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ABSTRACT OF DISSERTATION

SOLUTIONS TO SYSTEMS OF EQUATIONS OVER FINITE FIELDS

This dissertation investigates the existence of solutions to equations over finite fields
with an emphasis on diagonal equations. In particular:

1. Given a system of equations, how many solutions are there?

2. In the case of a system of diagonal forms, when does a nontrivial solution exist?

Many results are known that address (1) and (2), such as the classical Chevalley–
Warning theorems. With respect to (1), we have improved a recent result of D.R.
Heath–Brown, which provides a lower bound on the total number of solutions to a
system of polynomials equations. Furthermore, we have demonstrated that several of
our lower bounds are sharp under the stated hypotheses. With respect to (2), we have
several improvements that extend known results. First, we have improved a result
of James Gray by extending his theorem to a larger class of equations. Second, for
particular degrees, number of forms, and finite fields, we have determined the minimal
number of variables needed to guarantee the existence of a nontrivial solution. Third,
there are many results, which address (2) for particular types of systems known as
A-systems. We give a criterion that characterizes when a system of equations is an
A-system. Finally, we have provided exposition that adds significantly more detail to
two important papers by Tietäväinen.
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Chapter 1 Introduction and Background

1.1 Introduction

The study of solutions to systems of polynomial equations is among the most classical
questions in mathematics. Perhaps the most notable and well known example of this
is the Fundamental Theorem of Algebra:

Theorem 1.1.1 (Fundamental Theorem of Algebra). Every non-zero, single-variable,
degree n polynomial with complex coefficients has, counted with multiplicity, exactly
n complex roots.

The key behind this result is the fact that the field of complex numbers, C, is
algebraically closed. In general, one should not expect that an arbitrary polynomial
of degree n over another field or ring has n solutions. Likewise, if one was to consider a
polynomial equation in many variables, determining the number of solutions becomes
a far more difficult problem. Furthermore, considering simultaneous solutions to
systems of polynomials in multiple variables is even more daunting. For this reason,
studying solutions to systems of polynomial equations over various fields is a rich and
fruitful direction of research. The general topic of this dissertation is to considering
solutions to systems of polynomial equations in many variables over finite fields.

To further motivate considering the problem over finite fields, one should note
that a natural question to number theorists and, indeed, mathematicians in a variety
of fields, is to consider integer solutions to polynomial equations. In this scenario, it
is quite possible to have no solutions much less n solutions. A necessary condition
for the existence of an integer solution is the existence of a solution over the finite
field, Fp, for every prime p. Subsequently, results which guarantee the existence or
non-existence of solutions over finite fields are of interest. In the study of systems of
polynomials over finite fields, there are typically three questions one can ask.

1. Can we find and describe all solutions?

2. How many solutions are there?

3. In the case of a system of homogeneous polynomials, when does a nontrivial
solution exist?

Following a brief discussion on terminology and notation, we seek to address the
second and third questions with the hope that this will provide insight to the first.

The goal of Chapter 2 is to study lower bounds on the number of solutions to
systems of polynomial equations over finite fields. Given a general system of poly-
nomials, a classical question in mathematics has been to determine the existence of
a solution. For systems over finite fields, the keystone results on the existence of
solutions are the Chevalley–Warning theorems of the 1930s. Over the years, mathe-
maticians have sought to improve these results. The most recent of which are those
of D.R. Heath–Brown [9]. We provide an improvement of all parts of this result.
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In Chapter 3, we focus on the case of solutions to a single diagonal form of odd
degree over finite fields. When restricting to the case of diagonal forms, one can
obtain much deeper and more specialized results. Of particular interest are results on
the number of variables necessary to guarantee the existence of a nontrivial solution.
The focus of this Chapter is to consider two results of James Gray [6, 7]. The new
contribution is a proof that both of Gray’s results are, in fact, equivalent, as well as
providing an improvement to one.

In Chapter 4, we introduce a generalization of odd degree diagonal forms called
A-equations (A-systems). Throughout the literature, there are far more results which
hold for diagonal forms and diagonal systems of odd degree that do not necessarily
hold in the arbitrary degree case. Introduced by Tietäväinen [14], A-systems are
systems of possibly even degree where some of the core proof techniques for the odd
case still hold. The original contribution of this chapter is to provide a complete
characterization of A-systems.

The focus of Chapter 5 is to approach systems of diagonal forms over finite fields
in general. Sections 5.2 and 5.3 collate a number of known results in the area, as well
as, providing more complete proofs than currently exist in the literature and some
small improvements to some of these results. In Sections 5.4 and 5.5, we consider the
computational question of finding the explicit lower bound on the number of variables
needed to guarantee a nontrivial solution. In particular, for a system of r diagonal
forms over Fq with specified degrees, we compute the largest integer such that there
exists an anisotropic system in that many variables. In some special cases, we also
compute the maximum of this value over all possible choices of q.

A more extended introduction is provided in the introduction of the remaining
chapters.

1.2 Terminology and Notation

Let Fq denote the finite field of order q = pk, where p is a prime and k ∈ Z>0. We
say that a polynomial f in n variables is defined over Fq if f ∈ Fq[x1, . . . , xn]. Let
deg(f) = d.

We say that f ∈ Fq[x1, . . . , xn] is a (homogeneous) form of degree d, for some
d ≥ 0, if f 6= 0 and each monomial in f has degree d.

Example 1.2.1. For example, xy2 + z3 = 0 is a homogeneous form of degree 3,
but x2 + xy2 + z3 = 0 is not a homogeneous form.

A diagonal form f of degree d is a form having the shape f(x1, . . . , xn) = α1x
d
1 +

· · ·+ αnx
d
n. Notice that diagonal forms of degree d are homogeneous forms of degree

d.

Example 1.2.2. For example, x3 + 2y3 + 3z3 = 0 is a diagonal form of degree 3,
but xy2 + z3 = 0 is not a diagonal form.

2



Assume that f ∈ Fq[x1, . . . , xn]. We say that (a1, . . . , an) ∈ Fnq is a zero of f if
f(a1, . . . , an) = 0. Suppose that f ∈ Fq[x1, . . . , xn] is a homogeneous form of degree
d, d ≥ 1. Then it is clear that f(0, . . . , 0) = 0. We say that (a1, . . . , an) ∈ Fnq is
a nontrivial zero of a homogeneous form f if f(a1, . . . , an) = 0 and (a1, . . . , an) 6=
(0, . . . , 0).

Let f ∈ Fq[x1, . . . , xn] be a homogeneous form of degree d, d ≥ 0. We say that f
is isotropic over Fq if f has nontrivial zero in Fnq , and that f is anisotropic over Fq if
f is not isotropic over Fq.

Example 1.2.3. Consider the homogeneous form f = xy2+z3 over F7. A nontrivial
zero of this form is (2, 2, 3) as f(2, 2, 3) = 35 ≡ 0 mod 7. In particular, f is
isotropic over F7.

To denote a system of polynomials, we write f = {f1, . . . , fr}, where fi ∈ Fq[x1, . . . , xn]
for 1 ≤ i ≤ r. Let di = deg(fi) for 1 ≤ i ≤ r. We define the degree of the system
to be d1 + · · · + dr. We say f is a homogeneous system if fi is a homogeneous
form for 1 ≤ i ≤ r. Note that for a homogeneous system we do not require that
deg(fi) = deg(fj) for i 6= j.

Example 1.2.4. The following is a homogeneous system

f1 = xy2 + z3

f2 = x2 + 2y2 + 5xy

f3 = 3x7.

We say f is a system of diagonal forms if fi is a diagonal form for 1 ≤ i ≤ r.
Similarly, note that we do not require that deg(fi) = deg(fj) for i 6= j.

Example 1.2.5. The following is a system of diagonal forms

f1 = x3 + 2y3 + 3z3

f2 = x2 + 2y2 + 5z2

f3 = 3x7.

Given a system of polynomials, f = {f1, . . . , fr}, we say that (a1, . . . , an) ∈ Fnq is
a zero of f if fi(a1, . . . , an) = 0, 1 ≤ i ≤ r. In the case where f is a system of forms,
we say that such a zero is a nontrivial zero of f if (a1, . . . , an) 6= (0, . . . , 0). We say
that a system of forms is isotropic over Fq if the system has a nontrivial common zero
in Fnq . Otherwise, we say a system is anisotropic over Fq.

We define N(f ;Fq) to be the number of solutions of f over Fq. Similarly, we define
N(f;Fq) to be the number of solutions of f over Fq.

Let f be a system of r diagonal forms over Fq in n variables, where deg(fi) = di.

Let ~d = (d1, . . . , dr). We define Ω(r, ~d, q) to be the minimal number such that if

n > Ω(r, ~d, q), then there exists a nontrivial solution to the system f. In other

3



words, Ω(r, ~d, q) is the largest integer such that there exists an anisotropic system

in that many variables of r diagonal forms of degrees ~d over Fq. For simplicity, if

d := d1 = · · · = dr, we write Ω(r, d, q) = Ω(r, ~d, q). Again for simplicity, if r = 1, we
write Ω(d, q) = Ω(1, d, q).

For fixed values of r and ~d, one more quantity of interest is max
q

Ω(r, ~d, q). We

define max
q

Ω(r, ~d, q) = max{Ω(r, ~d, q) | q is an arbitrary prime power}. As a result,

if n > max
q

Ω(r, ~d, q), then any system of r diagonal forms of degrees ~d in n variables

defined over Fq is isotropic independent of our choice of q.

Copyright c© Rachel Louise Petrik, 2020.
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Chapter 2 Minimal Number of Solutions to Systems of Equations

2.1 Introduction

The goal of this chapter is to study lower bounds on the number of solutions to systems
of polynomial equations over finite fields. Given a general system of polynomials, a
classical question in mathematics has been to determine the existence of a solution.
For systems over finite fields, the keystone results on the existence of solutions are
the Chevalley–Warning theorems of the 1930s.

Theorem 2.1.1 (Chevalley, [3]). Let f1, . . . , fr ∈ Fq[x1, . . . , xn], deg(fi) = di, 1 ≤
i ≤ r. Assume n > d1 + d2 + · · ·+ dr and Z(f,Fnq ) is nonempty. Then N(f;Fnq ) ≥ 2.

In particular, if f1, . . . , fr are homogeneous forms, then the system has a nontrivial
solution. Graphically, we can visualize this result with the following figure.

Figure 2.1: This figure illustrates the relationship between n and d needed to guar-
antee a nontrivial solution to a system of equations. The horizontal axis represents
our degree d and the vertical axis represents the number of variables n. The shaded
region is the order pairs of (d, n) that guarantee a nontrivial solution to our system.

Theorem 2.1.2 (Warning, [17]). Let f1, . . . , fr ∈ Fq[x1, . . . , xn], deg(fi) = di, 1 ≤
i ≤ r. Assume n > d1 + d2 + · · ·+ dr, then N(f,Fnq ) ≡ 0 mod p.

In particular, if f1, . . . , fr are homogeneous forms, there is at least one solution,
therefore at least p ≥ 2 solutions.

5



Example 2.1.3. Consider the following system in n = 7 variables over F5.

f1 = x21x2 + 4x33

f2 = 2x24 + x5 + x6 + x7

Notice the total degree of the system is 5. Since n = 7 > 5 = d1 + d2 and
(0, 0, 0, 0, 0, 0, 0) is a solution, by Theorem 2.1.1, we know there is at least one
more solution. In particular, a nontrivial solution. By Theorem 2.1.2, we know
that the number of solutions is divisible by 5, so there are at least 5 solutions.

Over the years, mathematicians have sought to improve these results. Most no-
tably are the following two improvements attributed to Warning [17] and Ax [1].
Warning showed that under the same hypotheses as Theorem 2.1.1, Chevalley’s re-
sult could be improved.

Theorem 2.1.4 (Warning, [17]). Let f1, . . . , fr ∈ Fq[x1, . . . , xn], deg(fi) = di, 1 ≤
i ≤ r. Assume n > d1+d2+· · ·+dr and Z(f;Fnq ) is nonempty. Then N(f;Fnq ) ≥ qn−d.

Similarly, Ax demonstrated that under the same hypotheses as Theorem 2.1.2,
Warning’s result could be improved.

Theorem 2.1.5 (Ax, [1]). Let f1, . . . , fr ∈ Fq[x1, . . . , xn], deg(fi) = di, 1 ≤ i ≤ r.
Assume n > d1 + d2 + · · ·+ dr, then N(f,Fnq ) ≡ 0 mod q.

Further improvements will require additional hypotheses, as examples exist that
show the bound in Theorem 2.1.4 is best possible.

Example 2.1.6. Consider the polynomial

g = xp−11 + xp−12 + · · ·+ xp−1p−1

over Fp. Notice that g has no nontrivial solutions in Fp−1p since xp−1 = 1 for all
x ∈ F∗p. For any integer n where n > p− 1, consider

g = xp−11 + · · ·+ xp−1p−1 + 0xp−1p + · · ·+ 0xp−1n ∈ Fp[x1, . . . , xn].

Then the zeros of g over Fnp have x1 = · · · = xp−1 = 0, xp, . . . , xn arbitrary

elements in Fp. Thus, N(g;Fnp ) = pn−(p−1), which is precisely the bound given by
Theorem 2.1.4. In this case, the set of solutions forms a subspace of dimension
n− (p− 1) in Fnp .

One other class of examples that attains the lower bound given by Theorem 2.1.4
are norm forms. Let L/k be a finite algebraic extension of degree d. Let NL/k :
L∗ → k∗ be the norm map. Let v1, . . . , vd be a vector space basis of L over k.
The polynomial g(x1, . . . , xd) = NL/k(x1v1 + · · · + xdvd) is a homogeneous form of
degree d in d variables defined over k. Assume (a1, . . . , ad) 6= (0, 0, . . . , 0). Since
NL/k(a1v1 + · · · + advd) 6= 0, it follows that g is an anisotropic homogeneous form
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defined over k of degree d in d variables. This polynomial g is called a norm form.
We can now consider g ∈ Fq[x1, . . . , xd, xd+1, . . . , xn]. Notice that any solution must
have x1 = x2 = · · · = xd = 0 since g is anisotropic in d variables. Since xd+1, . . . , xn
do not appear in this form, we can set them equal to any of the q elements from Fq
and still have a solution to g. This means NFq(g) = qn−d, which shows that Warning’s
bound is optimal. The same reasoning applies for any anisotropic form of degree d
in d variables. In fact, the set of solutions forms a subspace of dimension n − d in
Fnq . In fact, virtually all known examples, where Theorem 2.1.4 is sharp, have the
additional property that the set of solutions form an affine space of Fnq . Since it is
not always convenient to assume that 0 is a solution.

Definition 2.1.7. An affine space is a coset of subspace. In particular, a subspace
is an affine space. We say that two affine spaces are parallel if they are cosets of the
same subspace. The dimension of an affine space is the dimension of the subspace.

When the solutions do not form an affine space, Heath-Brown, in 2011, [9] provided
the following improvement.

Theorem 2.1.8 (Heath–Brown, [9], Theorem 2). Suppose that n > d and that
Z(f;Fnq ), the collection of zeros over Fnq , is non-empty, and is not an affine space
of Fnq . Then

(i) For any q, we have N(f;Fnq ) > qn−d;

(ii) If q ≥ 4, we have N(f;Fnq ) ≥ 2qn−d; and

(iii) For any q, we have N(f;Fnq ) ≥ qn+1−d

(n+ 2− d)
provided that the polynomials

f1, . . . , fr are homogeneous.

2.2 Main Result

In joint work with Leep, we show that each part of Theorem 2.1.8 can be improved.

Theorem 2.2.1 (Leep–Petrik). Suppose that n > d and that Zf;Fnq ), the collection
of zeros over Fnq , is non-empty, and is not an affine space of Fnq . Then

(i) For q = 2, N(f;Fnq ) ≥ qn−d + q;

(ii) For q ≥ 3, N(f;Fnq ) ≥ 2qn−d;

(iii) For q ≥ 3, N(f;Fnq ) ≥ 2qn−d + (q − 2)q provided that the polynomials f1, . . . , fr
are homogeneous;

(iv) For any q, N(f;Fnq ) >
qn+1−d

(n+ 2− d)
provided that the polynomials f1, . . . , fr are

homogeneous.

Moreover, the bounds in (i), (ii), and (iii) are sharp under these hypotheses.
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For the sake of completeness, we will present the proofs of the results required for
Theorem 2.2.1.

Theorem 2.2.2 (Heath–Brown, [9], Theorem 1). With the notation above, we have

N(L1) ≡ N(L2) mod q

for any two parallel affine spaces L1, L2 ⊆ Fnq of dimension d or more.

Proof. Given a polynomial f(x1, · · · , xn) of total degree e, there are two reasonable
ways of associating a form to it. One may take f−(x1, · · · , xn) to be the homogeneous
part of degree e, or one may define f+(x0, · · · , xn) = xe0f(x1

x0
, · · · , xn

x0
). For a system

f, we define f− and f+ by the above processes, using degree di for each polynomial fi.
Clearly each zero of f produces exactly q − 1 zeros of f+ with x0 6= 0. The zeros

of f+ with x0 = 0 correspond precisely to the zeros of f−.
Thus, N(f+;Fn+1

q ) = (q−1)N(f;Fnq ) +N(f−;Fnq ). In particular, if n ≥ d, then (4)
yields q | N(f+;Fn+1

q ) and hence N(f;Fnq ) ≡ N(f−;Fnq ) (mod q). Thus the value of
N(f;Fnq ) modulo q depends only on the leading homogeneous parts of the polynomials
f1, · · · , fr.

Let L = (e1, · · · , ek) be the affine space of dimension k, parallel to L1 and L2, but
passing through the origin. Let Lj = L+cj for j = 1, 2. Then N(f;Lj) = N(g(j);Fkq),
where

g
(j)
i (y1, · · · , yk) = fi(

k∑
l=1

ylel + cj) for (j = 1, 2, 1 ≤ i ≤ r).

If L1, L2 have dimension strictly greater than d, then k > d. By Theorem 2.1.5,
q | N(g(j);Fkq). Since N(g(j);Fkq) = N(f;Lj), we find that q | N(f;Lj) for j = 1, 2.
Thus N(L1) ≡ N(L2) mod q.

Assume L1, L2 have dimension equal to d. It could happen that the terms of degree
di in g

(1)
i all vanish, but this happens if and only if the corresponding terms in g

(2)
i

also vanish. In this situation, the total degree of each of the systems (g
(1)
1 , · · · , g(1)r )

and (g
(2)
1 , · · · , g(2)r ) will be m, where m < d. Since d = k > m, by (4), if follows that

q | N(g(j);Fkq). Thus, q | N(f;Lj) for j = 1, 2. Thus N(L1) ≡ N(L2) mod q.
It follows that we may assume that the leading homogeneous parts are the same.

But since, the value of N(f;Fnq ) modulo q depends only on the leading homogeneous
parts of the polynomials f1, · · · , fr. It follows that

N(f;L1) = N(g(1);Fnq ) ≡ N(g
(1)
− ;Fnq ) ≡ N(g

(2)
− ;Fnq ) ≡ N(g(2);Fnq ) = N(f;L2)

Lemma 2.2.3 (Heath–Brown, [9], Lemma 1). Let L0 ⊆ Fnq be an affine space. Choose
an affine space L of maximal dimension k such that L ⊇ L0 and N(f;L) = N(f;L0).
Suppose L′ ⊃ L is an affine space of dimension k + 1 such that N(f;L′) is minimal.
Then

N(f;Fnq ) ≥ N(f;L) +
qn−k − 1

q − 1
(N(f;L′)−N(f;L)) (2.1)
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Proof. Note Fnq is the disjoint union of L together with the sets L∗ \ L, where L∗

runs over all (k+ 1)-dimensional affine spaces containing L. There are
qn−k − 1

q − 1
such

affine spaces L∗. Since N(f;L∗ \ L) ≥ N(f;L′)−N(f;L), we have the following

N(f;Fnq ) = N(f;L) +N(f;
⋃
L∗

(L∗ \ L))

= N(f;L) +
∑
L∗

N(f;L∗ \ L)

≥ N(f;L) +
qn−k − 1

q − 1
(N(f;L′)−N(f;L))

For the next lemma, we will require the following definition.

Definition 2.2.4. A set of t + 1 points in Ftq are in general position if no k + 1 of
them lie in a k-dimensional subspace for 1 ≤ k ≤ t.

Lemma 2.2.5 (Heath–Brown, [9], Lemma 2). Let S ⊆ Ftq be a set containing t + 1
points in general position. Then

(i) If q = 2, and if there is no 2-plane L ⊆ Ftq meeting S in exactly 3 points, then
S = Ftq.

(ii) If q ≥ 3, and if l ⊆ S for every line l meeting S in at least two points, then
S = Ftq.

(iii) If q ≥ 4, and if |S ∩ l| ≥ q− 1 for every line l meeting S in at least two points,
then Ftq \ S is contained in a hyperplane.

(iv) If m ≥ 2 is an integer, and if |S ∩ l| ≥ m + 1 for every line l meeting S in at

least two points, then |S| ≥ mt+1 − 1

m− 1
.

Proof. (i) We will prove this using induction on t. The statement is trivially true for
t = 1. When t = 1, S ⊆ F2 and |S| ≥ 2. Since |F2| = 2, it follows that S = F2.

For our inductive hypothesis, assume S contains an affine space L0 of dimension
t− 1 together with a point P0 /∈ L0.

Now choose any point P /∈ L0 with P 6= P0. We want to show P ∈ S. We will
then be able to conclude that S = Ftq as desired. Let P1 ∈ L0 and consider the 2-plane
generated by P , P0, and P1. Since q = 2, this plane consists of the three generators
together with a fourth point P2, which must belong to L0. Since q = 2, V0 has only
two cosets in Ftq. Thus L0 = V0 or L0 = V0 + z for z ∈ Ftq. Thus Ftq = L0 ∪ (L0 + z).
Since P0 /∈ L0, P0 ∈ L0 + z. Similarly for P . Note P1 ∈ L0. Consider the 2-plane
generated by P , P0, P1. This is a coset of a 2-dimensional vector space.

More explicitly, it is the coset W + P , where W is the 2-dimensional subspace
generated by P0−P and P1−P . Note that P2 = (P0−P )+(P1−P )+P = P0+P1−P .
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Since P0, P /∈ L0 and P1 ∈ L0 and there are two cosets, it follows that P2 ∈ L0. Since
P0, P1, and P2 ∈ S, by our hypothesis P ∈ S as well.

(ii) We will prove this using induction on t. The statement is trivially true for
t = 1. Since |Fq| = q and |l ∩ S| = 2, we have l ⊆ S. Since |Fq| = q, it follows that
S = Fq.

For our inductive hypothesis, assume S contains an affine space L0 of dimension
t− 1 together with a point P0 /∈ L0.

Now choose any P /∈ L0, P 6= P0. Suppose that the line l generated by P0 and P
meets L0 at a point P1. Then l meets S in at least 2 points, namely P0 and P1. Then
by our hypothesis, l is contained in S, so P ∈ S.

This deals with all points P except those which lie on the hyperplane L1, which is
parallel to L0 and which passes through P0. We begin by fixing any point P1 on L0.
We then consider the line l generated by P and P1. Since q ≥ 3, this line contains at
least one additional point P2, which cannot lie in L1. (P2 /∈ L1 because if P2 ∈ L1,
then the line between P and P2 would lie entirely in L1).

Now to show P2 ∈ S, we will repeat the initial argument. Since P2 /∈ L − 1, the
line generated by P2 and P0 meets L0 at a point P3. Then the line meets S in at least
two points, namely P0 and P3. Thus the line is completely contained in S, so P2 ∈ S.
Since P1, P2 ∈ S, l meets S in at least two points, so l ⊆ S, which implies P ∈ S.

(iii) Let Sc = Ftq \ S. Our strategy will be to show that if Sc also contains
t + 1 points in general position, then |S| > 1

2
qt and |Sc| > 1

2
qt, which will provide a

contradiction. Observe that the hypothesis of part (iii) is symmetric between S and
Sc, since S meets l in at least two points if and only if |Sc ∩ l| < q − 1.

We will prove this using induction on t. The statement is trivially true for t = 1.
When t = 1, S ⊆ Fq and |S| ≥ 2. Since |S ∩ l| ≥ q − 1 for every line l meeting S in
at least two points, it follows that |Sc| ≤ 1. Thus Sc is contained in a hyperplane.

