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ABSTRACT OF DISSERTATION

Orthogonal Recurrent Neural Networks and Batch Normalization in Deep Neural
Networks

Despite the recent success of various machine learning techniques, there are still
numerous obstacles that must be overcome. One obstacle is known as the vanish-
ing/exploding gradient problem. This problem refers to gradients that either become
zero or unbounded. This is a well known problem that commonly occurs in Recurrent
Neural Networks (RNNs). In this work we describe how this problem can be miti-
gated, establish three different architectures that are designed to avoid this issue, and
derive update schemes for each architecture. Another portion of this work focuses
on the often used technique of batch normalization. Although found to be successful
in decreasing training times and in preventing overfitting, it is still unknown why
this technique works. In this paper we describe batch normalization and provide a
potential alternative with the end goal of improving our understanding of how batch
normalization works.
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Chapter 1 Introduction to Machine Learning

1.1 A Brief Overview of Machine Learning

The field of machine learning can trace its origins as far back as the 1940s [12]
but its popularity has grown immensely since the early 2000s. This growth has
been fueled in part by the development of advanced computational hardware such
as graphics processing units (GPUs), increased availability of large data sets, and
machine learning’s strong track record of solving ever increasingly complex tasks
[12]. The field of machine learning is developing at such a rapid pace that it is
being used on wide range of problems and research fields. Examples include history
departments using it to analyze historical documents to determine authorship to
biomedical departments employing it to predict DNA sequencing.

The field of machine learning is expansive with innumerable different architectures
and techniques but most machine learning tasks fall into one of four categories. The
first category is known as supervised learning. This task requires training the
network on labeled data. In this case, we know what the desired output or label
should be given a particular example. The goal of the network is to learn a function
that can take input data and output the correct label. All of the research in this
thesis falls under the supervised learning category and will be the primary focus.
The second category is unsupervised learning. The data for this task lacks any
type of label and the goal of the network is to glean insights about the data. The
third category is a mixture between supervised and unsupervised learning tasks called
semi-supervised learning. In this case, some of the data is labeled and some of
it is not. The last category is known as reinforcement learning. In this task, the
network is to learn how to perform a particular task by exploring different options.
An example of this type of learning is allowing a network to learn how to successfully
navigate a maze.

In the most general case, the ultimate goal in any of the above categories is to
find some nonlinear function or network that takes an input example x and maps it
to a desired output y. The input x consists of features that represents a particular
example or set of examples. This could consist of the pixels of an image, a vector
representing a particular word, or the financial record of an applicant. In order to
measure how well the network performs, an appropriate loss function must be selected
as described further in Section 1.5. For each task, the architecture of the network is
usually predetermined and fixed by the user and so the goal is to obtain the optimal
function or network from a set of parametric family of functions. This is typically
done by performing gradient descent, see Section 1.6. Gradient descent involves
iteratively minimizing the chosen loss function by updating the weights associated
with the network.

1



1.2 Supervised Learning

In supervised learning, labeled data is used to optimize the performance of the net-
work. Examples of data used in supervised learning include images of objects, audio
files, video files, and written text. The corresponding labels for these types of data
sets could consist of the classification or type of object in the image, the next spoken
word in the audio sequence, location or absence of cars in the video, and authorship
of the selected text. The goal of the machine learning network is to learn the optimal
network or function from a certain parametric family of functions to fit the data.

For most tasks, the labeled data is separated into three different sets. The first
set is known as the training data set and is used to iteratively update the weights
of the network by minimizing some appropriate loss function. It should be noted
that it is important that networks do not simply perform well on the training data
set but perform well on unseen data sets. Having a network that simply spits out the
correct label on data that is already labeled is not helpful or useful. The goal is to
use the trained network on unlabeled data in order to obtain the appropriate label.
In otherwords, we want the network to be able to generalize well.

In order to obtain sufficient generalization, the second and third data sets are
used. The second set of data is known as the validation data set. The network is
never trained on this data set. It is only used to help the user to design the optimal
network architecture or to determine what family of functions the network should
be restricted to. The performance or loss score of the network on this data set is an
indication of how well the network will generalize. The user will use this to determine
the number of layers, the type of functions to use, and other hyperparameters that
are set by the user to determine which architecture or family of functions to use. By
doing this, the user is indirectly optimizing the network on the validation data set.
See Figure 1.1 for more details.

Unfortunately, this may again result in selecting a network that has poor gener-
alization because the architecture was designed to indirectly optimize performance
on the validation data set. To obtain an approximation of how well the network will
actually generalize, the performance of the network on the third data set, the test
data set, is used. The network is never trained on this data set and it is good prac-
tice that the user should not take a close look at this data set to avoid biasing their
hyperparameter decisions which could inadvertently result in poor generalization.

1.3 Feedforward Networks

A very common machine learning architecture is known as the feedforward network
(FFN). In some cases the FFN is referred to as a multilayer perceptron (MLP).
In other cases the MLP is identified as a type of FFN but these terms are commonly
used interchangeably. Other names include deep neural networks (DNNs) or
multilayer networks (MLNs). In this text we will try to use the terminology of
FFN or feedforward network.

FFNs were originally designed to emulate biological neurons. To illustrate how,
we consider a single neuron which we call a perceptron. The perceptron receives an

2



Figure 1.1: This figure shows how a validation data set can be used to select a network
that will generalize well. Here the x-axis indicates the capacity of the network and the
y-axis is the error score. The blue dashed line shows the performance of the network
on the training data set and the green line is the performance of the network on the
validation data set which is an indication of how the network will generalize. As can
be seen, the user should adjust the size or capacity of the network until achieving the
minimal validation or generalization error. If the network is too small, the network
will underfit the data and if it is too large it will overfit the data. Image is from [12].

input signal x ∈ Rn and applies a weight, wi, to each individual component of the
input, xi, and sums the result. If the resulting sum is greater than some threshold,
b ∈ R, then the perceptron fires and passes the result forward through the network.
If it is less than the given threshold, the perceptron does not fire and the signal
is not propagated forward. This is similar to what happens in biological neurons.
Mathematically, this can be modeled by f(x) = σ

(
wTx+ b

)
where w ∈ Rn is a

vector of the given weights and σ(x) is a pointwise nonlinearity. In this example, we
suppose the nonlinearity is the rectified linear unit (ReLU) nonlinearity or σ(x) =
max{0, x}. In practice there are many different nonlinearities that can be used, see
Section 1.4, but for now we assume it is ReLU. A diagram of how a perception works
is given in Figure 1.2.

Similar to how biological systems can contain many interconnected neurons, per-
ceptrons can be stacked in a layer, see Figure 1.3. We call such a layer of perceptrons
a single layer of a FFN. In this case, the weight vector w is replaced with a weight
matrix W ∈ Rp×n where Wi,j is the weight associated with the ith perceptron that is
applied to the jth input and b ∈ Rp becomes a vector,

f(x) = σ (Wx+ b) (1.1)

In this case there are p perceptrons in the layer. We note that in some cases it is
more intuitive to let Wi,j be the weight associated with the jth perceptron that is
applied to the ith input. In this case, just replace W in (1.1) with W T .

Like neurological systems, multiple layers of perceptrons can be stacked together
and this is where the term deep neural network comes from. An example of a 3

3



Input

x1

x2

x3 P

x4

x5

Output

Figure 1.2: Diagram of a perception, P. The perceptron takes an input x ∈ Rn and
applies an affine transformation wTx+ b followed by a pointwise nonlinearity σ(·).

layer network is provided in Figure 1.4 and the following equation

f(x) =σ
(
W (3)σ

(
W (2)σ

(
W (1)x+ b(1)

)
+ b(2)

)
+ b(3)

)
(1.2)

In Figure 1.4 we denote h(k) as the kth layer of the network which consists of a vector
of perceptrons. Here instead of using the notation of a single perceptron as P

(k)
i ,

we denote individual perceptrons as h
(k)
i . This is the notation we will be using for

the rest of the paper. Each of these layers has an associated weight matrix, W (k),
bias vector, b(k), and pointwise nonlinearity. As described previously, each perceptron
layer performs an affine transformation followed by a pointwise nonlinearity.

We should note that the architecture of a FFN can vary greatly than the one
shown in Figure 1.4. The architecture shown is known as a fully connected neural
network since the output of each perceptron of the former layer is used as input
to each perceptron in the latter layer. In other words, each of the perceptrons are
connected between layers of the network. In some cases, the user may decide not to
have each perceptron feed into each of the following perceptrons or they may want to
take the output of the kth layer and feed it into the k + 1 layer as well as the k + n
layer. This last connection scheme is sometimes known as a skip connection and is
used to avoid vanishing gradients. The convolutional neural network is a popular
type of feedforward network where filters containing weights are convolved with layer
inputs. Currently there are many variations of FFNs and it would be impossible to
include a description for each one. These variations of the FFN will be discussed
where appropriate.

4



Input

x1

x2 P1

x3 P2

x4 P3

x5

Output

Output

Output

Figure 1.3: Diagram of a single layer FFN. The layer takes the input x ∈ Rn and
applies an affine transformation Wx+ b followed by a pointwise nonlinearity σ(·).

1.4 Nonlinear Functions

As discussed in Section 1.3, a typical layer in a FFN consists of an affine transfor-
mation followed by a nonlinearity that is applied pointwise or to each element of the
output vector. In this section we present four of the most common nonlinear func-
tions that are used in machine learning. These are the sigmoid, hyperbolic tangent,
rectified linear unit, and leaky rectified linear unit functions.

Sigmoid

One of the most basic activation functions is the sigmoid activation function as
shown in Figure 1.5 and defined by

σ (x) =
1

1 + e−x
(1.3)

The output of the sigmoid function has a range of (0, 1) which can be interpreted as
a measure of confidence or probability. For example, suppose we want to determine
whether an image contains a car or not. If the output is greater than or equal to
0.5, we conclude there is indeed a car in the image and if it is less than 0.5, we
conclude that there is no car in the image or vice-versa. The actual output value
in this scenario can be interpreted as how confident the network is in whether there
is a car. If the sigmoid function returns a value of 0.75, the network believes there
is a car in the image with 75% confidence or probability. If the output is 0.10, the

5



Input
Layer
h(1)

Layer
h(2)

Layer
h(3)

x1

x2 h
(1)
1

h
(2)
1

x3 h
(1)
2 h

(3)
1

h
(2)
2

x4 h
(1)
3

x5

Output

Figure 1.4: Diagram of a multilayer feedforward network. Each layer takes the in-
put x ∈ Rn and applies an affine transformation Wx + b followed by a pointwise
nonlinearity σ(·).

probability of a car in the image is only 10% and so we label the image as most likely
not containing a car.

In addition to being interptretable, the sigmoid function has a very simple deriva-
tive,

σ′ (x) =
e−x

(1 + e−x)2
=

1

1 + e−x
1 + e−x − 1

1 + e−x
= σ(x) (1− σ(x)) (1.4)

Thus the computation of the gradients used in gradient descent, see Section 1.6, are
relatively easy to compute. A major disadvantage of the sigmoid function occurs
when the magnitude of the activation is large. If the activation is either very positive
or negative, the gradient of the sigmoid function becomes close to zero. In this case,
little or no update to the weights occur during gradient descent. In this case, the
network becomes “stuck” and weights will not be updated.

Hyperbolic Tangent

The hyperbolic tangent or tanh function behaves similar to the sigmoid function with
a few differences. First, the output of the function has a range of (−1, 1). Using the
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Figure 1.5: Plot of the sigmoid function σ(x) = 1
1+e−x

(Left) and its derivative σ′(x) =
σ(x) (1− σ(x)) (Right).

similar example of determining whether an image contains a car, one can interpret a
positive output as indicating the presence of a car and a negative output as indicating
the absence of a car or vice-versa. The tanh function derivative is simply 1−tanh2(x).
Note that the derivatives of tanh can be much larger than the sigmoid function and
the output can be positive or negative. In practice, the tanh function is typically
used more often than the sigmoid function.

Figure 1.6: Plot of the tanh function σ(x) = tanh(x) (Left) and its derivative σ′(x) =
1− tanh2(x) (Right).

Rectified Linear Unit

The rectified linear unit or ReLU is arguably one of the most popular activation
functions due to its computational simplicity,

σ(x) = max{0, x} (1.5)

The ReLU nonlinearity simply sets all negative values to zero and all positive values
pass through. The resulting gradient is either 0 or 1. It should be noted that computer
programs are designed to address the discontinuity of the gradient at this point by
either setting the gradient either to 1 or 0. See Figure 1.7 for a plot of the ReLU
function and its derivative.

7



Although computationally simple to implement, the ReLU function can result
in dead perceptrons. If the input value is negative, the ReLU will return a value
of zero and the gradients associated with the perceptron weights will also be zero.
In this case, the weights will not be updated during gradient descent. Thus if the
weights of a network are not initialized correctly or if the weights become such that
the input to the ReLU is always nonpositive at certain perceptrons, these perceptrons
are always dead and contribute nothing to the final output of the network. These
dead perceptrons then serve only to use up computational memory.

Figure 1.7: Plot of the ReLU function σ(x) = max{0, x} (Left) and its derivative
σ′(x) = 0 or 1 (Right).

Leaky Rectified Linear Unit

As previously discussed, the ReLU function is a very popular function used in machine
learning but it may result in dead perceptrons. To avoid dead perceptrons, the leaky
rectified linear unit or leaky ReLU can be used. Instead of setting all negative
values to zero, the leaky ReLU returns the negative value scaled by a small α,

σ(x) =

{
αx if x ≤ 0

x if x > 0
(1.6)

A typical default value of α is around 0.20. The simplicity of implementing the leaky
ReLU is comparable to the ReLU but has the advantage that gradients are always
positive. Thus all weights associated with perceptrons are trained during gradient
descent and no perceptron can become dead. In addition, perceptrons can now have
both positive and negative values. A plot of the leaky ReLU and the derivative is
shown in Figure 1.8.

1.5 Loss Functions

In this section, we discuss three common loss functions that are used in supervised
learning tasks. These would be the cross-entropy loss function for binary and multi-
class classification tasks and the mean squared error (MSE) loss function. In this
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Figure 1.8: Plot of the Leaky ReLU function (Left) and its derivative (Right) using
α = 0.2.

section, we approach these loss functions from the perspective of the maximum
likelihood principle as discussed in [12].

In supervised machine learning tasks, we are given a data set X = [x1, . . . , xn]
of n training examples where each xj is independently drawn from the probability
distribution of the data, pdata(x). We are also given a set of labels Y = [y1, . . . , yn]. We
want the probability distribution of the network, pmodel(x), to approximate pdata(x).
In other words, if we let θ represent the parameters associated with the network,
we want to maximize the conditional probability of the model pmodel(Y |X, θ) with
respect to θ. Using the fact that the examples are drawn independently, we want to
find the weights θ∗ such that

θ∗ = arg max
θ

pmodel (Y |X, θ) = arg max
θ

n∏
i=1

pmodel (yi|xi, θ) (1.7)

The problem with (1.7) occurs when several of the pmodel (yi|xi, θ) terms are close to
zero. When this happens, the entire product will be close to zero. To avoid this,
we simply apply a logarithm so we can change the product to a sum which doesn’t
change the maximum argument. We can also scale it by 1

n
so we can use the expected

value. Finally, we can change the problem to a minimization problem by adding a
negative.

θ∗ = arg max
θ

n∑
i=1

log (pmodel (yi|xi, θ)) (1.8)

= arg max
θ

1

n

n∑
i=1

log (pmodel (yi|xi, θ)) (1.9)

= arg max
θ

Ex∼X [log (pmodel (y|x, θ))] (1.10)

= arg min
θ

Ex∼X [− log (pmodel (y|x, θ))] (1.11)
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Binary Cross-Entropy Loss

Suppose we only have two types of classes with labels yi ∈ {0, 1}. Now let ŷi be the
predicted label given by the model which is the output of a sigmoid function. Thus
ŷi ∈ (0, 1). We use the Bernoulli distribution for our model and replace pmodel (yi|xi, θ)
with ŷyii (1− ŷi)1−yi . Plugging this into (1.11) we obtain

θ∗ = arg min
θ

Ex∼X
[
− log

(
ŷy (1− ŷ)1−y

)]
(1.12)

= arg min
θ
−Ex∼X [y log (ŷ) + (1− y) log (1− ŷ)] (1.13)

where the binary cross-entropy loss function is the term inside the argmin.

Multi-Class Cross Entropy Loss

Instead of only having two class types, suppose the data set contains K different
classes. The label for the ith example is given by y(i) ∈ {e1, . . . , en} where each
ej ∈ RK with the jth entry 1 and all other entries 0. (Note that we have switched
to using a superscript to denote a particular example.) In other words, if the ith
example belongs to class s, then y(i) = es.

For pmodel
(
y(i)|x(i), θ

)
, we use the softmax function. The softmax function is

defined by ŷ = σ (z) : RK → RK where each entry of ŷ is

ŷj =
ezj∑K
i=1 e

zi
(1.14)

Note that
∑K

j=1 ŷj = 1. Now if we denote y
(i)
j as the jth entry of the ith example,

(1.11) becomes

θ∗ = arg min
θ

1

n

n∑
i=1

K∑
j=1

−y(i)j log
(
ŷ
(i)
j

)
(1.15)

If we denote the label of the ith example as es(i) then y
(i)
j = 1 if j = s(i) and 0

otherwise. Thus the multi-class cross entropy loss function is the term inside the
argmin below

θ∗ = arg min
θ

1

n

n∑
i=1

− log
(
ŷ
(i)
s(i)

)
(1.16)

We should note that for assigning the final label to an example, the class associated
with the largest entry of the softmax output vector is used.

