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ABSTRACT OF DISSERTATION 

 

A BIOPHYSICAL INVESTIGATION OF STABILITY, LIGAND BINDING, 
AND IRON STATE OF CYP102A1 

 

Cytochrome P450s (CYPs) are cysteine ligated Fe-heme monooxygenases that are 
found in all domains of life. In mammals, they have a role in xenobiotic metabolism and 
steroid synthesis, making them a fundamental requirement for survival. In addition, their 
ability to perform a variety of chemical reactions on an array of substrates makes CYPs 
highly sought for biotechnical applications such as wastewater remediation, production of 
potential drug candidates, and creation of drug metabolites. By mutating specific amino 
acids, these enzymes can be engineered to change their substrate binding profiles and 
achieve stereo- and regio-specific chemistry. While these mutations are essential to change 
CYP activity, the major drawback to using them on an industrial scale is a decrease in 
stability of the enzyme. This work elaborated how CYP stability is effected by mutations, 
binding of native and non-native substrates, and changes in iron oxidation state.  

Cytochrome P450BM3 (BM3, or CYP102A1), a bacterial enzyme, was used as a 
model system. In contrast to membrane associated human CYPs, BM3 is soluble and has 
efficient turnover due to the fusion of the reductase partner the heme domain. BM3 is 
naturally selective, but mutations can be incorporated to make it promiscuous, similar to 
CYPs responsible for xenobiotic breakdown. This allowed for the comparison of a selective 
vs. a promiscuous CYP while conserving the greatest possible sequence identity. An 
approach was used combining experimental solution phase data, x-ray crystallography, and 
molecular dynamic simulations. The results showed that mutations resulted in an 
cumulative decrease in stability as promiscuity increased. This reduction in stability was 
due to a decrease in the number of salt bridges and disruption of hydrophobic contacts. 
Regions of P450BM3 were found that could be targeted through mutation to increase the 
stability of a highly promiscuous and active variant known as the pentuple mutant (PM). 
Further investigations demonstrated the impact of native and non-native substrate binding. 
The Gibbs free energy of binding (∆Gb°) was determined for a small library of molecules 
and was rationalized computationally, concluding that attractive dispersion forces negated 
the impact of electrostatic and repulsive forces. In addition, the impact of the iron-heme



 
 
   

 

charge state on CYP stability was examined as a function of promiscuity. In general, there 
was an association between promiscuity and similarities in the stability of the Fe(III) and 
Fe(II) states. This is consistent with a model where the promiscuous variants of the enzyme 
are in a more “reduction-ready” state, and can undergo catalysis with greater ease than the 
wild type enzyme. These findings have implications for the role of CYPs in human health 
and for biotechnical applications.  

KEYWORDS: Cytochrome P450s, Cytochrome P450BM3 (CYP102A1), enzyme 
stability, heme oxidation state 
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 INTRODUCTION 

1.1 Cytochrome P450s (CYPs) 

Cytochrome P450s (CYPs) were first named by Omura and Sato in 1964 due to 

their observation that these enzymes had an absorbance band at 450 nm when reduced 

and CO-bound, leading to the name “pigment-450”.3 Since then, CYPs have been 

intensively studied in relation to their health implications in humans, biological roles 

in other species, and biotechnical applications.  

Cytochrome P450s are a superfamily of Fe-heme cysteine-ligated 

monooxygenases that exist in almost all life forms, including viruses, with 

approximately 20,000 genes currently known.4, 5 Astonishingly, they are all 

characterized by a similar fold and carry out somewhat similar reactions even though 

they have evolved to have distinct substrates and perform various functions that benefit 

a particular species. This includes steroid synthesis and xenobiotic metabolism in 

mammals,6  and playing a major role in the chemical defense of plants.4 The importance 

of CYPs’ roles in nature has made them highly studied, but much more work is needed 

to fully characterize and understand the biophysical properties that are important for 

them to function properly. This work is focused on parsing some of these biophysical 

properties to elucidate further how these amazing enzymes work. 

1.1.1 Catalytic cycle 

As CYPs are monooxygenases, the most common reaction is to use O2 to 

incorporate one oxygen atom into a substrate. Taking advantage of the Fe-heme active 

site, in which the Fe is able to cycle through multiple charge and spin states, allows 

CYPs to perform chemistry that is difficult for most organic chemists to accomplish. 

All CYPs are believed to utilize the catalytic cycle shown in Figure 1.1.  The enzyme 
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is considered in the resting state (1) when the Fe in the heme porphyrin is hexa-

coordinated. The four nitrogens of the porphyrin are ligated in the plane, and a thiol 

from a cysteine residue is coordinated in the distal position. This ligand plays an 

essential role in the generation of compound I (7). Lastly, a water molecule is bound in 

the proximal position, and is the labile ligand. At rest, the d electrons (e-) of Fe(III) 

occupy the lowest energy molecular orbitals, producing a low spin (LS) complex.  

 

When substrate (RH) enters the active site, it occupies space near the Fe heme, 

which causes the bound H2O molecule to dissociate (2). Upon this dissociation, the Fe-

heme becomes penta-coordinate, causing the Fe to move slightly below the plane of the 

heme. This movement leads to a weakening of the interactions of the Fe-heme, causing 

the d-block electrons to occupy higher molecular orbitals, producing a high spin (HS) 

state7, and making the complex a better e- acceptor. This triggers the transfer of one e- 

from the reductase partner, converting the HS ferric species to a HS ferrous species (3). 

At this point, molecular oxygen (O2) is able to bind, returning the Fe-heme to a low 

 

Figure 1.1 Catalytic cycle of Cytochrome P450s. 
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spin state (4).8 This species is a good e- acceptor, facilitating the second e- transfer from 

the reductase partner. The ferric-dioxo state of the heme9 (5) is an excellent Lewis base 

and readily accepts a proton to produce the ferric-hydroperoxy complex, also known as 

compound 0 (6). This complex is also a good Lewis base that allows a second 

protonation step to occur. Upon the release of a H2O molecule, the heme is now in its 

most active state, having formed a short lived iron-oxo intermediate called compound 

I (7)10.  In this state, the oxygen bound can now be transferred to the substrate (8)11-13 

and the enzyme returned to resting state.  

It has taken decades and the collaborative efforts of several research groups to 

fully characterize the complete catalytic cycle of CYPs. In fact, the existence of 

compound I was finally confirmed only recently in 2010 by Prof. Michael Green.10 

Though the general cycle is agreed upon, there are still several questions that remain. 

Recently, it was reported by Johnston et al. that a mixture of the Fe(III) and Fe(II) state 

were present at rest, not just Fe(III) state, for two bacterial and five mammalian CYPs 

expressed in Escherichia coli as well as rat hepatocytes.14 The ratio of Fe(III) to Fe(II) 

at rest can also be altered by the presence of substrate or electron donors,14 meaning the 

current catalytic cycle isn’t as static as previously believed. Our group is interested in 

probing overall protein stability in regards to the ease of transition from the Fe(III) to 

Fe(II) state and how substrates or inhibitors modulates this transition.  

1.1.1.1 Importance of the Fe-cysteine bond on catalysis 

Though the metal center is necessary for catalytic modification of substrates to 

occur, it is the protein environment that regulates the chemistry the metal is able to 

accomplish. In CYPs, the tuning ability comes from the thiolate ligand. The Fe-Cys 

bond plays an essential role in the function and stability of cytochrome P450s. Most 
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CYPs have a similar secondary structure, though they can differ in amino acid sequence 

by as much as 85%.15 There are some conserved sequences in most CYPs, such as an 

alcohol residue in the active site necessary for O2 activation16, 17 and a second acidic 

residue critical for proton transfer to O2, 18, 19
  but the one mainstay is the cysteine 

residue that ligates the heme.  

The only heme proteins other than P450s that can cleave C-H bonds are 

chloroperoxidases (CPO).20 Both enzymes, like nitric oxide synthase (NOS), have Fe-

hemes that are Cys-ligated, in contrast to other heme proteins that store or transport O2. 

What makes heme-thiolate chemistry unique is that these enzymes are capable of 2 e- 

transfers, in contrast to His-ligated heme proteins.21 The Cys-ligation decreases the 

reduction potential of the Fe-heme which makes it one of the most powerful oxidants 

in nature21 and has been compared to a biological blowtorch.8  

This reduction in the Fe-heme potential is based on the fact that the Cys-ligand 

is a good electron donor. The electron donating ability of the thiolate drives the complex 

towards protonation, which leads to the incorporation of an oxygen into the substrate.21 

This is often referred to as the “push effect” which encourages the O2 molecule bound 

to the Fe to cleave, leading to the formation of compound I.22 In this way, the thiolate 

ligand impacts the stability of the enzyme when compound I is formed. This 

stabilization also occurs as a result of hydrogen bonding in the Cys-ligand loop between 

the cysteine ligand and other residues.23 

1.1.1.2 Implications of uncoupled catalysis  

The catalytic cycle of CYPs is tightly regulated to use one molecule of 

atmospheric dioxygen and two reducing equivalents to produce an oxygenated product 

and molecule of water (Figure 1.1, Equation 1.1). Misregulation of the catalytic cycle 
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leads to uncouple catalysis in which the dioxygen molecule is diverted from forming 

product from the substrate. The unintended consequence of unproductive catalysis is 

not only stalled metabolism of substrates but also the creation of radical oxygen species 

(ROS). 

 

There are three main pathways in which uncoupled catalysis can occur in CYPs. 

The first is the autoxidation pathway in which the free radical superoxide (O2
-) is 

released from the Fe(III) complex, shown in step 4 in Figure 1.1 and Equation 1.2. 

Superoxide is quickly converted to hydrogen peroxide (H2O2), another potentially 

damaging compound. The second pathway is the peroxide shunt (Equation 1.3), in 

which H2O2 is released from the Fe(III) complex, shown as step 6 in Figure 1.1 

reverting to the HS Fe(III) state (Figure 1.1, step 2). This pathway can also be exploited 

to jumpstart catalysis without the presence of reducing agents (NADPH), as shown in 
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Equation 1.4. Addition of H2O2 allows for steps 3–5 to be skipped and still get 

productive metabolism of substrate. The peroxide shunt has been used to bypass the 

need for expensive reducing agents for CYP catalysis for large-scale biotechnical 

applications.24 The oxidase pathway is the third uncoupling pathway possible in the 

CYP catalytic cycle, shown in Equation 1.5. Compound I, which in itself is a radical, 

has very high reduction potential, which can lead to it being reduced twice more, 

leading to the formation of a second water molecule if misregulated.  

Several factors lead to uncoupled catalysis, including but not limited to identity 

of the substrate/inhibitor bound 25-28, mutation of residues 7, 17, 29, source of electrons 30-

32 (ex. Cytochrome b5 vs. FAD-FMN reductase), and enzyme promiscuity.33-35 

Regardless of cause, the immediate result of ROS production is damage to the enzyme 

itself, leading to decrease in function, degradation, and aggregation.36 In humans, the 

highest concentration of P450s are found in the liver, but CYPs are also present in the 

majority of organ systems. On a molecular level, the creation of ROS by CYPs leads to 

lipid peroxidation, protein degradation, and cell death. Over time, these molecular 

damages build up and are implicated in aging37-39, carcinogenesis40-42, and several other 

disease states.   

1.1.2 CYP chemistry 

 The canonical CYP reaction is insertion of oxygen into an unactivated C-H 

bond, as seen in the first step of modification of the chemotherapeutic 

cyclophosphamide by liver CYPs (Figure 1.2). Though hydroxylation is an important 

reaction catalyzed by CYPs, they are capable of carrying out a diverse range of 

reactions, including but not limited to sulfoxidation, oxidation, and oxidative 

dehalogenation (Figure 1.3). Of particular interest to xenobiotic metabolism is O- and 
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N-dealkylation (Figure 1.3) as many compounds go through this process to become 

more hydrophilic before elimination.  