For our inductive hypothesis, suppose that for any affine space L ⊂ Ftq of dimen-
sion t− 1, either

• R ∩ L fails to contain t points in general position

• R ∩ L contains t points in general position

If the first, R∩L lies in a proper affine space of L. If the latter, then L\R = L∩Rc

lies in a proper affine space of L by induction. Thus either L ∩R or L ∩Rc lies in a
proper affine space of L.

Let L0 be the (t−1)-dimensional subspace generated by P1, . . . , Pt. When L = L0,
we must be in the second case, where L ∩Rc lies in a proper affine space of L.

For every P ∈ L0 ∩ R, the line l generated by P and P0 meets R in at least two
points (namely P and P0). Thus |R ∩ l| ≥ q − 1 by hypothesis. Note for distinct
choices of P the sets l \ {P0} are disjoint. Thus,

|R| ≥ 1 + (q − 2)|L0 ∩R|. (2.2)
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Now suppose that every affine space L of dimension t−1, parallel to, but not equal
to L0 has the property that L∩R lies in a proper affine space of L. Then since Ftq is a
disjoint union of L0 with the various spaces L, we see that |R| ≤ |L0∩R|+(q−1)qt−2.

Comparing this with equation 2.2 yields the following

1 + (q − 2)|L0 ∩R| ≤ |L0 ∩R|+ (q − 1)qt−2

1 + (q − 3)|L0 ∩R| ≤ (q − 1)qt−2

(q − 3)|L0 ∩R| < (q − 1)qt−2

Now we will show |L0 ∩ R| ≥ qt−1 − qt−2. Recall |L0 ∩ Rc| ≤ qt−2. Since (L0 ∩ Rc) ∪
(L0 ∩R) = L0 and |L0| = qt−1, we find

|L0 ∩Rc|+ |L0 ∩R| = qt−1

|L0 ∩R| = qt−1 − |L0 ∩Rc|

|L0 ∩R| ≥ qt−1 − qt−2

Since |L0 ∩R| ≥ qt−1 − qt−2, we find that q < 4 by the following computation:

(q − 3)(qt−1 − qt−2) ≤ (q − 3)|L0 ∩R| < (q − 1)qt−2

qt − 4qt−1 + 3qt−2 < qt−1 − qt−2

qt−2(q2 − 4q + 3) < (q − 1)qt−2

(q2 − 4q + 3) < (q − 1)

q2 − 5q + 4 < 0

(q − 1)(q − 4) < 0

We know q > 1, so (q − 1) > 0. Thus (q − 4) < 0, which implies q < 4. `
This contradicts our initial assumption, thus there exists at least one affine space

L1 parallel but not equal to L0 for which L1∩Rc is contained in a proper affine space
of L1.

If we pick any point Q ∈ L1 ∩R and count points of R on lines from Q to L0 ∩R,
then we will obtain at least (q − 2)|L0 ∩ R| points of R not lying in L1, by the
argument that established equation 2.2. Taking into account points in L1 ∩ R, we
find that |R| ≥ (q − 2)|L0 ∩R|+ |L1 ∩R|.
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However, we have arranged that L0∩Rc and L1∩Rc are both contained in proper
affine spaces, so that |L0 ∩R| ≥ qt−1− qt−2 and similarly for |L1 ∩R|. It then follows
that

|R| ≥ (q − 2)|L0 ∩R|+ |L1 ∩R|
≥ (q − 2)(qt−1 − qt−2) + (qt−1 − qt−2)
= (q − 1)(qt−1 − qt−2)
= (q − 1)2qt−2

We will now show that (q − 1)2qt−2 > 1
2
qt. Consider the following string of

inequalities. Note that the first inequality holds since q ≥ 4.

q(q − 4) + 2 > 0

q2 − 4q + 2 > 0

2q2 − 4q + 2 > q2

(q − 1)2 >
1

2
q2

(q − 1)2qt−2 >
1

2
qt

.
As explained above, this inequality leads to the assertion made in part (iii) of the

lemma.

(iv) We will prove this using induction on t. The statement is trivially true for
t = 1. When t = 1, S ⊆ F2 and |S| ≥ 2. If m ≥ 2 is an integer and if |S ∩ l| ≥ m+ 1

for every line l meeting S in at least two points, then |S| ≥ m2 − 1

m− 1
= m+ 1.

For our inductive hypothesis, assume S contains an affine space L0 of dimension

t− 1 together with a point P0 /∈ L0 such that |L0| ≥
mt − 1

m− 1
.

If P ∈ L0, the line generated by P and P0 contains at least two points of S, and
hence contains at least m+ 1 such points. For different points P the sets l \ {P0} are
disjoints. Hence
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|S| ≥ 1 +m|L0|

≥ 1 +m
(mt − 1

m− 1

)
= 1 +

mt+1 −m
m− 1

=
m− 1 +mt+1 −m

m− 1

=
mt+1 − 1

m− 1

The following result is given in [9] and is used frequently as a tool in the proofs
of Theorem 2.1.8 and Theorem 2.2.1.

Lemma 2.2.6 (Heath–Brown, [9]). Let L be an affine space of dimension d. If n ≥ d
and N(f;L) = v where 1 ≤ v ≤ (q − 1), then N(f;L∗) ≥ v for every affine space L∗

of dimension d parallel to L. As a result, N(f;Fnq ) ≥ vqn−d.

Proof. Let N(f;L) = v where 1 ≤ v ≤ q − 1. Assume N(f;L∗) < v for some affine
d-dimensional space parallel to L. By Theorem 2.2.2, N(f;L) ≡ N(f;L∗) (mod q). `
This is a contradiction, since 1 ≤ N(f;L)−N(f;L∗) ≤ q − 1.

Since we can cover Fnq with d-dimensional affine spaces that lie in the same sub-
space, it follows that

N(f;Fnq ) = N(f;L) +
∑
L∗

N(f;L∗)

= v +
∑
L∗

N(f;L∗)

≥ v + v(qn−d − 1)

= vqn−d

The following result is require to prove the next lemma.

Lemma 2.2.7. For x > 0, v > 0,
(

1 +
x

v

)v
< ex.

Proof. By setting y =
x

v
, it is sufficient to show that (1 + y) < ey. Notice we get

equality when y = 0. Taking the derivative of both sides, we know 1 < ey for y > 0.
Thus, we have the desired result.

The following result is stated without proof in [9].
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Lemma 2.2.8. Suppose v ∈ Z. Let v ≥ 2 and q ≥ 2v + 1, then
⌊ qv

v + 1

⌋v
>

qv

v + 1
with the exception of v = 2, q = 5, 7.

Proof. First we will demonstrate that it is sufficient to show

v + 1 >
(

1 +
1

q − 1

)v(
1 +

1

v

)v
.

Consider

v + 1 >
(

1 +
1

q − 1

)v(
1 +

1

v

)v
=
( q

q − 1

)v(v + 1

v

)v
.

Taking the vth root of both sides yields

(v + 1)
1
v >

( q

q − 1

)(v + 1

v

)
.

Rearranging these terms through multiplication, we find

q

(v + 1)
1
v

<
(q − 1)v

v + 1
=

qv

v + 1
− v

v + 1
≤
⌊ qv

v + 1

⌋
.

Assume q ≥ 2v + 1. Then

1 +
1

q − 1
≤ 1 +

1

2v
= 1 +

1
2

v(
1 +

1

q − 1

)v
≤
(

1 +
1
2

v

)v
< e

1
2

Thus, by Lemma 2.2.7, we find(
1 +

1

q − 1

)v(
1 +

1

v

)v
< e

1
2 e

= e
3
2

< 5

≤ v + 1 for v ≥ 4

Now let v = 3. Thus, we find(
1 +

1

q − 1

)v(
1 +

1

v

)v
< e

1
2

(4

3

)3
= e

1
2

64

27
< 3.91 < 4 = v + 1.

Now let v = 2. Notice that( q

q − 1

)v(v + 1

v

)v
=

9

4

( q

q − 1

)2
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We want to know for what values of q is the following inequality satisfied.

9

4

( q

q − 1

)2
< 3

This inequality is satisfied if and only if( q

q − 1

)2
<

4

3

This inequality is true if and only if q ≥ 8.

For convenience, we restate Heath–Brown’s result, Theorem 2.1.8.

Theorem 2.1.8 (Heath-Brown, [9], Theorem 2). Suppose that n > d and that
Z(f;Fnq ) is non-empty, and is not an affine space of Fnq . Then

(i) For any q we have N(f;Fnq ) > qn−d;

(ii) If q ≥ 4 we have N(f;Fnq ) ≥ 2qn−d;

(iii) For any q we have N(f;Fnq ) ≥ qn+1−d

(n+ 2− d)
provided that the polynomials

f1, . . . , fr are homogeneous.

We now present an improvement to Theorem 2.1.8 parts (i), (ii), and (iii), and
introduce a new result. Notice that we have shown that part (ii) holds for q = 3
and thus part (i) is only relevant when q = 2. Furthermore, we have shown that
part (iii) is never an optimal bound. Finally, we demonstrated sharpness of several
of the improved bounds. The proof of Theorem 2.2.1 closely follows the ideas of
Heath–Brown’s proof.

Theorem 2.2.1 (Leep-Petrik). Suppose that n > d and that Z(f;Fnq ) is non-empty,
and is not an affine space of Fnq . Then

(i) For q = 2, we have N(f;Fnq ) ≥ qn−d + q;

(ii) For q ≥ 3, we have N(f;Fnq ) ≥ 2qn−d;

(iii) For any q, we have N(f;Fnq ) >
qn+1−d

(n+ 2− d)
provided that the polynomials

f1, . . . , fr are homogeneous.

(iv) For q ≥ 3, we have N(f;Fnq ) ≥ 2qn−d + (q − 2)q provided that the polynomials
f1, . . . , fr are homogeneous;

Moreover, the bounds in (i), (ii), and (iv) are sharp under these hypotheses.
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Proof. In this proof, we are required to check many cases, so we developed a conve-
nient labeling to easily track where we are in the proof. Case IIB2(b) means we are
in the proof of part(ii), Case B, Subcase 2, Subsubcase b.

Since we satisfy the hypothesis of Warning’s corollary, we know that N(f;Fnq ) ≥
qn−d. Since Z(f;Fnq ) is not an affine space of Fnq , we know that Z(f;Fnq ) contains a
maximal set of t ≥ n+ 1− d points in general position. Let Ftq be the space spanned
by these points. Let S = Z(f;Ftq).

(i) Case IA Suppose the hypotheses of Lemma 2.2.5, parts (i),(ii) are satisfied. Then
S = Ftq. Thus

N(f;Fnq ) ≥ N(f;Ftq) = |S| = qt ≥ qn+1−d = q(qn−d) ≥ 2(qn−d) = qn−d+qn−d ≥ qn−d+q

Then the only cases we have left to consider are the following:

Case IB Suppose the hypothesis of Lemma 2.2.5, part (i) is not satisfied. That
is, if q = 2 and there exists a 2-plane L0 ⊆ Fnq with N(f;L0) = 3.

Case IC Suppose the hypothesis of Lemma 2.2.5, part(ii) is not satisfied. That
is, if q ≥ 3 and there is a line L0 ⊆ Fnq with 2 ≤ N(f;L0) ≤ q − 1.

Case IB Take L to be as in Lemma 2.2.3. Then N(f;L) = N(f;L0) = 3. Note
dim(L) = k ≤ d. For if dim(L) > d then 2|N(f;L) [1]. �

Then Lemma 2.2.3 yields the following bound:

N(f;Fnq ) ≥ N(f;L) +
qn−k − 1

q − 1
(N(f;L′)−N(f;L))

≥ N(f;L) +
qn−k − 1

q − 1

≥ 3 +
qn−k − 1

q − 1

= 3 +
qn−d − 1

q − 1

≥ 3 + 2n−d − 1

= 2n−d + 2

Case IC Take L to be as in Lemma 2.2.3. Then 2 ≤ N(f;L0) = N(f;L) ≤ q− 1.
Again notice dim(L) = k ≤ d. We will consider the following three cases:
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Case IC(1) Suppose k ≤ d−2. Then we can apply Lemma 2.2.3. This yields

N(f;Fnq ) ≥ N(f;L) +
qn−k − 1

q − 1
(N(f;L′)−N(f;L))

≥ qn+2−d − 1

q − 1

= qn+1−d + qn−d + · · ·+ 1

≥ qn+1−d + qn−d

≥ qn−d + q

Case IC(2) Suppose k = d− 1. Then either:

(a) N(f;L′)−N(f;L) = 1 and thus 3 ≤ N(f;L′) ≤ q − 1, or

(b) N(f;L′)−N(f;L) ≥ 2

Case IC2(a)) Suppose (a) holds. Since dim(L) = d − 1, this implies
dim(L′)=d. Thus by Lemma 2.2.6, we have that

N(f;Fnq ) ≥ 3qn−d ≥ qn−d + q

Case IC2(b)) Suppose (b) holds. We may apply Lemma 2.2.3. By Lemma
2.2.3,

N(f;Fnq ) ≥ N(f;L) +
qn−k − 1

q − 1
(N(f;L′)−N(f;L))

≥ qn−k − 1

q − 1
(N(f;L′)−N(f;L))

≥ qn−(d−1) − 1

q − 1
(N(f;L′)−N(f;L))

=
qn+1−d − 1

q − 1
(N(f;L′)−N(f;L))

= (qn−d + qn−d−1 + · · ·+ q + 1)(2)

≥ 2qn−d

≥ qn−d + q

Case IC(3) Suppose k = d. By Lemma 2.2.6,

N(f;Fnq ) ≥ vqn−d = 2qn−d ≥ qn−d + q

Remark: If we use Theorem 2.1.5, the result follows more easily because qn−d+q
is the first integer larger that qn−d that is divisible by q. However, the proof presented
above uses more elementary results.
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(ii) Case IIA Suppose the hypothesis of Lemma 2.2.5, part(ii) are satisfied. Then

N(f;Fnq ) ≥ N(f;Ftq) = |Ftq| = qt ≥ qn+1−d ≥ q(qn−d) > 2qn−d

Case IIB Suppose the hypothesis of Lemma 2.2.5, part (ii) is not satisfied. That
is, if q ≥ 3, there is a line L0 ⊆ Fnq with 2 ≤ N(f;L0) ≤ q − 1. Take L to be as in
Lemma 2.2.3. Then 2 ≤ N(f;L) = N(f;L0) ≤ q − 1. Note dim(L) = k ≤ d. Then
there exist three subcases:

Case IIB(1) Suppose k ≤ d− 2. By Lemma 2.2.3,

N(f;Fnq ) ≥ N(f;L) +
qn−k − 1

q − 1
(N(f;L′)−N(f;L))

≥ qn−k − 1

q − 1
≥ qn−(d−2) − 1

q − 1

=
qn+2−d − 1

q − 1
= qn+1−d + qn−d + · · ·+ q + 1

> qn+1−d = q(qn−d)

≥ 3qn−d > 2qn−d

Case IIB(2) Suppose k = d− 1. Then either

(a) N(f;L′)−N(f;L) = 1 and thus 3 ≤ N(f;L′) ≤ q, or

(b) N(f;L′)−N(f;L) ≥ 2

Case IIB2(a) Suppose (a) holds. Then dim(L′) = d. Since 3 ≤ N(f;L′) ≤
q, we find that N(f;L∗) ≥ 3 for every affine space of dimension d parallel to L′. Thus,
by Lemma 2.2.6, we have that N(f;Fnq ) ≥ 3qn−d > 2qn−d.

Case IIB2(b) Suppose (b) holds. Then Lemma 2.2.3 gives the following
bound:

N(f;Fnq ) ≥ N(f;L) +
qn−k − 1

q − 1
(N(f;L′)−N(f;L))

≥ qn−k − 1

q − 1
(N(f;L′)−N(f;L))

=
qn+1−d − 1

q − 1
× 2

= 2(qn−d + qn−d−1 + · · ·+ q + 1)

> 2qn−d

Case IIB(3) Suppose k = d. Then 2 ≤ N(f;L) ≤ q − 1. Then by Lemma
2.2.6, we find N(f;Fnq ) ≥ 2qn−d.
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(iii) Case IIIA Suppose the hypothesis of Lemma 2.2.5, part (iv) are satisfied.
Applying Lemma 2.2.5, part (iv) with an integer m ≤ q− 1 to be chosen later yields,

N(f;Fnq ) ≥ mt+1 − 1

m− 1

≥ mn+2−d − 1

m− 1

= mn+1−d +mn−d + · · ·+m+ 1

> mn+1−d

Case IIIB Suppose the hypothesis of Lemma 2.2.5, part (iv) are not satisfied.
That is, ifm ≥ 2 is an integer and there is a line L0 ⊆ Fnq with 2 ≤ N(f;L0) ≤ m. Take
L to be as in Lemma 2.2.3. Then 2 ≤ N(f;L) = N(f;L0) ≤ m. Note dim(L) = k ≤ d.
Then we have the following 3 subcases:

Case IIIB(1) Suppose k ≤ d − 2. Then Lemma 2.2.3 yields the following
bound:

N(f;Fnq ) ≥ qn+2−d − 1

q − 1
(N(f;L′)−m)

=
qn+2−d − 1

q − 1

= qn+1−d + qn−d + · · ·+ q + 1

> qn+1−d

Case IIIB(2) Suppose k = d− 1. Then either

(a) N(f;L′) ≥ q, or

(b) m+ 1 ≤ N(f;L′) ≤ q − 1

Case IIIB2(a) Suppose (a) holds. Then Lemma 2.2.3 gives the following
bound:

N(f;Fnq ) ≥ qn−k − 1

q − 1
(N(f;L′)−m)

≥ qn+1−d − 1

q − 1
(q −m)

= (q −m)(qn−d + qn−d−1 + · · ·+ q + 1)

> (q −m)qn−d
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Case IIIB2(b) Suppose (b) holds. Then dim(L′) = d. Since m + 1 ≤
N(f;L′) ≤ q− 1, we find that N(f;L∗) ≥ m+ 1 for every affine space of dimension d
parallel to L′. Thus by Lemma 2.2.6, we have that N(f;Fnq ) ≥ (m+ 1)qn−d.

Case IIIB(3) Suppose k = d. In fact, we will show that this cannot occur.
We will consider the following two cases:

Case IIIB3(a) Suppose 0 ∈ L. Then q − 1|N(f;L) − 1. This is be-
cause if x ∈ Z(f;L), then every scalar multiple of x is also in Z(f;L). Since
1 ≤ N(f;L)− 1 ≤ m− 1 ≤ q − 2, we reach a contradiction. �

Case IIIB3(b) Suppose 0 /∈ L. Consider the (d + 1)-dimensional affine
space L′ :=< L,0 >. Here we find that N(f;L′) = 1 + (q − 1)N(f;L). According to
Ax’s improvement, we have q|N(f;L′). Thus N(f;L) ≡ 1 mod q. �This is a contra-
diction since 2 ≤ N(f;L) ≤ m.

It follows that one of the inequalities must hold. Notice that the inequality produced
in Case IIIB(1) is already good enough for the theorem and does not rely on the
choice of m.

1. Case IIIA: N(f;Fnq ) ≥ mn+1−d

2. Case IIIB2(a): N(f;Fnq ) > (q −m)qn−d

3. Case IIIB2(b): N(f;Fnq ) ≥ (m+ 1)qn−d

The required estimate now follows by choosing m =
⌊q(n+ 1− d)

n+ 2− d

⌋
and applying

Lemma 2.2.8.

1. To prove inequality 1, we need to apply Lemma 2.2.8

N(f;Fnq ) ≥ mn+1−d =
⌊q(n+ 1− d)

n+ 2− d

⌋n+1−d
>

qn+1−d

n+ 2− d
2. To prove inequality 2, consider the following:

N(f;Fnq ) ≥ (q −m)qn−d

=
(
q −

⌊q(n+ 1− d)

n+ 2− d

⌋)
qn−d

≥
(
q − q(n+ 1− d)

n+ 2− d

)
qn−d

= qn+1−d − qn+1−d(n+ 1− d)

n+ 2− d

=
qn+1−d

n+ 2− d
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3. To prove inequality 3, consider the following:

N(f;Fnq ) ≥ (m+ 1)qn−d

=
(⌊q(n+ 1− d)

n+ 2− d

⌋
+ 1
)
qn−d

≥
(q(n+ 1− d)

n+ 2− d

)
qn−d

=
qn+1−d(n+ 1− d)

n+ 2− d

≥ 2qn+1−d

n+ 2− d

>
qn+1−d

n+ 2− d

It remains to check when q = 2, 3, 4, 5, 7.
When q = 2

N(f;Fn2 ) > 2n−d =
2n+1−d

2
>

2n+1−d

n+ 2− d
When q = 3

N(f;Fn3 ) > 3n−d =
3n+1−d

3
≥ 3n+1−d

n+ 2− d
When q = 4

N(f;Fn4 ) ≥ 2(4)n−d =
2(4)n+1−d

4
=

4n+1−d

2
>

4n+1−d

n+ 2− d
When q = 5

N(f;Fn5 ) ≥ 2(5)n−d =
2(5)n+1−d

5
=

2

5
(5n+1−d) >

1

n+ 2− d
(5n+1−d) =

5n+1−d

n+ 2− d

When q = 7 and v = n+ 1− d = 2. Since f is a system of homogeneous forms, we
know N(f;Fn7 ) ≡ 1 mod 6. Furthermore, by Lemma 2.2.6, we know N(f;Fn7 ) ≥ 14.

Thus, N(f;Fn7 ) ≥ 19 >
72

3
.

(iv) Let N = N(f,Fnq ) and let P be the number of projective zeros. We know that
N = P (q − 1) + 1. By Theorem 2.2.1, part (ii), we know N ≥ 2qn−d. By Theorem
2.1.5, we know N = 2qn−d + aq for some a ∈ Z≥0. If we consider these relationships
mod q−1, we find N ≡ 1 mod q−1 and q ≡ 1 mod q−1. Thus, 2+a ≡ 1 mod q−1,
which implies a ≡ −1 mod q − 1. Since a ∈ Z≥0, we know a ≥ q − 2, which gives the
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desired result.

Now we will demonstrate that bounds (i), (ii) and (iv) are sharp under these
hypotheses.
Sharpness of Part (i) Consider the polynomial

f(x1, x2, x3, x4) = x1x2 + x23 + x3x4 + x24

over F2. There are 23 − 22 + 2 = 6 solutions to this equation. Since there are 6
solutions, we know that the set of solutions does not form a linear subspace of F4

2.
The lower bound given in part (i) of the theorem is qn−d + q = 24−2 + 2 = 6.

Sharpness of Part (ii) Consider the polynomial

g(x, y, z) = xy + z2 + 1

over F3. There are exactly 3 + 3 = 6 solutions over F3. Since there are 6 solutions,
we know that the set of solutions does not form a linear subspace of F3

3. The lower
bound given in part (ii) of the theorem is 2qn−d = 2(3)3−2 = 6.

Sharpness of Part (iv) Consider the polynomial

h(x, y, z) = xy − z2

over Fq. There are exactly (q − 1)q + q = q2 solutions to this equation. The lower
bound given in part (iii) of the theorem is 2qn−d + (q − 2)q = 2q + (q − 2)q = q2.

One might wonder how part (iii) of Theorem 2.2.1 compares to part (iv) of The-
orem 2.2.1. In particular, one might ask if both results are necessary or if one is a
subset of the other. Thus, we will take the time to discuss these two results. For
convenience we have restated parts (iii) and (iv).

Theorem 2.2.1 (Leep-Petrik). Suppose that n > d and that Z(f;Fnq ) is non-empty,
and is not an affine space of Fnq . Then

(iii) For any q, we have N(f;Fnq ) >
qn+1−d

(n+ 2− d)
provided that the polynomials

f1, . . . , fr are homogeneous.