Mean Square Error

For regression tasks, the mean square error (MSE) loss function is used. If yi is the
label and ŷi the predicted output of the network, then (1.11) becomes

θ∗ = arg min
θ

1

n

n∑
i=1

‖yi − ŷi‖22 (1.17)
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where the MSE loss function is the tern inside the argmin.
To see how MSE loss relates to the maximum likelihood principle, suppose

pmodel (yi|xi, θ) follows a Gaussian distribution with standard deviation σ. Thus

pmodel (yi|xi, θ) =
1√

2πσ2
e−
‖yi−ŷi‖

2
2

2σ2 (1.18)

Plugging (1.18) into (1.11) we obtain

θ∗ = arg min
θ
− 1

n

n∑
i=1

log

(
1√

2πσ2
e−
‖yi−ŷi‖

2
2

2σ2

)
(1.19)

= arg min
θ
− 1

n

n∑
i=1

[
log

(
1√

2πσ2

)
− 1

2σ2
‖yi − ŷi‖22

]
(1.20)

Since the log term in (1.20) is a constant, we can ignore this term and obtain

θ∗ = arg min
θ

1

n

n∑
i=1

1

2σ2
‖yi − ŷi‖22 (1.21)

= arg min
θ

1

n

n∑
i=1

‖yi − ŷi‖22 (1.22)

(1.23)

Thus the MSE loss function is related to the maximum likelihood principle.

1.6 Gradients

For a typical FFN, the final output of the network, o ∈ Rq, is fed into a loss function
which we denote as L. See Section 1.5 for examples of common loss functions. Since
it is not known apriori what the optimal weights and biases are that minimizes L,
the network parameters are randomly initialized following a set distribution such as
Gaussian normal. The parameters are then iteratively updated by using a gradient
descent algorithm or optimizer such as stochastic gradient descent (SGD), see Sec-
tion 1.7. In SGD, a batch of samples are fed into the network and the loss is computed
over the batch. This step is known as the forward-pass. The gradient of the loss
function with respect to the various parameters is then computed. This is known as
the backward-pass. The resulting gradients are then used by the selected optimizer
to update the parameters. For SGD, the update step is simply

θ(k+1) ← θ(k) − λ ∂L
∂θ(k)

(1.24)

where θ denotes the network weights and biases and λ is the learning rate or step
size. To compute the gradients, the standard chain-rule in calculus is applied starting
from L and working backwards to the desired parameter.

11



To see how backpropagation of the gradients works, consider a simple fully-
connected feedforward network with L layers. Each layer k has an associated weight
matrix W (k) and bias vector b(k). For simplicity, let us consider a single training exam-
ple which is a vector x consisting of various features. We feed the example through the
network starting with layer 1 and proceed to layer L. At layer 1, an affine transforma-
tion is applied z(1) = W (1)x+b(1) followed by a point-wise nonlinearity h(1) = σ

(
z(1)
)
.

The hidden state or output of the first layer is then feed into the second layer where
another affine transformation is applied z(2) = W (2)h(1) + b(2). This is again followed
by another pointwise nonlinearity h(2) = σ

(
z(2)
)
. This continues through the network

to the final layer were the output is given by o = W (L)h(L−1) + b(L). Note that it is
typical not to apply a nonlinearity to the final layer output but to incorporate any
appropriate nonlinearity into the loss function. This output and the actual data label
is then used in the loss function L (y, o).

To update the weights in the network, we compute the gradients by using the
simple chain-rule from calculus. Computed gradients for the last layer L, kth layer,
and first layer weights and biases are provided in the following equations. We should
note that vectors and gradient vectors are considered to be vertical vectors in this
notation.

∂L
∂b(L)

=
∂L
∂o

(1.25)

∂L
∂W (L)

=
∂L
∂o
h(L−1)

T

(1.26)

∂L
∂b(k)

=
∂L
∂z(k)

(1.27)

∂L
∂W (k)

=
∂L
∂z(k)

h(k−1)
T

(1.28)

∂L
∂b(1)

=
∂L
∂z(1)

(1.29)

∂L
∂W (1)

=
∂L
∂z(1)

xT (1.30)

Note in (1.25) through (1.30) the term ∂L
∂z(k)

can be expanded using the chain-rule. If

we let G(k) = diag
([
σ′(z

(k)
1 ), . . . , σ′(z

(k)
n )
])

then:

∂L
∂z(k)

=G(k) ∂L
∂h(k)

(1.31)

=G(k)

[
∂h(k+1)

∂h(k)

]T
∂L

∂h(k+1)
(1.32)

=G(k)
[
G(k+1)W (k+1)

]T [∂h(k+2)

∂h(k+1)

]T
∂L

∂h(k+2)
(1.33)

=G(k)

(
L∏

i=k+1

[
G(i)W (i)

]T) ∂L
∂o

(1.34)
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Wirtinger Derivatives

In order to determine the effectiveness of a particular model, a real-valued loss func-
tion is selected, as described in Section 1.5, with gradient descent used to update
the trainable weights. When using complex valued networks with a real-valued loss
function, see Section 2.4, computing the required gradients for gradient descent is
substantially different and requires the use of Wirtinger Calculus [47]. In this sec-
tion we try to explain why Wirtinger Calculus is required and how to compute the
necessary gradients for a real-valued loss function that has a domain in the complex
plane.

In complex analysis, a complex function is considered differentiable if:

Definition 1.6.1. [19, Definition 2.0.1] Let A ⊂ C be an open set. The function
f : A→ C is said to be (complex) differentiable at z0 ∈ A if the limit

lim
z→z0

f(z)− f(z0)

z − z0
exists independent of the manner in which z → z0. This limit is then denoted by
f ′(z0) and is called the derivative of f with respect to z at the point z0.

A well known variation of Definition 1.6.1 involving the Cauchy-Riemann equa-
tions is given in the following Theorem.

Theorem 1.6.1. [6] Let f : C→ C where f(z) = u(x, y)+iv(x, y) with u, v, x, y ∈ R,
z = x+ iy, and i =

√
−1. Suppose u and v have continuous partial derivatives. Then

f is complex differentiable if and only if the Cauchy-Riemann equations are satisfied:

ux = vy and uy = −vx (1.35)

Using (1.35), it is now clear that any real-valued cost function that has a complex
domain will not be differentiable unless the function is constant. In particular, if
f : C → R we can write f(z) = u(x, y) + iv(x, y) where z = x + iy, x, y, u ∈ R,
and v(x, y) ≡ 0. From the Cauchy-Riemann equations, ux = uy = 0 and so f(z)
is a constant function. Thus any non-constant cost function will not be complex
differentiable [19].

In order to overcome this difficulty, a different approach is required as explained
in [19]. Instead of thinking of a function as a function from the complex plane to the
complex plane, f(z) : C → C, we consider the function as a function that maps two
real-valued inputs to two real-valued outputs, f(x, y) : R× R → R× R. Looking at
the total differentiable of such a function, we obtain

dF =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy (1.36)

Now if we suppose f(x, y) = u(x, y) + iv(x, y), we can rewrite (1.36) as

df =
∂u(x, y)

∂x
dx+ i

∂v(x, y)

∂x
dx+

∂u(x, y)

∂y
dy + i

∂v(x, y)

∂y
dy (1.37)
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Computing the differentials of z = x+ iy we obtain

dz =dx+ idy (1.38)

dz =dx− idy (1.39)

Now adding and subtracting (1.38) and (1.39) we have

dx =
1

2
(dz + dz) (1.40)

dy =
1

2i
(dz − dz) (1.41)

Plugging (1.40) and (1.41) into (1.37) and rearranging,

df =
1

2

[
∂u(x, y)

∂x
+
∂v(x, y)

∂y
+ i

(
∂v(x, y)

∂x
− ∂u(x, y)

∂y

)]
dz

+
1

2

[
∂u(x, y)

∂x
− ∂v(x, y)

∂y
+ i

(
∂v(x, y)

∂x
+
∂u(x, y)

∂y

)]
dz

(1.42)

To simplify, we define the following operators which are known as the Wirtinger
derivatives:

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

) (1.43)

Plugging (1.43) into (1.42) we obtain the following differential.

df =
∂f(z)

∂z
dz +

∂f(z)

∂z
dz (1.44)

Now that we have a method to compute gradients, we look at the resulting gra-
dients for a real-valued loss function with a complex domain. Let f(z) : R×R→ R.
Since f(z) ∈ R, we can write f(z) = u(x, y) where u ∈ R. The differential of such a
function is given by

df =
∂u(x, y)

∂x
dx+

∂u(x, y)

∂y
dy (1.45)

Rewriting (1.45) in terms of ∂f(z)
∂z

and dz using R(·) as the real-valued component,

df =R
[
∂u(x, y)

∂x
dx+

∂u(x, y)

∂y
dy + i

(
∂u(x, y)

∂x
dy − ∂u(x, y)

∂y
dx

)]
(1.46)

=R
[(

∂u(x, y)

∂x
− i∂u(x, y)

∂y

)
(dx+ idy)

]
(1.47)

=2R
[

1

2

(
∂u(x, y)

∂x
− i∂u(x, y)

∂y

)
(dx+ idy)

]
(1.48)

=2R
(
∂f(z)

∂z
dz

)
(1.49)
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Now we consider the general form of the inner product, < ·, · >: C×C→ C given
by < z1, z2 >= z2z1. Using this inner product, the Cauchy-Schwarz inequality, and

the fact that since f is real-valued we have
(
∂f
∂z

)
= ∂f

∂z
,

R
[
∂f(z)

∂z
dz

]
= R

[〈
dz,

∂f(z)

∂z

〉]
≤
∣∣∣∣〈dz, ∂f(z)

∂z

〉∣∣∣∣ ≤ |dz| ∣∣∣∣∂f(z)

∂z

∣∣∣∣ (1.50)

We have equality in (1.50) if dz is real-valued multiple of ∂f(z)
∂z

which is the di-
rection of greatest-descent. Thus the gradient descent step for a general real-valued
function with a complex domain is given by

fk+1 = fk − γ
(

2
∂f(z)

∂z

)
(1.51)

where γ is the step size.

1.7 Optimizers

For a given machine learning task, the user restricts the network to a set of parametric
functions by setting the architecture. This could include determining the number of
layers, the connections between layers, the loss function, the nonlinearity used, and
other user defined settings which we call hyperparameters. The weights and biases
or parameters are then iteratively updated using gradients and a selected optimizer.
In this chapter, we describe the four most common optimizers that are used in machine
learning as discussed in [12].

Stochastic Gradient Descent (SGD)

The stochastic gradient descent (SGD) optimizer is the most basic optimizer and is
the basis for all others. In SGD, the gradients of the loss function with respect to the
network parameters, ∂L

∂θ
, are computed during the backward pass and used to directly

update the parameters.

θ(k+1) ← θ(k) − λ ∂L
∂θ(k)

(1.52)

Here λ is a small number and denotes the step size. If the step size is too large,
the parameters may oscillate too greatly and if too small, the resulting update to
the parameters might be too negligible. To visually understand why SGD works, see
Figure 1.9.

AdaGrad

The AdaGrad optimizer [9] implements an adaptive learning rate. This is done
by scaling the gradients by the running sum of gradients squared, see Algorithm 1.
For parameters with larger gradients, the effective learning rate is decreased much
more than parameters with smaller gradients. This allows for a more even update
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Figure 1.9: A visual explanation of SGD. The circles represent the level curves of a
convex loss function, L, and w ∈ R2 are the parameters of the network. The initial
parameter w0 is updated using SGD to w1 and so on. This continues until the network
reaches a sufficient minimum.

of weights and provides for an adaptive learning rate. It should be noted that the
accumulated sum of the squared gradients will result in the effective learning rate to
decrease and eventually go to zero.

Algorithm 1: Adagrad

Given:
Learning rate λ > 0
Small ε > 0 to avoid division by zero
Running squared gradient term γ (initialized as 0)
Input:
Model parameters θ
Gradient g = ∂L

∂θ

Procedure:
Square the gradient entrywise: g2 = g � g
Update running gradient: γ ← γ + g2

Compute update entrywise: u← 1
ε+
√
γ
� g

Update parameters: θ ← θ − λu

RMSProp

To address the issue of cumulative sum of squared gradients, the RMSProp optimizer
[17] uses an exponentially decaying average of squared gradients, see Algorithm 2. In
RMSProp the effect of a particular squared gradient will decay as the number of
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iterations increases.

Algorithm 2: RMSProp

Given:
Learning rate λ > 0
Decay rate ρ (typical value of 0.9)
Running squared gradient term γ (initialized as 0)
Small ε > 0 to avoid division by zero
Input:
Model parameters θ
Gradient g = ∂L

∂θ

Procedure:
Square the gradient entrywise: g2 = g � g
Update running gradient: γ ← ργ + (1− ρ)g2

Compute update entrywise: u← 1√
γ+ε
� g

Update parameters: θ ← θ − λu

Adam

The Adaptive Moment Estimation (Adam) optimizer [26] uses an exponential
decay on both the gradients and squared gradients. The moving average of the
gradients can be considered as an estimate of the first-order moment or mean and
the moving average of the squared gradients can be considered as an estimate of the
second-order raw moment of the uncentered variance. In the Adam algorithm, the
first and second-order moment estimates are initialized as zero and thus are initially
biased towards zero. Note that this is the same as in the RMSProp optimizer. To
mitigate this initial bias, the Adam optimizer scales the momentum estimates by a
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correcting factor. See Algorithm 3.

Algorithm 3: Adam

Given:
Learning rate λ > 0
Decay rate ρ1 (typical value of 0.9)
Decay rate ρ2 (typical value of 0.99)
Running 1st moment term γ1 (initialized as 0)
Running 2nd moment term γ2 (initialized as 0)
Small ε > 0 to avoid division by zero
Number of update iterations: t (initialized as 0)
Input:
Model parameters θ
Gradient g = ∂L

∂θ

Procedure:
Update 1st Moment: γ1 ← ρ1γ1 + (1− ρ1)g
Square the gradient entrywise: g2 = g � g
Update 2nd Moment: γ2 ← ρ2γ2 + (1− ρ2)g2
Update number of iterations: t← t+ 1
Correct 1st Moment: γ̂1 ← γ1

1−ρt1
Correct 2nd Moment: γ̂2 ← γ2

1−ρt2
Compute update entrywise: u← 1

ε+
√
γ2
� γ1

Update parameters: θ ← θ − λu

Copyright c© Kyle E. Helfrich, 2020.
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Chapter 2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of FFN that are designed to
process sequential data. The goal of such networks is to capture temporal dependen-
cies between inputs of the sequence. They are most commonly used in tasks such
as speech recognition and text prediction. For example, given a sequence of words:
“The color of the sun is”, the task of the RNN is to predict the next word in
the sequence which in this example would be “yellow”. Standard FFNs are ill-suited
for such tasks as they lack any memory mechanism to capture the information con-
tained in the previous five words before the marker word “is”. On the other hand,
an RNN is equipped with a hidden state that is designed to act like memory in order
to capture information from the previous inputs. In our example, key phrases would
be “color”, “sun”, and “is” which hopefully would be encoded in the hidden state
of the RNN in order for it to predict the next word being “yellow”.

Unlike an FFN, RNNs are a dynamical system. In particular, given an input
sequence of variable length τ , denoted Xτ = {x1, x2, ..., xτ}, each xi ∈ Rn is fed
into the RNN sequentially. The goal of the RNN is to output a desired sequence
Yτ = {y1, y2, ..., yτ} where each yi ∈ Rp. The network predicts corresponding outputs
oi ∈ Rp that are computed as follows:

ai = Uxi +Whi−1 + b (2.1)

hi = σ (ai) (2.2)

oi = V hi + c (2.3)

where U ∈ Rm×n is the input weight matrix, W ∈ Rm×m the recurrent weight ma-
trix, b ∈ Rm the input bias, V ∈ Rp×m the output weight matrix, and c ∈ Rp

the output bias. Here σ (·) is a nonlinearity function that is applied pointwise and
Hτ = {h0, h1, ..., hτ−1}, hi ∈ Rm is the hidden state that is passed recurrently into
the model at each time step. It should be noted that for implemenation purposes,
the initial hidden state is initialized as zero, h0 = 0, or is considered trainable. See
Figure 2.1 for a graphical representation of how a standard RNN processes sequential
data.

RNNs are not just limited to tasks that require producing a desired sequence at
each time step, but they can also be used in classification tasks. This is done by
restricting the network to a single output at the end of the entire sequence. This
final output is used to determine which class the input sequence belongs to. In such
a system, (2.3) is replaced by:

oτ = V hτ + c (2.4)

Note in this case that there is only one output at time step τ . A graphical represen-
tation of such a network is shown in Figure 2.2.
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Figure 2.1: Diagram of a standard RNN. Here y(t) is the actual label and o(t) is the
predicted output by the RNN and L is some loss function. Superscript indicates the
time step. Image is from [12].

Figure 2.2: Diagram of an RNN structure used for classification. Note only one final
output o(τ) at the end of the sequence. Superscript indicates the time step. Image is
courtesy of [12].

2.1 Back-Propagation Through Time

Similar to a FFN, the trainable parameters of an RNN are updated by minimizing
some appropriate loss function through gradient descent. Since each sequential output
of an RNN is dependent on the previous outputs and parameters are shared across
each time step through hi, the computed gradients used in gradient descent must be
computed using back-propagation through time (BPTT). Using the previous
notation in (2.1) through (2.3) with L : Rp → R a given loss function, the gradients
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of the trainable parameters using BPTT are given below:

∂L
∂c

=
τ∑
t=1

∂L
∂ot

(2.5)

∂L
∂V

=
τ∑
t=1

∂L
∂ot

hTt (2.6)

∂L
∂b

=
τ∑
t=1

Dt
∂L
∂ht

(2.7)

∂L
∂W

=
τ∑
t=1

Dt
∂L
∂ht

hTt−1 (2.8)

∂L
∂U

=
τ∑
t=1

Dt
∂L
∂ht

xTt (2.9)

where T represents the transpose operator and Dt ∈ Rm×m is a diagonal matrix with
entries consisting of the derivative of the activation values as follows:

Dt =


σ′ (at)1

σ′ (at)2
. . .

σ′ (at)m


2.2 Vanishing/Exploding Gradients

A major obstacle for training RNNs is the vanishing/exploding gradient problem
as discussed in [1], [40], and [2]. The vanishing gradient problem occurs when the
gradients tend towards zero. When this occurs, the gradients become negligible in
size and so the resulting gradient descent step will result in little to no update in
the network parameters. In this case, no training occurs. On the other hand, the
exploding gradient problem occurs when the size of the gradients become unbounded.
This can result in the values of the parameters changing drastically, causing the
network to overstep local minimums. In some cases, overflow issues can occur.