 

As CYPs are capable of such complex chemistries, efforts have been made to 

harness their power for biotechnical applications, with an emphasis on controlling 

selectivity and specificity. Highlighting the importance of this field of research is the 

fact that Professor Frances Arnold won the 2018 Nobel Prize in Chemistry for her work 

on directed evolution of enzymes. Much of her research has been dedicated to 

engineering enzymes (particularly CYPs) to perform specific chemistries with high 

efficiencies and sufficient stability for use for commercial purposes.  

This use of engineered enzymes is particularly prominent in the development of 

pharmaceuticals. Whenever a new drug is tested, all metabolites that are made formed 

with percentages over a certain threshold must also be tested for toxicity. Many of these 

metabolites are difficult to synthesize, and those that can be made often use protocols 

that entail the use of harsh chemicals that are bad for the environment. As a result, a 

more efficient source is needed, and biocatalysts are a good solution. In addition, 

 

Figure 1.2. Insertion of oxygen into an inactivated C-H bond as shown by 
chemotherapeutic cyclophosphamide. 
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chemistry performed on a large scale can lead to significant impurities, which means 

extra steps are needed to purify the molecule of interest. 

 

In 2013, Dennig et al. showed that introduction of three mutations 

(R47S/Y51W/I401M) to cytochrome P450BM3 (CYP102A1), a bacterial CYP, made it 

able to hydroxylate monosubstituted benzene rings in the ortho-position, with a 

selectivity of 99:1 as compared to the meta- and para-positions. This finding is 

interesting as it means P450BM3 has potential to be used to make precursors for further 

synthesis of vitamins, flavorings, and several drug molecules.43 The L75/V78/F87 

P450BM3 variant was able to selectively hydroxylate and epoxidize β-cembrenediol, a 

terpenoid natural product, that is being investigated for its antitumor, anti-

 

Figure 1.3 Possible reactions performed by Cytochrome P450s. 
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inflammatory, and neuroprotective properties. Of 13 possible hydroxylation positions 

and three epoxidation positions, these three mutations only hydroxylated the substrate 

at 2 specific positions (C-9 and C-10), and introduced the epoxide at one position. 

However, this increase in specificity came at the detriment of coupling efficiency, with 

the highest reported as 56%.44 Reactivity can also be tuned by changing the residue 

ligated to the heme. Wang et al. showed that mutating the cysteine to a histidine 

diminished the oxidation abilities of P450BM3 but allowed it to be competent as a 

catalyst for cyclopropanation. Cyclopropanation of N,N-diethyl-2-phenylacrylamide 

and ethyl diazoacetate by His-ligated BM3 (with 4 added mutations) produced 

levomilnacipran, a serotonin-norepinephrine reuptake inhibitor used to treat 

depression. Surprisingly, levomilnacipran was produced with a yield greater than 92% 

in anaerobic conditions and 90% when aerobic. Diastereoselectivity of 98% was 

obtained, favoring the cis form with enantioselectivity of 92%.45 

1.2 Human Cytochrome P450s 

Human cytochrome P450s have evolved to be a very diverse family of enzymes. 

They are found in all organs, are involved in a variety of processes, and, if misregulated, 

can be involved in a plethora of disease states. Of the approximately 60 human CYPs, 

most have been characterized, though six still have unknown functions. Of the known 

CYPs, 12% are located in the mitochondrial membrane (Figure 1.4A) and are of the 

class I electron transfer type (electron transferred to CYP via ferredoxin reductase 

(FdR) and Fe-S containing ferredoxin (Fdx) proteins).46 All 12% are selective and 

modify steroids or are involved in vitamin D metabolism. The remaining majority of 

CYPs are localized in the endoplasmic reticulum (ER) and utilize the class II electron 

transfer system (electron transferred to CYP via FAD-FMN containing cytochrome 
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P450 reductase (CPR)) to carry out catalysis.46 Those in the ER range from being 

selective and only able to modify steroids, fatty acids, or vitamins (Figure 1.4C), to 

being extremely promiscuous. CYP3A4 is an example of a promiscuous CYP and 

metabolizes over 50% of xenobiotics in the liver (Figure 1.4D). This highlights the 

fascinating fact that one family of enzymes, all with similar structures, is able to 

perform a wide variety of functions.  

 

Figure 1.4 Human Cytochrome P450 characteristics. 
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1.2.1 Role in steroid and fatty acid turnover 

One of the main functions of human P450s is their role in steroid and fatty acid 

modification. All steroids have the same base structure of four fused rings, and differ 

in the functional groups on those rings, as shown in cholesterol (Figure 1.5A). In 

humans, steroids are necessary for sodium and potassium transport, stimulation of 

gluconeogenesis, and transport and synthesis of amino acids. This is in addition to the 

more commonly known roles, such as cortisol in the fight or flight response, and sex 

hormones in defining secondary sexual characteristics. Cytochrome P450s are involved 

in nearly every avenue of steroid synthesis or metabolism. For example, lanosterol 14α-

desmethylase (CYP51A1) removes 2 methyl groups from lanosterol, a necessary step 

in cholesterol formation that allows it to further differentiate into bile acids and 

hormones.  

 

Six CYPs are involved in the formation of hormones from cholesterol in a 

tightly regulated system. They are also extremely selective; for instance, CYP19A1 

(aromatase) selectively binds androstenedione and testosterone and converts them to 

 

 

Figure 1.5  Structure of an example (A) steroid and (B) fatty acid that both undergo 
modification by CYPs. 

A) B) 
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estrone and estradiol, respectively. Though this system is tightly regulated, loss of 

function and gain of function mutations occur. Inversions in the CYP19A1 gene cause 

it to be regulated by a different promotor, which leads to overexpression of the enzyme, 

leading to aromatase excess syndrome, resulting in shorten stature, osteoporosis, early 

onset of puberty, irregular menstrual cycles in females, and gynecomastia in males.47, 

48 Conversely, lack of CYP19A1 expression leads to aromatase deficiency syndrome, 

in which pseudo-hermaphroditism is reported in females and hypervirilization in 

males.49  

Fatty acids, like steroids, also play several important roles in the human body. 

An example structure, arachidonic acid, is shown in Figure 1.5B. There are two main 

classes: saturated and unsaturated fatty acids. Saturated fatty acids mostly come from 

animal sources, are linear, and tend to pack together, making them solid at room 

temperature. Unsaturated fatty acids usually come from plant and fish sources, contain 

double bounds that causes them to kink, and are liquid at room temperature. 

Unsaturated fatty acids are mostly obtained from our diet, and as they are integral to 

cell membranes, are necessary to maintain shape and porosity of our cells.50 In addition 

to allowing normal metabolic processes to occur,51 unsaturated fats are cardioprotective 

in that they decrease blood pressure and decrease aggregation of blood cells.52, 53 They 

are also involved in movement of smooth muscle and inflammation response an several 

other processes that occur in the human body.54 

It has long been speculated that xenobiotic-metabolizing human CYPs have at 

least one endogenous substrate, and for many of them, it has been found to be 

polyunsaturated fatty acids (PUFA), specifically arachidonic acid.55 CYPs are 

responsible for modifying arachidonic acid by hydroxylation, epoxidation, and allylic 

oxidation56-58 into over 100 distinct bioactive molecules.55, 59 These metabolites can be 
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separated into various classes, including hydroxyeicosatetraenoic acids (HETEs), 

epoxyeicosatrienoic acids (EETs), leukotrienes, and prostaglandins, all of which are 

considered eicosanoids or secondary messengers in signaling pathways derived from 

PUFAs. HETEs and EETs are involved in pathways that lead to vasodilation or 

constriction, promotion or reduction of inflammation, as well as salt uptake and cell 

injury.59 Prostaglandins are important for contractions and relaxations of smooth 

muscle and cardioprotective functions,54 whereas leukotrienes are necessary in the 

signaling pathway that regulates immune responses.60  

As expected for compounds so important to homeostasis of the human body, 

this system is highly regulated. CYP8A1, also known as prostacyclin synthase, a 

member of the class X electron transfer family (CYPs that don’t have a reductase 

partner),46 hydroxylates prostaglandin H2 to prostacyclin. As prostacyclin is a potent 

vasodilator, when too much is produced, prostaglandin H2 can also act as an 

irreversible inhibitor of CYP8A1 stopping catalysis.61 Tyrosine nitration is also known 

to occur in the active site of CYP8A1 to regulate prostacyclin production.62 Changes in 

expression of CYP8A1 that lead to a decrease in prostacyclin production can lead to 

pulmonary hypertension and cerebral infraction.63, 64  

1.2.2 Role in xenobiotic metabolism 

Most xenobiotic metabolism by CYPs in humans occurs in the liver, where 

enzymes convert their substrates into more hydrophilic products that can then be 

excreted from the body. In addition to breakdown of substrates, xenobiotic 

metabolizing CYPs can also activate prodrugs as well as create toxic by-products. 

CYP3A4 is the most prevalent and promiscuous P450 in the liver, making up 

approximately 30% of expressed CYPs in the liver and metabolizing over 50% of 
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current pharmaceuticals.65 To accomplish this, 3A4 has an extremely large and flexible 

active site that is able to accept molecules as large as the antibiotic erythromycin and 

the immunosuppressant cyclosporin, to smaller molecules such as the three ring 

containing omeprazole and two ring containing nifedipine.66 One way these large 

molecules are accommodated is that, unlike other xenobiotic-metabolizing CYPs, 

helices F and G, which are usually positioned directly over the active site and are 

considered its “lid” aren’t positioned this way for 3A4, and have less of a defined helical 

structure.67 The result of the flexibility and therefore promiscuity of CYP3A4 is a 

decrease in stability68 and an increase in drug interactions, whether from induction, 

inhibition, or activation.65  

As a direct consequence of their ability to eliminate foreign substances from the 

body, xenobiotic metabolizing P450s are implicated in the creation of mutagenic, 

carcinogenic, and toxic metabolites. It is thought that at least three-fourths of all 

possible carcinogens must first be activated by P450s.69, 70 Of particular interest is the 

role of the CYP1 family (CYP1A1, CYP1A2, and CYP1B1) in the activation of 

polycyclic aromatic hydrocarbons (PAHs). These planar aromatic compounds are very 

hydrophobic, making them a good substrate for the hydrophobic active site of 

cytochrome P450s. CYP1 enzymes hydroxylate PAHs, and, with the help of epoxide 

hydrolase, make compounds that can covalently bind and damage DNA.71 

Compounding the problem is the fact that PAHs induce expression of CYP1 enzymes 

by binding to the arylhydrocarbon receptor,72 so that the presence of PAHs leads to an 

increase in the concentration of their carcinogenic metabolites. Xenobiotic 

metabolizing CYPs convert exogenous compounds to carcinogens, but they can also do 

the same with endogenous compounds. One of the most prevalent examples of this is 

estrogen metabolism. CYP1B1 hydroxylates 17β-estradiol in the 4-position instead of 
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the 2-position, unlike other P450s,73 which leads to a compound able to covalently 

modify DNA; this has been identified as leading to progression of breast cancer.74 As 

CYP1B1 is mostly expressed in tumors as opposed to healthy tissue, one 

chemotherapeutic strategy is to selectivity inhibit 1B1 so it will no long be able to 

interact with procarcinogens, estradiol, and won’t be able to inactivate other 

chemotherapeutics used to fight the disease.75-77 

 