(iv) For q ≥ 3, we have N(f;Fnq ) ≥ 2qn−d + (q − 2)q provided that the polynomials
f1, . . . , fr are homogeneous;

First observe that when n − d = 1, part (iii) reduces to q2

3
and part (iv) reduces

to q2. Thus, when n − d = 1, part (iv) is a better, that is, larger lower bound.
Secondly, when n − d is “small” and q is “small”, part (iv) will be a better lower
bound. Otherwise, part (iii) is a better, that is, larger lower bound. This should
make sense intuitively as the power of q appearing in part (iii) is larger than the
power of q appearing in part (iv), so asymptotically, part (iii) is stronger as q gets
large.
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Chapter 3 Existence of Nontrivial Solutions for Diagonal Forms of Odd
Degree

3.1 Introduction

The goal of this chapter is to study criteria on the number of variables needed to
guarantee a nontrivial solution to an odd diagonal form. When restricting to the case
of diagonal forms, one can obtain much deeper and more specialized results. Diagonal
forms have been studied extensively in a variety of contexts. Of particular interest
are results on the existence of nontrivial solutions. In other words, we wish to find
bounds for or exact values of Ω(d, q) when d is odd. Some preliminary results in this
direction are the following results. In [8], Gray showed the existence of nontrivial
zeros in Fq of the following two forms

α1x
p
1 + · · ·+ αpx

p
p

where αi ∈ Fq, p ≥ 3, and p is an odd prime, and

α1x
p
1 + · · ·+ αp−1x

p
p−1

where αi ∈ Fq, p ≥ 5, and p is an odd prime. Moreover, Gray [6, 7] provides two lower
bounds for the number of variables needed to guarantee the existence of a nontrivial
solution.

Theorem 3.1.1 (Gray, [6]). Let d | q − 1, where d is an odd prime. The equation

α1x
d
1 + α2x

d
2 + · · ·+ αnx

d
n = 0

has a nontrivial solution over Fq if n ≥ d+ 4− (b2
√
d+ 2c) , where αi ∈ F∗q. That is,

Ω(1, d, q) < d+ 4− (b2
√
d+ 2c).

Theorem 3.1.2 (Gray, [7]). Let d | q − 1, where d is an odd prime. The equation

α1x
d
1 + α2x

d
2 + · · ·+ αnx

d
n = 0

has a nontrivial zero in Fq if n ≥ d+4−
(⌊d+ 1

2M

⌋
+2M

)
, where M =

⌊1 +
√
d+ 2

2

⌋
and αi ∈ Fq. That is,

Ω(1, d, q) < d+ 4−
(⌊d+ 1

2M

⌋
+ 2M

)
.

In the following section, we will show that these results are equivalent and present
an improvement to Theorem 3.1.1. We will conclude the following section with a
graphical comparison of the improvement and Chevalley’s Theorem (Theorem 2.1.1).
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3.2 Results for Diagonal Forms of Odd Degree

We show that the previously mentioned bounds by Gray are equivalent with the
following theorem.

Theorem 3.2.1 (Leep–Petrik). Theorem 3.1.1 and Theorem 3.1.2 are equivalent.

Proof. In order to show Theorem 3.1.1 and Theorem 3.1.2 are equivalent, we need to
show that

d+ 4− (b2
√
d+ 2c) = d+ 4−

(⌊d+ 1

2M

⌋
+ 2M

)
,

where M =
⌊1 +

√
d+ 2

2

⌋
. Rearranging terms it is sufficient to show

b2
√
d+ 2c =

⌊d+ 1

2M

⌋
+ 2M, (3.1)

where M is defined as above.

Since M is the integer part of
1 +
√
d+ 2

2
, we may write

1 +
√
d+ 2

2
= M + ε,

where 0 ≤ ε < 1. Then we can find

1 +
√
d+ 2

2
= M + ε

1 +
√
d+ 2 = 2M + 2ε
√
d+ 2 = 2M − 1 + 2ε

Observe that since d is odd, ε 6= 1
2
. For if ε = 1

2
,
√
d+ 2 = 2M , which is a

contradiction since
√
d+ 2 must be odd.

Now consider d+ 1.

d+ 1 = (
√
d+ 2 + 1)(

√
d+ 2− 1)

= (2M + 2ε)(2M − 2 + 2ε)

= 4M2 − 4M + 2ε(4M − 2) + 4ε2

= 4M2 − 4M + 4ε(2M − 1) + 4ε2

Thus,
d+ 1 = 4M2 − 4M + 4ε(2M − 1) + 4ε2. (3.2)

By Equation 3.2, we find that

d+ 1

2M
= 2M − 2 +

4ε(2M − 1) + 4ε2

2M⌊d+ 1

2M

⌋
+ 2M = 4M − 2 +

⌊4ε(2M − 1) + 4ε2

2M

⌋
.
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Now that we have an expression for the left hand side of Equation 3.1, we will
work to find an expression for the right hand side. Recall from above that

√
d+ 2 =

2M − 1 + 2ε. Using this, we find that

b2
√
d+ 2c = b2(2M − 1) + 4εc

= b4M − 2 + 4εc
= 4M − 2 + b4εc.

Now notice that we want to show that

4M − 2 + b4εc = 4M − 2 +
⌊4ε(2M − 1) + 4ε2

2M

⌋
,

so it is sufficient to show

b4εc =
⌊4ε(2M − 1) + 4ε2

2M

⌋
.

By Equation 3.2, we have

4ε(2M − 1) + 4ε2 = d+ 1− 4M2 + 4M ∈ Z.

Using the division algorithm, we know we can write
4ε(2M − 1) + 4ε2

2M
= q +

r

2M
,

where q, r ∈ Z, q ≥ 0, and 0 ≤ r ≤ 2M − 1.
We now observe that 0 ≤ 4ε(1 − ε) < 1. It is clear that 0 ≤ 4ε(1 − ε). Since

ε 6= 1
2
, we have (2ε − 1)2 > 0. Thus, 4ε2 − 4ε + 1 > 0 and by rearranging terms, we

can conclude

4ε− 4ε2 < 1

4ε(1− ε) < 1.

Since 0 ≤ r ≤ 2M − 1 and 0 ≤ 4ε(1 − ε) < 1, we know 0 ≤ r + 4ε(1 − ε) < 2M .
Thus,
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⌊4ε(2M − 1) + 4ε2

2M

⌋
=
⌊
q +

r

2M

⌋

=
⌊
q +

r + 4ε(1− ε)
2M

⌋

=
⌊4ε(2M − 1) + 4ε2

2M
+

4ε(1− ε)
2M

⌋

=
⌊4ε · 2M

2M

⌋
= b4εc.

Therefore, we obtain the desired result.

Furthermore, we improved Theorem 3.1.1 to the following result. Notice we
demonstrated that d simply needs to be an odd integer, not an odd prime integer,
for the result to hold.

Theorem 3.2.2 (Leep–Petrik). Let d | q − 1, where q = pk and d is an odd integer.
The equation

α1x
d
1 + α2x

d
2 + · · ·+ αnx

d
n = 0 (3.3)

has a nontrivial solution over Fq if n ≥ d+ 4− (b2
√
d+ 2c) , where αi ∈ F∗q. That is,

Ω(1, d, q) < d+ 4− (b2
√
d+ 2c).

The proof of Theorem 3.2.2 closely follows the ideas of Gray’s proof.

Theorem 3.2.3 (Leep–Petrik). Let d | q − 1, where q = pk and d is an odd integer.
If there exists λ ∈ Fq such that λ(F∗q)d is a generator of F∗q/(F∗q)d and 1 + λ /∈ (F∗q)d

and 1 + λ /∈ λ(F∗q)d, then for t = b2
√
d+ 2c − 4, the form

e0λ
0xd0 + · · ·+ ed−1λ

d−1xdd−1 = 0 (3.4)

has a nontrivial solution in Fq, where

ei =

{
0 for i ∈ T = {i1, i2, . . . , it}, 2 ≤ i1 < i2 < · · · < it = d− 1

1 for i ∈ T0 = D \ T,D = {0, 1, 2, . . . , d− 1}

and where the initial block {e0, e1, . . . , ei1−1} of nonzero elements has a maximal length
among the blocks of consecutive nonzero elements in {e0, e1, . . . , ed−1}.
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Theorem 3.2.4 (Leep–Petrik). Let d | q − 1, q = pk, and d is an odd integer. Then
there exists a λ ∈ Fq such that λ(F∗q)d is a generator of F∗q/(F∗q)d and 1 + λ /∈ (F∗q)d
and 1 + λ /∈ λ(F∗q)d. Furthermore, Theorem 3.2.2 is a consequence of Theorem 3.2.3.

Proof. We may assume that no two coefficients αi and αj belong to the same coset of
F∗q modulo (F∗q)d, for then α−1i αj = ad for some nonzero element a ∈ F∗q and xi = a,
xj = −1, xh = 0 (h 6= i 6= j) provides a solution.

First notice that the number of variables between the two equations matches.
That is, in Theorem 3.2.2, Equation 3.3 has at least d + 4 − (b2

√
d+ 2c) variables.

In Theorem 3.2.3, we have an equation in d variables, where t = b2
√
d+ 2c − 4 of

the variables do not appear. Thus, Equation 3.4 has d − t = d + 4 − (b2
√
d+ 2c)

variables.
The quotient F∗q/(F∗q)d is cyclic of order d. We want to show that there is a λ ∈ F∗q,

λ /∈ (F∗q)d, 1 + λ /∈ (F∗q)d and 1 + λ /∈ λ(F∗q)d such that λ(F∗q)d generates all the cosets
of F∗q/(F∗q)d. Let

W = {x ∈ F∗q | x = zd − 1, z ∈ F∗q}.

Then |W | = q − 1

d
− 1. Let

W−1 = {x ∈ F∗q | xy = 1, y ∈ W},

and let
V = (F∗q)d ∪W ∪W−1.

Then, if d ≥ 5,

|V | ≤ q − 1

d
+ 2
(q − 1

d
− 1
)

=
3q − 2d− 3

d
≤ 3(q − 1)

5
− 2 < q − 1.

This means that

|V c| = (q − 1)− |V | ≥
(

1− 3

d

)
q + 1 +

3

d
.

Recall the number of generators of F∗q/(F∗q)d is ϕ(d). Since d ≥ 5, ϕ(d) ≥ 4. Thus,(ϕ(d)

d
− 3

d

)
(q − 1) + 1 ≥ 0(ϕ(d)

d
− 3

d

)
q + 1 +

3

d
− ϕ(d)

d
≥ 0

−
(3

d

)
q + 1 +

3

d
+
(q − 1

d

)
ϕ(d) ≥ 0

q −
(3

d

)
q + 1 +

3

d
+
(q − 1

d

)
ϕ(d) ≥ q(

1− 3

d

)
q + 1 +

3

d
+
(q − 1

d

)
ϕ(d) ≥ q

|V |+
(q − 1

d

)
ϕ(d) ≥ q

|V |+ {Generators of F∗q/(F∗q)d in F∗q} ≥ q.
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This means that there is an element λ ∈ F∗q such that λ(F∗q)d generates all the
cosets of F∗q/(F∗q)d and λ /∈ V . Since λ /∈ V , λ /∈ (F∗q)d and 1 + λ /∈ (F∗q)d. Moreover,
since V is closed under the operation of taking inverses λ−1 /∈ V .

Furthermore, we can show 1 + λ /∈ λ(F∗q)d. Assume 1 + λ ∈ λ(F∗q)d. Then
(1 + λ)λ−1 = 1 + λ−1 ∈ (F∗q)d. Thus, λ−1 ∈ W ⊂ V , which is a contradiction. Thus,
1 + λ /∈ λ(F∗q)d. Hence, 1 + λ = λi0ad for some i0 (2 ≤ i0 ≤ d − 1) and for some
a ∈ F∗q. Notice a must be nonzero, for otherwise λ = −1 = (−1)d ∈ (F∗q)d. Thus,
for this particular generator λ, the cosets of F∗q/(F∗q)d are {λi(F∗q)d} for 0 ≤ i ≤ d− 1
and Equation 3.3 may be rewritten in the form of Equation 3.4 with exactly t zero
coefficients.

Now consider the coefficients eiλ
i of Equation 3.4 written counterclockwise in

cyclic order; there is a maximal block of consecutive coefficients of length i1 and
beginning with λr. Multiplication by λd−r preserves the cyclic order of the coset
representatives, preserves the relative location of the zeros and after renumbering
of the e’s yields e0λ

0, e1λ
1, . . . , ei1−1λ

i1−1 as a maximal block of consecutive nonzero
coefficients, while ed−1λ

d−1 = 0. Hence multiplication of Equation 3.4 by λd−r enables
us to rewrite it in the desired form.

Now let T = {i | ei = 0}. Then T = {i1, i2, . . . , it} for 2 ≤ i1 < i2 < · · · < it =
d − 1. Hence Equation 3.3 either has an obvious solution, or it can be rewritten to
satisfy the hypotheses of Theorem 3.2.3. Hence, to establish Theorem 3.2.2, we need
only complete the proof of Theorem 3.2.3.

We will need the following terminology for proving Theorem 3.2.3. The main
structure we need to understand are naturally ordered subsequences of the ordered
sequence D = {0, 1, 2, . . . , d−1}. In particular, we need this to understand the index
set of zero and non-zero coefficients in Equation 3.4, namely T = {i1, i2, . . . , it} for
2 ≤ i1 < i2 < · · · < it = d− 1 and T0 = D \ T .

Definition 3.2.5. The length of a sequence is the number of elements in the sequence.

Definition 3.2.6. If O is an ordered subsequence of D, a distinguished sequence in
O is an ordered subsequence {j1, j2, . . . , jm} of O such that

(i) jl+1 − jl = 1 for 1 ≤ l ≤ m− 1

(ii) jm + 1 /∈ O.

Furthermore, we will call distinguished sequences in O, O-sequences. A terminal
O-sequence is one that contains it = d− 1.

Let Tj = {i ∈ T | i initiates a T -sequence of length j}, and let us say that if
i ∈ T0, that is, i /∈ T , then i initiates a T -sequence of length zero. One observation
is that the initial T0-sequences {0, 1, . . . , i1 − 1} have maximal length among the
T0-sequences. Since d is finite, there exists a unique integer c such that Tc 6= ∅,
Tc+1 = ∅. If T = ∅, our convention yields c = 0. The sets T0, T1, . . . , Tc partition D.
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Example 3.2.7. Let d = 19 and T = {4, 5, 6, 7, 13, 17, 18}. Then the family of
T -sequences consists of

{7}, {13}, {18}, {6, 7}, {17, 18}, {5, 6, 7}, {4, 5, 6, 7}.

This means {18} and {17, 18} are terminal T -sequences. Using the above infor-
mation, we can compute T0, T1, T2, T3, T4, and T5.

T0 = {0, 1, 2, 3, 6, 8, 10, 11, 12, 14, 15, 16},

T1 = {7, 13, 18},

T2 = {6, 17},

T3 = {5},

T4 = {4},

T5 = ∅

This means that for this particular d and T the value c defined above is 4. Notice
that T0 ∪ T1 ∪ T2 ∪ T3 ∪ T4 = D and that the initial T0-sequence is {0, 1, 2, 3, }
and has length c = 4.

Definition 3.2.8. We say that b can appear effectively at location i in Equation 3.4
if b = λiad for some a ∈ F∗q and some i ∈ T0.

Lemma 3.2.9. If d is an odd number, and if c is the maximum number of consecutive
zero coefficients in Equation 3.4, then Equation 3.4 has a solution in Fq, nontrivial
in the d− t effectively appearing variables, provided that c+ 1 < i1, that is, provided
the first c+ 2 coefficients are nonzero.

Proof. Recall that 1+λ = λi0ad for 2 ≤ i0 ≤ d−1, a ∈ F∗q. If i0 ∈ Tj, then i0+j ∈ T0.
Otherwise if i0 + j /∈ T0, then i0 + j ∈ T , which contradicts i0 ∈ Tj. So i0 + j ∈ T0.
Also, if i0 ∈ Tj, then i0 + j ≤ d with equality holding only if i0 belongs to a terminal
sequence. This is because i0 ≤ (d− 1)− (j − 1) ≤ (d− j), which implies i0 + j ≤ d.
We get equality when i0 = d− j. Since there are j − 1 terms remaining past i0, the
last term in the sequence is i0 + j − 1 = d− j + j − 1 = d− 1. Thus we get equality
only if i0 belongs to a terminal sequence. Then λj + λj+1 = λj(1 + λ) = λi0+jad and
λj +λj+1 appears effectively at location i0 + j when i0 + j < d and at location 0 when
i0 + j = d, since then λi0+jad = (λa)d.

By assumption the initial T0-sequence has length at least c + 2, in other words,
it is {0, 1, 2, . . . , c + 1, . . . }. Then, since j ≤ c, we see that j and j + 1, as well as
i0 + j, belong to T0 and hence xj, xj+1, and xi0+j appear effectively in Equation 3.4.
Let ej = (0, . . . , 0, 1, 0, . . . , 0) where the 1 appears in the jth position. Consider the
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following vector −ej− ej+1 +aei0+j. Consider evaluating Equation 3.4 at this d-tuple

−λj − λj+1 + λi0+ja
d = −λj(1 + λ) + λi0+ja

d

= −λj(λi0ad) + λi0+ja
d

= −λi0+jad + λi0+ja
d

= 0

Therefore, −ej−ej+1 +aei0+j is a non-trivial solution of Equation 3.4. Thus, we have
found a solution that is non-trivial in the d− t effectively appearing variables.

Lemma 3.2.10. If t is chosen so that t + 4 < 2
√
d+ 3, and if c is the maximum

number of consecutive zero coefficients in Equation 3.4, then at least the first c + 2
coefficients in Equation 3.4 are nonzero, that is, when c+ 1 < i1.

Proof. We note that ed − 1 = eit = 0 so that the presence of t zeros among the
coefficients of Equation 3.4, with c of the zeros consecutively, leaves at most t− c+ 1
separated blocks of consecutive nonzero coefficients. Suppose that the maximal length
of these is less than c+2. Then we have, as the maximum possible number of nonzero
coefficients,

(t− c+ 1)(c+ 1) ≥ d− t.

Simplifying this inequality yields c2 − tc − 1 − 2t + d ≤ 0. Considering this as a
quadratic equation in variable c. We find the discriminant to be t2 + 4 + 8t− 4d and
know that it has a real zero if and only if

t2 + 4 + 8t− 4d ≥ 0,

which is the same as
(t+ 4)2 ≥ 4(d+ 3).

Taking the square root of both sides yields

t+ 4 ≥ 2
√
d+ 3,

which contradicts our initial assumption on t. Thus, we conclude that for t + 4 <
2
√
d+ 3 the initial maximal block of consecutive nonzero coefficients has length at

least c+ 2.

Before we proceed with the proof of Theorem 3.2.3, we need the following lemma.

Lemma 3.2.11. Let m ∈ Z. Assume d ∈ Z>0, d odd. If m < 2
√
d+ 3 and maximal,

then m = b2
√
d+ 2c = b2

√
d+ 3c.

Proof. Since m < 2
√
d+ 3, then m2 < 4(d + 3). Since d is odd, we know that

4(d + 3) ≡ 0 mod 8. We will now demonstrate that m2 6≡ 5, 6, 7 mod 8. First,
assume m is odd. Then m2 = (2s + 1)2 = 4s(s + 1) + 1 for some s ∈ Z. Since
4s(s + 1) ≡ 0 mod 8, we know m2 ≡ 4s(s + 1) + 1 ≡ 1 mod 8. Now, assume m is
even. Then m2 = (2s)2 = 4s2 for some s ∈ Z. If s is odd, by previous argument, we
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know s2 ≡ 1 mod 8. Thus, m2 ≡ 4 mod 8. If s is even, then m2 ≡ 0 mod 8. Since
m2 6≡ 5, 6, 7 mod 8, m2 ≤ 4(d + 3) − 4. Therefore m2 ≤ 4d + 8 = 4(d + 2). Thus
m ≤ 2

√
d+ 2. Since m ∈ Z, m ≤ b2

√
d+ 2c. Since m is maximal among these

integers, we know m = b2
√
d+ 2c, which must also equal to b2

√
d+ 3c by definition

of the floor function.

We should note that there is no weakening of Lemma 3.2.10, in replacing the
condition t+4 < 2

√
d+ 3 by t+4 = b2

√
d+ 2c, since by Lemma 3.2.11, the maximum

integer less that 2
√
d+ 3 is precisely b2

√
d+ 2c, that is b2

√
d+ 2c = b2

√
d+ 3c.

For convenience, we restate Theorem 3.2.3 and then provide the proof.

Theorem 3.2.3. Let d | q − 1, where q = pk and d is an odd integer. If there
exists λ ∈ Fq such that λ(F∗q)d is a generator of F∗q/(F∗q)d and 1 + λ /∈ (F∗q)d and

1 + λ /∈ λ(F∗q)d, then for t = b2
√
d+ 2c − 4, the form

e0λ
0xd0 + · · ·+ ed−1λ

d−1xdd−1 = 0

has a nontrivial solution in Fq, where

ei =

{
0 for i ∈ T = {i1, i2, . . . , it}, 2 ≤ i1 < i2 < · · · < it = d− 1

1 for i ∈ T0 = D \ T,D = {0, 1, 2, . . . , d− 1}

and where the initial block {e0, e1, . . . , ei1−1} of nonzero elements has a maximal
length among the blocks of consecutive nonzero elements in {e0, e1, . . . , ed−1}.

Proof. Since t = b2
√
d+ 2c − 4, by Lemma 3.2.11, we have t + 4 < 2

√
d+ 3. By

Lemma 3.2.10, we know that at least the first c + 2 coefficients in Equation 3.4 are
nonzero. By Lemma 3.2.9, Equation 3.4 has a nontrivial solution in the d−t effectively
appearing variables, which gives the desired result.

Theorem 3.2.12 (Gray, [6]). If Fq is a finite field and d and d0 are odd numbers such
that d ≥ d0, then Equation 3.3 has a nontrivial zero in Fq for t = b2

√
d0 + 2c − 4.

This follows immediately from Theorem 3.1.1, since t(d) is a non-decreasing func-
tion and n = d − t(d) ≤ d − t(d0) for d ≥ d0. But Theorem 3.1.1 establishes the
desired solution for Equation 3.3 in d− t(d) variables and thus for d− t(d0) variables.

Finally, it is of interest to think about this result graphically and see how it com-
pares to the classical result by Chevalley (Theorem 2.1.1). However, it is important
to remember that Gray’s result applies only to diagonal equations of odd degree.
In Figure 3.1, the shaded region indicates ordered pairs that satisfy the relationship
between n and d given by Theorem 3.2.3, however, the d value of the ordered pair
must also be odd to guarantee a nontrivial solution. Notice we see a jagged behavior
in this graph as a result of the floor function.
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Figure 3.1: This figure illustrates the relationship between n and d needed to guaran-
tee a nontrivial solution to a system of equations by Theorem 3.2.3. The horizontal
axis represents our degree d and the vertical axis represents the number of variables
n. The shaded region is the order pairs of (d, n) that may guarantee a nontrivial
solution to our system.

Furthermore, it is of interest to compare the bounds given by Theorem 3.2.3 and
Theorem 2.1.1. We should note that in terms of hypotheses, Theorem 2.1.1 holds for
a larger class of functions, whereas Theorem 3.2.3 only holds for diagonal equations
of odd degree. However, for diagonal equations of odd degree, we find that Theorem
3.2.3 is a stronger result.

Figure 3.2: This figure illustrates the relationship between Theorem 2.1.1 (shaded in
red) and Theorem 3.2.3 (shaded in green). The horizontal axis represents our degree
d and the vertical axis represents the number of variables n. As we can see from
the diagram, Theorem 3.2.3 improves Theorem 2.1.1 for diagonal equations of odd
degree.

Copyright c© Rachel Louise Petrik, 2020.
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Chapter 4 Results on A-Systems

4.1 Introduction

Much of the existing machinery and results for diagonal forms only apply to the case
where the degree of the form is odd. A common tool in many proof techniques relies
on the fact that −1 is a dth power over Fq. In general, the case where the degree of
the form is arbitrary is much more difficult because this property is not guaranteed.
This motivates the definition of an A-equation or, more generally, an A-system as
introduced by Tietäväinen in 1965 [14]. A system of polynomials is said to be an
A-system if the following property holds. Let fij be a polynomial of degree cij over
Fq. For every j = 1, . . . , n, there exist non-zero elements ηj and ξj of Fq such that
fij(ηj) = −fij(ξj), for every i = 1, . . . , r. [14, Condition A, page 8].