To see how vanishing/exploding gradients are a problem for RNNs, we examine
(2.5) through (2.9). The gradients for each recurrent parameter W , U , and b, contain
the term ∂L

∂ht
. Expanding on this term, we have

∂L
∂ht

=

[
∂L
∂hτ

T ∂hτ
∂hτ−1

. . .
∂ht+2

∂ht+1

∂ht+1

∂ht

]T
(2.10)

=

[
∂L
∂hτ

T
(
t+1∏
k=τ

∂hk
∂hk−1

)]T
(2.11)

=

[
∂L
∂hτ

T
(
t+1∏
k=τ

DkW

)]T
(2.12)
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Taking the Euclidean `2-norm to both sides of (2.12) and using the fact that W
is a square matrix, we have:∥∥∥∥ ∂L∂ht

∥∥∥∥
2

≤

(
τ∏

k=t+1

‖DkW‖2

)∥∥∥∥ ∂L∂hτ
∥∥∥∥
2

(2.13)

≤

(
τ∏

k=t+1

‖W‖2 ‖Dk‖2

)∥∥∥∥ ∂L∂hτ
∥∥∥∥
2

(2.14)

Now if we assume that the pointwise nonlinearity σ is a ReLU function [37] that has
a derivative of either zero or one and at least one entry of ak > 0 for all k we have
‖Dk‖ = 1 and ∥∥∥∥ ∂L∂ht

∥∥∥∥
2

≤

(
τ∏

k=t+1

‖W‖2

)∥∥∥∥ ∂L∂hτ
∥∥∥∥
2

(2.15)

= ‖W‖τ−t2

∥∥∥∥ ∂L∂hτ
∥∥∥∥ (2.16)

If the largest singular value of W is greater than 1, i.e. ‖W‖2 > 1, then

‖W‖τ−t+1
2 →∞ as τ →∞ (2.17)

and the upper bound in (2.16) goes to infinity. Although this doesn’t necessarily

imply that
∥∥∥ ∂L∂ht∥∥∥ is unbounded, it has the potential to become unbounded. This is

what is known as the exploding gradient problem. On the other hand, if the largest
singular value of W is less than 1, i.e. ‖W‖2 < 1, then

‖W‖τ−t+1
2 → 0 as τ →∞ (2.18)

and the upper bound in (2.16) becomes zero and so
∥∥∥ ∂L∂ht∥∥∥ goes to zero as well. This

is known as the vanishing gradient problem.

2.3 Gated Recurrent Neural Networks

As discussed in Section 2.2, a major obstacle for RNNs to overcome is the vanish-
ing/exploding gradient problem. Several different architectures have been proposed
to help mitigate these effects with the most common type being gated RNNs. This
class of RNNs use gating mechanisms to control when information is passed or dis-
carded from one time step to another and provide a different path for gradients to pass
through when performing BPTT. The two most common types are the Long Short-
Term Memory RNN (LSTM) [18] and the Gated Recurrent Unit (GRU)
[8].
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LSTM

By far the most popular RNN is the LSTM. The LSTM is designed with three gating
mechanisms: the input gate; forget gate; and output gate. The input gate, it, is de-
signed to extract only relevant data from the input sequence to pass into the network.
The forget gate, ft, is designed to control what information from the previous LSTM
cell state is passed onto the current LSTM cell state. Finally, the output gate, ot,
controls what information is output from the network. In order to determine what
information should be discarded or kept, each gate performs an affine transforma-
tion on the input, xt, and output, ht, of the network with a elementwise sigmoid
nonlinearity, σ (·). The equations for a basic architecture are below:

it = σ
(
U ixt +W iht−1 + bi

)
(2.19)

ft = σ
(
U fxt +W fht−1 + bf

)
(2.20)

ot = σ (U oxt +W oht−1 + bo) (2.21)

st = ft � st−1 + it � σ (U sxt +W sht−1 + bs) (2.22)

ht = ot � tanh (st) (2.23)

Although quite successful in practice, the LSTM requires roughly four times as many
trainable weights per hidden size as a standard RNN and is still prone to exploding
gradients. In many cases, gradient clipping is still required.

GRU

The GRU is similar to an LSTM, but is designed to have fewer trainable variables per
hidden unit. This is done by incorporating the input gate and forget gate into a single
gate, called the update gate, zt. Instead of an output gate, the network incorporates
a reset gate, rt. Similar to an LSTM, each gate uses a sigmoid nonlinearity, σ (·).
The equations for the basic architecture are given below.

zt = σ (U zxt +W zht−1 + bz) (2.24)

rt = σ (U rxt +W rht−1 + br) (2.25)

ht = zt � ht−1 + (1− zt)� tanh (Uxt +W (rt � ht−1)) (2.26)

where 1 is a vector consisting of all ones. In practice, the LSTM is more common
than the GRU.

2.4 Orthogonal/Unitary Recurrent Neural Networks

Recently there has been a surge in RNNs that maintain a strict orthogonal or unitary
recurrent weight matrix. An orthogonal matrix is a matrix W ∈ Rm×m such that
W TW = WW T = I and a unitary matrix is a matrix W ∈ Cm×m such that W ∗W =
WW ∗ = I where ∗ is the conjugate transpose. A desirable property for these matrices
is that

‖W‖2 = 1 (2.27)
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Thus we can rewrite (2.14) as∥∥∥∥ ∂L∂ht
∥∥∥∥
2

≤

(
τ∏

k=t+1

‖Dk‖2

)∥∥∥∥ ∂L∂hτ
∥∥∥∥
2

(2.28)

Using the same assumption on Dk that there is at least one nonzero activation value
and the nonlinearity is ReLU, (2.28) becomes∥∥∥∥ ∂L∂ht

∥∥∥∥
2

≤
∥∥∥∥ ∂L∂hτ

∥∥∥∥
2

(2.29)

Although this doesn’t necessarily guarantee the avoidance of vanishing/exploding
gradients, it can help mitigate the possibility of such occurrences by eliminating the
negative effects of the repeated multiplication of the recurrent weight matrix shown in
(2.12). In this section, we explore several different architectures that either maintain
an orthogonal or unitary recurrent weight matrix.

Unitary Recurrent Neural Networks

For networks that maintain a unitary recurrent weight matrix, W ∈ Cm×m, additional
architecture complexity is required due to implementation issues. The first issue is
the need to multiply a complex valued matrix and a complex valued vector together
since most machine learning programs are currently not designed to handle complex
valued entries. As shown in [48], many unitary RNNs overcome this issue by splitting
complex matrices and vectors into the real and imaginary components. For instance,
given W = R + iC where R,C ∈ Rm×m and ht = at + ibt where at, bt ∈ Rm we have
Wht = (Rat − Cbt) + i (Rbt + Cat). This operation can be rewritten as:

Wht =

[
Re (Wht)
Im (Wht)

]
=

[
R −C
C R

] [
Re (ht)
Im (ht)

]
(2.30)

A second issue is the selection of a nonlinear activation function. Since activation
functions are generally real-valued functions, it is not clear how they should be applied
to complex entries that are split into real and complex components. One approach is
to apply the function to the real and complex components separately, but as discussed
in [48], this breaks the relationship between each component and negatively affects
training of the network. In many unitary RNNs, the preferred nonlinearity is the
modReLU [48].

modReLU

The right selection of a nonlinear activation function plays a major role in avoiding
the vanishing and exploding gradient problem. Inspired by the ReLU function, see
Section 1.4, the modReLU was developed by [1] to handle complex-valued entries.
The modReLU is quite popular in unitary RNNs and is used in architectures by

24



[21, 23, 48, 49] and has been analyzed in [45]. The modReLU is defined below:

σmodReLU(z) =

{
(|z|+ b) z

|z| if |z|+ b ≥ 0

0 if |z|+ b < 0
(2.31)

=
z

|z|
σReLU(|z|+ b), (2.32)

Here b denotes a trainable bias and z ∈ C. It should be noted that the modReLU
can also be extended for use in the real case with (2.32) becoming

σmodReLU(x) = sgn(x)σReLU(|x|+ b) (2.33)

where sgn(·) is the sign operator and x ∈ R. In this case, the modReLU behaves sim-
ilar to the ReLU function with the desirable property that the norm of the Jacobian
matrix will typically be one. Exceptions to this can occur in the case when |x| < |b|
for b < 0 and x = 0 for b > 0, see Figure 2.3 for details. It is also not differentiable
at the points where |x| = |b| for b < 0 and x = 0 for b > 0. In practice, these
corner cases are rare and experimentally do not occur. They can also be avoided by
numerically setting the derivative equal to one or zero at these points. Finally, the
modReLU has the advantage over the ReLU function in that it can be nonzero for
both positive and negative activation values.

Figure 2.3: Plots of the modReLU activation function using real input, x, and b=-0.5
(left), b= 0 (center), and b=0.5 (right).

In the complex case, the modReLU activation function in (2.32) does exhibit
numerical instability. As noted in [33], the modReLU activation function has a dis-
continuity at z = 0 whenever b > 0 which results in the derivative having a singularity
at this point. Using Wirtinger derivatives as defined in Section 1.6, the derivative of
the modReLU is given in Theorem 2.4.1.

Theorem 2.4.1. The Wirtinger derivatives of the σmodReLU(z) are given by

∂σmodReLU(z)

∂z
=

{
1 + b

2|z| if |z|+ b ≥ 0

0 if |z|+ b < 0,

∂σmodReLU(z)

∂z
=

{
1
2

[
−bz2
|z|3

]
if |z|+ b ≥ 0

0 if |z|+ b < 0.
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In particular, if b > 0, then ∂σmodReLU(z)
∂z

and ∂σmodReLU(z)
∂z

tend to infinity as z 7→ 0.

In numerial simulations, if |z| � b, then |∂σmodReLU(z)
∂z

| is extremely large and will
cause floating point exceptions such as NaN during training. If b ≤ 0, then the
derivatives are well defined and bounded for all z and floating point exceptions do
not occur.

In order to avoid division by zero during the forward and backward pass of the
network, [1] and [48] implement an approximate modReLU of the form:

σε(z) =
z

ẑ + ε
σReLU(ẑ + b) (2.34)

where ε = 10−5 and ẑ =
√
x2 + y2 + ε with z = x + iy. Unfortunately, the approxi-

mate modReLU still can have unbounded derivates when ẑ + ε � b as indicated in
Theorem 2.4.2 and Figure 2.4.

Theorem 2.4.2. The Wirtinger derivatives of the approximate modReLU activation
function are:

∂σε(z)

∂z
=

{
ẑ+b
ẑ+ε

+ |z|2(ε−b)
2ẑ(ẑ+ε)2

if ẑ + b ≥ 0

0 if ẑ + b < 0,

∂σε(z)

∂z
=

{
z2(ε−b)
2ẑ(ẑ+ε)2

if ẑ + b ≥ 0

0 if ẑ + b < 0.

Proof. First we note the following:

• ∂ẑ
∂x

= x
ẑ

• ∂ẑ
∂y

= y
ẑ

• ∂σε(z)
∂x

=
(ẑ+ε)(ẑ+b)−xz(ẑ+b)

ẑ

(ẑ+ε)2
+ xz

ẑ(ẑ+ε)
if ẑ + b ≥ 0

• i(ẑ+ε)(ẑ+b)− yz(ẑ+b)
ẑ

(ẑ+ε)2
+ yz

ẑ(ẑ+ε)
if ẑ + b ≥ 0

Thus we have

∂σε(z)

∂z
=

1

2

[
∂σε(z)

∂x
− i∂σε(z)

∂y

]
=

1

2

[
2 (ẑ + ε) (ẑ + b)− z(ẑ+b)

ẑ
(x− iy)

(ẑ + ε)2
+

z

ẑ (ẑ + ε)
(x− iy)

]

=
ẑ + b

ẑ + ε
− |z|

2 (ẑ + b)

2ẑ (ẑ + ε)2
+

|z|2

2ẑ (ẑ + ε)2

=
ẑ + b

ẑ + ε
+
|z|2 (ε− b)
2ẑ (ẑ + ε)2
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and

∂σε(z)

∂z
=

1

2

[
∂σε(z)

∂x
+ i

∂σε(z)

∂y

]
=

1

2

[
z (ẑ + b) (−x− iy)

ẑ (ẑ + ε)2
+
z (x+ iy)

ẑ (ẑ + ε)

]
=

1

2

[
−z2 (ẑ + b)

ẑ (ẑ + ε)2
+

z2

ẑ (ẑ + ε)

]
=
z2 (ε− b)

2ẑ (ẑ + ε)2

Figure 2.4: Surface plots of the modulus of the approximate modReLU activation
function σε (Left) and the modulus of the gradient of σε with respect to z̄ (Right).
Both plots use a bias of b=0.5.

To mitigate the issue of unbounded gradients when using modReLU, the initial-
ization of the vector bias, b, and the hidden state, h0, becomes important. As noted
in [33], for the MNIST experiment, see section 2.5, if the initial state is set to h0 = 0
and non-trainable and b is initialized from U [−0.01, 0.01], gradient values can become
NaN before the end of the first training epoch. These large gradients occur because
some initial entries of b will be positive and can be much larger in magnitude then
the corresponding entries of ẑ. In particular, the first several pixels of a given MNIST
image will typically have zero pixel values which will cause ẑ to be very small. Thus
for some entries, ẑ + ε � b, and large gradients can occur or accumulate over many
time-steps to cause overflow issues.

To avoid unbounded gradients, one can initialize h0 away from zero so that entries
of ẑ are larger with respect to b when the first several zero valued pixels are fed into
the network. Another option is to constrain b < 0. Unfortunately, experimental
results from [33] indicate that this tends to hinder performance. Finally, another
option is to set h0 to be trainable.
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Unitary Evolution Recurrent Neural Network

The unitary evolution recurrent neural network (uRNN) was the first known
RNN to maintain an orthogonal/unitary recurrent weight matrix [1]. To be consistent
with [48], the uRNN will be referred to as the Restricted-Capacity uRNN in this
paper. The Restricted-Capacity uRNN maintains a strict unitary recurrent weight
matrix by parameterizing the matrix by a product of unitary matrices:

W = D3R2F−1D2ΠR1FD1 (2.35)

where each Di ∈ Cm×m is a diagonal matrix with diagonal entries Dj,j = eiwj with
wj ∈ R, each Ri = I− 2 vv∗

‖v‖2 ∈ Cm×m is a Householder reflection matrix with v ∈ Cm,

the Π ∈ Rm×m is a random fixed permutation matrix, and F ,F−1 ∈ Cm×m are
Fourier and inverse Fourier transform matrices. Since the product of unitary matrices
is also unitary, the resulting W in (2.35) is unitary. This parameterization requires
the hidden state of the RNN to be complex valued and the approximate modReLU
function is used, see (2.34).

A major drawback to the parameterization in (2.35) is that it can only be used
to form a subset of unitary matrices in Cm×m and is unable to represent all unitary
matrices when m > 7 as shown in Theorem 2.4.4. To prove Theorem 2.4.4, we follow
[48] and first define the Stiefel Manifold in Definition 2.4.1.

Definition 2.4.1 (Stiefel Manifold). The set of unitary matrices is called the Stiefel
Manifold and is denoted Vp(Cn) = {X ∈ Cn×p|X∗X = I} where ∗ is the conjugate
transpose.

Note that for a single layer RNN, the hidden weight matrix is square, so we will
consider the Stiefel Manifold Vn(Cn) which is a manifold of dimension n2. The proof
of Theorem 2.4.4 uses Sard’s Theorem which is provided below.

Theorem 2.4.3 (Sard’s Theorem). Let f : X → Y be a smooth map of finite dimen-
sional manifolds where dim(X) = q and dim(Y ) = r and C = {x ∈ X : rank(Jf(x)) <
r} denote the set of critical points of f where Jf is the Jacobian of f . Then f(C)
has Lebesgue measure zero in Y .

Theorem 2.4.4 (Wisdom et. al [48]). The set of unitary matrices parameterized by
7n real-valued parameters is a proper subset of Vn (Cn) for 7n < n2.

Proof. Let g be the smooth map g : R7n → Vn (Cn) where g(x) = W and W can
be defined as in (2.35). We have rank(Jg(x)) ≤ 7n < n2. By Sard’s Theorem, the
set of unitary matrices formed by the Restricted-Capacity uRNN transformation has
measure zero in Vn (Cn) and so is a proper subset.

Now the parameterization in (2.35) requires 4m trainable parameters for the re-
flection matrices, since the vectors v are complex valued, and 3m trainable parameters
for the diagonal matrices for a total of 7m trainable parameters. Thus when 7m < m2

or m > 7, the map from this parameterization to the manifold of unitary matrices
will not be onto by Theorem 2.4.4 and so will only be able to parameterize a subset
of unitary matrices.
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Full-Capacity Unitary Recurrent Neural Network

The Full-Capacity Unitary Recurrent Neural Network (Full-Capacity uRNN)
by [48] takes a slightly different approach than the Restricted-Capacity uRNN to
maintain a unitary recurrent weight matrix. Instead of using a fixed parameteriza-
tion, the Full-Capacity uRNN performs gradient descent along the manifold of unitary
matrices or Stiefel manifold. The initial unitary recurrent weight matrix is initialized
using (2.35). Since there is no restriction on what direction gradient descent will take
along the manifold, the network is not constrained to a subset of unitary matrices
but can optimize in any direction that minimizes the given loss function, L := L(W ).
Note that we consider the loss function as a function of the recurrent weight W for
the purpose of computing derivatives.

Using results from [44] and [46], the Full-Capacity uRNN follows the descent
direction BW where

B =
∂L

∂W
W ∗ −W

(
∂L

∂W

)∗
.

Here BW is a representation of the derivative operator DL(W ) in the tangent space
of the Stiefel manifold at W . The gradient direction given by BW is then reflected
back down to the Stiefel manifold using a Caley Transform, see Definition 2.4.2.