Xenobiotic metabolizing CYPs are also investigated for their role in activating 

pro-drugs. The use of pro-drugs in the fight against disease is an attractive strategy as 

the drug isn’t activated until an action is done upon it. This makes targeted delivery 

possible, therefore limiting unexpected reactions and decreasing side effects. As a 

chemotherapeutic strategy, currently, most prodrugs are made active by an oxidative 

mechanism, as shown in Figure 1.2, with the hydroxylation of cyclophosphamide. The 

drawback of oxidative activation is that it usually occurs in the liver, and therefore the 

activated drug must travel to the affected area, causing potentially negative interactions 

with healthy tissues along the way.78 As this is a large drawback, more recent strategies 

involve targeting CYPs overly expressed in tumors as well as those that use reductive 

 

Figure 1.6 Activation and deactivation of a 2-aryl-benzothiazole by CYPs.77 
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mechanisms to be activated. An example of the first strategy is 2-aryl-benzothiazoles.79-

82 Though these compounds have not yet entered clinical trials, they are activated by 

CYP1A1 and CYP2W1, where metabolites can either form DNA adducts or revert to 

the prodrug form by CYP2S1 (Figure 1.6).78 Neither of these enzymes is expressed in 

the liver, and CYP2W1 and CYP2S1 have been found to be more highly expressed in 

tumors as opposed to healthy tissue.83-85  AQ4N (Figure 1.7) is an example of a prodrug 

that uses a reductive mechanism for activation, which is especially important as tumors 

have a hypoxic core, making it difficult for reactions that involve insertion of oxygen 

to proceed. AQ4N is a topoisomerase II poison that is anaerobically activated by 

deoxygenation by CYP3A4, CYP2W1, and CYP2S1.86 

 

A third promising strategy to develop prodrugs combines manipulation of CYP 

activity, coordination compounds, and photodynamic therapy (PDT). As proof of 

concept we synthesized three ruthenium (II) complexes with coordinated P450 

inhibitors (Figure 1.8). When irradiated with light, the inhibitors were released from 

the complex and bound to the P450, while the remaining Ru complex was able to 

interact with DNA as a dual targeting strategy. Compound 3, after exposure to light 

inhibited P450 activity with an IC50 of 0.05 ± 0.00 µM, while simultaneously inducing 

DNA damage that significantly diminished protein production.87 

 

Figure 1.7 Reductive activation of the prodrug AQ4N by CYPs.84 
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1.3 Bacterial Cytochrome P450s 

Since the discovery of the first bacterial P450 isolated from a Rhizobium spp. in 

1967,88 over 1,000 bacterial P450s have been classified and named.89 Unlike their 

eukaryotic counterparts, bacterial P450s were found to be soluble, use more diverse 

electron transfer systems, and have a wider variety of functions. Additionally, unlike 

eukaryotes that need CYPs to survive, many bacteria, including Escherichia coli, don’t 

express any P450s. As P450s are mostly nonessential in bacteria, their main roles are 

in formation of secondary metabolites, detoxification, and enabling growth on 

alternative carbon sources.90   

Of the bacterial P450s, P450cam (CYP101) isolated from Pseudomonas putida 

is considered the archetypal P450 and is perhaps the most studied. P450cam, a class I 

P450, catalyzes the 5-exo hydroxylation of camphor that can be used as a carbon source 

for P. putida. P450cam was the first P450 for which the crystal structure was solved7 

and has been instrumental in piecing together the elusive steps of the P450 catalytic 

cycle.8, 16, 18, 91-93 

 

Figure 1.8 Ru(II) complexes capable of P450 inhibition and DNA damage.87 
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1.3.1 P450BM3 – Use as a model system 

 

Competing with P450cam for most studied bacterial P450 is CYP102A1, 

commonly referred to as P450BM3 (Figure 1.9). P450BM3 was first isolated from Bacillus 

megaterium by Miura and Fulco in 1974 as a “system” able to hydroxylate fatty acids.94 

Over a decade later, in 1986, Narhi and Fulco demonstrated the novel (at that time) 

finding that this system is a self-sufficient P450 with a high binding affinity for medium 

to long chain fatty acids.95 In a subsequent publication, Narhi and Fulco showed that 

P450BM3 is self-sufficient as a result of having a mammalian CPR-like FMN-FAD 

reductase fused to the heme domain.96 This fusion allows for extremely efficient 

turnover, and P450BM3 is considered to be the CYP with the highest activity discovered 

to date, with a kcat of 17,000 min-1 for hydroxylation of arachidonic acid.97  

Due to the solubility of P450BM3 and its similarity to class II mammalian 

microsomal CYPs, P450BM3 has been heavily investigated as a model system.15 

P450BM3 can be purified in its full-length form, or alternatively, just the heme or 

 

Figure 1.9 Crystal structure of the heme domain of wild type P450BM3 (PDB ID 
4ZFA). 
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reductase domains separately. As a result, studies on electron transfer can be performed 

that are extrapolated to class II P450s. Particular attention has been focused on the 

impact of how the linker connecting the reductase and heme domains of P450BM3 

modulates how the two partners interact, as compared to the CPR and it’s P450 partners. 

Both the reductase domain of P450BM3 and CPR bind close to the Cys-ligand loop of 

the P450 via the FMN-containing portion of the reductase so that electrons can be 

transferred easily to the heme.  

 

Differences are apparent in how this binding occurs, as P450BM3 interactions 

between the domains can be attributed mostly to weak electrostatic affects seen by 

complementary surface potentials on both domains. In contrast, CPR-P450 binding 

seems to be driven by ionic forces, as there is a cluster of negatively charged residues 

on the CPR surface where it interacts with its P450 partner.2 The impact of this 

difference in residues manifests in the reduction potentials of the FMN cofactor. The 

negatively charged residues at the CPR surface leads to destabilization of the FMN 

 

Figure 1.10 FMN quinone electron cycling that details how electrons are transferred 
in the CYP reductase partner. 
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semiquinone (FMNH), the one e- reduced species, and stabilization of the FMN 

hydroquinone (FMNH2), the two e- reduced species, so that electron transfer to the 

heme occurs from FMNH2 (Figure 1.10). In P450BM3, the hydrophobic and neutral 

residues at the reductase surface lead to a stabilization of FMNH over FMNH2 so that 

electron transfer occurs from FMNH to the substrate bound heme.2 Electron transfer 

from FMNH allows for quick transfer to the heme but also gives P450BM3 tighter control 

of catalysis to decrease the rate of uncoupled catalysis, which is especially important 

as the two domains are connected.  

P450BM3 is naturally a selective enzyme, but mutations can be made that make 

it more promiscuous, and thus similar in function to xenobiotic metabolizing human 

CYPs. Mutagenesis allows for study of the role of residues important for P450BM3 

catalysis, but also the study of conserved residues in order to elucidate their function. 

In addition, the biophysical properties of promiscuous P450BM3 variants can be 

compared to the selective WT enzyme to determine the impact of promiscuity on 

enzyme structure and function. For example, we showed that mutations that increased 

promiscuity of P450BM3  also decreased its stability as a result of a decrease in the 

number of highly stabilizing salt bridges and disruptions to the hydrophobic core.98  

Though there is a decrease in stability, non-native substrates are still able to bind 

favorably by overcoming negative repulsive and electrostatic effects with positive 

dispersion forces with active site residues.98  

1.4 Summary 

Cytochrome P450s are a large family of enzymes that are of continual interest 

to the scientific community due to their role in human health, prevalence in nature, vast 

chemical repertoire, and many more factors. Though much is already known, there are 
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still gaps in our understanding, and methods by which these enzymes can be 

manipulated to our advantage. This dissertation focuses on the biophysical properties 

of P450s to attempt to fill some of these knowledge gaps. Specifically, it focuses on the 

impact of substrate selectivity and iron oxidation state on enzyme stability and function 

as well as how P450s can be exploited to make new potential drug candidates.  
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 EFFECT OF MUTATION AND SUBSTRATE BINDING ON THE 
STABILITY OF CYTOCHROME P450 BM3 VARIANTS. 

Chapter adapted from: Geronimo, I., Denning, C. A., Rogers, W. E., Othman, 

T., Huxford, T., Heidary, D. K., Glazer, E. C., Payne, C. M. (2016). "Effect of mutation 

and substrate binding on the stability of cytochrome P450BM3 variants." Biochemistry 

55: 3594-3606. 

Author Contributions: IG, ECG, DKH, TH, and CMP designed the study, analyzed 

the data, and wrote the paper. IG conducted the molecular dynamics simulations. CAD 

and DKH expressed and purified the proteins, conducted the stability assays, and 

analyzed the data. WER, TO, and TH crystallized the proteins and solved the structures.  

2.1 Introduction 

Protein stability pertains to (a) thermodynamic stability, the resistance to 

unfolding defined by the free energy difference between the folded and unfolded states 

(ΔGstab), and melting temperature (Tm, the temperature at which 50% of the protein is 

unfolded), and (b) kinetic stability, the resistance to irreversible inactivation defined by 

the half-life of the enzyme (t½) at a specific temperature.99, 100 These two definitions of 

stability involve different processes but are usually related when the protein follows the 

classical two-step process , where the native structure (N) first undergoes 

reversible unfolding to an intermediate state (I), leading to an irreversibly 

denatured/unfolded state (U), and eventually, to permanent inactivation due to 

aggregation, misfolding, covalent changes, cofactor loss, or oxidation of sulfur-

containing residues.100-103  

Traditionally, thermodynamic stability has been thought of in regards to 

unfolding of an enzyme as a result of temperature, in which a Tm is determined. 
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Alternatively, thermodynamic stability can be probed by chemical denaturation in 

which a Cm – concentration midpoint (denaturation concentration at which the protein 

is 50% unfolded) is determined. Though chemical denaturation is highly amino acid 

dependent, it has been found that thermal and chemical denaturation impact protein 

unfolding in comparable fashion.104, 105 In addition, similar ∆Gfolding  values are reported 

from chemical denaturation and temperature studies when extrapolated to no chemical 

denaturant or low temperature.106, 107 A linear relationship has also been established 

between denaturation with urea and temperature the caveat being a deviation at high 

urea concentrations,108 Chemical denaturation of proteins can be studied in a variety of 

solvents, at various temperatures, and by a plethora of techniques including UV-Vis, 

circular dichroism (CD), fluorescence, and many more. Though kinetic stability may 

be a more important parameter in cost-effective industrial enzyme utilization, 

thermodynamic stability is inextricably linked to kinetic stability through the unfolding 

process. As increasing resistance to unfolding, via any mechanism, will likely also 

enhance kinetic stability, we focus our work on thermodynamic stability given the 

relative accessibility of thermodynamic stability as an engineering target.  

Human health and biotechnical applications are two fields in which 

understanding thermodynamic stability of proteins is crucial. Cytochrome P450s 

(CYPs) are a super family of heme dependent monooxygenases that have essential 

functions in organisms from all domains of life. Humans have approximately 60 CYP 

enzymes that are necessary for steroidogenesis and xenobiotic metabolism. CYPs 

involved in steroidogenesis tend to be selective whereas those involved in xenobiotic 

metabolism tend to be more promiscuous and turnover a wider variety of substrates. 

Many disease states, including certain cancers,109, 110 liver diseases,111-113 glaucoma,114-

116 and vitamin deficiencies117, 118 can be traced to mutation and misregulation of 
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particular CYPs. Mutations, in particular, impact protein folding, which can therefore 

lead to differences in stability. Understanding the thermodynamic stability of enzymes 

in various disease states could help develop possible remedies to improve those 

afflicted.   

Additionally, compounds and drugs made for commercial use are produced in 

large-scale preparations that often involve the use of harsh and toxic chemicals that 

have to disposed of. Using biocatalysts, such as CYPs, is an attractive solution as 

reactions can be done without the use of organic solvents and the chemistry done can 

be highly tuned. One of the main drawbacks to this strategy reaching fruition is the 

lowered stability of enzymes typically able to perform the reactions of interest. 