Since we are restricting to homogeneous diagonal forms, the notion of A-system
reduces to the following definition.

Definition 4.1.1 (Tietäväinen, [14]). Let f1, . . . , fr be homogeneous diagonal forms
in Fq[x1, . . . , xn] where deg(fi) = di. The above system is said to be an A-system if
there exists an η ∈ Fq such that ηdi = −1 for all i = 1, . . . , r.

With this definition, we can make the following helpful observations. First, if
char(Fq) = 2, then every system of homogeneous diagonal forms over Fq is an A-
system by setting η = 1. Similarly, if di is odd for all i = 1, . . . , r, then the system is
an A-system by setting η = −1.

4.2 A Classification of A-Systems

In the case of A-systems, many results on the existence of nontrivial solutions are
known (see, e.g., Section 4.4, Section 4.5, [14]). Consequently, it is of interest to
develop criteria for determining if a given system of diagonal forms is an A-system.
In joint work with Leep, we proved the following result in this direction.

Theorem 4.2.1 (Leep–Petrik). Assume q is odd. Then f is an A-system if and only
if di = 2kd′i where k ∈ Z≥0 and d′i odd and 2k+1 | q − 1.

Note that since the case char(Fq) = 2 is already fully classified, assuming q odd
is a reasonable assumption. Before proving this result, it may be helpful to see an
example.
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Example 4.2.2. Consider the system over F25.

x12 + 4y12 = 0

x4 + 3y4 + 2z4 = 0

Since d1 = 22(3), d2 = 22(1), and 23 | 25 − 1, the system is an A-system. Thus,
there exists some η ∈ Fq such that η4 = η12 = −1.

To prove Theorem 4.2.1, we will need the following lemmas.

Lemma 4.2.3 (Leep–Petrik). If d1 is even and d2 is odd, then the system {f1, f2} is
not an A-system.

Proof. Let d = gcd(d1, d2). We know d is odd because d2 is odd. Assume ηd1 = −1
and ηd2 = −1. Consider ηd = ηrd1+sd2 = (−1)r+s = ±1. Since d1 = 2kd, we know
ηd1 = (ηd)2k = (±1)2k = 1 �. Thus there are no A-systems with both even and odd
degree equations.

Lemma 4.2.4 (Leep–Petrik). If the system f is an A-system, then there exists a
k ∈ Z≥0 such that di = 2kd′i, where d′i is odd for all i = 1, . . . , r.

Proof. By Lemma 4.2.3, we know that all of the di are odd or all of the di are even. If
all of the di are odd, we are done. Assume di is even for all 1 ≤ i ≤ r. Since f1, . . . , fr
is an A-system, there exists an element, η ∈ F∗q, such that ηdi = −1 for all i. Notice

that since ηdi = −1 for all i, we know that (η2)
di
2 = −1 for all i. Let yi = x2i for all i,

then xdii = (yi)
di
2 . This means, after performing the previously mentioned change of

variable, that we have an A-system in yi for i = 1, . . . , r. Since we have an A-system,
di
2

are either all even or all odd. Repeat this process until they are all odd. Let k

represent the number of times we performed this process. This means that 2k | di for
all i = 1, . . . , r, but 2k+1 - di for all i = 1, . . . , r.

For convenience, we will restate Theorem 4.2.1.

Theorem 4.2.1 (Leep-Petrik). Assume q is odd. Then f is an A-system if and only
if di = 2kd′i where k ∈ Z≥0 and d′i odd and 2k+1 | q − 1.

Proof. Let F∗q =< α >. Notice that α
q−1
2 = −1.

(⇐) Choose η = α
q−1

2k+1 .Then

ηdi = αdi(
q−1

2k+1 ) = αd
′
i(
q−1
2

) = (−1)d
′
i = −1

for all i = 1, · · · , r.
(⇒) Since f is an A-system, Lemma 4.2.4 gives us di = 2kd′i where k ∈ Z≥0 and d′i odd.
Since f is an A-system, there exists η ∈ F∗q such that ηdi = −1 for all i = 1, · · · , r.
Let η = αλ. Then −1 = ηdi = αdiλ. So diλ = ki(

q−1
2

), where ki is odd. Thus,

2kd′iλ = ki(
q−1
2

). Since ki is odd, we know 2k | q−1
2

. Therefore, 2k+1 | q − 1.
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4.3 Preliminary Results

For Section 4.4 and Section 4.5, we will need the following preliminary results and
notation to begin investigating A-equations and A-systems.

Let V be the space of r-tuples over Fq, where q = pk. Let a = (a1, a2, . . . , ar) and
b = (b1, b2, . . . , br) be elements of V and a, b ∈ Fq. We will denote the 0-element
(0, 0, . . . , 0) of V as 0. Define

a + b := (a1 + b1, a2 + b2, . . . , ar + br)

aa := (aa1, aa2, . . . , aar)

ab := a1b1 + a2b2 + · · ·+ arbr

Define the trace of a by the map

tr : Fpk → Fp

where
a 7→ a+ ap + · · ·+ ap

k−1

We define
e(a) := e2πitr(a)/p.

For v ∈ Z≥0, d ∈ Z>0, we define

ed(v) := e2πiv/d.

Proposition 4.3.1 ([14], page 11). Let a, b ∈ Fq. Then e(a+ b) = e(a)e(b)

Proof. First we will show that tr(a+ b) = tr(a) + tr(b). By definition, we know

tr(a+ b) = (a+ b) + (a+ b)p + · · ·+ (a+ b)p
k−1

Since we are working over Fq, which has characteristic p, we know that (a+b)p
k

=

ap
k

+ bp
k

for k ∈ Z>0. Thus

tr(a+ b) = (a+ b) + (a+ b)p + · · ·+ (a+ b)p
k−1

= a+ b+ ap + bp + · · ·+ ap
k−1

+ bp
k−1

= a+ ap + · · ·+ ap
k−1

+ b+ bp + · · ·+ bp
k−1

= tr(a) + tr(b)
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Now consider

e(a+ b) = e2πitr(a+b)/p

= e2πi(tr(a)+tr(b))/p

= e2πitr(a)/pe2πitr(b)/p

= e(a)e(b)

Proposition 4.3.2 ([14], Equation 8, page 11). Let l, a, and b ∈ V . Then

e(l(a + b)) = e(la)e(lb) (4.1)

for every element l ∈ V .

Proof. By definition

e(l(a + b)) = e2πitr(l(a+b))/p

= e2πitr(la+lb)/p

= e2πi(tr(la)+tr(lb))/p

= e2πitr(la)/pe2πitr(lb)/p

= e(la)e(lb)

Proposition 4.3.3 ([14], Equation 9, page 11). Let a, b ∈ Fq. Then

∑
a∈Fq

e(ab) =

{
q if b = 0

0 if b 6= 0

Proof. Assume b = 0. Then e(0) = 1. Since there are q elements that a runs over, it

follows that
∑
a∈Fq

e(0) = q.

Now, assume b 6= 0. First notice that

p−1∏
j=1

(x− e2πij/p) = xp−1 + xp−2 + · · · +

x + 1. Notice that the coefficient on xp−2 is given by −
p−1∑
j=1

e2πij/p. This means that

−
p−1∑
j=1

e2πij/p = 1, which implies that

p−1∑
j=1

e2πij/p = −1.
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Consider the trace map. This is an additive group homomorphism. We know
im(tr) = Fp. By the First Isomorphism Theorem, we know that | ker(tr)| = pk−1.
Thus, the cardinality of the preimage of every element in Fp under the trace map is
the same. Since b 6= 0, we have bFq = Fq. Then

∑
a∈Fq

e(ab) =
∑
a∈Fq

e(a) =
∑
a∈Fq

e2πitr(a)/p =

p−1∑
c=0

pk−1e2πic/p = pk−1(0) = 0.

Therefore, ∑
a∈Fq

e(ab) =

{
q if b = 0

0 if b 6= 0.

Proposition 4.3.4 ([14], Equation 10, page 12). Let a, b ∈ V . Then∑
a∈V

e(ab) =

{
qr if b = 0

0 if b 6= 0

Proof. Notice by applying Proposition 4.3.1, we can see that

e(ab) = e(
r∑
j=1

ajbj) =
r∏
j=1

e(ajbj).

Now we will show ∑
a∈V

e(ab) =
r∏
j=1

∑
a∈Fq

e(abj).

Consider the following∑
a∈V

e(ab) =
∑
a∈V

r∏
j=1

e(ajbj)

=
∑
a∈V

e(a1b1)e(a2b2) . . . e(arbr)

=
(∑
a∈Fq

e(ab1)
)
. . .
(∑
a∈Fq

e(abr)
)

=
r∏
j=1

∑
a∈Fq

e(abj).

Applying Proposition 4.3.3, we find∑
a∈V

e(ab) =
r∏
j=1

∑
a∈Fq

e(abj) =
r∏
j=1

{
q if bj = 0

0 if bj 6= 0
=

{
qr if b = 0

0 if b 6= 0.
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Lemma 4.3.5 ([14], Lemma 1, page 12). The inequality

|
∑
ξ∈Fq

e(f(ξ))| ≤ (c− 1)q
1
2

holds on the assumption that f is a polynomial of degree c over Fq such that f 6=
gp−g+β for every polynomial g over Fq and for every element β of Fq. In particular,
the inequality holds for all polynomials f with deg(f) = c, where 1 ≤ c ≤ p− 1.

Lemma 4.3.5 is proved in [2].

Now consider the system

f1 = α11x
d1
1 + α12x

d1
2 + · · ·+ α1nx

d1
n

f2 = α21x
d2
1 + α22x

d2
2 + · · ·+ α2nx

d2
n...

fr = αr1x
dr
1 + αr2x

dr
2 + · · ·+ αrnx

dr
n

Let gj(xj) = (α1jx
d1
j , α2jx

d2
j , . . . , αrjx

dr
j ), where this represents the column corre-

sponding to xj. Notice the following lemma is the same as Theorem 5.3.1.

Lemma 4.3.6 ([14], Lemma 2, page 12). The number of solutions to the system
n∑
j=1

αijx
di
j = 0 for i = 1, . . . , r is equal to

N(f;Fnq ) = qn−r + q−r
∑
l∈Frq
l6=0

n∏
j=1

∑
ξj∈Fq

e(lgj(ξj))

.

Proof. Applying Proposition 4.3.2 and Proposition 4.3.4 yields

qrN(f;Fnq ) =
∑
ξ1∈Fq

· · ·
∑
ξn∈Fq

∑
l∈Frq

e(l
n∑
j=1

gj(ξj))

=
∑
l∈Frq

∑
ξ1∈Fq

· · ·
∑
ξn∈Fq

n∏
j=1

e(lgj(ξj))

=
∑
l∈Frq

n∏
j=1

∑
ξj∈Fq

e(lgj(ξj))

Picking out the term where l = 0 yields

qrN(f;Fnq ) = qn +
∑
l∈Frq
l6=0

n∏
j=1

∑
ξj∈Fq

e(lgj(ξj))
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Lemma 4.3.7 (Tietäväinen, [14], Lemma 3, page 13). Let f1, . . . , fr denote homo-
geneous diagonal forms such that deg(fi) = di. Assume that f is an A-system. Then
the system f has a nontrivial solution in Fnq if 2n > qr.

Proof. Since f is an A-system, there exists η ∈ Fq such that ηdi = −1 for all i =
1, . . . , r. Let ∆ be the collection of n-tuples with entries from {0, 1}. There are
2n elements in ∆. Since there are r forms and each form can take on at most q
values we know that there are qr possible outputs for f(∆). If 2n > qr, then by

the Pigeonhole Principle, there exist δ1, δ2 ∈ ∆ such that
n∑
j=1

fj(δ1j) =
n∑
j=1

fj(δ2j)

and δ1 = (δ11, . . . , δ1n) 6= (δ21, . . . , δ2n) = δ2. Therefore,
n∑
j=1

(fj(δ1j)− fj(δ2j)) = 0.

Since δ1j, δ2j ∈ {0, 1} for j = 1, . . . , n, we know {(δdi1j) − (δdi2j)} ∈ {0, 1,−1}. Then

δdi1j − δ
di
2j = λdij , where λj ∈ {0, 1, η} because ηdi = −1. Then λ = (λ1, . . . , λn) is a

nontrivial solution to f.

The following lemma is an extension of a result of Chowla [4].

Lemma 4.3.8 ([14], Lemma 4, page 13). If γ is a non-zero element of Fq and d | q−1,
then ∣∣∣∑

ξ∈Fq

e(γξd)
∣∣∣ ≤ (d− 1)q

1
2 .

Proof. Let ρ be a generator of the cyclic group F∗q. For α ∈ F∗q, let ind(α) be the

integer such that ρind(α) = α. The equation ξd = ζ is solvable for a non-zero ζ of Fq
if and only if ind(ζ) is divisible by d. If ind(ζ) is divisible by d, it has d solutions.

Let d = 1. We have
∑
ξ∈Fq

e(γξd) = 0 by Proposition 4.3.3 because γ 6= 0 and ξd

runs over all elements of Fq. Thus, when d = 1,∣∣∣∑
ξ∈Fq

e(γξd)
∣∣∣ = 0 = (d− 1)q

1
2 .

Hence we may assume that d > 1. Recall ed(v) = e2πiv/d and define U(k) to be

U(k) =
∑
ζ∈Fq
ζ 6=0

ed(k ind ζ)e(γζ)

Notice that when ζ is a dth power, then ed(v) = e
2πiv
d = 1 and when ζ is not a dth

power, then
d−1∑
k=0

ed(k ind ζ) = 0.

When k = 0∑
ζ∈Fq
ζ 6=0

ed(k ind(ζ))e(γζ) =
∑
ζ∈Fq
ζ 6=0

ed(0)e(γζ) =
∑
ζ∈Fq
ζ 6=0

e(γζ) = −1
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For d > 1, we have

∑
ξ∈Fq

e(γξd) = 1 +
d−1∑
k=0

∑
ζ∈Fq
ζ 6=0

ed(k ind(ζ))e(γζ)

= 1 + (−1) +
d−1∑
k=1

∑
ζ∈Fq
ζ 6=0

ed(k ind(ζ))e(γζ)

=
d−1∑
k=1

∑
ζ∈Fq
ζ 6=0

ed(k ind(ζ))e(γζ)

=
d−1∑
k=1

U(k).

Moreover, for k 6≡ 0 mod d,

|U(k)|2 =
∑
ξ∈Fq
ξ 6=0

ed(k ind ξ)e(γξ)
∑
η∈Fq
η 6=0

ed(−k ind η)e(−γη)

=
∑
ξ∈Fq
ξ 6=0

∑
η∈Fq
η 6=0

ed(k ind ξη−1)e(γ(ξ − η))

Let ζ = ξη−1.

|U(k)|2 =
∑
ζ∈Fq
ζ 6=0

ed(k ind ζ)
∑
η∈Fq
η 6=0

e(γ(ζ − 1)η)

Notice that when η = 0,
∑
ζ∈Fq
ζ 6=0

ed(k ind ζ) = 0 so

=
∑
ζ∈Fq
ζ 6=0

ed(k ind ζ)
∑
η∈Fq

e(γ(ζ − 1)η).

Using Proposition 4.3.3, we see that summation with respect to η gives q, for
ζ = 1, and 0, for ζ 6= 1. Therefore, |U(k)|2 = q and |U(k)| = q

1
2 .

Combining this with the equality
∑
ξ∈Fq

e(γξd) =
d−1∑
k=1

U(k), we obtain

|
∑
ξ∈Fq

e(γξd)| ≤
d−1∑
k=1

|U(k)| ≤ (d− 1)q
1
2
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Lemma 4.3.9. If ξd − ηd = 0 and d | q − 1, then there are 1 + d(q − 1) solutions.

Proof. First notice, if η = 0, then ξ = 0. Assume η 6= 0, then
(
ξ
η

)d
= 1. There are

exactly d values for ξ
η
; one for each dth root of 1. For each nonzero η, there are d

values of ξ that will yield a solution. Since there are (q − 1) choices for η, there are
1 + d(q − 1) solutions to ξd − ηd = 0.

4.4 Results on A-Equations

In this section, we will give an overview of the results currently known for A-equations.
It will become apparent that several of these results improve some previously known
bounds giving more evidence of the usefulness of the classification of A-equations.

The theorem below is stated much more generally by Tietäväinen in [14], but when
restricting to diagonal forms, the theorem is simplified to the following statement. It
turns out that this result will ultimately be superceded by a later result for d ≥ 3.

Theorem 4.4.1 (Tietäväinen, [14], Theorem 2, page 17). Assume d ≥ 2 and n ≥ 2.

The A-equation f =
n∑
j=1

αjx
d
j , αj ∈ F∗q has a non-trivial solution in Fq if either of the

following conditions hold

(i) d = 2, n ≥ 3

(ii) d ≥ 3, n ≥ 2 log2(d− 1) + 2.

In particular, if d ≥ 3, then ΩA(d, q) < 2 log2(d− 1) + 2.

Proof. (i) Let d = 2 and n ≥ 3. By Chevalley’s Theorem (Theorem 2.1.1,[3]), there
is a non-trivial solution to f .

(ii) Now let d ≥ 3 and n ≥ 2n log2(d − 1) + 2. Suppose the system has only the
trivial solution in Fq. By Lemma 4.3.7, this implies 2n ≤ q. Combining this with
n− 2 ≥ 2 log2(d− 1) we find

2n ≤ q

2n(2 log2(d−1)) ≤ q(n−2)

22n log2(d−1) ≤ qn−2

(d− 1)2n ≤ qn−2

(d− 1)n ≤ q
1
2
(n−2)
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Let l ∈ F∗q and ξj ∈ Fq. For every j = 1, . . . , n, we know lαjξ
d
j is not zero unless

ξj = 0. Hence, by Lemma 4.3.5, |
∑
ξj∈Fq

e(lαjξ
d
j )| ≤ (d− 1)q

1
2 . Therefore we have, by

Lemma 4.3.6,

NFq(f) = qn−1 + q−1
∑
l∈F∗q

n∏
j=1

∑
ξj∈Fq

e(lαjξ
d
j )

≥ qn−1 − q−1(q − 1)(d− 1)nq
1
2
n

≥ qn−1 − (q − 1)q
1
2
(n−2)(d− 1)n

= q
1
2
(n−2)

(
q
(
q

1
2
(n−2) − (d− 1)n

)
+ (d− 1)n

)

Since
q

1
2
(n−2) ≥ (d− 1)n,

it follows that
NFq(f) ≥ q

1
2
(n−2)(d− 1)n ≥ (d− 1)2n

Since we know that d ≥ 3, we have that NFq(f) > 1, which is impossible. Thus,
we have proven the desired result.

For α ∈ Fq, define S(α) :=
∑
ξ∈Fq

e(αξd).

Lemma 4.4.2 (Tietäväinen, [14], Lemma 7, page 25). If ρ is a generator of the cyclic
group F∗q and d | q − 1, then

d−1∑
j=0

|S(ρj)|2 = (d− 1)dq.

Proof. We have, by complex conjugation,

|S(α)|2 =
∑
ξ∈Fq

e(αξd)
∑
η∈Fq

e(−αηd) =
∑
ξ∈Fq

∑
η∈Fq

e(α(ξd − ηd)).

Observe when α = 0,

|S(0)|2 =
∑
ξ∈Fq

∑
η∈Fq

e(0) =
∑
ξ∈Fq

∑
η∈Fq

1 = q2.

By Lemma 4.3.9, the number of solutions of the equation ξd−ηd = 0 is 1+d(q−1).
Applying Proposition 4.3.3, we have

43



∑
α∈Fq

|S(α)|2 =
∑
α∈Fq

∑
ξ∈Fq

∑
η∈Fq

e(α(ξd − ηd)) = q + d(q − 1)q.

Since ρ is a generator of the cyclic group F∗q, we know that

q−2∑
j=0

|S(ρj)|2 =
∑
α∈Fq
α 6=0

|S(α)|2 =
(∑
α∈Fq

|S(α)|2
)
−|S(0)|2 = q+d(q−1)q−q2 = (d−1)(q−1)q

Moreover, for every η ∈ F∗q

S(ρjηd) =
∑
ξ∈Fq

e(ρjηdξd) =
∑
ζ∈Fq

e(ρjζd) = S(ρj).

Thus, (q − 1

d

)d−1∑
j=0

|S(ρj)|2 =

q−2∑
j=0

|S(ρj)|2.

Therefore,
d−1∑
j=0

|S(ρj)|2 = d(q − 1)−1
q−2∑
j=0

|S(ρj)|2 = (d− 1)dq.

Lemma 4.4.3 (Tietäväinen, [14], Lemma 8, page 26). Let E(0), . . . , E(d − 1) be

non-negative numbers. Let
d−1∑
i=0

(E(i))2 = F and E(d + i) = E(i) for every i. Let

k1, . . . , kn be distinct integers such that 0 ≤ kj ≤ d − 1, for every j = 1, . . . , n, and
let 2 ≤ n ≤ d. Then

d−1∑
h=0

n∏
j=1

E(h+ kj) ≤ n1− 1
2
nF

1
2
n

Proof. It follows from the arithmetic – geometric mean inequality that

n

√√√√ n∏
j=1

E(h+ kj)
2 ≤ n−1

n∑
j=1

E(h+ kj)
2

Raising both sides to the n
2

power yields

n∏
j=1

E(h+ kj) ≤ n−
1
2
n
( n∑
j=1

E(h+ kj)
2
) 1

2
n

Furthermore,
d−1∑
h=0

n∑
j=1

E(h+ kj)
2 =

n∑
j=1

d−1∑
h=0

E(h+ kj)
2 = nF,
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and

0 ≤
n∑
j=1

E(h+ kj)
2 ≤ F.

Dividing both equations by F we find that

d−1∑
h=0

(∑n
j=1E(h+ kj)

2

F

)
= n

and

0 ≤

n∑
j=1

E(h+ kj)
2

F
≤ 1.

Since n ≥ 2 and

0 ≤

n∑
j=1

E(h+ kj)
2

F
≤ 1,

we have

0 ≤

(∑n
j=1E(h+ kj)

2

F

) 1
2
n

≤

n∑
j=1

E(h+ kj)
2

F
≤ 1.

Thus,
d−1∑
h=0

(∑n
j=1E(h+ kj)

2

F

) 1
2
n

≤
d−1∑
h=0

∑n
j=1E(h+ kj)

2

F
= n

Multiplying by F
1
2
n yields

d−1∑
h=0

(
n∑
j=1

E(h+ kj)
2)

1
2
n ≤ nF

1
2
n.

Therefore,

d−1∑
h=0

n∏
j=1

E(h+ kj) ≤ n−
1
2
n

d−1∑
h=0

(
n∑
j=1

E(h+ kj)
2)

1
2
n ≤ n−

1
2
n(nF

1
2
n) = n1− 1

2
nF

1
2
n.

Theorem 4.4.4 (Tietäväinen, [14], Theorem 7, page 27). If n ≥ 3 and

q ≥ n−1d(d− 1)
n
n−2

then the A-equation f =
n∑
j=1

αix
d
i has a nontrivial solution in Fq.
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Proof. First observe that if n > d, then we have a nontrivial solution by Chevalley’s
Theorem (Theorem 2.1.1, [3]). Hence we may assume that n ≤ d. Additionally,
notice that we can reduce to the case where no two coefficients aj are in the same
set ρi(F∗q)d, where ρ is a generator of the cyclic group F∗q because in that case, the
equation has a non-trivial solution in Fq.

Applying Lemma 4.3.6, we know that the number of solutions to the equation is
equal to

N(f ;Fnq ) = qn−1 + q−1
∑
λ∈Fq
λ 6=0

n∏
j=1

S(λαj)

Let kj be the least non-negative residue mod d of the index of αj with respect
to ρ. Notice that k1, . . . , kn are distinct integers such that 0 ≤ kj ≤ d − 1 for all j.

Simplifying
∑
λ∈Fq
λ 6=0

n∏
j=1

S(λαj), we find

∑
λ∈Fq
λ 6=0

n∏
j=1

|S(λαj)| =
q−2∑
h=0

n∏
j=1

|S(ρh+kj)| =
(q − 1

d

)d−1∑
h=0

n∏
j=1

|S(ρh+kj)|.

Recall that S(ρd+i) = S(ρi) and, by Lemma 4.4.2,
d−1∑
i=0

|S(ρi)|2 = (d− 1)dq.