Definition 2.4.2 (Cayley Transform). Given a square matrix A ∈ Cn×n that does
not have any -1 eigenvalues and I ∈ Rn×n the identity matrix, the Cayley transform
is given by:

W = (I + A)−1 (I − A) (2.36)

The update of the recurrent matrix is thus given by:

W (k+1) =

(
I +

λ

2
B(k)

)−1(
I − λ

2
B(k)

)
W (k) (2.37)

where λ is the learning rate and k is the current update step.
Unfortunately, the given update step in (2.37) is based on [44] and [46] which only

pertains to the orthogonal case and not the unitary case. Since no proof is given that
the proposed update step in (2.37) is indeed along the unitary Stiefel Manifold, we
expand upon the results from [44] and [46] to the unitary case by showing that the
update step is indeed along the Stiefel Manifold in Theorem 2.4.5. We also show it
is a gradient descent direction in Theorem 2.4.6.

Theorem 2.4.5. Given any skew-Hermitian matrix A ∈ Cn×n and unitary matrix

W ∈ Cn×n, the curve Y (λ) =
(
I + λ

2
A
)−1 (

I − λ
2
A
)
W lies in the Stiefel manifold for

all λ ∈ R.

Proof. Since A is skew-Hermitian, the eigenvalues of A are either purely imaginary or
zero so the eigenvalues of I ± λ

2
A are non-zero and I ± λ

2
A is invertible. Calculating,
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we have

Y (λ)∗Y (λ) = W ∗ (I − λ
2
A
)∗ (

I + λ
2
A
)−1∗ (

I + λ
2
A
)−1 (

I − λ
2
A
)
W

= W ∗ (I − λ
2
A
)∗ [(

I + λ
2
A
) (
I + λ

2
A
)∗]−1 (

I − λ
2
A
)
W

= W ∗ (I + λ
2
A
) [(

I + λ
2
A
) (
I − λ

2
A
)]−1 (

I − λ
2
A
)
W

= W ∗ (I + λ
2
A
) [(

I − λ
2
A
) (
I + λ

2
A
)]−1 (

I − λ
2
A
)
W

= W ∗ (I + λ
2
A
) (
I + λ

2
A
)−1 (

I − λ
2
A
)−1 (

I − λ
2
A
)
W

= I

Similarly,

Y (λ)Y (λ)∗ =
(
I + λ

2
A
)−1 (

I − λ
2
A
)
WW ∗ (I − λ

2
A
)∗ [(

I + λ
2
A
)−1]∗

=
(
I + λ

2
A
)−1 (

I − λ
2
A
) (
I + λ

2
A
) [(

I + λ
2
A
)∗]−1

=
(
I + λ

2
A
)−1 (

I + λ
2
A
) (
I − λ

2
A
) (
I − λ

2
A
)−1

= I

Theorem 2.4.6. If A = GW ∗ − WG∗, where G =
[

∂L
∂Wi,j

]n
i,j=1

and W ∈ Cn×n is

unitary, then Y (λ) =
(
I + λ

2
A
)−1 (

I − λ
2
A
)
W with λ ∈ R is a descent curve where

the derivative of L(Y (λ)) with respect to λ for some loss function L satisfies:

L′(Y (0)) = −‖A‖2F
Proof. By the chain rule,

L′(Y (λ)) = tr
(
G∗Y ′(λ) +GTY ′(λ)

)
(2.38)

Note: Since L is not holomorphic, Writinger Calculus is needed to compute (2.38),
see Section 1.6. We can rewrite Y (λ) = W − λ

2
A (W + Y (λ)), and take the derivative

with respect to λ and rearrange to get:

Y ′(λ) = −1

2

(
I +

λ

2
A

)−1
A (W + Y (λ)) (2.39)

Now plugging (2.39) into (2.38) for λ = 0 we get:

L′(Y (0)) = −tr
(
G∗AW +GTAW

)
(2.40)

By the invariance of the trace with respect to the transpose, we take the transpose
of the second term to obtain:

L′(Y (0)) = −tr (G∗AW +W ∗A∗G) (2.41)
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Substituting the definition of A and multiplying out:

L′(Y (0)) = −tr (G∗GW ∗W −G∗WG∗W +W ∗WG∗G−W ∗GW ∗G) (2.42)

Using the cyclic property of traces:

L′(Y (0)) = −tr (GW ∗WG∗ −WG∗WG∗ +WG∗GW ∗ −GW ∗GW ∗) (2.43)

= −tr [(GW ∗ −WG∗) (WG∗ −GW ∗)] (2.44)

= −tr (AA∗) (2.45)

= −‖A‖2F (2.46)

We should note that the Full-Capacity uRNN has two potential limitations that
may negatively affect performance. The first is that the descent curve in (2.37) has
been shown to guarantee a descent direction, but not necessarily the steepest descent
direction. The second limitation is due to the repeat matrix multiplication required
when implementing (2.37) iteratively. Due to the accumulation of rounding errors
over a large number of multiplications, the recurrent weight matrix may not remain
unitary throughout training.

Tunable Efficient Unitary Recurrent Neural Network

The Tunable Efficient Unitary Recurrent Neural Network (EURNN) [23] is
designed to maintain a unitary recurrent weight matrix by using a long product of
Givens rotation matrices and a diagonal matrix. In particular, any unitary matrix
W ∈ Cm×m can be parameterized as follows:

W =D
m∏
i=2

i−1∏
j=1

Ri,j (2.47)

where eachRi,j is the identity matrix with the entriesRi,i, Ri,j, Rj,i, andRj,j consisting
of: [

Ri,i Ri,j

Rj,i Rj,j

]
=

[
eiφi,j cos θi,j −eiφi,j sin θi,j

sin θi,j cos θi,j

]
(2.48)

and D is a diagonal matrix of entries of the form eiwi,j . This parameterization requires
m(m−1)

2
− 1 matrix multiplications and a total of m2 parameters. In order to reduce

the large number of required matrix multiplications, the unitary recurrent weight
matrix is represented by grouping various rotation matrices together as follows:

W = D
(
R

(1)
1,2R

(1)
3,4...R

(1)
m/2−1,m/2

)(
R

(2)
2,3R

(2)
4,5...R

(2)
m/2−2,m/2−1

)
...

:= DF (1)
a F

(2)
b ...F

(L)
b (2.49)
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When L = m, this parameterization is able to represent any unitary matrix. In
practice, L < m which reduces the number of matrix multiplications but restricts the
unitary matrix to a subset of unitary matrices. This version of implementation of the
EURNN is called the tunable space implementation.

To further reduce computational costs, the EURNN can be implemented using a
FFT-style implementation using the following parameterization:

W = DF1F2...Flog(m) (2.50)

Here each Fi consists of a subset of rotation matrices. In particular, rotation ma-
trices with coordinate indices in the interval (2pk + j, p(2k + 1) + j) where p = m

2i
,

k ∈ {0, 1, ..., 2i−1}, and j ∈ {1, 2, ..., p}. This parameterization requires a total of
m log(m)/2 rotation matrices and provides an approximation of any unitary matrix.

Finally, to reduce the computational overhead even further, the EURNN does
not explicitly form the matrices used in (2.49) and (2.50). Instead the EURNN
replaces required matrix multiplications with vector element-wise multiplications and
rotations. The EURNN also uses the modReLU nonlinearity.

Efficient Orthogonal Parameterization Recurrent Neural Network

Unlike the Restricted-Capacity uRNN, Full-Capacity uRNN, and EURNN, the Ef-
ficient Orthogonal Parameterization Recurrent Neural Network (oRNN)
[35] does not maintain a unitary recurrent weight matrix but an orthogonal recur-
rent weight matrix by using a long product of Householder reflection matrices. Let
W ∈ Rm×m be the orthogonal recurrent weight matrix and Hk ∈ Rm×m a Householder
reflection matrix of the form:

Hk =

[
Im−k 0

0 Ik − 2
uku

T
k

‖uk‖2

]
(2.51)

where uk ∈ Rk, Ij ∈ Rj×j is the identity matrix, and 1 < k ≤ m. For k = 1, we define

H1 =

[
Im−1

u1

]
(2.52)

with u1 ∈ R. Using these matrices, the orthogonal matrix is parameterized by

W = HmHm−1...Hm−l+1 (2.53)

In the case of l = m, this parameterization can represent any orthogonal matrix as
long as u1 ∈ {−1, 1}. When l < m, the recurrent weight matrix is restricted to a
subset of possible orthogonal matrices.

For implementation purposes, the oRNN is typically restricted to the case of
l < m. The nonlinearity activation used is the Leaky-ReLU.
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2.5 Scaled Cayley Orthogonal Recurrent Neural Network

In the previous sections, several models were presented that maintain either an or-
thogonal or unitary recurrent weight matrix to address the vanishing/exploding gra-
dient issue. It was shown that the parameterization used in the Restricted-Capacity
uRNN is unable to represent all unitary matrices. The EURNN and oRNN are able
to parameterize any unitary/orthogonal matrix but require a long product of matrix
multiplications. To reduce the number of matrix multiplications, the EURNN and
oRNN are implemented by restricting the number of matrix multiplications which
prevents these models from parameterizing any arbitrary unitary/orthogonal weight
matrix. To further increase efficiency, the EURNN uses many complicated simplifica-
tions that pose some difficulty in implementation. Finally, the Full-Capacity uRNN
does not require a long product of matrices but updates the unitary recurrent weight
matrix along the Stieffel manifold using a direction that may not necessarly be the
steepest descent direction. The update step also involves a multiplicative update that
can result in a recurrent matrix that is no longer unitary.

To eliminate the need of a long product of matrices, complicated implementa-
tion schemes, and a potential loss of orthogonality, the scaled Cayley orthogonal
Recurrent Neural Network (scoRNN) was developed by [14]. The scoRNN
parameterizes an orthogonal recurrent weight matrix by a skew-symmetric matrix
through a scaled Cayley transform.

W = (I + A)−1 (I − A)D (2.54)

where W ∈ Rn×n is orthogonal, A ∈ Rn×n is skew-symmetric, and D ∈ Rn×n is a
diagonal matrix with entries consisting of ±1.

The idea behind (2.54) is motivated by the well known observation that the Cayley
transform forms a bijection between the set of all orthogonal matrices without −1
eigenvalues and the set of all skew-symmetric matrices as formalized in Theorem
2.5.1.

Theorem 2.5.1. Let W be the set of all orthogonal matrices without -1 eigenvalues
and A the set of all skew-symmetric matrices. Then the mapping K : A →W defined
by: K (A) = (I + A)−1 (I − A) forms a bijection.

Proof. From the proof of Theorem 2.4.5, it follows that K (A) is indeed orthogonal.
To show that the mapping is injective, assume A,B ∈ A such that K(A) = K(B). It
follows that:

(I + A)−1 (I − A) = (I +B)−1 (I −B)

= (I +B)−1 (I −B) (I +B) (I +B)−1

= (I +B)−1 (I +B) (I −B) (I +B)−1

= (I −B) (I +B)−1 (2.55)

Now rearranging (2.55),
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(I − A) (I +B) = (I + A) (I −B)

I +B − A− AB =I + A−B − AB
B =A

as desired. To show surjectivity, let W ∈ W and define A := (I +W )−1 (I −W ). We
note that A ∈ A as shown:

AT = (I −W )T
[
(I +W )−1

]T
=

(
I −W T

) (
I +W T

)−1
=

(
WW T −W T

) (
WW T +W T

)−1
= (W − I)W TW (W + I)−1

= − (I −W ) (I +W )−1

= − (I +W )−1 (I −W )

= −A

Using the definition of A and multiplying both sides by (I +W ), it directly follows

A (I +W ) =I −W
A+ AW =I −W
AW +W =I − A

(I + A)W =I − A
W = (I + A)−1 (I − A)

Here it should be noted that I+A is invertible since A is skew-symmetric and so only
has zero or purely complex eigenvalues. To see this, suppose λ ∈ C is an eigenvalue
of A with associated eigenvector v ∈ Cn that is normalized so that v∗v = 1. Thus

Av =λv

v∗Av =λ (2.56)

Similarly, taking the complex conjugate of (2.56),

v∗AT =λv∗

−v∗A =λv∗

v∗Av =− λ (2.57)

Combining (2.56) and (2.57) we have λ = −λ which holds if λ is either zero or purely
imaginary.
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Parameterizing an orthogonal recurrent weight matrix by a skew-symmetric ma-
trix through the Cayley transform is attractive because it requires only n(n−1)

2
train-

able parameters to represent the skew-symmetric matrix as opposed to n2 for a com-
plete orthogonal matrix and because skew-symmetric matrices are closed under addi-
tion or subtraction. Thus gradient descent algorithms like RMSProp and Adam, see
Section 1.7, will maintain a skew-symmetric matrix after taking an update step.

Unfortunately, a major drawback to this parameterization is that it cannot repre-
sent orthogonal matrices with −1 eigenvalues because the resulting I +W term will
not be invertible. Although these matrices can be theoretically approximated by a
matrix with eigenvalues arbitrarily close to−1, in practice it can be a problem. In par-
ticular, consider a 2x2 orthogonal matrix W with eigenvalues ≈ −0.99999±0.00447i.
Such a matrix and the associated skew-symmetric matrix are given below:

W =

[
−0.99999 −

√
1− 0.999992

√
1− 0.999992 −0.99999

]
A ≈

[
0 447.212

−447.212 0

]
With A having such large entries, it will take a long time for gradient descent algo-
rithms to reach such a matrix, if at all. Fortunately, work by [39] and [24] show that
scaling the Cayley transform by a diagonal matrix with appropriate entries, orthog-
onal matrices with −1 eigenvalues can be parameterized. See Theorem 2.5.2 for the
formal results.

Theorem 2.5.2. Every orthogonal matrix W can be expressed as

W = (I + A)−1(I − A)D

where A = [aij] is real-valued, skew-symmetric with |aij| ≤ 1, and D is diagonal with
all nonzero entries equal to ±1. Similarly, every unitary matrix U can be expressed
as

U = (I + S)−1(I − S)Φ

where S = [sij] is skew-Hermitian with |si,j| ≤ 1 and Φ is a unitary diagonal matrix.

Proof. See [39] for the orthogonal case, and [24] for the unitary case.

The transform in Theorem 2.5.2 will be referred to as the scaled Cayley trans-
form. It should be noted that these results also indicate that a skew-symmetric
matrix with bounded entries can be used in the scaled Cayley transform.

Architecture Details

The scoRNN model operates similarly to a standard RNN, see (2.1), (2.2), and (2.3),
except the modReLU activation function is used, see (2.33), and the recurrent weight
matrix W is parameterized through the scaled Cayley Transform. In particular, (2.1)
and (2.2) become

zi = Uxi +Whi−1 (2.58)

hi = sgn(zi)σReLU(|zi|+ b) (2.59)
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respectively where W = (I + A)−1 (I − A)D.
During training, D is kept fixed with the number of −1s considered a hyperpa-

rameter which we denote as ρ. In order to update A, the gradients must pass through
the scaled Cayley transform which are given in Theorem 2.5.3. All other trainable
parameters are updated using gradient descent or a related algorithm. In particular,
the standard backpropagation algorithm is first used to compute ∂L

∂W
and to update

all other trainable weights. The skew-symmetric matrix A is then updated using the
gradients computed in Theorem 2.5.3 with a gradient descent optimization method,
and W is reconstructed as follows:

A(k+1) = A(k) − λ∂L(W (A(k)))

∂A(k)

W (k+1) =
(
I + A(k+1)

)−1 (
I − A(k+1)

)
D

It should be noted that the skew-symmetry of ∂L
∂A

ensures that A(k+1) will be skew-
symmetric and, in turn, W (k+1) will be orthogonal to the order of machine precision.
The scoRNN model also maintains stable hidden state gradients in the sense that the
gradient norm does not change significantly in time. The scoRNN model also has
small overhead computational costs over the standard RNN.

Similar to the EURNN and oRNN, scoRNN can be implemented by restricting the
A matrix to a banded skew-symmetric matrix with bandwidth ` to reduce the number
of trainable parameters. Although this may work well for particular tasks, such a
modification introduces an additional hyperparameter and reduces representational
capacity for the recurrent weight matrix without any reduction in the dimension of
the hidden state.

Theorem 2.5.3. Let L = L(W ) : Rn×n → R be some differentiable loss function for
an RNN with the recurrent weight matrix W . Let W = W (A) := (I + A)−1 (I − A)D
where A ∈ Rn×n is skew-symmetric and D ∈ Rn×n is a fixed diagonal matrix con-
sisting of -1 and 1 entries. Then the gradient of L = L(W (A)) with respect to A is

∂L

∂A
= V T − V (2.60)

where V := (I + A)−T ∂L
∂W

(
D +W T

)
, ∂L
∂A

=
[

∂L
∂Ai,j

]
∈ Rn×n, and ∂L

∂W
=
[

∂L
∂Wi,j

]
∈

Rn×n.

Proof. Let Z := (I + A)−1(I − A). We consider the (i, j) entry of ∂L
∂A

. Taking the
derivative with respect to Ai,j where i 6= j we obtain:

∂L

∂Ai,j
=

n∑
k,l=1

∂L

∂Wk,l

∂Wk,l

∂Ai,j
=

n∑
k,l=1

∂L

∂Wk,l

Dl,l
∂Zk,l
∂Ai,j

= tr

[(
∂L

∂W
D

)T
∂Z

∂Ai,j

]
Using the identity (I + A)Z = I − A and taking the derivative with respect to

Ai,j to both sides we obtain:
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∂Z

∂Ai,j
+

∂A

∂Ai,j
Z + A

∂Z

∂Ai,j
= − ∂A

∂Ai,j

and rearranging we get:

∂Z

∂Ai,j
= − (I + A)−1

(
∂A

∂Ai,j
+

∂A

∂Ai,j
Z

)
Let Ei,j denote the matrix whose (i, j) entry is 1 with all others being 0. Since A

is skew-symmetric, we have ∂A
∂Ai,j

= Ei,j − Ej,i. Combining everything, we have:

∂L

∂Ai,j
= − tr

[(
∂L

∂W
D

)T
(I + A)−1 (Ei,j − Ej,i + Ei,jZ − Ej,iZ)

]
(2.61)

= − tr

[(
∂L

∂W
D

)T
(I + A)−1Ei,j

]
+ tr

[(
∂L

∂W
D

)T
(I + A)−1Ej,i

]
(2.62)

− tr

[(
∂L

∂W
D

)T
(I + A)−1Ei,jZ

]
+ tr

[(
∂L

∂W
D

)T
(I + A)−1Ej,iZ

]
(2.63)

= −

(( ∂L

∂W
D

)T
(I + A)−1

)T

i,j

+

[(
∂L

∂W
D

)T
(I + A)−1

]
i,j

(2.64)

−

(( ∂L

∂W
D

)T
(I + A)−1

)T

ZT


i,j

+

[
Z

(
∂L

∂W
D

)T
(I + A)−1

]
i,j

(2.65)

=

[
(I + Z)

(
∂L

∂W
D

)T
(I + A)−1

]
i,j

−

(( ∂L

∂W
D

)T
(I + A)−1

)T (
I + ZT

)
i,j

(2.66)

=

[
(D +W )

(
∂L

∂W

)T
(I + A)−1

]
i,j

−
[
(I + A)−T

∂L

∂W

(
D +W T

)]
i,j

(2.67)

Using the above formulation, ∂L
∂Aj,j

= 0 and ∂L
∂Ai,j

= − ∂L
∂Aj,i

so that ∂L
∂A

is a skew-

symmetric matrix. Finally, by the definition of V we get the desired result.