Understanding how to increase enzyme stability while not impacting their activity is of 

extreme importance.  

Cytochrome P450BM3 (CYP102A1) is a bacterial CYP from Bacillus megaterium 

that has been extensively studied in recent years because of its potential as a biocatalyst 

in the production of fine chemicals, environmental remediation, as well as a model for 

human CYPs. P450BM3 is an excellent candidate because it has the highest known 

monooxygenase activity among the P450 enzymes,97 which is attributed to efficient 

electron transfer due to fusion of the mammalian-like FAD-FMN reductase and heme 

domain in the single polypeptide chain.119 P450BM3 catalyzes the hydroxylation and/or 

epoxidation of fatty acids, fatty amides, and alcohols but can be engineered to bind non-

native substrates. Random mutagenesis and directed evolution have produced more 

promiscuous variants capable of catalyzing the oxidation of non-native substrates, 

particularly drugs normally metabolized by human P450s. For example, P450BM3 

containing the D251G and Q307H mutations is active toward nonsteroidal anti-

inflammatory drugs,120 that containing F87V and A82F toward proton pump 
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inhibitors,121 and that containing R47L, F87V, and L188Q  [triple mutant (TM)] toward 

drug-like molecules such as dextromethorphan and 3,4-

methylenedioxymethylamphetamine. 122 123 

There has been interest in using TM P450BM3 as a platform from which to develop 

additional variants that exhibit activity toward other nonnative substrates.124-127 A prior 

computational study of TM, as well as the R47L/F87V/L188Q/E267V quadruple 

mutant (QM) and R47L/F87V/L188Q/E267V/F81I pentuple mutant (PM), linked the 

enhanced catalytic activity of the mutants to the more closed conformation of the 

substrate channel and possibly to electrostatic effects resulting from the bending of 

heme propionate A toward the active site.128 Mutations that are beneficial for nonnative 

substrate catalysis, however, often cause loss of protein stability, limiting the 

application of P450BM3 mutants as industrial biocatalysts. It also precludes their use as 

a starting point in engineering more promiscuous and active variants, as they are less 

tolerant of destabilizing mutations that may be required for nonnative substrate 

binding.129-131  

Effective means of overcoming the destabilization of TM (and other variants 

derived from it) remain largely unknown because the mechanisms behind the 

phenomenon are not well understood. In the case of full-length wild-type (WT) 

P450BM3, the relatively low stability results from the low Tm of the reductase domain 

(47.5°C) compared to the heme domain (64.9°C and a shoulder at 58.7°C) as 

determined by differential scanning calorimetry.132 The appearance of a shoulder at the 

lower temperature for heme domain unfolding suggests WT may unfold by a biphasic 

transition. Thus, one approach to improving stability has been to replace the reductase 

domain with a more thermostable analogue, for example, that of CYP102A3.133 

However, chimeras such as this generally have lower coupling efficiencies and turnover 
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rates.134 Alternatively, Arnold, et al. developed an efficient peroxide-driven variant of 

the P450BM3 heme domain, 21B3, which requires neither the reductase domain nor 

NADPH or O2.24 The 21B3 variant has since been used as a starting point to create 

more thermostable variants through directed evolution,129, 135, 136 though this approach 

suffers from the required time-intensive variant screening process. 

As a rational approach to selection of mutation sites for the stabilization of 

P450BM3 variants, the molecular-level contributions to the stability of the heme domain 

were determined using biochemical, structural, and computational methods. As the 

heme domain can be used as a catalytic center using the peroxide shunt, the studies 

were focused on this one domain. The stabilities of WT, TM, QM, PM, and the single 

mutants E267V and F81I, in the presence and absence of small active site ligands, were 

experimentally measured by chemical denaturation using pulse proteolysis and circular 

dichroism (CD).137 Structural data for WT and PM, as well as PM in complex with the 

native substrate, palmitic acid, and the inhibitor, metyrapone, were obtained to directly 

examine the effects of mutation and binding. High-temperature molecular dynamics 

(MD) simulations were performed to model the unfolding process and describe the 

interactions underlying the biochemical results. Labile regions in PM, which can be 

targeted for mutation to improve stability, were identified based on the experimental 

and computational findings. 

2.2 Experimental procedures 

2.2.1 Biochemical procedures 

2.2.1.1 Cloning and site-directed mutagenesis of P450BM3 

The heme domain (Thr 1 to Thr 463) of P450BM3 containing a C-terminal 6xHis 

tag was cloned into the pCWori vector. All point mutations were incorporated into the 
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heme domain using the QuikChange (Stratagene) site-directed mutagenesis procedure. 

The DpnI-digested PCR reaction was transformed into ultracompetent cells 

(Stratagene) and screened for ampicillin resistance. Colonies were grown in Luria Broth 

with 100 μg/ml ampicillin, followed by plasmid isolation. All mutations were 

confirmed by sequence analysis (Eurofins Scientific). 

2.2.1.2 Expression and purification 

The P450BM3 heme domain proteins were expressed in E. coli BL21(DE3) cells. 

Cells were grown in 1 L of Terrific Broth at 37°C with shaking at 180 rpm until an 

OD600 of 0.7–0.8 was reached. Protein expression was then induced with addition of 

isopropyl β-D-1-thiogalactopyranoside (IPTG) at a final concentration of 0.5 mM. 

Expression was continued for 20 h before the cells were harvested by centrifugation at 

4000 xg for 15 min at 4°C. The supernatant was decanted, and the cell pellet was stored 

at -80°C. For purification, the cell pellets were resuspended in Buffer A (50 mM 

NaH2PO4, 300 mM NaCl, 10 mM imidazole, and 0.1 mM EDTA, pH 8.0 with the 

addition of 0.1 mM phenylmethylsulfonyl fluoride. Lysis was then carried out by 

sonication on ice for 15 min using a microtip with output control of 3 and duty cycle of 

50% (Branson Sonifier 250). Cell debris was cleared by centrifugation at 20000 xg for 

1 h at 4°C. The supernatant was decanted and passed through a 0.45-μm 

polytetrafluoroethylene filter before loading onto a His-Trap column (GE Healthcare) 

equilibrated with five column volumes of Buffer A. The protein was eluted over a 

gradient where the imidazole concentration was linearly increased from 20 to 200 mM 

using buffer B (50 mM NaH2PO4, 300 mM NaCl, and 20 mM imidazole, pH 8.0). The 

fractions containing heme-bound protein were identified by measuring absorption at 

420 nm by UV-Vis spectroscopy (Figure A1), and concentrated to approximately 2 ml 

using Amicon Ultracel-30K Millipore centrifugal units at 4500 xg and 4°C. The protein 
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was then loaded onto a Hi-Prep 26/60 Sephacryl S200 HR column equilibrated in 20 

mM Tris and 150 mM NaCl, pH 8.0. Protein fractions containing an A420/280 absorption 

ratio >1.4 for WT, >1.3 for TM, and >1.2 for F81I, QM, and PM were collected and 

concentrated to between 10 and 20 mg/ml using an Ultracel-30K centrifugal filter unit. 

For E267V, the protein was isolated in the high-spin state, so fractions with an A394/280 

of >1.3 were collected and concentrated. Protein concentration and quality was 

determined by CO binding (Figure A2).138 For storage, glycerol was added to the 

protein for a final concentration of 20%, and aliquots were frozen in a dry ice ethanol 

bath and placed at -80°C. 

2.2.1.3 Pulse proteolysis 

The pulse proteolysis procedure was adapted from the work of Park and 

Marqusee.139 The protein was prepared by thawing on ice followed by buffer exchange 

into 10 mM Tris (pH 7.4) using a Micro Bio-Spin 6 chromatography column (Bio-Rad). 

The protein was then diluted to 1.7 mg/ml in pulse buffer (20 mM Tris, 10 mM CaCl2, 

and 20 mM NaCl, pH 7.4) with urea added to achieve concentrations ranging from 0 to 

6.8 M. The samples were then incubated for 2 h at room temperature. For experiments 

involving ligands, the midpoint concentration required to saturate binding (Kd) was first 

determined by measuring the change in heme absorption as a function of ligand 

concentration. The protein was then equilibrated in pulse buffer containing the ligand 

at 10x the Kd for 10 min prior to the addition of urea. 

After incubation with urea, thermolysin was added to the solution at a final 

concentration of 0.6 mg/ml, gently vortexed to mix, and allowed to react for 1 min at 

room temperature. The reaction was immediately quenched by addition of EDTA to 

give a final concentration of 37 mM and placed on ice. Laemlli sample buffer was 

added, and the samples were placed at 95°C for 1 min, followed by centrifugation for 
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30 s at 17000 xg. Samples (7 μg P450BM3) were resolved on a 4–12% Tris-glycine gel, 

followed by Coomassie Blue staining. Gels were then imaged and quantified using a 

ChemiDoc™ MP equipped with Image Quant software (Biorad), where the intensity of 

the P450BM3 bands were quantified and plotted against urea concentration. The 

concentration midpoint (Cm) was determined by normalizing the data to the fraction 

folded at 0 M denaturant. The data were fit on Graphpad Prism software with a 

sigmoidal dose response equation with variable slope. Cm values were averaged and 

error is reported as the standard deviation from three replicate experiments. 

2.2.1.4 Circular Dichroism 

The heme domain was equilibrated with urea (varying from 0 – 6.8 M) at a 

concentration of 1.7 mg/ml for near UV-visible spectra and 0.1 mg/ml for far UV 

spectra at room temperature as described above, and spectra were taken using a Jasco 

J-815 CD Spectrometer. Due to spectral interference, far UV spectra were taken from 

190–250 nm in 50 mM KH2PO4 buffer at pH 7.6, while near UV-visible spectra were 

taken between 300 and 450 nm with the sample in 20 mM Tris, 10 mM CaCl2, and 20 

mM NaCl at pH 7.6. The addition of ligands was carried out as described for pulse 

proteolysis. The change in ellipticity at 222 and 415 nm was determined and the data 

plotted as a function of urea concentration. 

2.2.2 Crystallography procedures. 

2.2.2.1 Complex formation for crystallization 

Separate samples of both purified WT and PM P450BM3 heme domain proteins 

were diluted in 20 mM Tris-HCl and 150 mM NaCl (pH 8.0) to a final concentration 

of 20 mg/ml with either 3 mM metyrapone (Sigma) or 5 mM sodium palmitate (Sigma). 
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Free protein and small molecule complexes were flash frozen in liquid nitrogen and 

stored in 50 μl aliquots at -80 °C. 

2.2.2.2 Crystallization 

P450BM3 heme domain protein crystals and complex co-crystals were grown at 

room temperature by the hanging-drop vapor-diffusion method. One microliter of 

protein or protein:small molecule complex (~20 mg/ml) was mixed with 1 μl of 

reservoir solution containing 0.10–0.25 M NiCl2 and 5–10% polyethylene glycol 

monomethyl ether (PEG 2000 MME) and then suspended in a sealed compartment over 

1 ml of reservoir solution. Ruby red hexagonal disc crystals grew to a final size of up 

to 0.3 × 0.3 × 0.2 mm in 3–4 days. 

2.2.2.3 Diffraction data collection and processing 

P450BM3 heme crystals and ligand-bound co-crystals were harvested with nylon 

loops and immersed in reservoir solution supplemented with 20 or 30% ethylene glycol 

before being flash-cooled directly in liquid nitrogen. Diffraction data were collected at 

100 K with 0.1° oscillations in continuous (shutterless) mode on a Pilatus-6MF pixel 

array detector at Advanced Photon Source (Argonne National Laboratory) NE-CAT 

Beamline 24ID-C. Because of one large unit cell dimension (c = 705–720 Å) in the 

crystals, diffraction data were collected using a mounted mini-kappa goniometer at a 

crystal-to-detector distance of 900 mm. Raw diffraction intensities were indexed, 

integrated, and scaled in X-ray Detector Software as part of the RAPD package.140 Data 

collection statistics are presented in Table 2.1. 
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Table 2.1 Data Collection, Structure Solution, and Model Refinement Statistics of 
Forms of the P450BM3 Heme Domain. 