Applying Lemma 4.4.3 to
(q − 1

d

)d−1∑
h=0

n∏
j=1

|S(ρh+kj)|, yields

(q − 1

d

)d−1∑
h=0

n∏
j=1

|S(ρh+kj)| ≤
(q − 1

d

)
n1− 1

2
n
(d−1∑
i=0

|S(ρi)|2
) 1

2
n

Combining all of this yields

∑
λ∈Fq
λ 6=0

n∏
j=1

|S(λαj)| ≤
(q − 1

d

)
n1− 1

2
n((d− 1)dq)

1
2
n = n1− 1

2
n(q − 1)d

1
2
n−1(d− 1)

1
2
nq

1
2
n.

Substituting back into the formula for the number of solutions yields

N(f ;Fnq ) ≥ qn−1 − n1− 1
2
n(q − 1)d

1
2
n−1(d− 1)

1
2
nq

1
2
n−1

≥ q
1
2
n−1
(
q
(
q

1
2
n−1 − n1− 1

2
nd

1
2
n−1(d− 1)

1
2
n
)

+ n1− 1
2
nd

1
2
n−1(d− 1)

1
2
n

)
≥ q

1
2
n−1n1− 1

2
nd

1
2
n−1(d− 1)

1
2
n

≥ (n−1d)n−2(d− 1)n

Since n ≥ 3 and we have assumed that n ≤ d, the final inequality implies that
N(f ;Fnq ) > 1, which proves the desired result.
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Theorem 4.4.5 (Tietäväinen, [14], Theorem 8, page 28). If n ≥ 3 and

2nn ≥ d(d− 1)
n
n−2 ,

then the A-equation
n∑
j=1

αjx
d
j = 0 has a non-trivial solution in Fq.

Proof. By Lemma 4.3.7, if the A-equation has only the trivial solution in Fq, then

2n < q.

By Theorem 4.4.4, if the A-equation has only the trivial solution in Fq, then

q < n−1d(d− 1)
n
n−2 .

Combining these two results, we find that if the A-equation has only the trivial
solution in Fq, then

2n < q < n−1d(d− 1)
n
n−2 .

This implies
2nn < d(d− 1)

n
n−2 .

Thus, if
2nn ≥ d(d− 1)

n
n−2 ,

the A-equation
n∑
j=1

αjx
d
j = 0 has a non-trivial solution in Fq.

Corollary 4.4.6. If 2nn ≥ d(d− 1)
n
n−2 , then 1 + (2nn)

n−2
2n−2 > d.

Proof. Since 2nn ≥ d(d− 1)
n
n−2 , it follows

2nn > (d− 1)(d− 1)
n
n−2 = (d− 1)

2n−2
n−2 .

Thus,

(2nn)
n−2
2n−2 > d− 1.

Therefore, 1 + (2nn)
n−2
2n−2 > d.

Graphically, we can visualize this result with the following figure.
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Figure 4.1: This figure illustrates the relationship between n and d needed to guaran-
tee a nontrivial solution to a system of equations by Corollary 4.4.6. The horizontal
axis represents our degree d and the vertical axis represents the number of variables
n. The shaded region is the order pairs of (d, n) that guarantee a nontrivial solution
to our A-equation.

While Corollary 4.4.6 is a bit easier to apply and generally nicer to work with, it
is a worse bound than Theorem 4.4.5. Graphically, we can compare the two results
with the following figures.

(a) Behavior for small values of d (b) Behavior for large values of d

Figure 4.2: This figure compares the bounds given by Theorem 4.4.5 (blue region)
and Corollary 4.4.6 (purple region). In fact, the bounds are so close, the graph does
not differentiate between them.

Theorem 4.4.7 (Tietäväinen, [14], Theorem 9). If d ≥ 2,

max
q

ΩA(d, q) ≤ d2 log2(d)− log2 log2(d)e.
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Proof. Case I : Suppose d = 2. Then d2 log2(d) − log2 log2(d)e = 2. By Cheval-
ley’s Theorem (Theorem 2.1.1, [3]), if n > 2, the equation is isotropic. Thus,
max
q

ΩA(d, q) ≤ 2.

Case II : Suppose d = 3. Then d2 log2(d)−log2 log2(d)e = 3. By Chevalley’s Theo-
rem (Theorem 2.1.1, [3]), if n > 3, the equation is isotropic. Thus, max

q
ΩA(d, q) ≤ 3.

Case III : Suppose d ≥ 4. Suppose that n ≥ 1 + 2 log2(d)− log2 log2(d). Then

2n ≥ 21+2 log2(d)−log2 log2(d)

= 2(22 log2(d))(2− log2 log2(d))

= 2d2
( 1

log2(d)

)
=

2d2

log2(d)
.

We will now show that

1 + 0.27 log2(d)− log2 log2(d) > 0.

This is equivalent to showing

1 + 0.27 log2(d) > log2 log2(d).

This is equivalent to showing

21+0.27 log2(d) = 2d0.27 > log2(d) = 2log2 log2(d).

Let g(x) = 2x0.27 − log2(x). We will show that g(x) > 0 for all x ≥ 4. By

L’Hopital’s rule, lim
x→∞

g(x) =∞. Additionally, g′(x) =
0.54

x0.73
− 1

x ln(2)
. Let x∗ =

(0.54 ln(2))−0.27. Notice that g′(x∗) = 0 and this x∗ is unique. Furthermore, we can
show g(x∗) > 0.

Consider the following

g(x∗) = 2((0.54 ln(2))−0.27)0.27 − log2((0.54 ln(2))−0.27)

= 2
( 1

0.54 ln(2)

)
+ 0.27 log2(0.54 ln(2))

> 5 + 0.27 log2(0.54 ln(2))

> 5 + log2(0.54 ln(2))

> 0.

First we will show g(4) > 0.

g(4) = 2(4)0.27 − log2(4)

= 21.54 − 2

> 0

49



Suppose there exists an a ∈ R such that g(a) < 0 and 4 < a. Since lim
x→∞

g(x) =∞,

there exists a b ∈ R such that a < b and g(b) > 0. Since [4, b] is a compact interval,
we can find an absolute minimum on the set. By the Extreme Value Theorem, the
absolute minimum occurs at one of the endpoints or a critical point in the interval.
Since g(4) and g(b) are positive and g(a) is negative, we know the absolute minimum
cannot occur at either endpoint. Since g(a) < 0, we know that there is a critical point
on the interval, which much be x∗. Since g(x∗) > 0, we reach a contradiction. Thus,
there does not exist an a ∈ R such that g(a) < 0 and 4 < a. Therefore, g(x) > 0 for
all x ≥ 4.

It follows
1 + 0.27 log2(d)− log2 log2(d) > 0.

Hence

n > 1 + 2 log2(d)− log2 log2(d)− (1 + 0.27 log2(d)− log2 log2(d))

= 1.73 log2(d).

and futhermore,

2nn > (1.73 log2(d))
( 2d2

log2(d)

)
= 3.46d2.

On the other hand, we now show that

E log2(d)− 1− log2(log2(d)) ≥ 0

where

E =

{
1 for 4 ≤ d ≤ 7

0.87 for d ≥ 8.

Suppose 4 ≤ d ≤ 7. Then E = 1. We want to show that

log2(d)− 1− log2(log2(d)) ≥ 0.

This is equivalent to showing

log2(d)− 1 ≥ log2(log2(d)).

Exponentiating both sides yields

2log2(d)−1 ≥ 2log2(log2(d))

d

2
≥ log2(d).

Thus it is equivalent to showing d
2
≥ log2(d). Consider g(x) = x

2
− log2(x). We will

show that g(4) = 0 and g′(x) ≥ 0 for x ≥ 4, and conclude that g(x) ≥ 0 for 4 ≤ x ≤ 7.

g(4) = 2− log2(4)

= 0.
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Now consider

g′(x) =
1

2
− 1

x ln(2)

=
x ln(2)− 2

2x ln(2)
.

Since x ln(2)− 2 > 0 for x ≥ 4, the result follows.
Suppose d ≥ 8. Then E = 0.87. We want to show that

0.87 log2(d)− 1− log2(log2(d)) ≥ 0.

This is equivalent to showing

0.87 log2(d)− 1 ≥ log2(log2(d)).

Exponentiating both sides yields

20.87 log2(d)−1 ≥ 2log2(log2(d))

d0.87

2
≥ log2(d).

Thus it is equivalent to showing d0.87

2
≥ log2(d). Consider g(x) = x0.87

2
− log2(x). We

will show that g(8) > 0 and g′(x) ≥ 0 for x ≥ 8, and conclude that g(x) > 0 for
x ≥ 8.

g(8) =
80.87

2
− log2(8)

> 3.05252− 3

> 0.

Now consider

g′(x) =
0.87

2x0.13
− 1

x ln(2)
=

0.87x ln(2)− 2x0.13

2x1.13 ln(2)
=

0.87x0.87 ln(2)− 2

2x ln(2)
.

Since 0.87x0.87 ln(2)− 2 > 0 for x ≥ 8, the result follows.
Hence

n ≥ 1 + 2 log2(d)− log2(log2(d))− (E log2(d)− 1− log2(log2(d)))

= 2 + 2 log2(d)− E log2(d)

Thus, n− 2 ≥ (2− E) log2(d).
Furthermore, substituting in the assigned values for E yields

2

n− 2
≤ 2

(2− E) log2(d)
≤


2

log2(d)
for 4 ≤ d ≤ 7

1.77

log2(d)
for d ≥ 8.
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Furthermore, we will show that

(d− 1)
2

n−2 < d
2

n−2 ≤


4 for 4 ≤ d ≤ 7

3.42 for d ≥ 8.

Suppose 4 ≤ d ≤ 7. From the previous inequalities, it follows that
2

n− 2
≤

2

log2(d)
. Notice that showing

d
2

log2(d) ≤ 4

is equivalent to showing

log2(d
2

log2(d) ) ≤ log2(4).

Simplifying both sides yields

2 =
2

log2(d)
log2(d) ≤ log2(4) = 2,

which yields the desired result.

Now suppose d ≥ 8. From the previous inequalities, it follows that
2

n− 2
≤

1.77

log2(d)
. Notice that showing

d
1.77

log2(d) ≤ 3.42

is equivalent to showing

log2(d
1.77

log2(d) ) ≤ log2(3.42).

Simplifying both sides yields

1.77 =
1.77

log2(d)
log2(d) ≤ log2(3.42) ≤ 1.774,

which yields the desired result.
Therefore, we will show that

(d− 1)
n
n−2 <


3.44d for 4 ≤ d ≤ 7

3.42d for d ≥ 8.

Suppose 4 ≤ d ≤ 7. Since d ≤ 7, it follows that 0.14d < 1, which is equivalent to
d− 1 < 0.86d. Consider the following inequalities

(d− 1)
n
n−2 < (d− 1)(d

2
n−2 ) < 0.86d(4) = 3.44d,

which yields the desired result.
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Suppose d ≥ 8. Consider the following inequalities

(d− 1)
n
n−2 < d(d

2
n−2 ) < d(3.42) = 3.42d,

which yields the desired result.
Combining this with 2nn > 3.46d2, we find that 2nn > d(d− 1)

n
n−2 for d ≥ 4. By

Theorem 4.4.5, the A-equation is isotropic.

Graphically, we can visualize this result with the following figure.

Figure 4.3: This figure illustrates the relationship between n and d needed to guaran-
tee a nontrivial solution to a system of equations by Theorem 4.4.7. The horizontal
axis represents our degree d and the vertical axis represents the number of variables
n. The shaded region is the order pairs of (d, n) that guarantee a nontrivial solution
to our A-equation.

Furthermore, it is of interest to compare the bounds given by Theorem 4.4.7 and
Corollary 4.4.6 with the bound given by Chevalley (Theorem 2.1.1.
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(a) Behavior for small values of d (b) Behavior for large values of d

Figure 4.4: These figures illustrates the relationship between Corollary 4.4.6 (purple
region), Theorem 4.4.7 (green region), and Theorem 2.1.1 (red region). The horizontal
axis represents our degree d and the vertical axis represents the number of variables n.
We can see that the results given by Theorem 4.4.7 are the strongest for A-equations.

In the case of diagonal forms, we realized that Theorem 4.4.1 and Theorem 4.4.7
were incredibly similar results. Graphically, we can visualize them with the following
figure.

(a) Behavior for small values of d (b) Behavior for large values of d

Figure 4.5: These figures compares the bounds given by Theorem 4.4.1 (black region)
and Theorem 4.4.7 (green region). We can see that Theorem 4.4.7 is a stronger result.

In fact, for d ≥ 3, Theorem 4.4.7 is a stronger result than Theorem 4.4.1. The
following lemma and proposition prove the previous statement.

Lemma 4.4.8. If d ≥ 3, then 2 log2(d)− log2(log2(d)) ≤ 2 log2(d− 1) + 1.
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Proof. The statement is equivalent to proving
d2

log2(d)
≤ 2(d− 1)2. It is sufficient to

show (1 + 1
d−1)2 =

d2

(d− 1)2
≤ 2 log2(d) = log2(d

2).

Suppose d = 3. Then we satisfy the desired inequality since
9

4
< 3 < log2(9).

Notice that (1 + 1
d−1)2 is a decreasing function and log2(d

2) is an increasing function.
Therefore, since the inequality held for d = 3, the inequality is true for d > 3.

Proposition 4.4.9. Let d ≥ 3. Suppose ΩA(d, q) ≤ d2 log2(d)− log2(log2(d))e. Then

(i) ΩA(d, q) < 2 log2(d− 1) + 2,

(ii) If n ≥ 2 log2(d− 1) + 2, then the A-equation
n∑
j=1

αjx
d
j is isotropic over Fq.

Proof. (i) By Lemma 4.4.8, for d ≥ 3, we have 2 log2(d)− log2(log2(d)) ≤ 2 log2(d−
1) + 1. Thus, d2 log2(d)− log2(log2(d))e < 2 log2(d− 1) + 2. By hypothesis,

ΩA(d, q) ≤ d2 log2(d)− log2(log2(d))e < 2 log2(d− 1) + 2.

(ii) If n ≥ 2 log2(d− 1) + 2 > ΩA(d, q), then the A-equation
n∑
j=1

αjx
n
j is isotropic.

4.5 Results on A-Systems

In this section, we will give an overview of the results currently known for A-systems.
It will become apparent that several of these results improve some previously known
bounds giving more evidence of the usefulness of the classification of A-systems.

Theorem 4.5.1 (Tietäväinen, [14], Part of Theorem 3, page 19). Let di = pkibi,

where p - bi and let si = pk−ki. If
n∑
j=1

αijx
di
j = 0, i = 1, . . . , r, is an A-system,

then
n∑
j=1

αsiijx
bi
j = 0, i = 1, . . . , r, is an A-system. Additionally, if

n∑
j=1

αsiijx
bi
j = 0,

i = 1, . . . , r, has a nontrivial zero over Fq, then
n∑
j=1

αijx
di
j = 0, i = 1, . . . r, has a

nontrivial zero over Fq.

Proof. Since αq = α, for all α ∈ Fq. We may assume di < q for all i = 1, . . . , r. Thus

pki ≤ pkibi < q = pk
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Therefore, ki < k. If
n∑
j=1

αijx
di
j = 0, i = 1, . . . , r, is an A-system, then there exists

η ∈ F∗q such that ηdi = −1 for all i = 1, . . . , r. Notice

(ηbi)p
ki = ηdi = −1 = (−1)p

ki

for all i = 1, . . . , r. Since ϕ : Fq → Fq, x 7→ xp is an automorphism, it follows that

ηb1 = ηb2 = · · · = ηbr = −1. Thus,
n∑
j=1

αsiijx
bi
j is an A-system.

Now let (λ1, . . . , λn) be a nontrivial solution to
n∑
j=1

αsiijx
bi
j , i = 1, . . . , r. Consider

n∑
j=1

αijλ
di
j =

n∑
j=1

αp
k

ij λ
di
j =

n∑
j=1

(αsiijλ
bi
j )p

ki = (
n∑
j=1

αsiijλ
bi
j )p

ki = 0p
ki = 0.

Thus (λ1, . . . , λn) is also a nontrivial solution of
n∑
j=1

αijx
di
j = 0, i = 1, . . . , r.

Theorem 4.5.2 (Tietäväinen, [14], Theorem 4, page 20). Assume d ≥ 2. The A-

system
n∑
j=1

αijx
d
j = 0 for i = 1, . . . , r has a non-trivial solution in Fq if

n ≥ 2r(r +D)

where D = max(log2(d− 1), 1).

Proof. If d = 2, we know that D = 1. Since r ≥ 1, we find

n ≥ 2r(r + 1) > 2r.

By Chevalley’s Theorem (Theorem 2.1.1, [3]), the A-system
n∑
j=1

αijx
d
j = 0, i = 1, . . . , r

has a non-trivial solution in Fq. Therefore, we may assume that d ≥ 3, which implies
that D = log2(d− 1).

First consider the case r = 1. When r = 1,

n ≥ 2(1 + log2(d− 1)) = 2 log2(d− 1) + 2.

By Theorem 4.4.1, the A-equation
n∑
j=1

α1jx
d
j = 0 has a non-trivial solution in Fq.

Assume that this theorem is true for systems of r− 1 equations where r ≥ 2. We
will show that it is true for systems of r equations.
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Suppose by way of contradiction that
n∑
j=1

αijx
d
j = 0, i = 1, . . . , r has only the

trivial solution in Fq and that n ≥ 2r(r + D). By Lemma 4.3.7, 2n ≤ qr, which
implies 2

n
r ≤ q.

First suppose that q < 22r(d− 1)2. Then

22r+2D ≤ 2
n
r ≤ q < 22r(d− 1)2

22D < (d− 1)2

2D < 2log2(d− 1)

D < log2(d− 1)

Since D = log2(d− 1), we reach a contradiction �.
Now suppose q ≥ 22r(d− 1)2. Taking the square root of both sides yields

q
1
2 ≥ 2r(d− 1) > (d− 1).

Thus, we have q > (d− 1)q
1
2 .

Suppose that λ = (λ1, . . . , λr) ∈ Frq \ 0. Then at least one λi, say λu, is non-zero.

Therefore, the system
n∑
j=1

αijx
d
j = 0 for i = 1, . . . , r is equivalent to the following

system 

n∑
j=1

αijx
d
j = 0 for i = 1, . . . , u− 1, u+ 1, . . . , r

r∑
i=1

λifi = 0

Let gj(xj) = (α1jx
d
j , α2jx

d
j , . . . , αrjx

d
j ). We will show that λgj(xj) =

r∑
i=1

λiαijx
d
j ,

for j = 1, . . . , n, is identically zero for at most t := d2(r − 1)(r − 1 + D)e − 1 values
of j.

Suppose that λgj(xj) =
r∑
i=1

λiαijx
d
j is identically zero for t + 1 values of j, say

j = 1, . . . , t+ 1. Then we can rewrite the system above as

n∑
j=1

αijx
d
j = 0 for i = 1, . . . , u− 1, u+ 1, . . . , r

n∑
j=t+2

r∑
i=1

λiαijx
d
j = 0
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Let xt+2 = · · · = xn = 0. Then our system becomes
t+1∑
j=1

αijx
d
j = 0 for i =

1, . . . , u− 1, u + 1, . . . , r. By the induction hypothesis, this system has a non-trivial
solution (x1, . . . , xt+1) if t+1 ≥ 2(r−1)(r−1+D). Since t = d2(r−1)(r−1+D)e−1,
we know

t+ 1 = d2(r − 1)(r − 1 +D)e ≥ 2(r − 1)(r − 1 +D).

Thus, the system has a non-trivial solution �. Thus, we know λgj(xj) =
r∑
i=1

λiαijx
d
j

is identically zero for at most t = d2(r − 1)(r − 1 +D)e − 1 values of j.

By Lemma 4.3.6, the number of solutions of the system
n∑
j=1

αijx
d
j = 0 for i =

1, . . . , r is equal to

N(f;Fnq ) = qn−r + q−r
∑
λ∈Frq
λ6=0

n∏
j=1

∑
ξj∈Fq

e(λgj(ξj)).

If λgj is identically zero for some j, then
∑
ξj∈Fq

e(λgj(ξj)) = q.

In the other cases it follows that λgj(xj) satisfies the assumption of Lemma 4.3.8,

which tells us that
∣∣∣∑
ξj∈Fq

e(λgj(ξj))
∣∣∣ ≤ (d− 1)q

1
2 .
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Therefore,

N(f;Fnq ) ≥ qn−r − q−r
∣∣∣∑
λ∈Frq
λ6=0

n∏
j=1

∑
ξj∈Fq

e(λgj(ξj))
∣∣∣

= qn−r − q−r(qr − 1)qt(d− 1)(n−t)q
1
2
(n−t)

= qn−r − (qr − 1)(d− 1)n−tq
1
2
(n+t−2r)

= q
1
2
(n+t−2r)

(
q

1
2
(n−t) − (qr − 1)(d− 1)(n−t)

)

= q
1
2
(n+t−2r)

(
qr
(
q

1
2
(n−t−2r) − (1− q−r)(d− 1)(n−t)

))

= q
1
2
(n+t−2r)

(
qr
(
q

1
2
(n−t−2r) − (d− 1)(n−t) + q−r(d− 1)(n−t)

))

= q
1
2
(n+t−2r)

(
qr
(
q

1
2
(n−t−2r) − (d− 1)(n−t)

)
+ (d− 1)(n−t)

)
> q

1
2
(n−t−2r)(d− 1)n−t

Since 2(r − 1)(r − 1 + D) + 1 > d2(r − 1)(r − 1 + D)e, we can provide a lower
bound on n− t

n− t > 2r(r +D)− (d2(r − 1)(r − 1 +D)e − 1)

> 2r(r +D)− 2(r − 1)(r − 1 +D)

= 4r + 2D − 2

We will now show that 22r(d− 1)2 = (d− 1)2+
2r
D . It is sufficient to show that

2r =
2r

D
log2(d− 1),

which is true because D = log2(d− 1). Therefore, q ≥ 22r(d− 1)2 = (d− 1)2+
2r
D .

Since r ≥ 2, it follows

2r

D
>

2r

r − 1 +D
=

4r

2(r − 1 +D)
>

4r

n− t− 2r

Therefore,
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qn−t−2r > ((d− 1)(2+
2r
D
))(n−t−2r)

> ((d− 1)(2+
4r

n−t−2r
))(n−t−2r)

= (d− 1)2(n−t−2r)+4r

= (d− 1)2(n−t)

Combining this with our lower bound on N(f;Fnq ), we obtain

N(f;Fnq ) > q
1
2
(n+t−2r)(d− 1)n−t > (d− 1)2(n−t) > 1

which is a contradiction �. Thus, our theorem has been proved.

Corollary 4.5.3 (Tietäväinen, [14], Theorem 3, page 19). Let di = pkibi, where p - bi.

Then the A-system
n∑
j=1

αijx
di
j = 0, 1 ≤ i ≤ r, has a nontrivial solution if

n ≥ min
(

1 +
r∑
i=1

bi, 2r(r +B)
)
,

where B = max(log2(b− 1), 1) and b = max bi.

Proof. Let s = pk−ki . By Theorem 4.5.1,
n∑
j=1

(αij)
sxbij = 0, 1 ≤ i ≤ r, is an A-system.

By Chevalley’s Theorem (Theorem 2.1.1, [3]),
n∑
j=1

(αij)
sxbij = 0, 1 ≤ i ≤ r, has a

nontrivial solution when n ≥ 1+
r∑
i=1

bi. By Theorem 4.5.2,
n∑
j=1

(αij)
sxbij = 0, 1 ≤ i ≤ r,

has a nontrivial solution if n ≥ 2r(r + B), where B = max(log2(b − 1), 1) and

b = max bi. By Theorem 4.5.1,
n∑
j=1

αijx
di
j = 0, 1 ≤ i ≤ r, has a nontrivial solution

if
n∑
j=1

(αij)
sxbij = 0, 1 ≤ i ≤ r, has a nontrivial solution. Thus if n ≥ 1 +

r∑
i=1

bi or

n ≥ 2r(r +B),
n∑
j=1

αijx
di
j = 0, 1 ≤ i ≤ r, has a nontrivial solution.
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Lemma 4.5.4 (Tietäväinen, [14], Lemma 5, page 23). Suppose that there exist non-

zero elements σ and τ of Fq such that σd− τ d = 1. Then the A-system
n∑
j=1

αijx
d
j = 0

for i = 1, . . . , r has a non-trivial solution in Fq if 3n > qr.