Initialization

As is common with RNNs, initialization of the trainable parameters affects the per-
formance of scoRNN. Of particular note is the initialization of the skew-symmetric
matrix A. Inspired by [15], A is initialized so that the resulting recurrent matrix W
has eigenvalues distributed on the complex unit circle. This is done by initializing
entries of A to be 0 except for 2x2 blocks along the diagonal.
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A =

B1

. . .

Bbn/2c

 where Bj =

[
0 sj
−sj 0

]

with sj =
√

1−cos (tj)
1+cos (tj)

and tj is sampled uniformly from
[
0, π

2

]
. The Cayley transform

of this matrix A will have eigenvalues of the form ±eitj for each j which will be
distributed uniformly along the right unit half-circle. Multiplication by the scaling
matrix D will reflect ρ of these eigenvalues across the imaginary axis.

Experiments

In this section, we perform experiments on several standard sequential tasks in order
to compare the scoRNN model with a standard LSTM and other recently proposed
orthogonal/unitary RNNs. For comparison purposes, single layer models were used.
Code for these experiments can be found at https://github.com/SpartinStuff/

scoRNN.
For each experiment, we found optimal hyperparameters for scoRNN using a grid

search. For other models, we used the best hyperparameter settings as reported
for the same testing problems, when applicable, or performed a grid search to find
hyperparameters. For the LSTM, the forget gate bias was tuned over the integers −4
to 4 with it set to 1.0 unless otherwise noted.

Adding Problem

We examined a variation of the adding problem as proposed by [1] which is based on
the work of [18]. This variation involves passing two sequences concurrently into the
RNN, each of length T . The first sequence is a sequence of digits sampled uniformly
with values ranging in a half-open interval, U [0, 1). The second sequence is a marker
sequence consisting of all zeros except for two entries that are marked by one. The
first 1 is located uniformly within the interval [1, T

2
) of the sequence and the second

1 is located uniformly within the interval [T
2
, T ) of the sequence. The label for each

pair of sequences is the sum of the two entries that are marked by one, which forces
the machine to identify relevant information in the first sequence among noise, see
Figure 2.5. As the sequence length increases, it becomes more crucial to avoid vanish-
ing/exploding gradients. Naively predicting one regardless of the sequence gives an
expected mean squared error (MSE) of approximately 0.167. This will be considered
as the baseline.

Sequence lengths of T = 200, 400, and 750 were used in this experiment. For each
sequence length, a training set size of 100, 000 and a testing set size of 10, 000 were
used. The number of hidden units for each model were also adjusted so they each
had approximately 15k trainable parameters. This results in hidden sizes of n = 170
for scoRNN, n = 60 for LSTM, n = 120 for the Full-Capacity uRNN and n = 950 for
the Restricted-Capacity uRNN.
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0.58 0.23 0.84 0.06 0.71 0.35 0.22 0.63 0.14 0.97

0 0 1 0 0 0 1 0 0 0

Figure 2.5: An illustration of the Adding Problem. The goal of the machine is to
output the sum of the entries marked by one, in this case 0.84+0.22 = 1.06

Hyperparameters for the scoRNN model were ρ = 85 for sequence length T = 200
and ρ = 119 for sequence lengths T = 400 and T = 750. Optimizer and learning
rates were RMSProp 10−4 to update the skew-symmetric matrix and Adam 10−3 for
all other weights. For the LSTM, the forget bias was initialized to be 2 for T = 200,
4 for T = 400, and 0 for T = 750. All trainable parameters were updated us-
ing an Adam optimizer with learning rate 10−2.The hyperparameters used for the
Restricted-Capacity uRNN were in accordance with [1] and [48] with an RMSProp
optimizer with learning rate 10−4 for all sequences. The hyperparameter settings
for the Full-Capacity uRNN were in accordance with [48] with an RMSProp opti-
mizer and learning rate of 10−5. For the oRNN, the best hyperparameters were in
accordance with [35] which was n = 128 with 16 reflections with an Adam optimizer
and learning rate of 0.01, ≈2.6k parameters. We found that performance decreased
when matching the number of reflections to the hidden size to increase the number
of parameters. For the EURNN, both the tunable-style and FFT-style EURNN with
n = 512 were tested. We found better results from the tunable-style (≈ 3k param-
eters) for sequence lengths T = 200 and T = 400, and from the FFT-style (≈ 7k
parameters) for sequence length T = 750.

The test set MSE results for sequence lengths T = 200, T = 400, and T = 750
can be found in Figure 2.6. For each case, the networks start at or near the baseline
MSE, except for the EURNN for T = 750, and drop towards zero after a few epochs.
As the sequence length increases, the number of epochs before the drop increases.
As can be seen, the LSTM error drops precipitously across the board. Although the
oRNN begins to drop below the baseline before scoRNN, it has a much more irregular
descent curve, and jumps back to the baseline after several epochs.

MNIST

The Mixed National Institute for Standards and Technology (MNIST) [30]
database is a database consisting of gray scale 28 x 28 pixel images of handwritten
integer digits ranging from 0 to 9, see Figure 2.7 for examples. Following the imple-
mentation of [29], each pixel of the image is fed into the RNN sequentially, resulting
in a single pixel sequence length of 784. In the first experiment, which we refer to
as unpermuted MNIST, pixels are arranged in the sequence row-by-row. In the sec-
ond, which we call permuted MNIST, a fixed permutation is applied to training and
testing sequences.

Each experiment used a training set of 55,000 images and a test set of 10,000 im-
ages. The machines were trained for 70 epochs, and test set accuracy, the percentage
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Figure 2.6: Test set MSE for each machine on the adding problem with sequence
lengths of T = 200 (top), T = 400 (middle), and T = 750 (bottom).

of test images classified correctly, were evaluated at the conclusion of each epoch.
Figures 2.8 and 2.9 shows test set accuracy over time, and the best performance over
all epochs by each machine is given in Table 2.1.

All scoRNN machines were trained with the RMSProp optimization algorithm.
Input and output weights used a learning rate of 10−3, while the recurrent parameters
used a learning rate of 10−4 (for n = 170) or 10−5 (for n = 360 and n = 512). For
unpermuted MNIST, we found the number of negative ones used in D to be optimal
at n/10 and for permuted MNIST to be n/2. The difference between these two
values is expected to come from the different types of dependencies in each problem:
unpermuted MNIST has mostly local dependencies, while permuted MNIST requires
learning many long-term dependencies, which appear to be more easily modeled when
the diagonal of D has a higher proportion of −1s.

The LSTM used an RMSProp optimization algorithm with learning rate of 10−3

for hidden sizes n = 128 and n = 256 and learning rate of 10−4 for hidden size
n = 512. The forget gate bias was initalized to be one. The restriced-capacity
uRNN used an RMSProp optimization algorithm with learning rate of 10−4. The
Full-Capacity uRNN also used an RMSProp optimization algorithm with learning
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Figure 2.7: Example images of handwritten digits from the MNIST data set.

Table 2.1: Results for unpermuted and permuted pixel-by-pixel MNIST experiments.
Evaluation accuracies are based on the best test accuracy at the end of every epoch.
Asterisks indicate reported results from [23] and [35].

Permuted
Model n # MNIST MNIST

params Test Acc. Test Acc.

scoRNN 170 ≈ 16k 0.973 0.943
scoRNN 360 ≈ 69k 0.983 0.962
scoRNN 512 ≈ 137k 0.985 0.966
LSTM 128 ≈ 68k 0.987 0.920
LSTM 256 ≈ 270k 0.989 0.929
LSTM 512 ≈ 1, 058k 0.985 0.920
Restricted uRNN 512 ≈ 16k 0.976 0.945
Restricted uRNN 2170 ≈ 69k 0.984 0.953
Full uRNN 116 ≈ 16k 0.947 0.925
Full uRNN 512 ≈ 270k 0.974 0.947
EURNN 512 ≈ 9k - 0.937∗

oRNN 256 ≈ 11k 0.972∗ -

rate of 10−3 for n = 116 and learning rate of 10−4 for n = 512.
In both experiments, the 170 hidden unit scoRNN gives similar performance to

both of the 512 hidden unit uRNNs using a much smaller hidden dimension and,
in the case of the Full-Capacity uRNN, an order of magnitude fewer parameters.
Matching the number of parameters (≈ 69k), the 2170 Restricted-Capacity uRNN
performance was comparable to the 360 hidden unit scoRNN for unpermuted MNIST,
but performed worse for permuted MNIST, and required a much larger hidden size and
a significantly longer run time. As in experiments presented in [1] and [48], orthogonal
and unitary RNNs are unable to outperform the LSTM in the unpermuted case.
However, the 360 and 512 hidden unit scoRNNs outperform all other unitary RNNs.
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On permuted MNIST, the 512 hidden unit scoRNN achieves a test-set accuracy of
96.6%, outperforming all other architectures.

Figure 2.8: Test accuracy for unpermuted MNIST over time. All scoRNN models and
the best performing LSTM, Restricted-Capacity uRNN, and Full-Capacity uRNN are
shown.

TIMIT Speech Dataset

The scoRNN architecture was also tested on audio data using the TIMIT dataset [10].
The TIMIT dataset is a collection of real-world speech recordings of American English
from 8 dialect regions of the United States. Following the experimental settings in
[48], only the core test set was used which excludes the SA dialects. The resulting
dataset consisted of 3,696 training and 192 testing audio files. Each audio file was
downsampled from 16kHz to 8kHz and a short-time Fourier transform (STFT)
was applied with a Hann window of 256 samples and a window hop of 128 samples
(16 milliseconds). The result is a set of frames, each with 129 complex-valued Fourier
amplitudes. The log magnitude of these amplitudes is used as the input data for the
networks with the goal of predicting the next log magnitude in the sequence. Each
sequence is padded with zeros to make uniform lengths. A batch size of 28 was used.

For each model, the hidden layer sizes were adjusted so each had approximately
the same number of trainable parameters. For scoRNN, we used the Adam optimizer
with learning rate 10−3 to train input and output parameters, and RMSProp with a
learning rate of 10−3 (for n = 224) or 10−4 (for n = 322, 425) to train the recurrent
weight matrix. The number of negative eigenvalues used was ρ = n/10. The LSTM
forget gate bias was initialized to -4 and an RMSProp optimizer with learning rate
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Figure 2.9: Test accuracy for permuted MNIST over time. All scoRNN models and
the bets performing LSTM, Restricted-Capacity uRNN, and Full-Capacity uRNN are
shown.

10−3 was used. The Restricted-Capacity and Full-Capacity uRNN were trained with
an RMSProp optimizer with learning rate 10−3.

The loss function was the mean squared error (MSE) between the predicted and
actual log-magnitudes of the next time frame over the entire sequence. Table 2.2
contains the MSE on the validation and testing sets for 200 epochs based on the
lowest obtain validation MSE. We note the MSE is computed slightly different for
the LSTM and scoRNN models from the Restricted and Full-Capacity uRNNs. The
Restricted and Full-Capacity uRNNs compute the MSE by taking the squared dif-
ference between the predicted and actual log magnitudes and applying a mask to
zero out padded entries before computing the batch mean. The LSTM and scoRNN
models compute the MSE by taking the squared difference between the predicted
and actual log magnitudes but do not apply a mask to zero out padded entries before
computing the batch mean. The method used for the LSTM and scoRNN models
to compute the MSE will result in slightly higher MSE scores than the method used
for the Restricted and Full-Capacity uRNNs. Despite this disadvantage, all scoRNN
models achieve a smaller MSE than all LSTM and unitary RNN models. Similar
to [48], we reconstruct the audio files using the predicted log magnitudes from each
machine and evaluated them on several audio metrics. The signal-to-noise ratio met-
ric (SegSNR) [5] is the ratio of the signal to background noise measured in decibels.
A score greater than one indicates more signal than noise with a higher score being
better than a lower score. The Short-Time Objective Intelligibility (STOI) [43] score
ranges from 0 to 1 with a higher score representing a higher speech intelligibility and
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Table 2.2: Results for the TIMIT speech dataset based on the best validation MSE.

Model n # Valid. Test
params MSE MSE

scoRNN 224 ≈ 83k 9.26 8.50
scoRNN 322 ≈ 135k 8.48 7.82
scoRNN 425 ≈ 200k 7.97 7.36

LSTM 84 ≈ 83k 15.42 14.30
LSTM 120 ≈ 135k 13.93 12.95
LSTM 158 ≈ 200k 13.66 12.62

Rest. uRNN 158 ≈ 83k 15.57 18.51
Rest. uRNN 256 ≈ 135k 15.90 15.31
Rest. uRNN 378 ≈ 200k 16.00 15.15

Full uRNN 128 ≈ 83k 15.07 14.58
Full uRNN 192 ≈ 135k 15.10 14.50
Full uRNN 256 ≈ 200k 14.96 14.69

compares the discrete Fourier-transform bins from the original and predicted signal to
measure human intelligibility. The Perceptual Evaluation of Speech Quality (PESQ)
[41] score ranges from 1 to 5 with higher score indicated a higher speech quality. We
found that the scoRNN predictions achieved better scores on SegSNR but performed
slightly worse than the Full-Capacity uRNN predictions on STOI and PESQ.

Loss of Unitary

In the scoRNN architecture, the recurrent weight matrix is parameterized by a skew-
symmetric matrix through the Cayley transform. This ensures the recurrent weight
matrix is orthogonal within the order of machine precision. Unlike scoRNN, the Full-
Capacity uRNN maintains a unitary recurrent weight matrix through a multiplicative
update scheme. After many iterations, rounding errors will accumulate because of
the repeated multiplication of matrices. Eventually the rounding errors may result
in a recurrent weight matrix that is no longer unitary. To analyze this, we check
the orthogonality of the recurrent weight matrices in the scoRNN and Full-Capacity
uRNN architectures. This is done at the end of every epoch on the unpermuted
MNIST task. Each model has an equal hidden unit size of n = 512. Results of this
experiment are shown in Figure 2.10. As can be seen, the recurrent weight matrix
for the Full-Capacity uRNN becomes less unitary over time, but the recurrent weight
matrix for scoRNN maintains orthogonality and is not affected by roundoff errors.
This issue is of particular concern when using a graphics processing unit (GPU)
which have a much lower machine precision than a standard computer processing
unit (CPU).
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Figure 2.10: Unitary scores (‖W ∗W − I‖F ) for the Full-Capacity uRNN recurrent
weight matrix and orthogonality scores

(∥∥W TW − I
∥∥
F

)
for the scoRNN recurrent

weight matrix using a GPU on the pixel-by-pixel MNIST experiment.

Gradient Stability

As discussed in Section 2.2, the vanishing/exploding gradient problem occurs when
the gradient of the hidden state ∂L

∂ht
either goes to zero or becomes unbounded as the

gradients propagate back through the sequence. To see if the scoRNN architecture is
still affected by vanishing/exploding gradients, we examine the hidden state gradients
on the adding problem with sequence length T = 500. See Figure 2.11 for a plot of
the gradient norms at the beginning of training and after 300 training iterations. As
can be seen, the scoRNN gradient norms have a slight decay by less than an order
of magnitude at the beginning of training with a value around 10−2. Even after 300
iterations of training, the scoRNN gradient norms decay from 10−3 at t = 500 to 10−4

at t = 0. In contrast, the LSTM gradient norms decrease quickly as the gradients
propagate backwards through time. This decay of gradient norms becomes more
pronounced after 300 epochs. These results indicate that information can more easily
propagate from the beginning of the sequence towards the end when the recurrent
weight matrix is orthogonal.

Complexity and Speed

The scoRNN architecture has comparable complexity and memory usage as a stan-
dard RNN except for the additional memory requirement of storing the n(n − 1)/2
entries of the skew-symmetric matrix A and the additional O(n3) complexity of form-
ing the recurrent weight matrix W from A through the scaled Cayley transform. It
should be noted that W is generated only once per training iteration. In contrast, if
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Figure 2.11: Gradient norms ‖ ∂L
∂ht
‖ for scoRNN and LSTM models during training

on the adding problem. The x-axis shows different values of t. The left plot shows
gradients at the beginning of training, and the right shows gradients after 300 training
iterations.

we let T be the sequence length and B the batch size, then a standard RNN requires
a complexity of O(BTn2). When BT is comparable to n, which is normally the case
in practice, then a standard RNN has the same order of magnitude of complexity as
the scoRNN architecture.

To experimentally quantify potential differences between scoRNN and other mod-
els, the real run-time for the unpermuted MNIST experiment were recorded and are
included in Table 2.3. All models were run on the same machine, which has an Intel
Core i5-7400 processor and an nVidia GeForce GTX 1080 GPU. The scoRNN and
LSTM models were run in Tensorflow, while the full and restricted capacity uRNNs
were run using code provided in [48].