 Wild-type  Pentuple mutant 

 No substrate  No substrate Metyrapone Palmitic acid 
Data Collection      

X-ray source APS 24ID-C  APS 24ID-C APS 24ID-C APS 24ID-C 
Wavelength (Å) 0.9792  0.9792 0.9792 0.9792 
Space group P6522  P6522 P6522 P6522 
Unit cell (Å)      

a 55.5  56.0 55.9 55.9 
b 55.5  56.0 55.9 55.9 
c 717.7  711.2 711.0 707.6 

Molecules/asymmetric 
unit 

1  1 1 1 

Resolution rangea 179.44-2.76 
(2.91-2.76) 

 177.81-2.77 
(2.92-2.77) 

177.76-2.77 
(2.92-2.77) 

176.89-2.84 
(2.99-2.84) 

Rsymm 0.077 (0.435)  0.070 (0.323) 0.065 (0.373) 0.091 (0.431) 
Observations 135,949  136,501 134,033 127,981 
Unique reflections 18,145  18,183 18,059 16,866 
Completeness (%) 97.0 (80.2)  97.2 (80.6) 96.2 (74.7) 98.5 (92.3) 
Redundancy 7.5 (3.5)  7.5 (3.4) 7.4 (3.7) 7.6 (5.0) 
Average intensity (I/σ) 16.2 (2.3)  17.7 (3.1) 18.0 (2.4) 14.2 (2.8) 

Structure Solution by Molecular Replacement 
Probe 3NPL  3NPL   
Resolution range (Å) 10.0-4.0  10.0-4.0   
Z-scoreb 11.1  12.8   
LLGb 3113.11  3083.44   

Refinement      
Resolution range (Å) 59.83-2.77 

(2.92-2.77) 
 59.27-2.77 

(2.92-2.77) 
48.42-2.77 
(2.91-2.77) 

117.93-2.84 
(3.02-2.84) 

Unique reflections 17,928 (1,853)  17,997 
(1,228) 

17,883 (1,732) 16,706 
(2,322) 

Protein atoms 3,699  3,688 3,688 3,688 
Ligand atoms 67  67 64 69 
Water atoms 57  61 83 56 
Rwork 0.2466 (0.3347)  0.2008 

(0.2923) 
0.2176 
(0.3219) 

0.2207 
(0.3075) 

Rfree
c 0.3017 

(0.4245) 
 0.2572 

(0.4153) 
0.2627 
(0.4448) 

0.2741 
(0.3784) 

Geometry      
Rmsd bond lengths (Å) 0.002  0.004 0.003 0.003 
Rmsd. bond angles (°) 0.689  0.947 0.739 0.785 

Mean B (Å2)      
    Protein 51.96  49.11 59.21 49.98 
    Ligands 46.73  46.97 49.54 45.47 
    Waters 47.97  39.33 51.77 43.22 
Clashscore 5.61  4.55 5.09 4.94 
Ramachandran plotd      
   Favored 93.9  94.3 95.5 92.6 
   Disallowed 0.2  0.2 0.2 0 
MolProbity scoree 1.71  1.62 1.64 1.72 
PDB accession code 4ZFA  4ZF6 4ZF8 4ZFB 

 a Data in parentheses are for the highest resolution shell. b PHENIX.141 c Calculated 
against a cross-validation set of 5% of the data selected at random prior to refinement. 
d MolProbity.142 e Combines clashscore, rotamer, and Ramachandran evaluations into a 
single score, normalized to the same scale as x-ray resolution. 
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2.2.2.4 X-ray structure solution and refinement. 

The X-ray crystal structures of the P450BM3 heme domains were determined by 

molecular replacement using PHASER within the PHENIX crystallography suite.141, 

143 The coordinates that were used for molecular replacement were from the P450BM3 

heme domain in space group P41212 [Protein Data Bank (PDB) entry 3NPL, no 

associated publication]. The structure was modified to remove all nonbonded atoms 

other than those in the heme prosthetic group, which were set to an occupancy of zero, 

and the sites of the five mutated amino acids were replaced with alanine. The raw data 

scaled as P622, and systematic absences along the 001 face suggested a six-fold screw 

axis along c. When rotation and translation functions were performed on the probe 

against data from 10 to 4 Å, a clear solution arose for space group P6522. The solution 

contained one complex in the asymmetric unit. Model building was conducted in 

COOT using 2FO-FC electron density maps and maximum likelihood refinement with 

REFMAC5.144, 145 Stereochemical analysis and final adjustments to the model were 

directed by MolProbity.142 WT and PM models were then used to determine complex 

co-crystal structures by removing nonbonded atoms, reassigning B-factors to 15.00 Å2, 

and performing rigid body refinement against all data to a limit of 3.4 Å. The resulting 

models were then refined against all data and the electron density of the bound small 

molecules was identified unambiguously from FO-FC difference maps. Statistics for the 

refined crystallographic models are presented in Table 2.1. 

2.2.3 MD simulations 

A total of 11 systems were simulated: (1) substrate-free WT, R47L, F81I, F87V, 

L188Q, E267V, and PM; (2) WT and PM in complex with palmitic acid (modeled as 

palmitate); and (3) WT and PM in complex with metyrapone. The enzyme was modeled 

using the AMBER ff14SB force field146 and the solvent using TIP3P.147 Force field 
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parameters for the heme-Cys moiety and partial charges for the high-spin, 

pentacoordinate form (characteristic of the substrate-bound enzyme) were taken from 

a previous study.72 Partial charges for the low-spin, hexacoordinate (water being the 

sixth ligand) form (characteristic of the substrate-free enzyme) were calculated using 

the method described therein. The suitability of the heme-Cys parameters was verified 

by monitoring the rmsd and planarity of the heme (Figure A3). Parameters for unbound 

metyrapone and palmitate were derived using the antechamber module148 at the HF/6-

31G* level to be consistent with the GAFF force field.149 The bond between the 

pyridine N and heme Fe in the metyrapone complexes was restrained using a harmonic 

force constant of 10 kcal/mol/Å and an equilibrium bond length of 2.6 Å. 

Using AMBER 14,150 production MD simulations in the NVT ensemble at 300 

K were run for 100 ns using the same simulation parameters that were used during 

equilibration. For the high-temperature simulations, 550 K was chosen for the 

observation of significant structural changes in the protein on a feasible simulation time 

scale (50 ns). A similar temperature (500 K) was used to study substrate-bound 

mesophilic (CYP101 and CYP176A) and thermophilic (CYP119, CYP231A2, and 

CYP175A1) P450s.151 Previous MD studies, employing a temperature as high as 600 

K, have demonstrated that the unfolding mechanism of an enzyme remains essentially 

the same regardless of the simulation temperature.152-154 Three independent trials, each 

with a new set of velocities, were performed for the 550 K simulations. Trajectories 

were analyzed using the cpptraj module of AmberTools 14.150, 155 Native contacts and 

salt bridge networks were determined from the 300 K simulations. A native contact is 

defined as contact between Cα atoms that is (a) at least three residues away in sequence, 

(b) is within a distance cutoff of 6.5 Å, and (c) has an occupancy greater than 67%. A 
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salt bridge is defined as interaction between the O atom of Asp/Glu and protonated N 

atom of Arg/Lys/His within a distance cutoff of 4.0 Å. 

2.2.3.1 Preparation of systems for MD simulations 

The systems were prepared using the tleap module of AmberTools 14.15078 

Initial coordinates of the substrate-free wild-type (WT) P450BM3 and 

R47L/F87V/L188Q/E267V/F81I pentuple mutant (PM) were taken from the crystal 

structures 1BU7 (molecule B)2 and 4ZF6, respectively. Substrate-free, single-point 

mutants were prepared from 1BU7 (molecule B). For the substrate-bound enzymes, 

4ZFA, 4ZFB, 4ZFD, and 4ZF8, were used as starting structures for the WT:palmitic 

acid, PM:palmitic acid, WT:metyrapone, and PM:metyrapone complexes, respectively. 

Protonation states of titratable residues were assigned based on pK values calculated 

using H++156-158 and visual inspection at pH 7.4. Asp and Glu residues were 

deprotonated, except for the buried residue E409, while Arg and Lys residues were 

protonated. H361 was assigned as HID (Nδ protonated); H116, H171, H388, and H408 

as HIE (Nε protonated); and H92, H100, H138, H285, H410, and H426 as HIP (both N 

protonated). H236 and H266 were assigned as HIP and HID in the substrate-free 

enzyme, and HIE and HIP in the substrate-bound enzyme. The total charge of WT 

P450BM3 is -7. The appropriate number of sodium ions, depending on the mutation and 

substrate present, was added to neutralize each system. Crystallographic water 

molecules were retained, and the whole system was solvated in a truncated octahedral 

box of TIP3P water,147 with a buffer distance of 12 Å between each wall and the closest 

atom in each direction. After solvation, each system consisted of approximately 53,000 

atoms.  

All simulations were performed using AMBER 14.15078 The force constants 

used are discussed in the main text. Periodic boundary conditions were applied using 
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the Particle Mesh Ewald method159 with a non-bonded cutoff of 10 Å. Energy 

minimization was done in two stages: (1) with the solute initially restrained with a 

harmonic force constant of 5.0 kcal/mol/Å2 to allow water and ions to relax, followed 

by (2) minimization of the entire system. At each stage, minimization was done using 

the steepest descent algorithm for the first 1000 steps and conjugate gradient algorithm 

for the last 1000 steps. In the case of the mutants, residues within 5 Å of the mutated 

residue were allowed to relax for 2000 steps prior to unrestrained minimization of the 

entire system.  

The system was then heated from 0 to 300 K for 50 ps with Cα atoms restrained 

with a harmonic force constant of 5.0 kcal/mol/Å2. Bonds involving hydrogen were 

constrained using the SHAKE algorithm,160 and a 2-fs time step was used for time 

integration. The temperature was controlled using Langevin dynamics161 with a 

collision frequency of 1.0 ps-1. NMR weight restraints were also used to linearly 

increase the temperature to avoid instabilities in the simulation. The system was 

equilibrated at constant pressure over a 200-ps period, during which the force constant 

was incrementally reduced (5.0, 2.0, 1.0, and 0.5 kcal/mol/Å2). Equilibration of the 

unrestrained system was then continued for 2 ns. Isotropic position scaling was used to 

maintain the pressure at 1 atm, with a relaxation time of 2 ps. As the system proved to 

be initially unstable in the case of substrate-free enzymes, heating was done in two 

stages (0–100 K for 20 ps at constant volume followed by 100–300 K for 80 ps at 

constant pressure), the duration of restrained equilibration was doubled, and a smaller 

time step of 1 fs was used. 

The final structure was used as the starting point for production simulations in 

the NVT ensemble at 300 and 550 K using a 2-fs time step. Heating from 300 to 550 K 

and equilibration of the system prior to production followed the same procedure 
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described above, except for unrestrained equilibration, which was conducted for only 

200 ps.  