Proof. Since 3n > qr, two of the 3n vectors (
n∑
j=1

α1jδ
d
j , . . . ,

n∑
j=1

αrjδ
d
j ), where δj = 0, 1,

or σ, are equal. Hence
n∑
j=1

αijδ
d
1j =

n∑
j=1

αijδ
d
2j for i = 1, . . . , r, where δkj = 0, 1,

or σ, for k = 1, 2, and (δ11, . . . , δ1n) 6= (δ21, . . . , δ2n). Therefore,
n∑
j=1

αijεj = 0 for

i = 1, . . . , r where εj = δd1j − δd2j ∈ {0,±1,±σd,±τ d}, and (ε1, . . . , εn) 6= (0, . . . , 0).

Since
n∑
j=1

αijx
d
j = 0 is an A-system, there exists an element η of Fq such that

ηd = −1. Consequently, εj = χdj where χj ∈ {0, 1, η, σ, ησ, τ, ητ}. Therefore, the

A-system
n∑
j=1

αijx
d
j = 0 has the non-trivial solution (χ1, . . . , χn) in Fq.

Lemma 4.5.5 (Tietäväinen, [14], Lemma 6, page 23). Assume q ≡ 1 mod 3d. Then

the A-system
n∑
j=1

αijx
d
j = 0 for i = 1, . . . r has a non-trivial solution in Fq if 3n > qr.

Proof. Let F∗q = 〈ρ〉. Then ρq−1 = ρ3md = 1, where m = q−1
3

. Thus,

ρ3md − 1 = (ρmd − 1)(ρ2md + ρmd + 1) = 0.

Since ρmd 6= 1, we have ρ2md + ρmd + 1 = 0. Since our system is an A-system, we
know there exists an η ∈ Fq such that ηd = −1. Then we can rewrite ρ2md+ρmd+1 = 0
as (ηρ2m)d − (ρm)d = 1. By Lemma 4.5.4 with σ = ηρ2m, τ = ρm, the result
follows.

Theorem 4.5.6 (Tietäväinen, [14], Theorem 6, page 24). Assume d ≥ 2. The A-

system
n∑
j=1

αijx
d
j = 0; i = 1, . . . r has a non-trivial solution in every finite field Fq,

q ≡ 1 mod 3d if
n ≥ 2r(r +D′),

where D′ = max(log3(d− 1), 1).

The proof of Theorem 4.5.6 follows the same structure as the proof of Theorem
4.5.2. The proof of Theorem 4.5.6 uses Lemma 4.5.5 instead of Lemma 4.3.7. For
this reason, we will omit the proof of Theorem 4.5.6.
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Chapter 5 Existence of Nontrivial Solutions for Diagonal Forms

5.1 Introduction

The focus of this chapter is to approach systems of diagonal forms of arbitrary degree
over finite fields. Sections 5.2 and 5.3 collate a number of known results in the area, as
well as, providing more complete proofs than currently exist in the literature and some
small improvements to some of these results. In Sections 5.4 and 5.5, we consider the
computational question of finding the explicit lower bound on the number of variables
needed to guarantee a nontrivial solution. In particular, for a system of r diagonal
forms over Fq with specified degrees, we compute the largest integer such that there
exists an anisotropic system in that many variables. In some special cases, we also
compute the maximum of this value over all possible choices of q.

5.2 General Diagonal Forms

While Gray considered the case of an odd prime degree equation, Tietäväinen was
able to make improvements to Chevalley’s result (Theorem 2.1.1) for a single equation
of arbitrary degree. In the case of a single equation Chevalley’s result showed that if
n ≥ d+1, we were guaranteed a nontrivial solution, whereas, with the exception of few

forms, Tietäväinen showed that if n ≥ d+ 3

2
, we are guaranteed a nontrivial solution.

This result, asymptotically, halves the bound given by Chevalley. Tietäväinen stated
that a particular case of the proof could be verified using known results, but did not
present the full argument. We will present the full proof here.

Theorem 5.2.1 (Tietäväinen, [16], Theorem 2). Let Fq be the finite field of pk ele-

ments and suppose that d | q − 1. Assume (d, k) 6= (p− 1, 1). If n ≥ d+ 3

2
, then the

equation
α1x

d
1 + · · ·+ αnx

d
n = 0

has a non-trivial solution in Fq.

Graphically, we can visualize the result in the following figure.
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Figure 5.1: This figure illustrates the relationship between n and d needed to guaran-
teed a nontrivial solution to a single diagonal equation. The horizontal axis represents
our degree d and the vertical axis represents the number of variables n. The shaded
region is the ordered pairs (d, n) that guarantee a nontrivial solution to our equation.

Furthermore, it is of interest to compare the bounds given by Theorem 5.2.1 with
Chevalley’s result.

Figure 5.2: This figure illustrates the relationship between Theorem 5.2.1 (orange
region) and Theorem 2.1.1 (red region). For a single equation, we can see the Theorem
5.2.1 almost halves the bound given in Theorem 2.1.1.

The proof of Theorem 5.2.1 follows the ideas of Tietäväinen’s proof, which requires
the following notation and lemmas.
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In the case of a single form, we can always reduce to the case where d | q − 1 =
pk − 1. Let A be a subset of Fq. Define the following

H(A) := {η ∈ Fq | A+ η = A}

Qw = Qw(α1, . . . , αw) := {η | η =
w∑
j=1

αjξ
d
j , ξj ∈ Fq}

Notice that H(A) is an additive subgroup of Fq, and A is the union of some
additive cosets of Fq modulo H(A). Furthermore, there is an integer lw such that

|Q∗w| =
lw(q − 1)

d
.

Definition 5.2.2. If H(A) 6= {0}, A is said to be periodic. If H(A) = {0}, A is
aperiodic.

Definition 5.2.3. An element γ of Qs+1 has a unique representation in Qs+1 if it
has only one representation as γ = α + β with α ∈ Qs and β ∈ αs+1(Fq)d.

Lemma 5.2.4 (Tietäväinen, [16], Lemma 1). If α1, . . . , αw+1 are non-zero elements

of Fq and
q − 1

d
- pv − 1 for 1 ≤ v < k, then lw+1 ≥ min(1 + lw, d).

For a proof, see [15], proof of Lemma 1.

Lemma 5.2.5 (Tietäväinen, [16], Lemma 2). If d ≤ q − 1

2
, then

∑
α∈Qw

α = 0.

Proof. Since d ≤ q − 1

2
, we know |(F∗q)d| ≥ 2. Thus, there exists an element β ∈ (F∗q)d

such that β 6= 1. Clearly βQw = Qw. Let
∑
α∈Qw

α = δ. Then

βδ =
∑
α∈Qw

βα =
∑
γ∈Qw

γ = δ

Thus βδ − δ = 0, which implies (β − 1)δ = 0. Since β 6= 1, we know δ = 0.

Lemma 5.2.6 (Tietäväinen, [16], Lemma 3). If A is a periodic subset of Fq and

p > 2, then
∑
α∈A

α = 0

Proof. Since H(A) is an additive subgroup of Fq, H(A) 6= {0}, and p > 2, we can

conclude 2H(A) = H(A). Let
∑

α∈H(A)

α = δ. Then

2δ =
∑

α∈H(A)

2α =
∑

β∈H(A)

β = δ

Thus 2δ − δ = 0, which implies δ = 0.
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Let B = γ +H(A) be an additive coset of Fq modulo H(A). Then∑
α∈B

α = |H(A)|γ +
∑

α∈H(A)

α = |H(A)|γ

Since p divides |H(A)|, we know |H(A)|γ = 0. Since A is the union of some additive
cosets of Fq modulo H(A), we obtain the desired result.

Lemma 5.2.7 (Tietäväinen, [16], Lemma 4). Suppose that
q − 1

d
- pv − 1 for 1 ≤

v < k and that A is a non-empty periodic subset of Fq such that αA = A for every
element α ∈ (F∗q)d. Then A = Fq.

Proof. Since A is periodic, H(A) 6= {0} and thus |H(A)| = pv where v ≥ 1. If
β ∈ H(A)∗, then

βα + A = βα + αA = α(β + A) = αA = A

for every element α ∈ (F∗q)d. This means that β(F∗q)d is a subset of H(A)∗. Thus
H(A)∗ is the union of some cosets of the multiplicative group F∗q modulo (F∗q)d. This

implies that
q − 1

d
divides |H(A)∗| = pv−1. By the assumptions of this lemma, v = k

and thus H(A) = Fq, which implies A = Fq.

Lemma 5.2.8 (Tietäväinen, [16], Lemma 5). Let A and B be subsets of Fq satisfying

|A+B| ≤ |A|+ |B| − 2

Then A+B is periodic.

Lemma 5.2.8 is due to Kneser [12].

Lemma 5.2.9 (Tietäväinen, [16], Lemma 6). Let A and B be subsets of Fq such that

|A+B| = |A|+ |B| − 1

Let γ1, . . . , γt denote all the elements in |A + B| having only one representation as
γj = αj + βj, where αj ∈ A and βj ∈ B. Then

(i) If t = 0, then A + B is either periodic or can be made periodic by adding one
element.

(ii) If t = 1, then A+ B is either periodic or can be made periodic by deleting one
element.

(iii) If t ≥ 3, then either α1 = · · · = αt or β1 = · · · = βt. Moreover, every element
in A+B, other than γi, has at least t representations as the sum of an element
of A and an element of B.

Lemma 5.2.9 is a special case of Theorem 6.1 in a paper by Kemperman [11].
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Lemma 5.2.10 (Tietäväinen, [16], Lemma 7). Let v be a factor of k such that pv−1

is divisible by
q − 1

d
. Then the equation

α1x
d
1 + · · ·+ αnx

d
n = 0

has a non-trivial solution in Fq if n ≥ 1 +
kd(pv − 1)

v(pk − 1)
.

Lemma 5.2.10 follows from Theorem 5.3.4, which is Theorem 5 from [14] (Note
that the proof of Theorem 5.3.4 uses only material prior to this result).

Theorem 5.2.11 (Tietäväinen, [16], Theorem 1). Let Fq be the finite field of pk

elements where p is an odd prime. Suppose that α1, . . . , αn are nonzero elements

of Fq, d | q − 1,
q − 1

d
- pv − 1 for 1 ≤ v < k, and d <

q − 1

2
. Then the form

α1x
d
1 + · · · + αnx

d
n represents either all the elements or at least

(2n− 1)(q − 1)

d
+ 1

elements of Fq.

Proof. First notice that Q1 = αFdq . Thus, |Q∗1| =
q − 1

d
, so l1 = 1. Since l1 = 1, we

will show the statement of the theorem is equivalent to the following:

ls+1 ≥ min(2 + ls, d) for s = 1, . . . , n− 1.

Notice when ls+1 = d for some s, it follows that |Q∗s+1| = q − 1 and thus

α1x
d
1 + · · ·+ αs+1x

d
s+1

represents all the elements of Fq. Therefore, α1x
d
1 + · · · + αnx

d
n represents all the

elements of Fq. Otherwise if ls+1 = 2 + ls for all s, then ln = (2n − 1). This

means that |Q∗n| =
(2n− 1)(q − 1)

d
and thus α1x

d
1 + · · · + αnx

d
n represents at least

(2n− 1)(q − 1)

d
+ 1 elements of Fq.

By Lemma 5.2.4, we know that ls+1 ≥ min(1 + ls, d). Notice from the discussion
above, if ls+1 = d for some s, then α1x

d
1 + · · · + αnx

d
n represents all the elements of

Fq and the result holds.
Now suppose ls+1 = 1 + ls. We will show that this implies either ls+1 = 2 + ls or

ls+1 = d. Let t be the number of elements in Qs+1 that have unique representations
in Qs+1. If γ has a unique representation in Qs+1, then so does every element in the

set γ(F∗q)d. Hence t ≡ 1 mod
q − 1

d
if 0 has only the trivial representation in Qs+1

and t ≡ 0 mod
q − 1

d
if 0 has at least one non-trivial representation in Qs+1.

Case I: Suppose Qs+1 is periodic. Then ls+1 = d by Lemma 5.2.7. Thus, α1x
d
1 +

· · ·+ αnx
d
n represents all the elements of Fq.

Case II: Suppose Qs+1 is aperiodic and t = 0. Then by Lemma 5.2.9, Qs+1 can

be made periodic by adding one element. Let β be this element. Then
∑

α∈Qs+1

α = −β

67



by Lemma 5.2.6. On the other hand,
∑

α∈Qs+1

α = 0 by Lemma 5.2.5. Thus β = 0 �.

This is impossible, since 0 ∈ Qs+1.
Case III: Suppose Qs+1 is aperiodic and t = 1. Then by Lemma 5.2.9, Qs+1 can

be made periodic by deleting one element. By Lemma 5.2.6 and Lemma 5.2.5, this
element is 0. Therefore Q∗s+1 is periodic �. This is impossible by Lemma 5.2.7.

Case IV: Suppose Qs+1 is aperiodic and t = 2. This case is impossible since
q − 1

d
> 2.

Case V: Suppose Qs+1 is aperiodic and t ≥ 3. Let δ1, . . . , δt be the uniquely
represented elements in Qs+1. Then, by Lemma 5.2.9, either there exists some unique
element β ∈ Qs such that

δj = β + αs+1γ
d
j for j = 1, . . . , t

or there exists some unique element γd ∈ Fdq such that

δj = βj + αs+1γ
d for j = 1, . . . , t

where the βj ∈ Qs.
Suppose there exists some unique element β ∈ Qs such that

δj = β + αs+1γ
d
j for j = 1, . . . , t.

Let εd 6∈ {0, 1}. Then εdδj has the unique representation

εdδj = εdβ + αs+1(γjε)
d

in Qs+1. Consequently, εdδj is one of the elements δ1, . . . , δt and therefore εdβ = β.
Hence β = 0. It follows from this that the set of uniquely represented elements, U ,
in Qs+1 is αs+1Fdq or αs+1(F∗q)d. If U = αs+1Fdq , then Q∗s is periodic by an observation
on page 64 of [13]. Thus by Lemma 5.2.7, Q∗s = Fq, which is impossible.

If U = αs+1(F∗q)d, then

Q∗s + αs+1(F∗q)d = Qs

and, by Lemma 5.2.8, Qs is periodic. Thus, by Lemma 5.2.7, Qs = Fq. So Qs+1 = Fq
�. This is impossible because Qs is aperiodic.

Suppose now there exists some unique element γd ∈ Fdq such that

δj = βj + αs+1γ
d for j = 1, . . . , t

where the βj ∈ Qs. Then the product εdδj, where εd 6∈ {0, 1}, has a unique represen-
tation

εdδj = εdβj + αs+1ε
dγd

in Qs+1 and therefore αs+1ε
dγd = αs+1γ

d. Therefore, γ = 0. If 0 has only the
trivial representation, then by [13], there exists a non-zero element α of Fq such that
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the difference set Qs+1 \ αFdq is periodic. This is impossible by Lemma 5.2.7. For

simplicity, let m =
q − 1

d
. Thus there exists a positive integer g such that t = gm,

g ≤ ls. Now, by Lemma 5.2.9, those elements in Qs+1 not uniquely represented in
Qs+1 have at least gm representations. As there are (1 + lsm)(1 + m) sums of an
element of Qs and an element of αs+1Fdq , we get

(1 + (1− lsg)m)gm+ gm ≤ (1 + lsm)(1 +m)

which simplifies to
m2(g − 1−m−1)(g − ls −m−1) ≥ 0

. Since g < ls + m−1, we have the inequality g ≤ 1 + m−1. Thus g = 1. Suppose
that α(F∗q)d is the subset of Qs which consists of exactly those elements which have
a unique representation in Qs+1. Then

Qs + αs+1(F∗q)d = Qs+1 \ α(F∗q)d

and thus, by Lemma 5.2.8, Qs+1 \ α(F∗q)d is periodic. This is impossible by Lemma
5.2.7.

Now we have show that the equation ls+1 = 1 + ls implies the equation ls+1 = k.
Thus, we have shown the desired result.

The following lemma is required to prove the main result of this section, Theorem
5.2.1. We suspect that Tietäväinen knew the result to be true, but Tietäväinen did
not present this result explicitly.

Lemma 5.2.12 (Leep–Petrik). Let Fq be the finite field of pk elements and suppose

that d | q − 1. Assume (d, k) 6= (p− 1, 1). If n ≥ d+ 3

2
, then the A-equation

α1x
d
1 + · · ·+ αnx

d
n = 0

has a non-trivial solution in Fq.

Proof. Suppose d = 2. Since n ≥ d+ 3

2
, n ≥ 5

2
. This implies n ≥ 3. Since

max
q

ΩA(1, 2, q) = 2 by Table 5.3, the equation is isotropic.

Suppose d = 3. Since n ≥ d+ 3

2
, n ≥ 3. Since max

q
ΩA(1, 3, q) = 2 by Table 5.3,

the equation is isotropic.

Suppose d = 4. Since n ≥ d+ 3

2
, n ≥ 7

2
. This implies n ≥ 4. Since max

q
ΩA(1, 4, q) =

2 by Table 5.3, the equation is isotropic.

Suppose d = 5. Since n ≥ d+ 3

2
, n ≥ 4. Since max

q
ΩA(1, 5, q) = 3 by Table 5.3,

the equation is isotropic.

Suppose d = 6. Since n ≥ d+ 3

2
, n ≥ 9

2
. This implies n ≥ 5. Since max

q
ΩA(1, 6, q) =

3 by Table 5.3, the equation is isotropic.
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Suppose d = 7. Since n ≥ d+ 3

2
, n ≥ 5. Since max

q
ΩA(1, 7, q) = 3 by Table 5.3,

the equation is isotropic.
Suppose d ≥ 8. By Theorem 4.4.7, if n ≥ 1 + d2 log2(d)− log2(log2(d))e, then the

A-equation α1x
d
1 + · · ·+ αnx

d
n is isotropic. We want to show that

n ≥ d+ 3

2
≥ 1 + d2 log2(d)− log2(log2(d))e.

First we will demonstrate that it is sufficient to show

d+ 3

2
> 1 + 2 log2(d)− log2(log2(d)).

Suppose this has been shown. Then

n ≥ d+ 3

2
> 1 + 2 log2(d)− log2(log2(d)).

Thus,

n ≥ d1 + 2 log2(d)− log2(log2(d))e = 1 + d2 log2(d)− log2(log2(d))e.

Thus, it is sufficient to show

d+ 3

2
> 1 + 2 log2(d)− log2(log2(d)).

Observe
d+ 3

2
> 1 + 2 log2(d)− log2(log2(d))

if and only if

d+ 1

2
> 2 log2(d)− log2(log2(d)) = log2(d

2)− log2(log2(d)) = log2

( d2

log2(d)

)
.

Since d ≥ 8, it follows that log2(d) ≥ 3. Since log2

(d2
3

)
≥ log2

( d2

log2(d)

)
, it is

sufficient to show
d+ 1

2
> log2

(d2
3

)
.

Thus, it is sufficient to show

d+ 1 > 2 log2

(d2
3

)
= log2

(d4
9

)
.

To prove this last inequality, let g(x) = x+1− log2

(x4
9

)
. We will show that g(8) > 0

and that g(x) is increasing for x ≥ 8 and conclude that g(x) > 0 for all x ≥ 8.
First observe

g(8) = 8 + 1− log2

(84

9

)
= 9− (4 log2(8)− log2(9)) > 9− (12− 3) = 0.
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Now compute g′(x).

g′(x) = 1− 1
x4

9
ln(2)

(4x3

9

)
= 1− 9

x4 ln(2)

(4x3

9

)
= 1− 4x3

x4 ln(2)

= 1− 4

x ln(2)

=
x ln(2)− 4

x ln(2)

Since x ln(2) > 0 for x > 1 and x ln(2) − 4 > 0 for x > 6, it follows g′(x) > 0 for

x ≥ 8 > 6. Thus, d + 1 > log2

(d4
9

)
for d ≥ 8. Thus, α1x

d
1 + · · · + αnx

d
n = 0 is

isotropic for d ≥ 8.
Therefore, α1x

d
1 + · · ·+ αnx

d
n = 0 is isotropic.

Remark: It is clear that Theorem 4.4.7 is a stronger result than Lemma 5.2.12
when d ≥ 8, though one may find that Lemma 5.2.12 is a simpler result to apply.
However, for the values d = 2, 3, 4, 5, 6, 7, we will use Table 5.1 to understand how
the results compare.

We are now ready to prove the main result. For convenience, we restate Theorem
5.2.1.

Theorem 5.2.1 (Tietäväinen, [16], Theorem 2). Let Fq be the finite field of pk

elements and suppose that d | q − 1. Assume (d, k) 6= (p − 1, 1). If n ≥ d+ 3

2
, then

the equation
α1x

d
1 + · · ·+ αnx

d
n = 0

has a non-trivial solution in Fq.

Proof. We may assume that α1, . . . , αn are non-zero, for if αj = 0, then the equation
has a non-trivial solution, namely xj = 1, xi = 0 for i 6= j. The case d = 1 is trivial.
We shall now assume d ≥ 2.
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Table 5.1: In this table, we have computed the different bounds given by Lemma
5.2.12 and Theorem 4.4.7 for d = 2, 3, 4, 5, 6, 7. The results in blue (i.e. d = 3, 5, 7)
indicate the values of d where Lemma 5.2.12 is a stronger result. The results in black
(i.e. d = 2, 4, 6) indicate the values of d where Lemma 5.2.12 and Theorem 4.4.7
provide the same bound.

d+ 3

2
1 + d2 log2(d)− log2(log2(d))e

d = 2 5
2

3

d = 3 3 4

d = 4 7
2

4

d = 5 4 5

d = 6 9
2

5

d = 7 5 6

Case I: Suppose that all the assumptions of Theorem 5.2.11 are satisfied. Then
by Theorem 5.2.11,

α1x
d
1 + · · ·+ αn−1x

d
n−1

represents either all the elements of Fq or represents at least

(2(n− 1)− 1)(q − 1)

d
+ 1 =

(2n− 3)(q − 1)

d
+ 1

elements of Fq. Since n ≥ d+ 3

2
, we know that

(2n− 3)(q − 1)

d
+ 1 ≥ q.

Therefore, α1x
d
1+ · · ·+αn−1xdn−1 represents all the elements of Fq. In particular, there

exist elements ξ1, . . . , ξn−1 in Fq such that

α1x
d
1 + · · ·+ αn−1x

d
n−1 = −αn.

Hence the equation has the non-trivial solution (ξ1, . . . , ξn−1, 1).

Case II: Suppose that there exists an integer v such that 1 ≤ v < k and
q − 1

d
|

pv − 1. Now k ≥ 2 and thus q ≥ 4. Additionally, we will next show that we may
assume that v is a divisor of k. First note that gcd(pk−1, pv−1) = pgcd(k,v)−1. Since
pk−1
d
| pk− 1 and pk−1

d
| pv− 1, we know pk−1

d
| pgcd(k,v)−1. Thus, one such integer that

satisfies the properties of v is gcd(k, v) and so we may choose v = gcd(k, v). With
this choice of v, we have v | k. Thus, since k > v and v | k, k ≥ 2v.
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Suppose first that q = pk = 4. Since n ≥ 3, the equation has, by Lemma 5.2.10,
a non-trivial solution in Fq.

Suppose now that q = pk > 4. If pv = 2, then p = 2, v = 1, and k ≥ 3. Thus

q − 1

pv − 1
= 2k − 1 > 2k =

2k

v
.

If pv ≥ 3, then

q − 1

pv − 1
= 1 + pv + · · ·+ pk−v ≥ 1 + 3

(k
v
− 1
)
≥ 2k

v

since k ≥ 2v, which implies
k

v
≥ 2. Thus, in every case,

v(q − 1) ≥ 2k(pv − 1)

and consequently by the assumption that n ≥ d+ 3

2
we find that

n ≥ d+ 3

2
≥ d

v(q−1)
k(pv−1)

+
3

2
=
kd(pv − 1)

v(q − 1)
+

3

2

By Lemma 5.2.10, this inequality implies that the equation has a non-trivial solution
in Fq.

