 

Term Estimate Standard 
Error 

95% Confidence 
Interval 

p-value 

intercept 8.18 1.34 (5.55, 10.80) <.0001 

date -0.014 0.0031 (-0.020, -0.0079) <.0001 

air temperature (C) -2.57 e-01 3.23 e-02 (-0.32, -0.19) <.0001 

aspect (deg) -0.0030 0.0018 (-0.0065, 0.00061) 0.1041 

(aspect-196.628) * 
(aspect-196.628) -5.3 e-05 2.05 e-05 (-9.34 e-05, -1.27 e-05) 0.0101 

time 7.09 1.28 (4.58, 9.59) <.0001 

(time-0.53347) * 
(time-0.53347) 48.47 9.65 (29.50, 67.44) <.0001 

vh25 -3.24 e-02 8.44 e-03 (-0.049, -0.016) 0.0001 

cc5 -1.65 0.10 (-3.61, 0.31) 0.098 
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Table 5.3. Years tracked, sex, number of temperatures, and average body temperatures 

(with standard deviation) for each individual C. horridus included in our analysis. 

 
Individual Year(s) 

tracked 
Sex Number of 

temperatures 
included 

Mean IBT 
(sd) 

S16 2014-2017 m 72 24.04 (4.84) 

S17 2014-2015 m 47 22.32 (4.37) 

S18 2014-2015 m 29 19.68 (4.69) 

S19 2015-2017 m 72 22.61 (5.37) 

S20 2015-2017 m 66 23.34 (4.59) 

S21 2015-2016 f-gravid 24 25.90 (5.10) 

S22 2015-2016 m 25 21.15 (5.14) 

S23 2015-2016 f-gravid 27 21.86 (5.76) 

S24 2015-2016 m 28 21.56 (5.24) 

S25 2015-2016 f 24 22.61 (4.20) 

S26 2015-2017 f 57 21.10 (4.79) 

S27 2015-2016 f 15 20.13 (6.77) 

S28 2015-2017 m 54 21.28 (6.24) 
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Table 5.4. Model performance (AIC) for varying scales of predictor variables vegetation 

height and canopy closure. Predictors are either the individual raster cell in which each 

snake relocation was placed, or average values among all cells in a circular buffer of 

varying radius (1m-50m). Asterisks denote optimal scales used in the main analysis. 

 
Scale Model AIC values 

 
vegetation height (m) canopy closure (%) 

cell 2599.1333 2611.4572 

1m 2598.5364 2612.7681 

2m 2598.3421 2609.9444 

5m 2597.0954 2602.1346* 

10m 2592.681 2602.321 

25m 2590.5011* 2609.3692 

37.5m 2593.1213 2611.8728 

50m 2598.1265 2613.2514 
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Figure 5.1. Study area, weather station, and temperature locations included in our 

analyses. 

 

 

 

 

 

 

 



128 
 

 

 

Figure 5.2. Distribution of the differences between internal body temperatures of C. 

horridus and air temperatures (ΔT) for telemetry locations used in our analysis. 
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Figure 5.3. Univariate regressions for each predictor variable included in the best-fit 

model against ΔT. 
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Figure 5.4. Locations of timber rattlesnakes and associated ΔT values (colored circles) 

superimposed over vegetation height (above) and canopy cover (below). Left, despite 

relatively high canopy closure, areas of low vegetation height resulting from natural 

processes (i.e., storms) are associated with elevated ΔT; right, anthropogenic features 

such as forest access and logging roads are used for basking and associated with elevated 

ΔT. 
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