2.3 Results 

2.3.1 Mutation-induced substrate promiscuity is correlated with reduced P450BM3 
stability 

  

It has previously been shown that the introduction of five mutations (R47L, 

F81I, F87V, L188Q, and E267V) into the heme domain of P450BM3 allows the enzyme 

to shift from selectively oxidizing fatty acids to modifying larger, more complicated 

 

Figure 2.1. Mutations in P450BM3 that result in substrate promiscuity destabilize the 
protein. (A) Wild-type (WT) P450BM3  (1.7 mg/ml) was equilibrated in urea for 2 
hr, followed by a 1 min incubation with thermolysin (10 mg/ml) and then resolved 
by SDS-PAGE. The upper band corresponds to P450BM3 and the lower band to 
thermolysin. The amount of intact P450BM3 was quantified for each urea 
concentration to determine the midpoint for stability. Pulse protelysis experiments 
were done at room temperature in pulse buffer (20 mM Tris, 10mM CaCl2, 20 mM 
NaCl pH 7.6). (B) SDS-PAGE of the pentuple mutant, PM, after pulse proteolysis 
at varying urea concentrations. The procedure followed was the same as that for 
WT. (C) Normalized data from panels A and B, where the fraction of intact P450BM3 
is plotted vs. urea concentration. The filled squares correspond to data for PM and 
filled circles for WT.   
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drug-like molecules.124, 127, 162, 163 To gain insight into the effect of these mutations on 

the global stability of the protein, the heme domain of WT and the promiscuous mutant, 

PM, were subjected to chemical denaturation studies (Figure 2.1). The urea 

concentration midpoint for stability (Cm) was measured for WT and PM (Table 2.2), 

with a Cm of 5.4 ± 0.5 M for substrate-free WT. The PM P450BM3 protein was much 

less stable, with a midpoint of 2.7 ± 0.2 M. Subsequent studies of WT unfolding by 

pulse proteolysis, similar to results published by Munro,132 indicated a biphasic 

unfolding with a higher Cm of 5.3 ± 0.4 M and a lower Cm of 3.2 ± 0.2 M. 

Table 2.2 Urea concentration at the denaturation midpoint (Cm, M) determined by pulse 
proteolysis for substrate-free and bound P450BM3 variants.a 

 

 

 

 

 

 

 

a Error is report as standard deviation from three independent experiments. b WT 
exhibits biphasic unfolding. The higher Cm is reported, but other experiments       
demonstrate more clear biphasic character resulting in two Cm values. 

 

Because pulse proteolysis primarily uncovers changes in tertiary structure, the 

effect of the mutations on the stability of protein secondary structure, particularly α-

helical content, was measured in the presence of urea by CD (Figure 2.2A). As 

anticipated, the WT and PM denaturation Cm values were higher than those observed 

by pulse proteolysis, with values of 5.9 M for WT and 4.1 M for PM. This is consistent 

Variant Substrate 

None Metyrapone Palmitic acid 

WT 5.4 ± 0.5b 3.9 ± 0.2 4.9 ± 0.4  

F81I 4.7 ± 0.1 4.8 ± 0.1 4.8 ± 0.1 

E267V 4.4 ± 0.1 3.6 ± 0.2 4.5 ± 0.1 

TM 3.2 ± 0.1 3.4 ± 0.2 3.3 ± 0.1 

QM 3.2 ± 0.2 4.0 ± 0.2 3.3 ± 0.1 

PM 2.7 ± 0.2 3.8 ± 0.2 2.7 ± 0.2 
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with the expectation that loss of secondary structure will require higher concentrations 

of denaturant than for disruption of the tertiary structure. The stability of the heme 

cofactor environment was also measured by following the change in the Soret region at 

415 nm (Figure 2.2B). The implication of different Cm values by various techniques 

suggests a number of intermediate states of unfolding are present that can only be found 

by probing the enzyme by numerous methods. The stability of the heme in PM was 

reduced compared to that of WT, with a Cm of 3.1 M versus a Cm  of  5.4 M for WT. In 

both cases, the stability of the heme environment was lower than that of the overall 

protein secondary structure. As the protein concentration was held constant for CD 

experiments, the difference in the baselines is the result of differentness of compaction 

(Figure 2.2A) and heme environment (Figure 2.2B) between the WT and PM. Pulse 

proteolysis of the single-point variants, E267V and F81I, and multiple mutants, TM 

and QM, indicated that all mutations had a destabilizing effect on the substrate-free 

enzyme (Table 2.2). 

 

Figure 2.2. Mutations induce destabilization of secondary and active site structure. 
(A) Changes in secondary structure measured by circular dichroism as a function of 
urea. P450BM3  (0.1 mg/ml) was incubated in varying concentrations of urea (in 50 
mM KH2PO4  buffer pH 7.6) for 2 hr before CD spectra were obtained. (B) Stability 
of the heme monitored in the Soret region. To monitor active site stability, P450BM3 
(1.7 mg/ml) was incubated in varying concentrations of urea for 2 hr before spectra 
were taken. Due to spectral interference, pulse buffer (20 mM Tris, 10 mM CaCl2, 
20 mM NaCl, pH 7.6) was used. In all plots, WT is shown as filled circles and PM 
as filled squares. 
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2.3.2 Inhibitor and substrate binding modulates stability 

The effects of inhibitor binding on the stability of WT and PM BM3 were 

measured using metyrapone, which inhibits P450 enzymes through direct coordination 

of the pyridine nitrogen with the heme Fe; this prevents the enzyme from oxidizing its 

substrate. Surprisingly, by pulse proteolysis, the stability of the WT enzyme decreased 

when it was bound to metyrapone, from 5.4 ± 0.5 to 3.9 ± 0.2 M (Figure 2.3A). The 

destabilizing effect of metyrapone on WT secondary structure was also observed by 

CD by which the Cm reduced from 5.9 to 5.1 M. The heme environment too reflected a 

disruption, with a reduction in the Cm from 5.4 to 4.7 M (Figure 2.3C, D). In marked 

contrast, the tertiary structure stability of metyrapone-bound PM increased from a Cm 

of 2.7 ± 0.2 to 3.8 ± 0.2 M (Figure 2.3B). No significant modulations in the stability of 

the secondary structure were observed by CD, with Cm values of 4.1 M vs 4.2 M (Figure 

2.3C). However, the stability of the heme environment increased, with a shift from 3.1 

to 4.1 M (Figure 2.3D). The tertiary structure of metyrapone-bound E267V was less 

stable, while the F81I, TM, and QM complexes were more stable than their respective 

substrate-free forms, with the greatest effect seen for the least stable variants (Table 

2.2). 
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The WT P450BM3 enzyme is selective for the hydroxylation of fatty acid 

substrates, such as palmitic acid. Binding requires the hydrophobic tail of the fatty acid 

hydrocarbon chain to be in the proximity of the heme for hydroxylation to occur. 

Substrate binding was expected to increase the stability of WT based on previous 

studies.164 Instead, only a minor change was observed, with a decrease to 4.9 ± 0.4 M 

determined by pulse proteolysis, and a slight decrease detected by CD, to 5.7 M. For 

PM, palmitic acid had no significant impact on the stability of the secondary structure, 

with the Cm decreasing from 4.1 to 4.0 M (Table 2.3). This was also seen with pulse 

proteolysis, where the Cm was 2.7 ± 0.2 M in the presence or absence of palmitic acid. 

The stabilities of E267V, F81I, TM, and QM were also unaffected by palmitic acid 

binding.      

 

Figure 2.3. The inhibitor, metyrapone, shifts the stability of WT and PM in opposite 
directions. (A) WT stability as measured by pulse proteolysis, where filled circles 
correspond to the enzyme without the inhibitor and open circles to the enzyme with 
the inhibitor. (B) PM stability measured by pulse proteolysis, where filled squares 
correspond to the enzyme without the inhibitor and open squares to the enzyme with 
the inhibitor. (C) Stability of the secondary structure and (D) heme environment in 
the presence of metyrapone measured by circular dichroism. For all data in panels 
(C) and (D), WT is shown as open circles and PM as open squares. 
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Table 2.3. Urea concentration at the denaturation midpoint (Cm, M) determined by CD 
of substrate-free and bound BM3 variants. 

Variant Ligand Active Site Secondary Structure 

 

WT 

None 5.4 5.9 

Metyrapone 4.7 5.1 

Palmitic acid - 5.7 

 

PM 

None 3.1 4.1 

Metyrapone 4.1 4.2 

Palmitic acid - 4.0 

 

2.3.3 X-ray crystal structure of the P450BM3 heme domain is in a closed confirmation 

 To directly observe the effects of mutation and ligand binding on the P450BM3 

structure, X-ray crystallography was conducted on WT and PM P450BM3 proteins. 

Though the conditions of crystallization differ from the experimental conditions, 

crystallization is helpful to understand the lowest energy conformations of the P450BM3 

variants. The C-terminal His-tagged proteins used in this study failed to crystallize 

under conditions reported in previous structural studies.2, 165 However, crystals of a 

unique hexagonal crystal form grew under conditions of nickel and low molecular 

weight polyethylene glycol (PEG). Refinement of the WT X-ray crystal structure was 

performed against diffraction data at a limit of 2.76 Å resolution and resulted in a model 

with excellent stereochemistry (4ZFA). The structure revealed that, in this hexagonal 

crystal form, P450BM3 exhibits the closed conformation that is typically observed in 

substrate-bound complex models (Figure 2.4A). Movement between the open and 

closed conformations involves en bloc rotation of a segment composed roughly of 

amino acids 168 to 267 that encompass helices F - I, as well as the loops that join them 

(Figure 2.4B). Helices F and G, along with helix B', form the lid domain of the substrate 
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access channel, which is lined by the F/G loop on one side and the 310 helix (residues 

16–20) and β-sheet 1 on the other (Figures 2.4C and 2.4D). 

 

Crystal packing is mediated by a nickel ion that is coordinated by amino acid 

residues D338 and E348 and the N-terminal threonine at the interface between 

crystallographic neighbors along the six-fold screw axis. However, besides slight 

changes to the side chain geometries, this interaction does little to perturb the local 

 

Figure 2.4. Crystal structures of substrate-free (open conformation) and substrate-
bound (closed conformation) WT P450BM3. The protein is shown in cartoon 
representation and the heme and residues of interest are shown in stick. (A) The 
closed conformation, represented by 4ZFA is shown in gray while the fully open 
conformation is represented by 1BU72, molecule B (green). (B) Helices F, G, and 
I undergo significant displacement upon substrate binding. A PEG molecule 
found in the substrate channel of 4ZFA is shown in ball-and-stick. E267 forms a 
salt bridge with K440 in both conformations and hydrogen bond with T438 in the 
closed conformation. F81 forms contacts with L181, F205, I209, and I263, which 
rearrange upon substrate binding. (C) and (D) The region nomenclature and 
mutated residues in PM P450BM3 are illustrated to aid in discussion. R47 is located 
in β-sheet 1, F81 in helix B', F87 between helices B' and C, L188 in helix F, and 
E267 in helix I. Crystal structure solved by W.E. Rogers, T. Othman, and T. 
Huxford. 
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structure relative to either the open- or closed-conformation P450BM3 crystallographic 

models  (1BU7,2 molecule B and 1FAG,165 respectively). Similarly, coordination of a 

nickel ion by the side chains of H138 and H426 appears to do little more than change 

these surface-exposed residues to alternate rotamers. H285 rotates to contact a surface-

exposed nickel ion. Even less change is observed due to nickel ion binding at H236. 

Therefore, the involvement of nickel in mediating crystal packing does not appear to 

be responsible for the closed conformation observed in the substrate-free WT model. 

Analysis of the heme does not reveal any differences from previously reported 

P450BM3 crystal structures. What is evident within proximity of the enzyme’s active 

site, however, is a strong peak of electron density that occupies the space previously 

observed to house palmitoleic acid in the complex X-ray co-crystal structure (1FAG). 