Case III: Suppose p = 2. Since p = 2, char(Fq) = 2 and thus α1x
d
1 + · · · + αnx

d
n

is an A-equation. By Lemma 5.2.12, we have the desired result.

Case IV: Suppose d ≥ q − 1

2
. First suppose d =

q − 1

2
. Let F∗q =< β >. Then

η = βd = −1. Then −1 is a dth power in Fq and thus, α1x
d
1 + · · · + αnx

d
n = 0 is an

A-equation. By Lemma 5.2.12, we have the desired result.

Now suppose d >
q − 1

2
. Since d | q − 1, it follows that d = q − 1 = pk − 1. Since

the case d = p − 1, k = 1 is excluded, it follows that k > 1. Since
q − 1

d
= 1, it

follows that q−1
d
| p − 1. Since k ≥ 2 and

q − 1

d
| p − 1, this case is a special case of

Case II and thus, has been proved.
Therefore, we have proved the desired result.

Two remarks about the assumptions of Theorem 5.2.11. The assumption that
q − 1

d
- pv − 1 for 1 ≤ v < k is a necessary assumption of Theorem 5.2.11. Assume

that there exists a v ∈ Z such that 1 ≤ v ≤ k and q−1
d
| pv − 1. If Theorem 5.2.11

holds, then xd1 + · · · + xdn represents either q elements or at least
(2n− 1)(q − 1)

d

elements of Fq. By [15], we may assume v | k. Since
q − 1

d
| pv − 1, it follows that

q − 1 | d(pv − 1). Thus, elements of Fdq are solutions to the equation xp
v

= x. Thus
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Fdq ⊆ Fpv . Thus xd1 + · · · + xdn only represents elements of Fpv . This means that

xd1 + · · · + xdn cannot represent all of Fq. Furthermore, choosing n >
(pv − 1)d

2(q − 1)
+

1

2

means xd1 + · · · + xdn represents at least
(2n− 1)(q − 1)

d
+ 1 > pv. Thus, Theorem

5.2.11 does not hold.

The assumption d <
q − 1

2
is also necessary for the assumptions of Theorem

5.2.11. Consider xd1 + xd2 = 0 over Fp for p > 5. Let d = p−1
2

. If Theorem 5.2.11
holds, xd1 + xd2 represents either p elements or at least 7 elements. However, since
Fdp = {0, 1,−1}, it follows that xd1 + xd2 only represents the following five elements
{0, 1,−1, 2,−2}. Thus, Theorem 5.2.11 does not hold.

5.3 Systems of Diagonal Forms

In the previous two sections, we considered results for the existence of nontrivial
solutions to a single diagonal form. A natural generalization is to consider results for
a system of diagonal forms. There are a few classical results, which will be presented
in this section.

The following result is due to André Weil [18].

Theorem 5.3.1 ([10], Chapter 8, page 103). Let Fq denote the finite field of cardi-
nality q. Consider a diagonal form f = α1x

d
1 + · · · + αnx

d
n where q ≡ 1 mod d and

αi ∈ F∗q for 1 ≤ i ≤ n. Let NFq(f) denote the number of affine zeros of f in Fq. Then

|NFq(f)− qn−1| ≤M(n, d)(q − 1)q
n
2
−1,

where M(n, d) :=
(d− 1)n + (−1)n(d− 1)

d
. In particular, if NFq(f) ≥ 2, then f has

a nontrivial zero in Fq.

Theorem 5.3.1 can be generalized to hold for systems of diagonal forms all of
degree d. We will need the following lemma to prove this generalization.

Lemma 5.3.2. Let f1, . . . , fr be forms of degree d over Fq in n variables that are
linearly independent. Then

qn +
∑

(c1,...,cr) 6=~0

N(
r∑
i=1

cifi;Fq) = qrN(f;Fq) + qr−1(qn −N(f;Fq)).

Proof. Let f1, . . . , fr be forms of degree d over Fq in n variables that are linearly
independent. Let (a1, . . . , an) ∈ Fnq . We will obtain the desired result using the

following function
r∑
i=1

cifi where ci ∈ Fq. Consider the linear map

ϕ(a1,...,an) : Frq → Fq
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where

(c1, . . . , cr) 7→
r∑
i=1

cifi(a1, . . . , an).

Notice if (a1, . . . , an) is a common zero of the fi for 1 ≤ i ≤ r, then ker(ϕ(a1,...,an)) = Frq
and these (a1, . . . , an) are counted by N(f;Fq). Consider the case where (a1, . . . , an) is
not a common zero, then (a1, . . . , an) 6= (0, . . . , 0). Without loss of generality, assume
f1(a1, . . . , an) 6= 0. Then choose c2 = · · · = cr = 0 and let c1 run over all of Fq. This
means im(ϕ(a1,...,an)) = Fq, so dim(im(ϕ(a1,...,an))) = 1. By the First Isomorphism
Theorem, we know dim(ker(ϕ(a1,...,an))) = r − 1. And those (a1, . . . , an) are counted
by qn −N(f;Fq).

We will demonstrate the above equality by counting the total number of times
(a1, . . . , an) appears on the left hand side. First notice that the qn term on the left
hand side of the equation corresponds to when (c1, . . . , cr) = (0, . . . , 0). If (a1, . . . , an)
is a common zero of all the fi, then the left hand side counts (a1, . . . , an), qr times.
Since there are N(f;Fq) such points, the common zeros are counted qrN(f;Fq) times.
If (a1, . . . , an) is not a common zero of all the fi, then the left hand side counts
(a1, . . . , an), qr−1 times. Since there are qn − N(f;Fq) such points, the not common
zeros are counted qr−1(qn −N(f;Fq)) times. Thus we have that

qn +
∑

(c1,...,cr) 6=~0

N(
r∑
i=1

cifi;Fq) = qrN(f;Fq) + qr−1(qn −N(f;Fq))

Theorem 5.3.3. Let f1, . . . , fr be diagonal forms of degree d over Fq in n variables
that are linearly independent where q ≡ 1 mod d. Then

|N(f;Fq)− qn−r| ≤
M(n, d)q

n
2
−1(qr − 1)

qr−1
,

where M(n, d) =
(d− 1)n + (−1)n(d− 1)

d
.

Proof. By Lemma 5.3.2,

qn +
∑

(c1,...,cr) 6=~0

N(
r∑
i=1

cifi;Fq) = qrN(f;Fq) + qr−1(qn −N(f;Fq)).

Simplifying the above expression yields∑
(c1,...,cr) 6=~0

N(
r∑
i=1

cifi;Fq) = (qr − qr−1)N(f;Fq) + qn+r−1 − qn.

Using Weil’s result (Theorem 5.3.1, [18]), we know

|N(
r∑
i=1

cifi;Fq)− qn−1| ≤M(n, d)q
n
2
−1(q − 1).
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Applying Weil’s result (Theorem 5.3.1, [18]) qr − 1 times, we find

|
∑

(c1,...,cr) 6=~0

N(
r∑
i=1

cifi;Fq)− (qr − 1)qn−1| ≤M(n, d)q
n
2
−1(q − 1)(qr − 1),

|(qr − qr−1)N(f;Fq) + qn+r−1 − qn − (qr − 1)qn−1| ≤M(n, d)q
n
2
−1(q − 1)(qr − 1),

|(qr − qr−1)N(f;Fq)− (qn − qn−1)| ≤M(n, d)q
n
2
−1(q − 1)(qr − 1),

|qr−1N(f : Fq)− qn−1| ≤M(n, d)q
n
2
−1(qr − 1),

|N(f;Fq)− qn−r| ≤M(n, d)q
n
2
−1 q

r − 1

qr−1
.

The second result that has improved existing bounds on the number of variables
needed to guarantee the existence of a nontrivial solution is due to Tietäväinen in
1965.

Theorem 5.3.4 (Tietäväinen, [14], Theorem 5, page 21). Assume that k = mu

where m and u are positive integers. Then the system
n∑
j=1

αijx
d
j = 0 for i = 1, . . . , r,

αij ∈ Fq has a non-trivial solution in Fq = Fpk if n ≥ 1 + b−1dru where b = (d, h)

and h =
(pk − 1)

(pm − 1)
.

Proof. Let F∗q = 〈ρ〉, that is, ρ is an element of order pk − 1. Then Fpm = 〈ρh〉 since

ρh has order pm − 1. Since b | h, we know h
b
∈ Z. Thus, (F∗pm)

d
b = 〈ρhdb 〉 ⊆ (F∗q)d.

Thus, (Fpm)
d
b ⊆ (Fdq).

We can write Fq as Fpm [θ] for some θ ∈ Fq. We can write αij as follows

αij =
u−1∑
s=0

αijsθ
s−1, where αijs ∈ Fpm .

Consider the system
n∑
j=1

αijsy
b−1d
j = 0 for i = 1, . . . , r; s = 0, . . . , u − 1. This is a

system of ru diagonal equations each of degree b−1d with coefficients in Fpm . It is suf-
ficient to find a solution to this system where each yj lies in Fpm . By Chevalley’s result
(Theorem 2.1.1), if n ≥ 1+b−1dru, then there exists a non-trivial solution (η1, . . . , ηn)
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with ηj ∈ Fpm for j = 1, . . . , n. Since (Fpm)
d
b ⊆ (Fdq), there exists ξ1, . . . , ξn ∈ Fq not

all zero such that ξdj = ηb
−1d
j . Thus, (ξ1, . . . , ξn) is a non-trivial solution of

n∑
j=1

αijx
d
j

for i = 1, . . . , r.

Notice that when we are over a prime field Theorem 5.3.4 gives us precisely the
bound given by Chevalley (Theorem 2.1.1, [3]). However, when we are over Fq, where

Fq is not a prime field, we obtain some improvements. Consider the system
n∑
j=1

αijx
d
j

for i = 1, . . . , r in F64 = F26 .

n ≥


1 + r for d = 1,m = 6

1 + 2r for d = 3 or d = 9,m = 3

1 + 3r for d = 7 or d = 21,m = 2

1 + 6r for d = 63,m = 1

5.4 Particular Values of Ω(r,d,q)

A classical question that all of the results in Chapter 5 seek to answer is what is
the minimal number of variables needed to guarantee a nontrivial solution. In this
section, we want to collect all of the known values of Ω(r, d, q). Let f1, . . . , fr be
homogeneous diagonal forms all of degree d over Fq[x1, . . . , xn].

Theorem 5.4.1 (Leep–Petrik). Let d′ = gcd(d, q − 1). Then Ω(r, d, q) = Ω(r, d′, q).

Proof. We know Ω(r, d′, q) ≤ Ω(r, d, q) since every dth power is a d′th power.

We will now show Ω(r, d, q) ≤ Ω(r, d′, q). Let n = Ω(r, d′, q). Consider
n+1∑
j=1

aijx
d
j = 0

for 1 ≤ i ≤ r. Let A = (aij) be the r × (n+ 1) matrix given by coefficients from our
system. Consider the following matrix equation

A


xd1
xd2
...

xdn+1

 =


0
0
...
0

 .

We know that there exists a nonzero c =


cd
′

1

cd
′

2
...

cd
′
n+1

 such that

A


cd
′

1

cd
′

2
...

cd
′
n+1

 =


0
0
...
0
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since Ω(r, d′, q) = n. Since d′ = gcd(d, q − 1), we know that cd
′
i = md

i for all i where

mi ∈ Fq. Since c is a nonzero vector, we know that m =


md

1

md
2

...
md
n+1

 is nonzero vector.

Thus,


md

1

md
2

...
md
n+1

 is a nontrivial solution to our system, so Ω(r, d, q) ≤ Ω(r, d′, q).

Therefore, Ω(r, d, q) = Ω(r, d′, q).

By Theorem 5.4.1, if f1, . . . , fr are homogeneous diagonal forms all of degree d
over Fq[x1, . . . , xn], we will assume, without loss of generality, that d | q − 1.

Theorem 5.4.2.

Ω(r1, ~d1, q) + Ω(r2, ~d2, q) ≤ Ω(r1 + r2, (~d1, ~d2), q) ≤
r1∑
i=1

d1i +

r2∑
i=1

d2i

where (~d1, ~d2) = (d11, d12, . . . , d1r1 , d21, d22, . . . , d2r2).

Proof. We know that there exists an anisotropic system of r1 forms in Ω(r1, ~d1, q)

variables over Fq and that there exists an anisotropic system of r2 forms in Ω(r2, ~d2, q)
variables over Fq. If we choose the variables to be disjoint, then we have an anisotropic

system with r1 + r2 forms in Ω(r1, ~d1, q) + Ω(r2, ~d2, q) variables. Thus Ω(r1, ~d1, q) +

Ω(r2, ~d2, q) ≤ Ω(r1 + r2, (~d1, ~d2), q).
By Chevalley’s result (Theorem 2.1.1), we know that

Ω(r1 + r2, (~d1, ~d2), q) ≤
r1∑
i=1

d1i +

r2∑
i=1

d2i

Theorem 5.4.3. If d = 1, then Ω(r, 1, q) = r.

The proof of Theorem 5.4.3 uses standard results from linear algebra.

Theorem 5.4.4. If d = 2, then Ω(r, 2, q) = 2r.

Proof. By Chevalley’s result (Theorem 2.1.1), we know Ω(r, 2, q) ≤ 2r. Since d | q−1
and d = 2, it follows that q is odd. Since q is odd, we know |F∗q/(F∗q)2| = 2. Let u
be a quadratic non-residue. The form x2 − uy2 = 0 is anisotropic over Fq. We have
now shown that Ω(1, 2, q) ≥ 2. Thus by Theorem 5.4.2, Ω(r, 2, q) ≥ 2r. Therefore,
Ω(r, 2, q) = 2r.

Theorem 5.4.5. If d = p− 1 and q = p, then Ω(r, p− 1, p) = r(p− 1).
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Proof. We know that Ω(r, p− 1, p) ≤ r(p− 1) by Chevalley’s result (Theorem 2.1.1).
Now we need to show that there is an anisotropic system of r forms with degree p−1
over Fp. Consider the following form

g = xp−11 + xp−12 + · · ·+ xp−1p−1.

We know g is anisotropic over Fp. We have now shown that Ω(1, p−1, q) ≥ p−1. Thus
by Theorem 5.4.2, Ω(r, p− 1, p) ≥ r(p− 1). Therefore, Ω(r, p− 1, p) = r(p− 1).

Theorem 5.4.6.

(i) If d = 3 and q = 4, then Ω(r, 3, 4) = 2r.

(ii) If d = 2k − 1 and q = 2k, then Ω(r, 2k − 1, 2k) = kr.

(iii) If d =
pk − 1

p− 1
and q = pk, then Ω

(
r,
pk − 1

p− 1
, pk
)

= kr.

Proof. (iii) First notice that parts (i) and (ii) of this Theorem are simply special
cases of part (iii). Thus, it is sufficient to provide only the proof for part (iii).

We know that there exists a k-dimensional vector space basis of Fpk/Fp with
elements ω1, . . . , ωk. This implies that ω1x

d
1 + ω2x

d
2 + · · · + ωkx

d
k = 0 is anisotropic

over Fpk . If we repeat this form r times in disjoint variables, we have an anisotropic

system of r forms in kr variables. Thus Ω
(
r,
pk − 1

p− 1
, pk
)
≥ kr.

Let f1 = (a1,1ω1 + · · ·+ a1,kωk)x
d
1 + · · ·+ (akr+1,1ω1 + · · ·+ akr+1,kωk)x

d
kr+1. Notice

f1 = 0 if and only if
kr+1∑
i=1

ai,1x
d
i = 0, . . . ,

kr+1∑
i=1

ai,kr+1x
d
i = 0.

Since NF∗
pk
/F∗p , the norm map, is surjective when x 7→ xxp . . . xp

k−1
= x

pk−1
p−1 , we

can reduce this to
kr+1∑
i=1

ai,1yi = 0, . . . ,
kr+1∑
i=1

ai,kr+1yi = 0 where yi ∈ Fp and ai,j ∈

Fp. Since we have kr linear equations over Fp, linear algebra tells us that kr + 1

variables guarantees a nontrivial solution. Thus Ω
(
r,
pk − 1

p− 1
, pk
)
< kr+1. Therefore,

Ω
(
r,
pk − 1

p− 1
, pk
)

= kr.

Remark: Notice that Theorem 5.4.6, part (iii) is a special case of Theorem 5.3.4

with m = 1, u = k, h = pk−1
p−1 = d, and b = gcd(d, h) = d.

Theorem 5.4.7. Assume d = 3 and q = 7.

(i) 2r ≤ Ω(r, 3, 7) < r ln(7)
ln(2)

< 2.81r.

(ii) If r = 1, then Ω(3, 7) = 2.

(iii) If r = 2, then Ω(2, 3, 7) = 5.
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(iv) If r = 3, then 7 ≤ Ω(3, 3, 7) ≤ 8.

Proof. (i) By Lemma 4.3.7, Ω(r, 3, 7) < r ln(7)
ln(2)

, which implies that Ω(r, 3, 7) < r ln(7)
ln(2)

<

2.81r. Notice that (F7)
3 = {0, 1,−1}. Consider the form x3 − 2y3 = 0. This is an

anisotropic form in 2 variables over F7. Thus, Ω(1, 3, 7) ≥ 2. By Theorem 5.4.2,
Ω(r, 3, 7) ≥ 2r.
(ii) By (i), we know that 2 ≤ Ω(3, 7) < 2.81. Thus, Ω(3, 7) = 2.
(iii) By (i), we know that 4 ≤ Ω(2, 3, 7) ≤ 6. We now show Ω(2, 3, 7) = 5. Fur-
thermore, if we consider the following system of equations, one can check that it is
anisotropic over F7.

f1 = x31 + x33 + 2x34 + 3x35

f2 = x32 + 3x33 + 5x34 + 3x35

Thus, we know that Ω(2, 3, 7) ≥ 5. By (i), we know Ω(2, 3, 7) < r ln(7)
ln(2)

< 5.7. Thus

Ω(2, 3, 7) = 5.
(iv) By (i), we know that 6 ≤ Ω(3, 3, 7) < 2.81(3) < 9. Thus 6 ≤ Ω(3, 3, 7) ≤ 8.
Since Ω(1, 3, 7) = 2 and Ω(2, 3, 7) = 5, by Theorem 5.4.2, we know Ω(3, 3, 7) ≥ 7.

One problem of interest is to compute the value of Ω(3, 3, 7). While it may seem
like this problem should be a simple computation, it is in fact much more complex.
Even with clear reductions and simplifications, solving the problem by brute-force
is not possible with our computational resources. Consequently, it is necessary to
prove theoretical results which exclude large classes of equations so as to make the
computation feasible. Interestingly, this problem has connections to the plus-minus
Davenport Constant of finite groups. In particular, Ω(3, 3, 7) + 1 = D±(C3

7).

Theorem 5.4.8. Assume d = 3 and q = 7.

(i) If r is even, then 2.5r ≤ Ω(r, 3, 7) < 2.81r.

(ii) If r is odd, then 2.5r − 1
2
≤ Ω(r, 3, 7) < 2.81r.

Proof. (i) Let r = 2` for some ` ∈ Z≥0. Since we now that Ω(2, 3, 7) = 5, by Theorem
5.4.2, we have Ω(r, 3, 7) = Ω(2`, 3, 7) ≥ 5` = 5

2
r = 2.5r. By Theorem 5.4.7, part (i),

we know that Ω(r, 3, 7) < 2.81r.
(ii) Let r = 2`+1 for some ` ∈ Z≥0 Since we know Ω(1, 3, 7) = 2 and Ω(2`, 3, 7) ≥ 5`,
by Theorem 5.4.2, we know Ω(r, 3, 7) = Ω(2`+ 1, 3, 7) ≥ 5`+ 2 = 5

2
r − 1

2
= 2.5r − 1

2
.

By Theorem 5.4.7, we know Ω(r, 3, 7) < 2.81r.

5.5 Particular Values of max
q

Ω(d, q) and max
q

ΩA(d, q)

Another question of interest is given a single equation, what is the number of variables
needed to guarantee the existence of a nontrivial solution over any finite field, Fq.
In particular, what is max

q
Ω(d, q) for various d. The following table summarizes the

known results.
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Table 5.2: The results for d 6= 13 can be found in [14] in Section 21, pg 32-34. For
completeness, the proofs have been included in Appendix A.

max
q

Ω(d, q) max
p prime

Ω(d, p) max
q

ΩA(d, q) max
p prime

ΩA(d, p)

d = 3 2 2 2 2
d = 5 3 3 3 3
d = 7 3 3 3 3
d = 9 4 4 4 4
d = 11 4 4 4 4
d = 13 4 4 4 4
d = 2 2 2 2 2
d = 4 ≤ 4 ≤ 4 2 2
d = 6 ≤ 6 ≤ 6 3 3
d = 8 ≤ 8 ≤ 8 4 4

While Tietäväinen computed the values for d = 3, 5, 7, 9, 11, we were able to
determine max

q
Ω(13, q).

Proposition 5.5.1 (Leep–Petrik). Let d = 13. Then
n∑
j=1

ajx
13
j = 0 has a nontrivial

solution over every Fq if n ≥ 5. In other words,

max
q

Ω(13, q) = max
p prime

Ω(13, p) = 4.

Proof. First we will show that
5∑
j=1

ajx
13
j = 0 has a nontrivial solution over Fq for all

q. Then we will find a form
4∑
j=1

ajx
13
j = 0 that is anisotropic over Fq for some q.

By Lemma 4.3.7,
5∑
j=1

ajx
13
j = 0 has a nontrivial solution if q < 25 = 32. By

Theorem 4.4.4,
5∑
j=1

ajx
13
j = 0 has a nontrivial solution if q ≥ 1

5
(13)(12)

5
3 , that is,

when q ≥ 164. Since 13 | q − 1, the remaining fields to check are F53, F79, F131,
and F157. Since 79 ≡ 1 mod 39 and 157 = 1 mod 39 and 79 < 35 and 157 < 35, by

Lemma 4.5.5,
5∑
j=1

ajx
13
j = 0 has a nontrivial solution over F79 and F157. It remains to

check F53 and F131. Using a computer code found in Appendix B,
5∑
j=1

ajx
13
j = 0 has

a nontrivial solution over F53 and F131.

81



Using a computer code found in Appendix B (Example B.0.1),

x131 + 4x132 + 64x133 + 125x134 = 0

is anisotropic over F131. Thus,

max
q

Ω(13, q) = max
p prime

Ω(13, p) = 4.

One more question of interest is when are the bounds for A-equations sharp. We
may use our chart from before to help analyze this. By Lemma 5.2.12, it follows that
ΩA(d, q) ≤ dd+1

2
e.

Table 5.3: Exploring sharpness of results on A-equations. In Column 3, we have
the bound given by Theorem 4.4.7 and in Column 4, we have the bound given by
Lemma 5.2.12. You can see that the only time Theorem 4.4.7 is sharp is when d = 2.
However, Lemma 5.2.12 is sharp for d = 2, 3, 5.

max
q

ΩA(d, q) max
p prime

ΩA(d, p) d2 log2(d)− log2(log2(d))e dd+1
2
e

d = 3 2 2 3 2
d = 5 3 3 4 3
d = 7 3 3 5 4
d = 9 4 4 5 5
d = 11 4 4 6 6
d = 13 4 4 6 7
d = 2 2 2 2 2
d = 4 2 2 3 3
d = 6 3 3 4 4
d = 8 4 4 5 5

Copyright c© Rachel Louise Petrik, 2020.
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Appendix A Proofs for max
q

Ω(d,q) and max
q

ΩA(d,q)

In this appendix, we will present the proofs for determining the values of max
q

Ω(d, q)

for d = 3, 5, 7, 9, 11 and the proofs for determining the values of max
q

ΩA(d, q) for

d = 2, 4, 6, 8. We will need a few extra results before we can proceed.

Lemma A.0.1 (Tietäväinen, [14], Lemma 9). If 2d+ 1 is a prime, then

max
p prime

Ω(1, d, p) = max
p prime

ΩA(1, d, p) ≥ dlog2(d+ 1)e.

Proof. Let q = 2d+ 1, which means (Fq)d = (Fq)
q−1
2 = {0, 1,−1}. We will show that

the equation
n∑
j=1

2j−1xdj has only the trivial solution in Fq when 2n − 1 < 2d+ 1.