The RNN and LSTM models were the fastest with negligible differences in run
time per epoch for larger hidden sizes. It is suspected that this is because these models
were built in to Tensorflow which has been optimized for efficiency. The LSTMs are
of similar speed to the n = 170 scoRNN, while they are approximately twice as fast
as the n = 512 scoRNN. Matching the number of hidden parameters, the scoRNN
model with n = 170 is approximately 1.5 times faster than the Restricted-Capacity
uRNN with n = 512, and twice as fast as the Full-Capacity uRNN with n = 116. This
relationship can also be seen in the scoRNN and Full-Capacity uRNN models with
≈ 137k parameters, where the scoRNN takes 11.2 minutes per epoch as compared to
25.8 minutes for the Full-Capacity uRNN.

46



Table 2.3: Timing results for the unpermuted MNIST dataset.

Model n # params Minutes Per Epoch

RNN 116 ≈ 16k 2.3
scoRNN 170 ≈ 16k 5.3
Rest. uRNN 512 ≈ 16k 8.2
Full uRNN 116 ≈ 16k 10.8
LSTM 128 ≈ 68k 5.0
scoRNN 360 ≈ 69k 7.4
Rest. uRNN 2,170 ≈ 69k 50.1
RNN 360 ≈ 137k 2.3
scoRNN 512 ≈ 137k 11.2
Full uRNN 360 ≈ 137k 25.8
RNN 512 ≈ 270k 2.4
LSTM 256 ≈ 270k 5.2
Full uRNN 512 ≈ 270k 27.9
LSTM 512 ≈ 1, 058k 5.6

2.6 Scaled Cayley Unitary Recurrent Neural Network

As discussed in Section 2.5, the scoRNN architecture was developed to address the
vanishing/exploding gradient problem by maintaining an orthogonal recurrent weight
matrix. This is done by parameterizing the matrix with a skew-symmetric matrix
through the scaled Cayley transform. This parameterization requires a diagonal scal-
ing matrix D consisting of ±1 entries. These parameters are discrete and can not be
optimized by gradient descent. Since it is not known apriori what the optimal number
of negative ones should be for a particular task, a tunable hyperparameter is intro-
duced in the scoRNN architecture that controls the number of negative ones. Since
this hyperparameter is set throughout training, D is fixed and so the possible set of
orthogonal recurrent weight matrices is restricted to a subset of all orthogonal ma-
trices. To overcome this restriction, the scaled Cayley unitary RNN (scuRNN)
was developed.

Similar to scoRNN, the scuRNN architecture is based on a scaled Cayley transform
but uses the unitary version of Theorem 2.5.2 to maintain a unitary recurrent weight
matrix. In other words,

W = (I + A)−1 (I − A)D (2.68)

where W ∈ Cn×n is unitary, A ∈ Cn×n is skew-Hermitian, and D ∈ Cn×n is a diagonal
matrix with entries lying on the complex unit circle of the form eiθ. Unlike scoRNN,
this parameterization is differentiable with respect to the continuous θ variable and
can be optimized using gradient descent. This eliminates the need for tuning a
hyperparameter and having a fixed scaling matrix during training.
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Architecture Details

Since most machine learning programs are designed to handle only real valued ma-
trices and scuRNN requires matrices that are complex valued, careful consideration
must be given on how to implement the network. It first should be noted that the
scuRNN model operates similarly to a standard RNN, see (2.1), (2.2), and (2.3),
except the modReLU activation function is used, see (2.33), and all parameters are
complex valued. In particular, (2.1) and (2.2) become

ai =Uxi +Whi−1 (2.69)

hi =
ai
|ai|

σReLU (|ai|+ b) (2.70)

In order to perform complex matrix and vector multiplication as discussed in Section
2.4, all complex parameters associated with scuRNN are separated into their real and
imaginary components. Since the input of the network is real valued and the hidden
state of the network is complex valued, we simply take the input xi and multiply it
by the real and complex components of the input matrix U or

Uxi =

[
Re (U)
Im (U)

]
xi (2.71)

Similarly, since the output of the network is real valued, we simply make V the
appropriate shape so that

V hi = V

[
Re (hi)
Im (hi)

]
(2.72)

Finally, in order to train the skew-Hermitian matrix A and scaling matrix D that
are used to parameterize the unitary recurrent weight matrix in scuRNN, complex
derivatives must be used. When we consider the loss function as a function of the
complex matrix A or scaling matrix D with a range on the real-line, the loss function
is nonholomorphic and thus not complex differentiable. To compute the necessary
gradients, Wirtinger calculus [47] is required. As discussed in Section 1.6, the steepest
descent direction is given by

∂f(z)

∂z
(2.73)

Using the Wirtinger derivatives in (1.43) and the steepest descent direction in (2.73),
we update the unitary recurrent weight matrix W by performing gradient descent on
the associated skew-Hermitian parameterization matrix A and scaling matrix D. We
note that in order to compute gradients with respect to A, we must pass the gradients
through the scaled Cayley transform. The desired gradients for A and the diagonal
arguments of D are given in (2.74) and (2.75)

∂L

∂A
=CT − C (2.74)

∂L

∂θ
=2Re

(
i

((
∂L

∂W

T

K

)
� I
)
d

)
(2.75)
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where L is a differentiable loss function, C = (I + A)−T ∂L
∂W

(
D +W T

)
,

K = (I + A)−1 (I − A), d =
[
eiθ1 , eiθ2 , . . . , eiθn

]T
, and θ = [θ1, θ2, . . . , θn]T . See [33]

for more details.
To update the unitary matrix W , we first compute ∂L

∂W
using the given machine

learning program. We then compute ∂L
∂θ

and ∂L
∂A

using (2.74) and (2.75). A gradient
descent optimizer is used to update the θ entries of the scaling matrix D. These
updated values are then used to reform D. We next update A using a gradient descent
algorithm and finally reform W through the scaled Cayley transform. Denoting λ
and γ as learning rates, the order of updates is as follows

θ(k+1) ←θ(k) − λ ∂L

∂θ(k)
(2.76)

D(k+1) ←diag
(
eiθ

(k+1)
1 , eiθ

(k+1)
2 , . . . , eiθ

(k+1)
n

)
(2.77)

A(k+1) ←A(k) − γ ∂L
∂A

(2.78)

W (k+1) ←
(
I + A(k+1)

)−1 (
I − A(k+1

)
D(k+1) (2.79)

It should be noted that ∂L
∂A

is skew-Hermitian. Since the addition of any skew-

Hermitian matrix is again skew-Hermitian, the SGD optimizer will ensure A(k+1)

will be skew-Hermitian. Thus W (k+1) will be unitary to the order of machine pre-
cision. For optimizers that require squaring of the gradients elementwise such as
RMSProp and Adam, the real and imaginary components are updated separately in
order to ensure that A(k+1) is still skew-Hermitian. All other trainable parameters
are updated using gradient descent or a related algorithm.

Experiments

The experiments conducted in [33] were the same as in [14] and consisted of MNIST,
copying, adding, and TIMIT problems. The scuRNN model had slightly better per-
formance than the scoRNN model on the copying problem with sequence length
T = 2, 000 and the TIMIT problem. Performance was slightly worse on the adding
problem of sequence length T = 750. For the remaining experiments, performance of
the scuRNN model was comparable to the scoRNN model. It should be noted that
the scuRNN model does not require the tuning of an additional hyperparameter to
control the number of negative ones in the scaling matrix like the scoRNN model.
See [33] for more details.

2.7 Eigenvalue Normalized Recurrent Neural Network

Several variants of RNNs with orthogonal or unitary recurrent matrices have recently
been developed to mitigate the vanishing/exploding gradient problem and to model
long-term dependencies of sequences. In spite of the promises shown in recent work,
orthogonal/unitary RNNs still have some shortcomings. An orthogonal/unitary re-
current weight matrix can allow an input to affect an output over long sequences,
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but unlike gated architectures, orthogonal/unitary RNNS lack “forget” mechanisms
[21] to discard information that is no longer needed. In sequences where certain
input information is only used for the states or outputs locally, the state may be con-
sumed with such information, reducing its capacity for carrying other information.
This makes it difficult to efficiently model sequences with both long and short-term
dependencies.

The Eigenvalue Normalized RNN expands upon the orthogonal/unitary RNN
architecture by incorporating a dissipative state to model short-term dependencies.
The ENRNN forms a recurrent matrix with a spectral radius (i.e. the largest absolute
value of the eigenvalues) less than 1 by normalizing another parametric matrix by
its spectral radius. Any input to this state will dissipate in time with repeat multi-
plication by the recurrent matrix and will be replaced with new input information.
This state can be concatenated with another state with an orthogonal/unitary recur-
rent matrix to form an RNN that has a long and short-term memory component to
efficiently model long sequences. The resulting architecture falls within the existing
framework of the basic RNN.

The ENRNN is inspired by work on the Spectral Normalized Generative
Adversarial Network (SN-GAN) [36].The SN-GAN normalizes the discriminator
weight matrix by its spectral norm, i.e. its largest singular value. Noting that the
spectral radius is bounded by any matrix norm including the spectral norm, normal-
ization by the spectral norm is expected to make the spectral radius of the matrix
much less than 1. The importance of constraining the eigenvalues of the recurrent
matrix rather than its singular values should be emphasized because the eigenvalues
affect the dynamical behavior of an RNN but the singular values do not, see also [3].
For example, all orthogonal matrices have singular values equal to 1, but may define
very different RNNs.

Architecture

In order to improve the capacity of orthogonal/unitary RNNs to capture short-term
dependencies, the ENRNN introduces a dissipative state. Let ht ∈ Rn be the hidden
state consisting of two components: h

(L)
t ∈ Rq that captures long-term dependencies

and h
(S)
t ∈ Rn−q that captures short-term dependencies. In this scheme, q is consid-

ered a hyperparameter. Now let W (L) ∈ Rq×q be an orthogonal matrix used as the
recurrent matrix for h

(L)
t that is designed to propagate information over many time

steps, and W (S) ∈ R(n−q)×(n−q) which has a spectral radius less than one by normal-
izing with the spectral radius. If we consider a recurrent weight matrix W ∈ Rn×n of
the form W = diag

(
W (L),W (S)

)
, then a forward pass of the RNN will be:

h
(L)
t = σ

(
U (L)xt +W (L)h

(L)
t−1 + b(L)

)
h
(S)
t = σ

(
U (S)xt +W (S)h

(S)
t−1 + b(S)

)
yt = V (L)h

(L)
t + V (S)h

(S)
t + c

(2.80)

Since W (S) has a spectral radius less than 1, the effect of any input on h(S) will decay
quickly from repeat multiplication by W (S) with the rate of decay controlled by the
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magnitude of the eigenvalues of W (S). Different eigenvalues with different magnitudes
will then decay at different rates, emulating different lengths of memory.

In this model, the output yt is determined from a combination of h
(L)
t and h

(S)
t

where h
(S)
t contains information of recent input data, see (2.80). In this way, short-

term memory that is needed to determine yt is stored in h
(S)
t , but once yt is computed,

h
(S)
t will be gradually replaced by information from new inputs. This allows h

(L)
t to

store and carry only long-term memory information needed for the output.
In the architecture (2.80), the hidden states h(L) and h(S) are separate. They

carry the long and short-term memory in parallel and the short-term state is directly
used to determine output. If the task is to determine a single output from a sequence
at the end of the entire sequence, then h(S) does not affect the output until near the
end of the sequence. In this case, it may still be beneficial to have h(S) accumulate
short-term memory but to feed it into h(L) to indirectly affect the final output. This
can be done by adding a coupling block to the recurrent matrix,

W =

[
W (L) W (C)

W (S)

]
(2.81)

where W (C) ∈ Rq×(n−q) is called a coupling matrix. Applying the recurrent matrix in
(2.81) to a forward pass of the RNN, we obtain:

h
(L)
t = σ

(
U (L)xt +W (L)h

(L)
t−1 +W (C)h

(S)
t−1 + b(L)

)
h
(S)
t = σ

(
U (S)xt +W (S)h

(S)
t−1 + b(S)

)
yt = V (L)h

(L)
t + V (S)h

(S)
t + c

(2.82)

In this case, h(S) is generated by the same recurrence as before and stores short-term
information of the inputs. However, with the coupling block, h(L) is determined from
the current input, the short-term hidden state h(S), and h(L). This interaction is simi-
lar to the update of the internal state of an LSTM. In particular, h(S) can be regarded
as a preprocessing of several consecutive inputs designed to extract information to
be used to update the long-term memory state h(L). As an example, one can think
of character inputs in a language processing problem. The short-term memory state
may process the character inputs to produce word or phrase information to be used
in the long-term state h(L) so that h(L) can be devoted to processing the information
at a higher level. We believe this separation of the processing of characters from
the processing at a higher level of sentences or concepts will be more effective and
efficient.

We note that since W is an upper triangular matrix, the eigenvalues of W consist
of the eigenvalues of both W (L) and W (S) and so has a spectral radius of at most
one and this coupling does not alter the spectral properties of the recurrent matrix.
For this reason, we do not allow a coupling from h(L) to h(S) because the fully dense
recurrent matrix would not preserve the desired spectral properties.

To illustrate how h(S) can simulate a short-term memory state, we note that since
ρ
(
W (S)

)
< 1, there exists some norm ‖ · ‖ such that ‖W (S)‖ < 1. If we assume that

this holds for the 2-norm, i.e. ‖W (S)‖2 < 1, we formulate the following theorem.

51



Theorem 2.7.1. For an RNN as defined in (2.80) and (2.82) with a ReLU nonlin-
earity, if ‖W (S)‖2 < 1 then∥∥∥∥∥∂h(S)t+τ

∂h
(S)
t

∥∥∥∥∥ ≤ ∥∥W (S)
∥∥τ and

∥∥∥∥∥∂h(S)t+τ

∂xt

∥∥∥∥∥ ≤ ∥∥W (S)
∥∥τ
2

∥∥U (S)
∥∥ (2.83)

where ‖·‖ is the 2-norm.

Proof. By the chain rule, we obtain:

∂h
(S)
t+τ

∂h
(S)
t

=
∂h

(S)
t+τ

∂h
(S)
t+τ−1

∂h
(S)
t+τ−1

∂h
(S)
t+τ−2

...
∂h

(S)
t+1

∂h
(S)
t

(2.84)

=
t+1∏

k=t+τ

∂h
(S)
k

∂h
(S)
k−1

(2.85)

=
t+1∏

k=t+τ

GkW
(S) (2.86)

where Gk = diag (σ′(aj)) is a diagonal matrix consisting of the derivative of the
nonlinearity function for each activation aj at time step k. Now taking the two-norm
to both sides, ∥∥∥∥∥∂h(S)t+τ

∂h
(S)
t

∥∥∥∥∥
2

≤
t+1∏

k=t+τ

‖Gk‖2
∥∥W (S)

∥∥
2
≤
∥∥W (S)

∥∥τ
2

(2.87)

Similarly, we have

∂h
(S)
t+τ

∂xt
=
∂h

(S)
t+τ

dh
(S)
t

∂h
(S)
t

∂xt
=
∂h

(S)
t+τ

dh
(S)
t

GtU
(S) (2.88)

and taking the two-norm to both sides we obtain:∥∥∥∥∥∂h(S)t+τ

∂xt

∥∥∥∥∥
2

≤
∥∥W (S)

∥∥τ
2

∥∥U (S)
∥∥
2

(2.89)

We remark that as τ increases, the derivative bounds in Theorem 2.7.1 go to zero,
indicating the dependence of h

(S)
t+τ on h

(S)
t and xt goes to zero.

ENRNN Gradient Descent

The training of W (S) by gradient descent can easily lead to a matrix with spectral
radius greater than 1. To maintain W (S) with spectral radius less than 1, we param-
eterize it by another matrix T ∈ R(n−q)×(n−q) through the normalization

W (S) = W (S)(T ) :=
T

ρ (T ) + ε
(2.90)
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for some small ε > 0, where ρ(T ) ∈ R is the spectral radius of T . In this way,
W (S) has eigenvalues with modulus less than one and the training of W (S) is carried
out in T . Namely, for an RNN loss function L = L(W (S)) in terms of W (S), we
regard it as a function L = L(W (S)(T )) of T . Instead of optimizing with respect
to W (S), we optimize L = L(W (S)(T )) with respect to T . The gradients of such a
parameterization are given below in Proposition 2.7.1

Proposition 2.7.1. Let L = L(W ) : Rm×m → R be some differentiable loss function

for an RNN with a recurrent weight matrix W and let ∂L
∂W

:=
[

∂L
∂Wi,j

]
∈ Rm×m. Let

W be parameterized by another matrix T ∈ Rm×m as W = T
ρ(T )+ε

, where ρ(T ) ∈ R
is the spectral radius of T and ε > 0 is a small positive number. If λ = α + iβ (with
α, β ∈ R) is a simple eigenvalue of T with |λ| = ρ(T ) and if u ∈ Cn and v ∈ Cn

are corresponding right and left eigenvectors, i.e. Tu = λu and v∗T = λv∗, then the
gradient of L = L(T ) as a function of T is given by:

∂L

∂T
=

1

ρ̃ (T )

[
∂L

∂W
− 1

ρ̃ (T )
1Tm

(
∂L

∂W
�W

)
1mC

]
where C = αRe (S)+β Im (S) with S = vuT

v∗u
∈ Cm×m, 1m ∈ Rm is a vector consisting

of all ones, ρ̃ (T ) = ρ (T ) + ε, ∗ is the conjugate transpose operator, and � is the
Hadamard product.

Proof. To find the derivative with respect to the (i, j) entry of T , we obtain by the
chain rule:

∂L

∂Ti,j
=

m∑
k,l=1

∂L

∂Wk,l

∂Wk,l

∂Ti,j

=
m∑

k,l=1

∂L

∂Wk,l

(
1

ρ(T ) + ε

∂Tk,l
∂Ti,j

+ Tk,l
∂ (r−1)

∂Ti,j

)
(2.91)

where r = ρ (T ) + ε. Looking at the second term in (2.91) and using ρ (T ) =

(α2 + β2)
1
2 , we have

∂ (r−1)

∂Ti,j
= − 1

ρ (T ) (ρ(T ) + ε)2

(
α
∂α

∂Ti,j
+ β

∂β

∂Ti,j

)
(2.92)

Since λ is a simple eigenvalue, we have

∂λ

∂Tij
=
v∗ ∂T

∂Tij
u

v∗u
=
viuj
v∗u

(2.93)

and hence ∂λ
∂T

= vuT

v∗u
= S. So

∂α

∂T
= Re (S) ;

∂β

∂T
= Im (S) (2.94)
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Combining (2.91), (2.92), and (2.94) with the fact that
∂Tk,l
∂Ti,j

= 1 for (k, l) = (i, j) and

0 otherwise, we obtain

∂L

∂Ti,j
= 1

˜ρ(T )

∂L
∂Wi,j

− 1

ρ(T ) ˜ρ(T )2

∑m
k,l=1

∂L
∂Wk,l

Tk,lCi,j

= 1
˜ρ(T )

[
∂L
∂Wi,j

− 1
˜ρ(T )

1Tm
(
∂L
∂W
�W

)
1mCi,j

]
(2.95)

as desired.