The ligand density refines best as a PEG fragment that is five ethylene glycol units in 

length (Figures 2.5 A, B). As in the previously reported P450BM3:palmitoleic acid 

complex model, the bound ligand displaces R47, F87, and L188, as well as I263 and 

L437. Therefore, it is apparent that binding of the linear PEG molecule at a distance of 

> 8 Å from the heme iron within the base of the substrate access channel casts the WT 

P450BM3 crystal structure in its closed conformation. The structure also contains an 

ethylene glycol molecule bound at the active site where a water molecule is typically 

found (Figure 2.5 C, D). 
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Figure 2.5 Omit maps for bound ligands in WT and PM P450BM3 x-ray crystal 
structures. (A) 2Fo-Fc difference electron density map for the crystallographic 
model of WT (4ZFA) contoured at 2.0σ showing the heme and PEG. (B) Fo-Fc omit 
map contoured at 7.0σ and calculated for a modified final WT model lacking only 
the PEG shown covering the same portion of the final refined model. (C) A portion 
of the final refined 2Fo-Fc difference electron density map (blue) for the WT model 
contoured at 2.0σ with the corresponding portion of the final refined model 
containing the heme and bound ethylene glycol (yellow carbon atoms). (D) Fo-Fc 
omit map (green/red) contoured at 9.0σ and calculated for a modified final WT 
model lacking only the ethylene glycol molecule shown covering the same portion 
of the final refined model. (E) 2Fo-Fc difference electron density map for the 
crystallographic model of PM bound to palmitic acid (4ZFB) contoured at 2.0σ 
showing the heme and palmitic acid. (F) Fo-Fc omit map contoured at 7.0σ and 
calculated for a modified final PM:palmitic acid complex model lacking only the 
palmitic acid shown covering the same portion of the final refined model. (G) 2Fo-
Fc difference electron density map for the crystallographic model of PM bound to 
metyrapone (4ZF8) contoured at 2.0σ showing the heme bound to metyrapone.  (H) 
Fo-Fc omit map contoured at 9.0σ and calculated for a modified final 
PM:metyrapone complex model lacking only the metyrapone shown covering the 
same portion of the final refined model. Crystal structure solved by W.E. Rogers, 
T. Othman, and T. Huxford. 
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2.3.4 The X-ray crystal structure of PM P450BM3 is similar to that of WT 

Crystals of the PM P450BM3 formed in the same space group as the WT protein, 

and X-ray diffraction data of nearly identical quality were obtained for both crystals. 

Independent solution and refinement of the PM P450BM3 X-ray crystal structure 

revealed that it also adopts the closed conformation (4ZF6), with a PEG molecule 

positioned within the normally solvent-filled base of the substrate access channel. 

 

Though the replacement of five amino acid side chains in PM does not 

significantly influence the fold or conformation of the P450BM3 protein, there are a few 

notable differences (Figure 2.6). Replacement of R47 with leucine (R47L) creates a 

cavity into which the side chain of Q73 moves, positioning it for interaction with Q188, 

which occupies the same position in WT near the end of the bound PEG. The E267V 

 

Figure 2.6 Crystal structures of WT (4ZFA, gray) and PM (4ZF6, green) BM3. 
The protein is shown in cartoon representation and the heme and mutated residues 
are shown in stick. The PEG molecule in the channel is not shown for clarity. E267 
forms interactions with T438 and K440, which are lost upon mutation to valine. 
Q73 moves into the cavity left by the R47L mutation and could potentially interact 
with Q188. Crystal structure solved by W.E. Rogers, T. Othman, and T. Huxford. 
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mutation eliminated the interaction with the T438 and K440 side chains observed in the 

WT closed conformation model. 

Mutation of F87 to valine (F87V) creates space above the heme porphyrin ring 

system adjacent to the O2 binding site. The effect of this mutation on the environment 

at the O2 binding site is evidenced by the severe change in orientation of the proximally 

bound ethylene glycol molecule relative to its position in the WT structure. Moreover, 

replacement with valine obviates the need for movement of the longer F87 side chain 

upon substrate binding. That movement, together with similar rearrangement of the 

I263 side chain, creates a hydrophobic cavity into which the hydrocarbon tail of long-

chain fatty acids can anchor themselves. Therefore, the F87V mutation expands the 

active site, which would allow closer approach of substrates to the heme. 

Comparison of the crystal structures of the PM:PEG complex (4ZF6) and the 

substrate-free R47L/Y51F/F87V/E267V/I401I mutant (4RNS166) (Figure A4 A) 

suggests that the predominant form of PM in the absence of a ligand in the channel 

would be the closed conformation. Among the common substitutions of the two 

mutants, only L47 differed significantly in side chain position. Additionally, the 

neighboring Q73 side chain points outward unlike in PM (Figure A4 B).  

 

2.3.5 X-ray co-crystal structures of WT and PM P450BM3 with substrate or inhibitor 

Complexes of PM P450BM3 with the ligands palmitic acid (substrate) and 

metyrapone (inhibitor) were crystallized in the same crystal form as the WT and PM 

proteins described previously, and X-ray co-crystal structures were refined to 2.84 Å 

(4ZFB) and 2.77 Å (4ZF8), respectively. The PM:palmitic acid complex model is 

similar to the WT P450BM3 structure in complex with palmitoleic acid. In both, the 

carboxylate group of the substrate forms a hydrogen bond with the hydroxyl group of 



47 

Y51. However, the PM enzyme also involves the side chain of Q188 in anchoring the 

substrate. At the opposite end, the F87V mutation leaves a hydrophobic pocket that is 

amenable to accommodating the hydrocarbon tail without requiring movement of the 

phenylalanine side chain. In general, PM P450BM3 appears to be better suited to stably 

enfold its substrate, palmitic acid, in its binding site (Figure 2.5 E, F). 

The PM:metyrapone complex crystal structure reveals a clear density for the 

inhibitor ligand at the active site and no evidence of elongated electron density in the 

vicinity of the fatty acid/PEG binding site (Figure 2.5 G, H). The pyridine nitrogen of 

metyrapone coordinates with the heme iron, as observed in complexes of P450cam and 

CYP3A4.167, 168 The Fe–N distance in the P450BM3 PM:metyrapone complex is 2.62 Å. 

The average error in coordinate positions throughout the model as estimated by the 

maximum likelihood target function is 0.4 Å. The F87V mutation allows for 

metyrapone binding since the F87 side chain in either the substrate-bound or unbound 

conformation of WT would collide with metyrapone as it appears in the refined 

PM:metyrapone crystallographic model. This provides direct evidence of how mutating 

residues near the heme active site can significantly alter both the activity and specificity 

of the P450BM3 enzyme toward substrates and inhibitors. 

In addition to these differences at the site of the heme, the lack of a fatty acid or 

PEG molecule within the enzyme causes the leucine side chain that substitutes for R47 

in the PM enzyme to move into a solvent-exposed position. It is unclear what stabilizes 

this conformation. However, it appears that the absence of a fatty acid or its analogue 

allows for conformational flexibility within this region. None of the remaining mutated 

residues, F81I, L188Q, or E267V, appear to change relative to their positions in the PM 

and PM:palmitic acid complex crystallographic models. 
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2.3.6 Molecular dynamic simulations. 

Simulations at 300 K were performed primarily to predict the native contacts in 

each system. Several interesting structural changes were also observed during the 

simulations. In substrate free WT, E267V, and L188Q (modeled from IBU7, molecule 

B), helix A and β-sheets 1-1 (residues 38-44) and 1-2 (residues 47-53) moved closer to 

the core of the protein, resulting in a partially closed substrate channel (Figure A5 A 

and Table A1) similar to IBU7 (molecule A). Helices D – H and β-sheet 4 were also 

shifted in position in E267V because of the elimination of the salt bridge with K440. 

Structural changes in R47L, F81I, and F87V were relatively less significant and mainly 

occurred in helices F and G (Table A1). On the other hand, the lid domain of substrate-

free PM opened from the initial closed conformation (4ZF6) during the 300 K 

simulation (Figure A5 B). For the substrate-bound enzymes, larger backbone rmsds, 

with respect to the crystal structure, were observed for PM:palmitic acid (1.5 Å) and 

PM:metyrapone (1.1 Å) complexes. In addition to the movement of helix F to the N-

terminal end of helix I, the substrates also changed in position in the PM active site. 

Palmitic acid moved closer to the heme, with its carboxylate group within hydrogen 

bonding distance of S72 (Figure A5 C). Metyrapone rotated slightly, bringing the 

uncoordinated pyridine ring in close contact with V87, T260, and I263 (Figure A5 D).  

The unfolding of substrate-free and substrate-bound WT and PM was simulated 

using high-temperature (550 K) MD to rationalize the biochemical results. Simulations 

of the individual mutations R47L, F81I, F87V, L188Q, and E267V were also conducted 

to isolate the effect of each mutation on stability. As a technique, the thermally induced 

unfolding of these proteins provides mechanistic insights into regions of relative 

instability, which are identified by monitoring the native contacts of each residue. 

Native contact plots, averaged over three simulations, for helices F and G [residues 
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171-226 (Figure A6)] and the Cys ligand loop [residues 393-400 (Figure A7)] of 

substrate-free WT and PM are provided in the appendix as examples.  Approximately 

50% of the contacts were lost at the end of the 50-ns run for all simulations of substrate-

free and substrate-bound enzymes. 

 

 

The different regions of P450BM3 are illustrated in panels C and D of Figures 

2.4 to aid in the discussion of the results. Loss of contacts in substrate-free WT began 

at 3 ns in β-sheet 3, particularly those at the C-terminal end of the enzyme (Figure A5). 

A few contacts at helix B' were broken at 4 ns, followed by those of helix G residues 

near the F/G loop at 6 ns (Figure A6 A). In all simulations, the F/G loop and helix B' 

continue to unfold, along with β-sheet 1 and the N-terminal end, exposing the substrate 

channel (Figure 2.7 A and Figure A8 A, B). 

 

Figure 2.7 Snapshots at 25 ns from the 550 K simulations of substrate-free (A) WT 
and (B) PM viewed through the channel entrance. The protein is shown in cartoon 
representation, with helices colored purple, β-sheets green, and loops blue. The 
heme, bound water molecule, Cys ligand, and F393 at the other end of the loop are 
shown as sticks. The hydrogen bond distance between the Cys amide H and F393 
carbonyl O (dO-H) is represented by a dashed line. The Cys ligand loop is still intact 
in WT (dO-H = 1.75 Å), but has begun to unfold in PM (dO-H = 3.98 Å). MD 
simulations performed by I. Geronimo.  
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The total number of native contacts in substrate-free PM is lower (659) 

compared to WT (680), which could explain the loss of PM stability. The increase in 

backbone rmsd within the first 10 ns was slightly faster than in WT (Figure A9 A, B). 

In addition to helix G, contacts were also lost in helices C and F (Figures A6 B), the 

Cys ligand loop [a β-bulge segment below the heme (Figure A7 B)], and β-sheet 1 

within the first 5 ns (Figure A6). This was followed by helix K' and β-sheet 2, which 

are connected to the latter, and helix D. The unfolding process in all simulations is 

similar to that of WT, but with helices D and E unfolding concurrently (Figure 2.7 B 

and Figure A8 C, D). Among the single mutants, early loss of contacts in the β-sheets 

was also observed with L188Q, helix D with L188Q and E267V, and the Cys ligand 

loop with F81I, L188Q, and E267V. Surprisingly, F87V and R47L did not exhibit 

significant unfolding in the first 10 ns, although the increase in backbone rmsd was 

similar to those of the other mutants (Figure A9 C–G).  