Assume 2n − 1 < 2d + 1. Suppose
n∑
j=1

2j−1cdj = 0, where cj ∈ Fq. Then cdj ∈

{0, 1,−1}. Let εj ∈ {0, 1,−1}, 1 ≤ j ≤ n. Since |
n∑
j=1

εj2
j−1| ≤

n∑
j=1

2j−1 = 2n − 1 <

2d+ 1 = q, it follows that there would be an equation
n∑
j=1

εj2
j−1 = 0 in Z.

Next suppose
n∑
j=1

2j−1cdj = 0 as an equation over Z. Let J be the smallest j such

that cj 6= 0. Notice 2J−1 | 2J−1cdJ , but 2J | 2J−1cdJ . However, 2J |
n∑

j=J+1

2j−1cdj and

n∑
j=J+1

2j−1cdj = −2J−1cdj , which is a contradiction �. Thus cj = 0 for all j = 1, . . . , n.

Thus, the equation
n∑
j=1

2j−1xdj has only the trivial solution in Fq.

Rearranging this inequality demonstrates the equation has only the trivial solution
when

2n − 1 < 2d+ 1

2n−1 < d+ 1

n < log2(d+ 1) + 1.

Since dlog2(d + 1)e < log2(d + 1) + 1, we can take n = dlog2(d + 1)e and therefore
there exists an anisotropic form in n variables over F2d+1. This means that

max
p prime

Ω(d, p) = max
p prime

ΩA(d, p) ≥ dlog2(d+ 1)e.
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We will also need the following observations. Let ρ be a generator of the cyclic
group F∗q. Let Iv be an index set {i1, . . . , iv}, where 0 ≤ ij ≤ d−1 for all j = 1, . . . , v.

Assume Iv ⊆ Iv+1 and define Qv := Qv(Iv) =
∑
j∈Iv

ρijFdq . Clearly, Qv ⊆ Qv+1.

If α1, . . . , αv ∈ F∗q, let R(α1, . . . , αv) = {η ∈ Fq | η =
v∑
j=1

αjξ
d
j , ξj ∈ Fq}. We can

see that R(α1, . . . , αv) = Qv if αj ∈ ρij(F∗q)d because the cosets αj(F∗q)d = ρij(F∗q)d are
equal. Furthermore, if η ∈ Qv \ {0}, so is the set η(F∗q)d. Hence Qv \ {0} is a union

of cosets of F∗q modulo (F∗q)d. Thus, |Qv| = 1 + lv(
q−1
d

) for some lv ∈ Z≥0. Clearly,
lv+1 ≥ lv.

Let
n∑
j=1

αjx
d
j = 0 be an A-equation. Since αj ∈ F∗q, we may choose ij’s such that

αj ∈ ρij(F∗q)d for every j = 1, . . . , n. If ln−1 = ln, then ρin(F∗q)d ⊆ Qn−1. In particular,

αn ∈ Qn−1. Thus, αn =
n−1∑
j=1

αjξ
d
j for some ξj ∈ Fq for j = 1, . . . , n − 1, which

implies that the equation has a nontrivial solution, (ξ1, . . . , ξn−1, η), where ηd = −1.
If ln−1 = d, then ln−1 = ln. Therefore, if ln−1 = d for every index set In−1 in Fq, then

every A-equation has a nontrivial solution in Fq. Since we may divide
n∑
j=1

αjx
d
j by

α1, we can always restrict to sequences with α1 = 1, that is, α1 ∈ (F∗q)d.

Lemma A.0.2 (Tietäväinen, [14], Lemma 10). If p is a prime and d < 1
2
(q − 1),

then
lv+1 ≥ min(lv + 2, d).

This lemma has been proved in [5].

Lemma A.0.3 (Tietäväinen, [14], Lemma 11). If p is a prime, d < 1
2
(q − 1), and

l2({0, i2}) ≥ d− 2(n− 3)

whenever i2 is one of the integers 1, 2, . . . , b d
n−1c, then the A-equation

n∑
j=1

αjx
d
j = 0

has a non-trivial solution in Fq.

Proof. As observed above, if ln−1 = d for every index set In−1 in Fp, then the A-
equation has a nontrivial solution in Fp. Furthermore, by Lemma A.0.2, ln−1 ≥
min(ln−2 + 2, d). Since l2 ≥ d−2(n−3), applying Lemma A.0.2 inductively, we know
ln−1 ≥ d− 2(n− 3) + 2(n− 3) = d.

Now we just need to show that we need only check the inequality for i2 ∈
{1, 2, . . . , b d

n−1c}. Observe that we are allowed to perform the following manipu-
lations on the index set:

1. Permute the members of Iv.
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2. Addition modulo d of the fixed integer r to every member of Iv (This corresponds
to multiplying the A-equation by ρr).

Furthermore, we may assume that the ij’s are non-equal and each is not equal to 0.
Therefore, the members of In−1 are n−1 non-equal elements of the cycle (0, 1, . . . , d−
1). Thus, there exist two elements of In−1 such that the distance between them in
the cycle is less than or equal to b d

n−1c. Consequently, by applying manipulations 1
and 2, we can transform In−1 to a form such that the first term is 0 and the second
term is one of the integers {1, 2, . . . , b d

n−1c}.

Proposition A.0.4. Let d = 3. Then
n∑
j=1

αjx
3
j = 0 has a nontrivial solution over

every Fq if n ≥ 3. In other words,

max
q

Ω(3, q) = max
p prime

Ω(3, p) = 2.

Proof. Since 2d+ 1 = 7 is prime, by Lemma A.0.1, it follows that

max
p prime

ΩA(1, 3, q) ≥ dlog2(3 + 1)e = 2.

Suppose n = 3. By Theorem 4.4.5,
n∑
j=1

αjx
3
j = 0 has a nontrivial solution if

23(3) ≥ 3(3− 1)
3
1 = 3(2)3.

Since the inequality is always satisfied when n = 3 and d = 3,
n∑
j=1

αjx
3
j = 0 has a

nontrivial solution over Fq for all q. Thus,

max
q

Ω(3, q) = max
p prime

Ω(3, p) = 2.

Proposition A.0.5. Let d = 5. Then
n∑
j=1

αjx
5
j = 0 has a nontrivial solution over

every Fq if n ≥ 4. In other words,

max
q

Ω(5, q) = max
p prime

Ω(5, p) = 3.

Proof. Since 2d+ 1 = 11 is prime, by Lemma A.0.1, it follows that

max
p prime

ΩA(3, q) ≥ dlog2(5 + 1)e = 3.

Suppose n = 4. We will show that for any q ≡ 1 mod 5,
n∑
j=1

αjx
5
j = 0 has a nontrivial

solution. By Lemma 4.3.7,
n∑
j=1

αjx
5
j = 0 has a nontrivial solution if q < 24 = 16. By

85



Lemma 4.5.5, since 16 ≡ 1 mod 15 and 16 < 34 = 81,
n∑
j=1

αjx
5
j = 0 has a nontrivial

solution. Furthermore, by Theorem 4.4.4,
n∑
j=1

αjx
5
j = 0 has a nontrivial solution if

q ≥ 1

4
(5)(5− 1)

4
2 = 20.

Thus,
n∑
j=1

αjx
5
j = 0 has a nontrivial solution for q ≤ 16 and for q ≥ 20. Since there are

no primes or prime powers in between 16 and 20 congruent to 1 mod 5,
n∑
j=1

αjx
5
j = 0

has a nontrivial solution for all q. Thus,

max
q

Ω(5, q) = max
p prime

Ω(5, p) = 3.

Proposition A.0.6. Let d = 7. Then
n∑
j=1

αjx
7
j = 0 has a nontrivial solution over

every Fq if n ≥ 4. In other words,

max
q

Ω(7, q) = max
p prime

Ω(7, p) = 3.

Proof. Suppose n = 4. We will show that for any q ≡ 1 mod 7,
n∑
j=1

αjx
7
j = 0 has

a nontrivial solution. By Lemma 4.3.7,
n∑
j=1

αjx
7
j = 0 has a nontrivial solution if

q < 24 = 16. Furthermore, by Theorem 4.4.4,
n∑
j=1

αjx
7
j = 0 has a nontrivial solution

if

q ≥ 1

4
(7)(7− 1)

4
2 = 63.

Thus,
n∑
j=1

αjx
7
j = 0 has a nontrivial solution for q < 16 and for q ≥ 63. It remains to

check all primes and prime powers between 16 and 62 that are congruent to 1 mod 7.
Thus, it remains to check the case q = 29 and q = 43.

Assume q = 29. Since 2 is a generator of F∗29, we can compute the cosets 2m(F∗29)7
for m = 0, . . . , 6.

20(F∗29)7 = {1, 12, 17, 28}
21(F∗29)7 = {2, 24, 5, 27}
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22(F∗29)7 = {4, 19, 10, 25}

23(F∗29)7 = {8, 9, 20, 21}

24(F∗29)7 = {16, 18, 11, 13}

25(F∗29)7 = {3, 7, 22, 26}

26(F∗29)7 = {6, 14, 15, 23}

Observe that these sets form a partition of F∗29. We will now compute 20(F∗29)7 +
21(F∗29)7 and 20(F∗29)7 + 22(F∗29)7.

20(F∗29)7 + 21(F∗29)7 = 20(F∗29)7 ∪ 21(F∗29)7 ∪ 22(F∗29)7 ∪ 25(F∗29)7 ∪ 26(F∗29)7

20(F∗29)7 + 22(F∗29)7 = 20(F∗29)7 ∪ 21(F∗29)7 ∪ 22(F∗29)7 ∪ 23(F∗29)7 ∪ 24(F∗29)7 ∪ 25(F∗29)7

Hence l2({0, i2}) ≥ 5, for i2 = 1, 2. Thus, by Lemma A.0.3,
n∑
j=1

αjx
7
j = 0 has a

non-trivial solution in F29.
Assume q = 43. By Lemma 4.5.5, since q = 1 + 3(2)(7) and 43 < 34, we know

that
4∑
j=1

αjx
7
j = 0 has a nontrivial solution over F43. Thus max

q
Ω(7, q) ≤ 3.

On the other hand, the equation

x71 + 2x72 + 8x73 = 0

has only the trivial solution in F29 since 23(F29)
7 * 20(F29)

7 + 21(F29)
7. Thus

max
p prime

Ω(7, p) ≥ 3.

Therefore,
max
q

Ω(7, q) = max
p prime

Ω(7, p) = 3.

Proposition A.0.7. Let d = 9. Then
n∑
j=1

αjx
9
j = 0 has a nontrivial solution over

every Fq if n ≥ 5. In other words,

max
q

Ω(9, q) = max
p prime

Ω(9, p) = 4.

Proof. By Lemma A.0.1, since 2(9) + 1 = 19 is prime, we know that for n ≥ 1 +

dlog2(9 + 1)e = 5,
5∑
j=1

αjx
9
j = 0 has a nontrivial solution over prime fields. Suppose
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n = 5. We will show that for any q ≡ 1 mod 9,
5∑
j=1

αjx
9
j = 0 has a nontrivial solution.

By Lemma 4.3.7,
5∑
j=1

αjx
9
j = 0 has a nontrivial solution if q < 25 = 32. By Theorem

4.4.4,
5∑
j=1

αjx
9
j = 0 has a nontrivial solution if q ≥ 1

5
(9)(9 − 1)

5
3 , thus when q ≥ 58.

Thus, it remains to check all primes and prime powers between 32 and 58 that are
congruent to 1 mod 9. The only prime or prime power in that range congruent to

1 mod 9 is 37. Thus, we simply need to show that
5∑
j=1

αjx
9
j = 0 has a nontrivial

solution over F37.
Assume q = 37. Since 2 as a generator of F∗37, we can compute the cosets 2m(F∗37)9

for m = 0, . . . , 8.

20(F∗37)9 = {1, 31, 36, 6}

21(F∗37)9 = {2, 25, 35, 12}

22(F∗37)9 = {4, 13, 33, 24}

23(F∗37)9 = {8, 26, 29, 11}

24(F∗37)9 = {16, 15, 21, 22}

25(F∗37)9 = {32, 30, 5, 7}

26(F∗37)9 = {27, 23, 10, 14}

27(F∗37)9 = {17, 9, 20, 28}

28(F∗37)9 = {34, 18, 3, 19}

Observe that these sets form a partition of F∗37. We will now compute 20(F∗37)9 +
21(F∗37)9 and 20(F∗37)9 + 22(F∗37)9.

20(F∗37)9 + 21(F∗37)9 = 20(F∗37)9 ∪ 21(F∗37)9 ∪ 22(F∗37)9 ∪ 23(F∗37)9 ∪ 28(F∗37)9

20(F∗37)9 + 22(F∗37)9 = 20(F∗37)9 ∪ 21(F∗37)9 ∪ 22(F∗37)9 ∪ 25(F∗37)9 ∪ 26(F∗37)9 ∪ 28(F∗37)9

Hence l2({0, i2}) ≥ 5, for i2 = 1, 2. Thus, by Lemma A.0.3,
n∑
j=1

αjx
9
j = 0 has a

non-trivial solution in F37. Thus max
q

Ω(9, q) ≤ 4.

On the other hand, the equation

x91 + 2x92 + 4x93 + 8x94 = 0
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has only the trivial solution in F19. Thus max
p prime

Ω(9, p) ≥ 4.

Therefore,
max
q

Ω(9, q) = max
p prime

Ω(9, p) = 4.

Proposition A.0.8. Let d = 11. Then
n∑
j=1

αjx
9
j = 0 has a nontrivial solution over

every Fq if n ≥ 5. In other words,

max
q

Ω(11, q) = max
p prime

Ω(11, p) = 4.

Proof. By Lemma A.0.1, since 2(11) + 1 = 23 is prime, we know that for n ≥ 1 +

dlog2(11 + 1)e = 5,
5∑
j=1

αjx
11
j = 0 has a nontrivial solution over prime fields. Suppose

n = 5. We will show that for any q ≡ 1 mod 11,
5∑
j=1

αjx
11
j = 0 has a nontrivial

solution. By Lemma 4.3.7,
5∑
j=1

αjx
11
j = 0 has a nontrivial solution if q < 25 = 32.

By Theorem 4.4.4,
5∑
j=1

αjx
11
j = 0 has a nontrivial solution if q ≥ 1

5
(11)(11− 1)

5
3 , thus

when q ≥ 103. Thus, it remains to check all primes and prime powers between 32 and

103 that are congruent to 1 mod 11. This means we need to verify that
5∑
j=1

αjx
11
j = 0

is isotropic over F67 and F89.
Assume q = 67. By Lemma 4.5.5, since 67 = 1 + 3(2)(11) and 67 < 35,

5∑
j=1

αjx
11
j = 0 has a nontrivial solution over F67.

Now assume q = 89. Since 3 is a generator of F∗89, we can compute the cosets
3m(F∗89)11 for m = 0, . . . , 10.

30(F∗89)11 = {1, 37, 55, 34, 88, 77, 12, 52}

31(F∗89)11 = {3, 22, 76, 13, 86, 53, 36, 67}

32(F∗89)11 = {9, 66, 50, 39, 80, 70, 19, 23}

33(F∗89)11 = {27, 20, 61, 28, 62, 32, 57, 69}

34(F∗89)11 = {81, 60, 5, 84, 8, 7, 82, 29}

35(F∗89)11 = {65, 2, 15, 74, 24, 21, 68, 87}

36(F∗89)11 = {17, 6, 45, 44, 72, 63, 26, 83}
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37(F∗89)11 = {51, 18, 46, 43, 38, 11, 78, 71}
38(F∗89)11 = {64, 54, 49, 40, 25, 33, 56, 35}
39(F∗89)11 = {14, 73, 58, 31, 75, 10, 79, 16}
310(F∗89)11 = {42, 41, 85, 4, 47, 30, 59, 48}

Observe that these sets form a partition of F∗89. We will now compute 30(F∗89)11 +
31(F∗89)11 and 30(F∗89)11 + 32(F∗89)11.

30(F∗89)11 + 31(F8
89)

11 = 30(F∗89)11 ∪ 31(F∗89)11 ∪ 32(F∗89)11 ∪ 35(F∗89)11

∪ 38(F∗89)11 ∪ 39(F∗89)11 ∪ 310(F∗89)11

30(F∗89)11 + 32(F∗89)11 = 30(F∗89)11 ∪ 31(F∗89)11 ∪ 32(F∗89)11 ∪ 33(F∗89)11 ∪ 34(F∗89)11

∪ 35(F∗89)11 ∪ 37(F∗89)11 ∪ 38(F∗89)11 ∪ 39(F∗89)11

Hence l2({0, i2}) ≥ 7, for i2 = 1, 2. Thus, by Lemma A.0.3,
n∑
j=1

αjx
11
j = 0 has a

non-trivial solution in F89. Thus max
q

Ω(11, q) ≤ 4.

On the other hand, the equation

x111 + 2x112 + 4x113 + 8x114 = 0

has only the trivial solution in F23. Thus, max
p prime

Ω(11, p) ≥ 4.

Therefore,
max
q

Ω(11, q) = max
p prime

Ω(11, p) = 4.

Now, we will compute values of max
q

ΩA(1, d, q) for d = 2, 4, 6, 8.

Proposition A.0.9. Let d = 2. Then the A-equation
n∑
j=1

αjx
2
j = 0 has a nontrivial

solution over every Fq if n ≥ 3. In other words,

max
q

ΩA(2, q) = max
p prime

ΩA(2, p) = 2.

Proof. By Theorem 4.4.7, we know that

max
q

ΩA(2, q) ≤ d2 log2(2)− log2(log2(2))e = 2.

By Lemma A.0.1, we know that

max
p prime

ΩA(2, p) ≥ dlog2(2 + 1)e = 2.
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Since max
q

ΩA(2, q) ≤ max
p prime

ΩA(2, p), it follows that

max
q

ΩA(2, q) = max
p prime

ΩA(2, p) = 2.

Proposition A.0.10. Let d = 4. Then the A-equation
n∑
j=1

αjx
4
j = 0 has a nontrivial

solution over every Fq if n ≥ 3. In other words,

max
q

ΩA(4, q) = max
p prime

ΩA(4, p) = 2.

Proof. First, we will show that max
p prime

ΩA(4, p) ≥ max
p prime

ΩA(2, p). Consider the A-

equation
n∑
j=1

αjx
4
j . Let (ξ1, . . . , ξn) be a nontrivial solution of that A-equation. Let

yj = x2j . Then we can rewrite the A-equation as
n∑
j=1

αjy
2
j . Notice that this new

A-equation is a diagonal form of degree 2 and has the nontrivial solution (ξ21 , . . . , ξ
2
n).

Thus, if there exists a nontrivial solution to
n∑
j=1

αjx
4
j , then there exists a nontrivial

solution to
n∑
j=1

αjy
2
j . Thus, max

p prime
ΩA(4, p) ≥ max

p prime
ΩA(2, p). Since max

p prime
ΩA(2, p) =

2, it follows max
p prime

ΩA(4, p) ≥ 2.

By Theorem 4.2.1,
n∑
j=1

αjx
4
j = 0 is an A-equation if and only if d | q−1

2
. Thus, we

need only show that
n∑
j=1

αjx
4
j = 0 has a nontrivial solution over Fq for all q ≡ 1 mod 8.

Suppose n = 3. By Theorem 4.4.4,
∑3

j=1 αjx
4
j = 0 has a nontrivial solution if

q ≥ 1
3
(4)(4 − 1)3 = 36. By Lemma 4.3.7,

3∑
j=1

αjx
4
j = 0 has a nontrivial solution if

q < 23 = 8. It remains to check the primes and prime powers between 8 and 36 that
are congruent to 1 mod 8. Thus it remains to check q = 9 and q = 25.

Let q = 9. By Theorem 5.3.4, letting m = 1, we find that
3∑
j=1

αjx
4
j = 0 has a

nontrivial solution over F9.

Let q = 25. By Lemma 4.5.5, since 25 = 1+3(2)(4),
3∑
j=1

αjx
4
j = 0 has a nontrivial

solution if q < 33. Since 25 < 27, there exists a nontrivial solution over F25. Thus
max
q

Ω(4, q) < 3.
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Therefore,
max
q

Ω(4, q) = max
p prime

Ω(4, p) = 2.

Proposition A.0.11. Let d = 6. Then the A-equation
n∑
j=1

αjx
6
j = 0 has a nontrivial

solution over every Fq if n ≥ 4. In other words,

max
q

ΩA(6, q) = max
p prime

ΩA(6, p) = 3.

Proof. By Theorem 4.2.1,
n∑
j=1

αjx
6
j = 0 is an A-equation if and only if d | q−1

2
. Thus

we need only show that
n∑
j=1

αjx
6
j = 0 has a nontrivial solution over Fq for all q ≡ 1 mod

12. By Lemma A.0.1, since 2(6) + 1 = 13 is prime, we know that max
p prime

ΩA(6, p) ≥
dlog2(6 + 1)e = 3. Furthermore, by Theorem 4.4.7, max

q
ΩA(6, q) ≤ d2 log2(6) −

log2(log2(6))e = 4.

Suppose n = 4. By Lemma 4.3.7,
4∑
j=1

αjx
6
j = 0 has a nontrivial solution over Fq

when q < 24 = 16. By Theorem 4.4.4,
4∑
j=1

αjx
6
j = 0 has a nontrivial solution over

Fq when q ≥ 1
4
(6)(6 − 1)2 = 37.5, that is, when q ≥ 38. It remains to check the

primes and prime powers between 16 and 37 that are congruent to 1 mod 12. Thus
it remains to check q = 25 and q = 37.

Assume q = 25. By Theorem 5.3.4, letting m = 1, we find that
4∑
j=1

αjx
6
j = 0 has

a nontrivial solution over F25.

Assume q = 37. By Lemma 4.5.5, since 37 = 1 + 3(2)(6),
4∑
j=1

αjx
6
j = 0 has a

nontrivial solution if q < 34. Since 37 < 81, there exists a nontrivial solution over
F37. Thus, max

q
ΩA(6, q) < 4.

Therefore,
max
q

ΩA(6, q) = max
p prime

ΩA(6, p) = 3.

Proposition A.0.12. Let d = 8. Then the A-equation
n∑
j=1

αjx
8
j = 0 has a nontrivial

solution over every Fq if n ≥ 5. In other words,

max
q

ΩA(8, q) = max
p prime

ΩA(8, p) = 4.
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Proof. By Theorem 4.2.1,
n∑
j=1

αjx
8
j = 0 is an A-equation if and only if d | q−1

2
. Thus

we need only show that
n∑
j=1

αjx
8
j = 0 has a nontrivial solution over Fq for all q ≡

1 mod 16.
By Lemma A.0.1, since 2(8) = 1 = 17 is prime max

p prime
ΩA(8, p) ≥ dlog2(8+1)e = 4.

Suppose n = 5. By Lemma 4.3.7,
5∑
j=1

αjx
8
j = 0 has a nontrivial solution over Fq

for q < 25 = 32. By Theorem 4.4.4,
5∑
j=1

αjx
8
j = 0 has a nontrivial solution over Fq for

q ≥ 1
5
(8)(8− 1)

5
3 , that is, q ≥ 41. Since there are no primes or prime powers between

32 and 41 that are congruent to 1 mod 16, it follows that max
q

ΩA(8, q) < 5.

Therefore,
max
q

ΩA(8, q) = max
p prime

(8, p) = 4.
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Appendix B Computational Component

Example B.0.1. Checking for Anisotropic Forms over Fp for Fixed p
This code takes as inputs: d, n, p, and ρ, where ρ is a fixed primitive element of

Fp.

import numpy as np

from itertools import product

A = [\rho^i] for i=1, \dots, d-1

C = (A tuple containing the elements of F_p^d)

D = list(product(C, repeat = n-1))

for j_1 in range(d-1):

for j_2 in range(d-1):

\vdots

for j_{n-1} in range(d-1):

if j_1 < j_2 < \hdots < j_{n-1}:

B = (A[j_1], A[j_2], \dots, A[j_{n-1}])

I = np.eye(1)

else:

continue

J = np.matrix([B])

K = np.hstack([I,J])

count = 0

for l in D:

Z = K*np.transpose([l])

if Z[0] % p == 0:

count += 1

if count == 1:

print(K)

print("Done")
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