We remark that if W is a real matrix, then complex eigenvalues appear in con-
jugate pairs, both of which give the spectral radius ρ(T ). However, the formula in
the above theorem is independent of which eigenvalue we use. Specifically, if λ in the
theorem is a complex eigenvalue, λ is also an eigenvalue with u and v as right and
left eigenvectors. Using λ, u and v in the theorem, we obtain the same formula for
∂L
∂T

because vuT

v∗u
= S and correspondingly αRe

(
S
)

+ β Im
(
S
)

= C. Thus selecting

either λ or λ in Proposition 2.7.1 will result in an identical derivative. In addition,
when λ is a multiple eigenvalue, the computation of S involves a division by 0 or a
number nearly 0. This is a rare situation and can be remedied in practice. First,
it is unlikely to occur as the set of matrices with multiple eigenvalues lie on a low
dimensional manifold in the space of n× n matrices and has a Lebesgue measure 0.
Thus the probability of a random matrix having multiple eigenvalue is zero. Second,
if a multiple or nearly multiple eigenvalue occurs, we may train using usual gradient
descent without eigenvalue normalization for a few steps and return to ∂L

∂T
when the

eigenvalues are separated. This situation never occurred in our experiments.
Using Proposition 2.7.1, an optimizer with learning rate ζ is used to first update

T which is then used to update W (S):

Tk ← Tk−1 − ζ
∂L

∂Tk−1
; W

(S)
k ← Tk

ρ (Tk) + ε
(2.96)

A naive approach may be to simply apply gradient descent on W (S) and then re-
normalize W (S) by its spectral radius. The problem is that the computed gradients
∂L

∂W (S) do not take into account the effects of the normalization. Thus a steepest de-

scent step on W (S) will reduce the loss function, but it may not be the case after W (S)

is re-normalized by the spectral radius. In contrast, our approach takes a gradient
descent step on T , which decreases the loss function with the new W . Namely, the
steepest descent direction ∂L

∂T
has taken the eigenvalue normalization into account.

Initialization

We initialize T to be a random matrix with eigenvalues uniformly distributed on the
complex unit disc. This is done in a way similar to scoRNN as

T = diag
(
B1, .., Bbn/2c

)
Bj = γj

[
cos tj − sin tj
sin tj cos tj

]
(2.97)
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where each tj is sampled from U [0, π
2
) and each γj is sampled from U [−1.0, 1.0).

This results in eigenvalues of the form γje
±itj which are uniformly distributed on the

complex unit disc. For the coupling matrix, W (C), initialization is Glorot Uniform
[11] unless indicated otherwise. The initial states of h

(L)
0 and h

(S)
0 are set to zero and

are non-trainable.
It is unknown before hand if the largest eigenvalue should have a modulus near

one, so we start by setting W (S) = T without eigenvalue normalization and train
until ρ (T ) > 1, at which point eigenvalue normalization is implemented. Namely, if
ρ(T ) ≤ 1, then a standard gradient descent step is taken with W (S) = T . Once an
update step results in a ρ (T ) > 1, (2.96) is used for all subsequent training steps.

Experiments

In this section, we present four experiments to compare ENRNN with LSTM and
several orthogonal/unitary RNNs. Code for the experiments and hyperparameter
settings for ENRNN are available at https://github.com/KHelfrich1/ENRNN. We
compare models using single layer networks because implementation of multi-layer
networks in the literature typically involves dropout, learning rate decay, and other
multi-layer hyperparameters that make comparisons difficult. This is also the setting
used in prior work on orthogonal/unitary RNNs. Each hidden state dimension is ad-
justed to match the number of trainable parameters, but ENRNN can be stacked in
multiple layers. For ENRNN, the long-term recurrent matrix W (L) is parameterized
using scoRNN [14]. For the short-term component state, we use ε = 0 in Proposi-
tion 2.7.1. Unless noted otherwise, the activation function used was modReLU. For
each method, the hyperparameters tuned included the optimizer {Adam, RMSProp,
Adagrad}, and learning rates {10−3, 10−4, 10−5}. For scoRNN, the number of nega-
tive ones used in the parameterization of the recurrent matrix is tuned in multiplies of
10% of the hidden size. For ENRNN, the size of the short-term state W (S) is tuned in
multiplies of 10% of the entire hidden size up to 60%. For the LSTM, the forget gate
bias initialization and gradient clipping threshold are tuned using integers in [−4, 4]
and in [1, 10] respectively. These hyperparameters were selected using a gridsearch
method. Experiments were run using Python3, Tensorflow, and CUDA9.0 on GPUs.

Adding Problem

The setup for the adding problem is the same as described in Section 2.5. The hidden
sizes for each model were adjusted so they each had ≈ 15k trainable parameters which
results in a total hidden size of n = 160, 60, 60, 170, 128, and 120 for the ENRNN,
LSTM, Spectral RNN, scoRNN, oRNN, and Full-Capacity uRNN respectively. The
ENRNN was comprised of an h(L) and an h(S) of respective sizes 96 and 64 with a
coupling matrix, see (2.82). An RMSProp optimizer with learning rate 10−4 was used
for all weights. The W (L) was parameterized with 29 negative ones. The LSTM used
an Adam optimizer with learning rate 10−2 and an initial forget gate bias of 0. The
Spectral RNN had an initial learning rate of 10−2 with learning rate decay of 0.99, r
size of 16, and r margin of 0.01, similar to the settings in [51]. As per [14], the scoRNN
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Figure 2.12: Test set MSE for the adding problem with sequence length of T = 750.

model used an RMSProp optimizer with learning rate 10−4 for the recurrent weight
and an Adam optimizer with learning rate 10−3 for all other weights and 119 negative
ones. The best hyperparameters for the oRNN were in accordance with [35] with 16
reflections and an Adam optimizer with learning rate 10−2, ≈2.6k parameters. The
Full-Capacity uRNN used an RMSProp optimizer with learning rate 10−5. Figure
2.12 presents the convergence plots for 6 epochs. ENRNN converges towards 0 MSE
before all other models with Spectral RNN asympototically achieving a slightly lower
MSE with learning rate decay.

Copying Problem

The copying problem has also been used to test many orthogonal/unitary RNNs
[1, 14, 22, 35, 48]. In this experiment, a sequence of digits is passed into the RNN
with the first 10 digits uniformly sampled from the digits 1 through 8 followed by the
marker digit 9, a sequence of T zeros, and another marker digit 9. The network is to
output the first 10 digits in the sequence once it sees the second marker 9, forcing the
network to remember the original digits over the entire sequence. The total sequence
length is T + 20. The cross-entropy loss function is used. The training and test sets
were 20, 000 and 1, 000 sequences, respectively. Each model was trained for 4, 000
iterations with batch size 20. The baseline for this task is the expected cross-entropy
of randomly selecting digits 1-8 after the last marker 9, 10 log(8)

T+20
.

The setup of this experiment is the same as described in Section 2.5. The hidden
sizes for each model were adjusted so that they each had ≈ 22k trainable parameters.
This resulted in a hidden size of n = 192, 68, 190, and 128 for the ENRNN, LSTM,
scoRNN, and Full-Capacity uRNN respectively. The ENRNN had an h(L) and h(S)
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Figure 2.13: Cross-entropy for the copying problem with sequence length of T = 2000.

of size 172 and 20 with a coupling matrix W (C), see (2.82). An RMSProp optimizer
was used with a learning rate of 10−5 for h(L) and learning rate of 10−3 for all other
weights. The W (L) was parameterized with 52 negative ones. The LSTM used an
RMSProp optimizer with learning rate 10−3 with an initial forget gate bias of 1.0 for
n = 68. As per [14], the scoRNN model used an RMSProp optimizer with learning
rate 10−4 for the recurrent weights and 10−3 for all other weights. The recurrent
weight was parameterized with 95 negative ones. The Full-Capacity uRNN used an
RMSProp optimizer with learning rate 10−3.

Figure 2.13 plots cross-entropy values for 4000 iterations. As a reference, the
LSTM was also run with the same hidden size of ENRNN, n = 192 with an initial
forget gate bias of −2, which has ≈ 7 times more trainable parameters than ENRNN
and is still unable to drop below the baseline. Again, ENRNN outperforms other
methods.

TIMIT

The setup of this experiment is the same as described in Section 2.5 except the MSE
for all models was computed the same by taking the squared difference between the
predicted and actual log magnitudes and applying a mask to zero out padded entries
before computing the batch mean. In addition, the networks were trained for 300
epochs instead of 200 epochs. The hidden sizes of each model were adjusted so they
each had ≈ 200k trainable parameters. This results in hidden sizes of n = 468, 158,
and 425 for ENRNN, LSTM, and scoRNN respectively. The ENRNN consisted of
h(L) and h(S) of sizes 374 and 94 respectively with no coupling matrix. The number of
negative ones for W (L) was 374. An Adam optimizer with learning rate 10−4 was used
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Figure 2.14: Validation set MSE for the TIMIT problem

for all weights. The number of negative ones for W (L) was 374. The LSTM used an
RMSProp optimizer with learning rate 10−3 with gradient clipping of 1.0 and forget
gate bias initialization of −4.0. As per [14], the scoRNN used an RMSProp optimizer
with learning rate 10−4 to update the recurrent matrix and an Adam optimizer with
learning rate 10−3 for all other weights. The number of negative ones for the recurrent
weight was 43.

Each model was trained for 300 epochs. Table 2.4 reports the results of the best
epoch in validation MSE scores and Figure 2.14 plots convergence of these scores. As
a secondary measure, we also show in Table 2.4 scores of three perceptual metrics.
As a reference, the LSTM was also run with the same hidden size of ENRNN, n =
468, which has ≈ 6 times more trainable parameters than ENRNN and achieves
worse scores except for PESQ where it is the same. Again, ENRNN significantly
outperforms scoRNN and LSTM in the validation and testing MSEs and produces
the overall best scores in the perceptual metrics.

Character PTB

The models were also tested on a character prediction task using the Penn Treebank
Corpus [34]. The dataset consists of a word vocabulary of 10k with all other words
marked as <unk>, resulting in a total of 50 characters with the training, validation,
and test sets consisting of approximately 5102k, 400k, and 450k respective characters.
The batch size was set to 32. Due to the length of each sequence, the sequences were
unrolled in length of 50 steps. Each sequence is fed into RNNs and the output is the
same sequence shifted forward by one step to predict the next character. At the end
of training of each sequence in a batch, the final hidden state is passed onto the next
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Table 2.4: TIMIT: Best validation MSE after 300 epochs with test MSE and percep-
tual metrics. N - dimension of h (for ENRNN, dimensions of h(L)/h(S)) that match
≈ 200k trainable parameters.

Model n #Params Valid. Test.
MSE MSE

ENRNN 374/94 ≈ 200k 0.13 0.13
scoRNN 425 ≈ 200k 1.56 1.52
LSTM 158 ≈ 200k 8.53 8.27

LSTM 468 ≈ 1200k 5.60 5.42

Model N SegSNR (dB) STOI PESQ

ENRNN 374/94 4.84 0.83 2.75
scoRNN 425 4.55 0.82 2.72
LSTM 158 4.00 0.79 2.51

LSTM 468 4.82 0.81 2.75

training sequence as the initial state. We use a linear embedding layer that maps each
input character to RN (N being the hidden state dimension). The loss function was
cross-entropy. We report the customary performance metrics of bits-per-character
(bpc) which is the cross-entropy loss with the natural logarithm replaced by the base
2 logarithm.

The hidden size of each model was adjusted to match the number of trainable
parameters, ≈ 1016k. It is 350 for LSTM and 1030 for ENRNN with an h(L) and h(S)

of sizes 310 and 720. The ENRNN uses a coupling matrix, W (C), with a truncated
orthogonal initialization, a fixed input weight matrix set to identity, and ReLU non-
linearity. An Adam optimizer was used with learning rate of 10−4 to update W (L)

and 10−3 for all other weights. The W (L) had 186 negative ones. The LSTM uses a
forget gate bias initialization of 0.0 and gradient clipping of 8.

We report the best results after 20 epochs training in Table 2.5. Also included in
the table are the results from [21, 25, 35] for the same problem. As a reference, the
LSTM was also run with the same hidden size of ENRNN, n = 1030, which results in
a better score but requires ≈ 8.5 times more trainable parameters than ENRNN. We
see that ENRNN slightly outperforms LSTM when matching the number of trainable
parameters and all other models. To test the capability of the ENRNN to be stacked
in a multilayer fashion, we also conducted an experiment on the character prediction
task using a 3 layer ENRNN and LSTM. The ENRNN and LSTM had the same
hidden sizes as in the single layer model, but with learning-rate decay and dropout
applied between each layer. For the 3 layer experiment, the sequence was unrolled
100 steps and a batch size of 64 was used. The ENRNN acheived a validation BPC
of 1.330 and a test BPC of 1.297 and the LSTM achieved a validation BPC of 1.328
and a test BPC of 1.293.
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Table 2.5: Character PTB: Best testing MSE in BPC after 20 epochs. N - dimension
of h (for ENRNN, dimensions of h(L)/h(S)). Entries marked by an asterix (*), (**),
and (***) are reported from [21], [35], and [25], resp.

Model n # Param Valid. Test
BPC BPC

ENRNN 310/720 ≈ 1016k 1.475 1.429
LSTM 350 ≈ 1016k 1.506 1.461
GRU 415 - - 1.601*
EURNN 2048 - - 1.715*
GORU 512 - - 1.623*
oRNN 512 ≈ 183k 1.73** 1.68**
nnRNN 1024 ≈ 1320k - 1.47***

LSTM 1030 ≈ 8600k 1.447 1.408

Gradient Analysis

For each pair of time steps t ≤ τ , we use ||∂h
(S)
τ

∂xt
||2 and ||∂h

(L)
τ

∂xt
||2 to measure the

dependency of h
(S)
τ and h

(L)
τ at time τ respectively on the input xt at time t. We

consider a small Adding Problem of sequence length T = 50 using an ENRNN of
hidden size n = 40 with h(L) block size of 24 and h(S) block size of 16. We compute
the gradient norms over the first random mini-batch at the beginning of the sixth
epoch and plot them as a heat map in Figure 2.15 and 2.16. Here the x-axis is the
input time step (going from left to right) and the y-axis is the hidden state time step
(going from top to bottom).

As can be seen, the short-term state gradient (Figure 2.15) diminishes quickly as

τ increases from t, demonstrating the short-term dependency of h
(S)
τ . On the other

hand, the long-term state gradient (Figure 2.16) may stay large for all τ showing

long-term dependency of h
(S)
τ . Of particular note, there appears to be a few vertical

lines that have higher gradient norms relative to other input steps. It appears that
these inputs have a greater effect on the model than others.

Hidden State Sizes

In this section, we explore the effect of different short-term hidden states on model
performance on the adding problem using similar settings as discussed in Section 2.5.
In Figure 2.17, we keep the h(L) state size fixed at n = 96 and adjust the h(S) state
size from 0 to 96 for testing sensitivity. In Figure 2.18, we keep the total hidden
state size fixed at n = 160 and adjust the h(L) and h(S) sizes. In addition, we run the
experiment with no h(L) and no h(S). As can be seen, having no long-term memory
state, h(L) = 0, the ENRNN is unable to approach zero MSE and having no short-
term memory state, h(S) = 0, the ENRNN is only able to pass the baseline after
almost 6 epochs, if at all. In general, as the size of h(S) increases, the performance
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Figure 2.15: Gradient norms ‖∂h
(S)
τ

∂xt
‖ The x-axis is t from left to right and y-axis is τ

from top to bottom. The column at t shows dependence of states h
(S)
τ /h

(L)
τ on xt.

increases with optimal performance occurring around h(S) = 64 and h(L) = 96 or
h(S) = 96 and h(L) = 64. It should be noted that for the large range h(S) > 38, near
optimal performance is achieved in Figure 2.17.

Copyright c© Kyle E. Helfrich, 2020.
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Figure 2.16: Gradient norms ‖∂h
(L)
τ

∂xt
‖ The x-axis is t from left to right and y-axis is τ

from top to bottom. The column at t shows dependence of states h
(S)
τ /h

(L)
τ on xt.

Figure 2.17: Test set MSE for the ENRNN on the adding problem with sequence
length of T = 750 with various short-term hidden state sizes h(S).
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Figure 2.18: Test set MSE for the ENRNN on the adding problem with sequence
length of T = 750 with fixed hidden state size of 160 and various short-term and
long-term hidden state sizes h(S) and h(L).
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Chapter 3 Batch Normalization

One of the major obstacles in training FFNs, see Section 1.3, is known as internal
covariate shift. As speculated in the seminal work by [20], training of a deep FFN
can be difficult since a small update in a parameter can result in a significant change
in the input received at a much later layer in the network. In a particular update step,
a layer will receive an input following a certain distribution and the layer parameters
will be updated accordingly in the steepest gradient descent direction using SGD or
some other gradient descent based algorithm. After the update step, the effect of
these small parameter changes can accumulate and can cause a drastic shift of the
distribution received by later layers. This constant shifting of distributions diminishes
the effectiveness of SGD since the steepest descent direction can be continuously
changing after each iteration. In an attempt to maintain a consistent distribution for
each layer, batch normalization was introduced [20].

In batch normalization, a linear layer is inserted between two hidden layers to
center and scale the input to have zero mean and unit variance. Since it might not
be necessarily the case that the optimal input distribution should have a zero mean
or unit variance, the additional trainable parameters γ and β are introduced, see
Algorithm 4. The trainable γ parameters are used to rescale the input and the β
parameters are used to shift the input where needed.

If we denote the batch normalization layer as B (·), the typical application of batch
normalization between two layers is

H(k) = σ
(
W (k)B

(
H(k−1))+ b(k)

)
(3.1)

where the previous layer output is H(k−1) which is a matrix consisting of N mini-
batches with each column a single training example, the weights associated with the
kth layer is W (k), and the bias associated with the kth layer is b(k). As originally
introduced by [20], batch normalization can alternatively be applied before the non-
linearity

H(k) = σ
(
B
(
W (k)H(k−1))) (3.2)

In this case, there is no need for the bias term as the centering step will negate any
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effects from the bias. In practice, (3.1) is more commonly used than (3.2).

Algorithm 4: Batch Normalization (Training)

Given:
Re-scaling parameter γ ∈ Rn

Re-shifting parameter β ∈ Rn

Small ε > 0
Input:
Batch of N examples, each with n features A = [a1, a2, . . . , aN ] ∈ Rn×N

Procedure:
Mini-batch mean: µA ← 1

N

∑N
i=1 ai ∈ Rn

Mini-batch variance: σ2
A ← 1

N

∑N
i=1(ai − µ(A))2 ∈ Rn (square is elementwise)

Centering and scaling: Z ← diag

(
1√
σ2
A+ε

)(
A− µA1TN

)
∈ Rn×N

Re-scaling/Re-shift: H ← diag(γ)Z + β1TN
Output:
B (A) := H

Note that Algorithm 4 is used only during training since the centering and scaling
operations are based on mini-batch statistics. During inference, if the batch mean
and variance from the given mini-batch is used, the model predictions will vary based
on how the batches are shuffled which can result in different predictions for the same
example. It should also be noted that Algorithm 4 is not designed to work on a single
example because it requires the computation of the mean and variance.

To perform inference, a fixed mean and variance should be used. As first pro-
posed by [20], the mean and variance used during inference are simply the average
of the mini-batch means and variances. Given x minibatches with individual batch
mean and variances consisting of {µ1, µ2, . . . , µx} and {σ2

1, σ
2
2, . . . , σ

2
x} respectively,

the mean and variance used during inference are computed as

µ←1

x

x∑
i=1

µi (3.3)

σ2 ← 1

x− 1

x∑
i=1

σ2
i (3.4)

Note that the unbiased estimator is used when computing the variance. Batch nor-
malization during inference is identical to Algorithm 4 except Z is computed using
the µ and σ2 from (3.3) and (3.4).

In practice, the running mean and variance are used in place of (3.3) and (3.4).
To use the running mean and variance, the running mean is initialized to be all zeros
and the running variance is initialized as all ones. If we denote the current minibatch
mean as µB and current minibatch variance as σ2

B, the running mean and variance
updates are

µ←ρµ+ (1− ρ)µB (3.5)

σ2 ←ρσ2 + (1− ρ)σ2
B (3.6)
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Here ρ is the momentum term with a typical value of 0.99. Note that the running
mean and variance are only used during inference.

Since the introduction of batch normalization, it has grown in popularity and is
commonly used in different architectures. The primary advantage of using batch nor-
malization is that it can decrease training times by improving initial results. Batch
normalization also allows the use of larger learning rates and is more robust to dif-
ferent learning rates and initializations, making the selection of the learning rate
and weight initialization less critical. Finally, batch normalization tends to create a
regularization effect by preventing overfitting and improving generalization.

3.1 Related Work

Although found to be quite successful, batch normalization is very little understood
with many papers analyzing different aspects of batch normalization. Recent work
include [32] where different moments are used in computing the moving average and a
convergence analysis of batch normalization is provided. The work by [42] claim that
batch normalization does not improve training because it reduces internal covariate
shift, but it improves training times due to a smaller bound on the weight gradients.
In [4], experimental results are presented that also confirm batch normalization de-
creases training time by allowing larger learning rates. The paper [7] analyzes batch
normalization on the ordinary least squares problem and claim that the additional
parameters γ and β improve the condition number of the Hessian matrix and that
batch normalization is less sensitive to learning rate selection and thus has faster
convergence. In [28], optimization theory is used to prove that batch normalization
can accelerate convergence within certain assumptions. The paper [31] analyzes how
batch normalization tends to perform poorly on smaller batch sizes and also claim
that batch normalization performs well by improving the condition number of the
loss function. They also provide a different algorithm to update the batch statistics
using compositional optimization. The work by [50] establishes a mean field theory
of batch normalization and claim that batch normalization may actually result in
unbounded gradients as depth of the network increases.

3.2 Issues with Batch Normalization

There are still several issues that need to be resolved concerning batch normaliza-
tion. The main issue is that despite numerous work analyzing batch normalization,
see Section 3.1, it is still not well understood and there is no consensus on why it
works. From this lack of understanding, there is a general confusion on how to im-
plement batch normalization. In most cases, batch normalization is used after the
nonlinearity as a separate layer, see (3.1), instead of before the nonlinearity, see (3.2).
Another source of confusion is whether to use the running batch statistics during in-
ference, see (3.5) and (3.6), or the average of the batch statistics, see (3.3) and (3.4).
We should note that using either the running batch statistics or the average of the
batch statistics during inference may negatively impact training. During training
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Figure 3.1: Training set cross-entropy loss (left) and test accuracy (right) using batch
normalization on the CIFAR10 dataset. The network is a simple 3 hidden layer
network of size 100 per layer plus one output layer of size 10. The SGD optimizer is
used with batch normalization applied before each layer using running batch statistics
during inference. Models trained using a batch size of 60 and 6 are denoted BS60
and BS6 respectively. The learning rate was optimized for both batch sizes.

the gradients are allowed to propagate through the batch normalization layer but
the resulting gradient descent direction is dependent on the current batch statistics
and not the statistics used during inference. Thus the gradients might not be in the
steepest descent direction with respect to the inference model.

In Figure 3.1 we plot the convergence curves of a batch normalized FFN and
a plain vanilla FFN without batch normalization. Note that we did not regularize
these networks to prevent overfitting, but simply optimized over their learning rates
to obtain the highest test accuracy possible. As can be seen, the performance of
the batch normalized network on the training data set and the initial performance
on the test data set decreases as the batch size decreases. Despite this, the batch
normalized FFN with smaller batch size 6 does not overfit near the end of training
and eventually performs similar to the vanilla FFN with batch size 6 despite having
a much worse training loss. This suggests that batch normalization may improve
the generalization of the network. For batch size 60, the batch normalized FFN
has a much lower training loss curve and achieves a larger test accuracy much earlier
than all the other networks, indicating how batch normalization can decrease training
times. Note the batch size 60 batch normalized network still overfits. Finally, notice
how the optimal batch normalized networks have larger learning rates. Currently,
there is no consensus why the batch normalized networks behave this way.

3.3 Batch Normalized Preconditioning

In our current work, we are devising an alternative algorithm to batch normalization.
We call the proposed method Batch Normalized Preconditioning (BNP). The
main idea behind BNP is that instead of applying normalization explicitly through
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a batch normalization layer, normalization is applied by conditioning the parameter
gradients directly during training. This preconditioning of the gradients is expected
to improve the Hessian matrix of the loss function and thus improve convergence
of the parameters during training. In BNP, there is no need to maintain running
statistics or the need of additional trainable parameters. The effects of centering and
scaling steps are incorporated into the update of the parameters.

Rate of Convergence and the Hessian

In a FFN, weights and biases are updated by gradient descent as discussed in Section
1.6. In particular, given the parameter vector θ and some differentiable loss function
L with respect to θ, the parameters are iteratively updated by (1.24) where λ is the
learning rate or step size and k is the kth iteration. Now suppose L has continuous
second partial derivaties, θ∗ is a local minimizer, and consider an initialization of θ
in a small neighborhood around θ∗. We define g(θ) = θ − α∇θL (θ) where α is some
learning rate and note that θ∗ is a fixed point of g. Using g to iteratively define each
θk, by Taylor’s Theorem about the point θ∗

θk+1 =g (θk) (3.7)

=θ∗ −∇θg (ξ) (θk − θ∗) (3.8)

=θ∗ +
(
I − ∇2

θL (ξ)
)

(θk − θ∗) (3.9)

for some ξ. Rearranging (3.9) and using the 2-norm we obtain

‖θk+1 − θ∗‖2 ≤ ‖I − α∇2
θL (ξ) ‖2‖θk − θ∗‖2 (3.10)

Let λmin and λmax be the minimum and maximum eigenvalues of the Hessian matrix.
Since I − α∇2

θL(ξ) is real valued and symmetric and thus normal we can rewrite
(3.10)

‖θk+1 − θ∗‖2 ≤ ρ‖θk − θ∗‖2 (3.11)

where ρ = max{|1− αλmin| , |1− αλmax|}. For simplicity of analysis, let us assume
λmin > 0. Now ρ is minimized with respect to α when

α =
2

λmin + λmax

(3.12)

In this case we have either ρ = 1− αλmin or ρ = −1 + αλmax. Taking either case will
result in the same value of ρ. For the first case, we obtain

ρ =1− 2λmin

λmax + λmin

(3.13)

=
λmax − λmin

λmax + λmin

(3.14)

=
λmax

λmin
− 1

λmax

λmin
+ 1

(3.15)

=
κ− 1

κ+ 1
(3.16)
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where κ is the condition number of the Hessian matrix. The inequality (3.11) and
the optimal value of ρ in (3.16) show that the rate of convergence is dependent on
the condition number of the Hessian matrix. In the case where κ >> 1, the optimal
α will be approximately 2

λmax
and convergence will be slow. Any learning rate larger

than this α will result in divergence. Thus finding the optimal learning rate can be
difficult.

FFN and the Hessian

As discussed in [7, 31] and in the previous section, convergence of a FFN may be
dependent on the condition number of the Hessian of the loss function. Unfortu-
nately, an explicit derivation of the Hessian is rarely provided due to the complicated
structure of the general Hessian. In most cases, it is rarely computed because it is
too computationally expensive to do so. The only work we are aware of that tries to
explicitly derive the Hessian is [38].

In the theorem below, we derive the gradient and Hessian of the loss with respect
to a single weight vector and single bias entry associated with a single layer state. Let
h(k) = σ

(
a(k)
)
∈ Rn be the hidden variable of layer k, i.e. the output of the kth layer

of a FFN where a(k) = W (k)h(k−1) + b(k) ∈ Rn, h(k−1) ∈ Rm is the hidden variable of
layer k − 1, and W (k) ∈ Rn×m and b(k) ∈ Rn the respective weight matrix and bias

vector of the kth layer. We denote h
(k)
i = σ

(
a
(k)
i

)
∈ R as the ith entry of h(k) where

a
(k)
i = w

(k)T

i h(k−1)+b
(k)
i ∈ R. Here w

(k)T

i ∈ R1×m and bi ∈ R are the respective ith row

and entry of W (k) and b(k). To simplify notation, let ŵT =
[
b
(k)
i , w

(k)T

i

]
∈ R1×(m+1)

and ĥT =
[
1, h(k−1)

T
]
∈ R1×(m+1) so that a

(k)
i = ŵT ĥ. Using this notation, we present

the gradient and the Hessian of a loss function with respect to ŵ in Theorem 3.3.1.
Note that if Ĥ in Theorem 3.3.1 is ill conditioned then the Hessian is ill conditioned.

Theorem 3.3.1. Consider a differentiable FFN loss function L = L
(
a
(k)
i

)
= L

(
ŵT ĥ

)
written as a function of ŵ through a

(k)
i for a single training example x. When training

over a mini-batch with N inputs {x1, x2, . . . , xN}, let {h(k−1)1 , h
(k−1)
2 , . . . , h

(k−1)
N } be the

associated hidden variables of layer k − 1 and let H =
[
h
(k−1)
1 , h

(k−1)
2 , . . . , h

(k−1)
N

]
∈

Rm×N . The gradient and Hessian with respect to ŵ of the mean total loss over the

entire batch L := 1
N

∑N
j=1 L

(
ŵT ĥj

)
, where ĥTj =

[
1, h

(k−1)T
j

]
∈ R1×(m+1), are given

by

∇ŵL =
1

N

N∑
j=1

L′
(
ŵT ĥj

)
ĥj (3.17)

∇2
ŵL =ĤTSĤ (3.18)

where ĤT =
[
ĥ1, ĥ2, . . . , ĥN

]
∈ R(m+1)×N , S = 1

N
diag ([s1, s2, . . . , sN ]), and sj =

L′′
(
ŵT ĥj

)
.
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Proof. Taking the gradient of L with respect to ŵ,

∇ŵL =
1

N

N∑
j=1

L′
(
ŵT ĥj

)
ĥj (3.19)

Differentiating Equation (3.19) again we obtain the desired Hessian

∇2
ŵL =

1

N

N∑
j=1

L′′
(
ŵT ĥj

)
ĥjĥ

T
j

=ĤTSĤ (3.20)

Preconditioned Gradient Descent

In the proposed BNP neural network, we consider a change of variable θ = Mz which
we call a preconditioning transformation. If we consider L as a function of Mz,
the gradient descent Equation (1.24) becomes

zk+1 = zk − α∇zL (Mzk) = zk − αMT∇θL (θk) (3.21)

Using a similar argument as used to derive (3.11), we again obtain a convergence
bound of ‖zk+1−z∗‖ ≤ ρ‖zk−z∗‖ where z∗ is some local minimum and ρ is dependent
on the condition number of ∇2

zL (Mz) = MT∇2
θL(θ)M . Now if M is such that

MT∇2
θL (θ)M has a better condition number than ∇2

θL (θ), then ρ is reduced and
convergence is accelerated. Multiplying both sides of (3.21) by M we obtain the
equivalent update scheme which is the update step used in BNP.

θk+1 = θk − αMMT∇θL (θk) (3.22)

In order to improve the conditioning of the Hessian matrix, we define M := PD.
The matrices P and D are based on the current mini-batch statistics with P acting as

a centering matrix and D as a scaling matrix. Let µT =
[
µ
(k)
1 , µ

(k)
2 , . . . , µ

(k)
m

]
∈ R1×m

and sT =
[
s
(k)
1 , s

(k)
2 , . . . , s

(k)
m

]
∈ R1×m be the vectors consisting of the respective

computed means and variances over each of the m features of the mini-batch coming
from the previous layer. The scaling matrices of the kth layer are given as (3.23).

P =

[
1 −µT
0 I

]
;D = diag

([
1,

1√
sT + ε1T

])
(3.23)

where the division and square root in D are applied elementwise. Note that in
practice, we add a small number to the entries of s to avoid division by zero. Using
Theorem 3.3.1, the Hessian matrix becomes

∇2
zL (Mz) = MT∇2

θL (θ)M = DTP T ĤTSĤPD (3.24)
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We note by [13],multiplying Ĥ by P improves the condition number and

ĤP =
[
1N , H

T
]
P =

[
1N , H

T − 1Nµ
T
]

(3.25)

The additional multiplication by D further reduces the condition number by a theo-
rem of van der Sluis [16] which states

κ2

(
ĤPD

)
≤
√
m+ 1 min

D0 is diagonal
κ2

(
ĤPD0

)
(3.26)

Note that if D0 is singular, and we define the condition number of singular matrices
to be infinity, then D0 does not need to be specified as non-singular. See [13] for more
details.

For a layer where BNP is to be applied, at each training step we first use the
standard backpropagation algorithm to compute ∂L

∂W
and ∂L

∂b
and concatenate these

gradients. We then compute the mean and variances across each feature of the mini-
batch from the previous layer and update the layer weights and biases by (3.22) where
M = PD. In particular,[

bTk+1

Wk+1

]
←
[
bTk
Wk

]
− λPD2P T

[
∂L
∂bk

T

∂L
∂Wk

]
(3.27)

Note that the preconditioning matrices are only used during gradient descent and
are only constructed during training and are not stored in memory. Unlike batch
normalization, there are no explicit normalization layers. For inference, BNP proceeds
like a normal FFN and does not require application of any scaling matrix.

3.4 Experiments

In the following experiments, we compare a BNP FFN with a batch normalized
FFN and a vanilla FFN. For each experiment, we found optimal hyperparameters
for each model using a grid search. For the batch normalized FFN, we apply batch
normalization before each layer as in (3.1) and use running statistics during inference
as in (3.5) and (3.6) with ρ = 0.99 unless noted otherwise. For the BNP FFN, we
use batch statistics for the mean and variance terms in (3.23) and apply BNP to the
gradients of each layer. We add ε to the variance vector to avoid division by zero.
Each network initialization is Glorot Uniform [11] unless indicated otherwise and are
trained using stochastic gradient descent. All networks consist of three layers with
hidden sizes of 100 with an output layer with hidden size 10. Regularization to avoid
overfitting is not applied unless noted.

CIFAR10

The Canadian Institute for Advanced Research 10 (CIFAR-10) database
[27] consists of 60,000 colored images of pixel size 32 x 32 x 3. There are 10 different
classes of images ranging from airplane to dog and to truck. See Figure 3.2 for
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Figure 3.2: Example images from the CIFAR-10 data set.
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Figure 3.3: Training loss (left) and test loss (right) on the CIFAR-10 dataset.

example images. There are 6,000 images of each class and the dataset is split into a
training set of 50,000 images and a test set of 10,000 images. For this experiment,
each image is simply flatten into a vector of size 3, 072 and fed into the network.

For this experiment, the weights in the BNP FFN were initialized using Glorot
Uniform but scaled by 0.75 and the biases were initialized as 0. The ε in (3.23) was
set to 0.5. Each network used ReLU. Results of the experiment are shown in Figure
3.3. Similar to batch normalization, results show that BNP decreases the training
loss and increases the initial test accuracy as compared to a vanilla FFN. We should
note the initial performance on test accuracy of the BNP FFN is comparable to the
batch normalized FFN but tends to overfit more as training progresses. On the other
hand, the BNP FFN is able to obtain a much lower train loss compared to all other
models.

Copyright c© Kyle E. Helfrich, 2020.
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