The unfolding of metyrapone-bound WT also began at β-sheet 3 albeit earlier 

in the simulation (1 ns). Unlike the substrate-free enzyme, the Cys ligand loop started 

to unfold after 4 ns, followed by helices C, F and G, and β-sheet 4 (5–6 ns). The latter 

is inserted into the channel and forms close contacts with the substrate. Shortly 

thereafter, the other side of the channel (β-sheets 1–2 and helix A) unfolded as well (7 

ns). In comparison, fewer regions unfolded in the PM:metyrapone complex within the 

first 10 ns. Helix B' lost contacts first (2 ns) followed closely by helices F and G (3–4 

ns), and then, β-sheet 1 (6 ns). As with the substrate-free and metyrapone-bound WT, 

helix G (3 ns) and β-sheet 3 (5 ns) in the WT:palmitic acid complex were involved in 

the early stages of unfolding. For the PM:palmitic acid complex, loss of contacts began 

at β-sheet 1 (3 ns), followed by β-sheet 3 (4 ns), helices G and H (5 ns), the Cys ligand 

loop (5 ns), β-sheet 4 (7 ns), and helix J' (8 ns). Generally, the substrate-bound variants 
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displayed the same unfolding process as the substrate-free ones (Figures A10 and A11). 

Each side of the substrate access channel continued to unfold, with the destruction of 

helices F and G extending to β-sheet 5 and, in some cases, even to part of helix I. The 

unfolding of the other portion of the lid domain (helix B') also extended to helix C, 

which consequently allowed the solvent to enter the active site. In contrast, a few 

strands of β-sheet 1 on the other side of the channel remained intact at the end of the 

simulation. For all substrate-bound enzymes, the hierarchy of unfolding in each trial 

simulation is essentially similar. However, the rate at which each side unfolds usually 

differs after ~10 ns (Figure A12); hence, the extent of damage to the channel at the end 

of the 50 ns simulation was not the same.  

2.4 Discussion 

The effects of mutations in the substrate access channel (R47L, F81I, F87V, 

L188Q, and E267V) and binding of the ligands palmitic acid and metyrapone on protein 

conformation and stability were analyzed using experimental and computational 

methods. Pulse proteolysis, which probes the global stability of a protein, indicated that 

PM is less stable than WT P450BM3. Subsequent studies of WT by pulse proteolysis and 

UV-VIS indicate that it may not follow traditional unfolding described by most 

thermodynamic models ( ), as biphasic unfolding was apparent. We 

hypothesize that there are either two populations present unfolding at different rates, or 

an intermediate state that exists long enough to be detected. Further studies will be 

discussed in chapter four elucidating the most likely mode of WT unfolding.  

The crystal structures of WT and PM provide a possible explanation of how the 

mutations destabilize the enzyme. At the entrance of the channel, mutation of 188 in 

helix F from the nonpolar leucine to the polar asparagine can impact its interaction with 
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Q73 in helix B'. Previous studies have shown that variants with substitution at or near 

this residue (L188P, F162I/K187E, F162I/K187E/M237I, and 

F162I/K187E/L188P/M237I) are less stable.169, 170 Within the channel, the mutation of 

E267 to valine, in helix I eliminated the salt bridge with K440 in β-sheet 4, which would 

account for the 1 M decrease in the Cm of E267V. However, its effect on global stability 

appears to be less significant when combined with R47L, F87V, and L188Q mutations, 

as the similar Cm of TM and QM indicates. Residue F81, located in the lid domain (helix 

B'), is within contact distance of L181 in helix F, F205 and I209 in helix G, and I263 

in helix I. Its mutation to the smaller isoleucine would therefore affect hydrophobic 

packing in this region, although pulse proteolysis of F81I suggests that this has a 

relatively minor effect on stability compared to the other mutations. 

The chemical denaturation stabilities could be correlated to high-temperature 

simulations demonstrating the effect of mutations on the unfolding process. A linear 

correlation between Cm and Tm determined from heat inactivation curves of CO binding 

difference spectra was observed for P450BM3.129 A MD study of chymotrypsin inhibitor 

2 also indicated that the overall unfolding mechanisms of chemical denaturation with 

urea and thermal denaturation are similar, in that key residues in the hydrophobic core 

are exposed first.171 Monitoring the decrease in the number of native contacts per 

residue over time revealed that the most labile regions of substrate-free WT P450BM3 

are helices B’ and G in the lid domain and β-sheet 3 in the C-terminal end of the protein. 

Hydrophobic contacts in the lid domain, aside from those observed in the crystal 

structure, include F205 (helix G)–A180 (helix F) and V211/M212 (helix G)–F173 

(helix F) contacts.  

As a biophysical technique to investigate global protein structure, pulse 

proteolysis is advantageous in that it doesn’t require expensive instrumentation, and 
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can be done relatively quickly. Pulse proteolysis uses a protease, thermolysin, to 

determine the proteolytic susceptibility of a partially denatured protein. Using this 

technique, concentration midpoint (Cm) values can be determined and compared for 

various proteins with and without ligands bound. By first incubating the protein of 

choice in urea, it is assumed that after a set period of time there will be an equilibrium 

between the folded and unfolded populations of the enzyme. Thermolysin can then 

digest the unfolded regions of the protein that have been partially denatured. 

Thermolysin is an ideal protease for this application as it can work under a wide range 

of temperatures, pH, and denaturant concentrations.172 Though relatively small, given 

its mass of approximately 35 kDa,173 thermolysin is not small enough to access the 

interior of a larger protein that is properly folded. As thermolysin preferentially cleaves 

at the N-terminus of hydrophobic residues (though there is evidence of broader 

specificity in several proteins),172 this implies that the hydrophobic core must be 

exposed to solvent for cleavage to occur.    

Importantly, for this method to be successful, protein cleavage must be faster 

than protein unfolding while it is incubated with thermolysin, allowing for 

discrimination between the folded and unfolded populations. Determining the length of 

the pulse is essential. Park and Marqusee showed that when the urea concentration is 

below 7 M and thermolysin is in excess,137, 174 a pulse of 1 min is effective for cleavage 

of the unfolded protein.137, 139 As thermolysin is a zinc metalloenzyme that also requires 

calcium,175 addition of EDTA will quickly inhibit activity, so the pulse can be timed 

exactly.176 For our experiments, the thermolysin concentration was approximately 10 

times that of the P450BM3 concentration, and the denaturant concentration was kept 

below 7 M. In addition, when P450BM3 was pulsed with thermolysin without first being 

incubated in urea, generally there was no indication of fragmentation on the gel. 
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Fragmentation would be expected if the enzyme had been cleaved, which indicates 

thermolysin wasn’t able to cut P450BM3 when it is fully folded. Hydrogen/deuterium 

exchange (H/D exchange) coupled to mass spectrometry is another commonly used 

technique to monitor global structure stability of proteins. Unlike pulse proteolysis, 

which takes a snapshot of the protein at one set time, H/D exchange can monitor 

dynamics over a wide time scale taking place from 10 s-1 to days.177 Though this may 

be preferable for some applications, H/D exchange mass spectrometry is often 

prohibitively costly, requires specialized equipment and training, and data analysis is 

time consuming.  

Protein conformational dynamics occur on different time scales, depending on 

the type of motion. Side chain rotations occur on a picosecond to nanosecond time 

scale.178 This is opposed to proline isomerization which is known to be slow, on the 

order of tens to thousands of seconds.179 Thus, observations of different kinetic phases 

by a slow technique such as pulse proteolysis suggests results are due to large 

conformational changes that occur over a 2 hr time frame, and cannot be due to 

rearrangement of residues. 

Additional regions were shown to unfold earlier in PM, notably β-sheet 1 and the 

Cys ligand loop. Early unfolding of the Cys ligand loop is consistent with CD data 

indicating that the heme environment of substrate-free PM is less stable than that of 

WT. L188Q similarly lost contacts early in both regions, suggesting that this mutation 

has a significant contribution to destabilization. Simulations of the single-point mutants 

at 300 K showed that the L188Q mutation caused the most significant structural change, 

based on backbone rmsd at the N-terminal end up to β-sheet 1 of the substrate-free 

enzyme (Table A1), which is presumably destabilizing and might have affected the Cys 

ligand loop. On the basis of analysis of time-correlated atomic motions, these two 
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regions were assigned to the same protein domain, which implies that they move 

cooperatively and cohesively during structural transitions of the protein.180  

As for E267, simulations support the importance of its salt bridge with K440, as 

it was maintained even at high temperature in WT. The concurrent unfolding of helices 

D and E with sections of the substrate channel in PM may also be attributed to the 

E267V mutation, which disrupted hydrophobic contacts such as L150 (helix E)–H266 

(helix I) and I122 (helix D)–L148 (helix E) contacts. R47L did not exhibit significant 

unfolding during the early stages of high-temperature simulations, despite the 

elimination of a salt bridge with another β-sheet 1 residue, E352 (Table A2). This may 

be explained by the fact that leucine is a better β-sheet-former.181 F87V was also 

relatively stable during the simulations, which is inconsistent with differential scanning 

calorimetry data showing that its melting temperature is lower by ~ 4°C than that of 

WT.164 The discrepancy may be attributed to the difficulty in accurately predicting 

slight differences in stability in the case of conservative (in terms of hydrophobicity) 

substitutions such as F81I and F87V using MD simulations, which is exacerbated by 

the lack of available crystallographic evidence; initial coordinates for single-point 

mutant and WT simulations were all derived from 1BU7 (molecule B), which may not 

be adequately representative of the F87V structure. 

Substrate binding generally stabilizes an enzyme.137, 182 However, pulse 

proteolysis and CD data demonstrated that this was not the case with the 

WT:metyrapone complex. This finding suggests a mismatch in complementarity 

between the ligand and enzyme. High-temperature simulations showed that additional 

regions, particularly the Cys ligand loop, unfolded early, which is consistent with the 

observed decrease in Cm for the heme environment. In contrast, the stability of the heme 

region of PM was enhanced by metyrapone, although it is not certain whether this can 
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be attributed to covalent bonding with the heme iron because simulations of P450cam in 

complex with 4-phenylimidazole (Fe–N bond length of 2.21 Å in the crystal 

structure167) showed instability of the Cys ligand loop.151 However, a new salt bridge, 

E380–K312, formed during the simulation (Table A2), and its proximity to the heme 

might contribute to the stabilization of PM. On the other hand, the stability of WT and 

PM was not significantly affected by the presence of palmitic acid, as indicated by pulse 

proteolysis. This finding implies that enzyme conformation of the palmitic acid bound 

and substrate free enzyme are similar with little change to overall structure with ligand 

bound. Computationally it was discovered that though the labile regions in the palmitic 

acid-bound complex of WT and PM are different from the corresponding substrate-free 

enzyme, the unfolding process was observed to be similar. The Cys ligand loop 

unfolded early in both forms of PM but was relatively stable in both forms of WT.  

Increasing the stability of PM is advantageous if it is to be used as a starting point 

to develop more promiscuous variants for biotechnical applications. The lid domain, β-

sheet 1, and Cys ligand loop would be the logical targets for mutation based on the 

hypothesis that delaying the unfolding of the most labile regions would increase the 

global stability of the protein. On the basis of analysis of physical factors that 

differentiate (hyper)thermophilic proteins from mesophilic ones,183-185 several 

approaches for protein stabilization have been attempted such as introducing salt 

bridges,186 increasing structural rigidity,187 and improving hydrophobic core packing.188  

The latter method is promising for P450BM3 on the basis of a previous study on 

the 21B3 variant of this enzyme.135 Five of the eight mutations introduced through 

directed evolution, resulted in an increase of 15°C in T50, happened to conserve 

hydrophobicity. Residues L52I (β-sheet 1) and A184V (helix F) are buried, while L324I 

(helix K), V340M (β-sheet 2), and I366V (helix K”) are located on the surface. The 
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authors hypothesized that these stabilizing mutations counteracted structural 

perturbations caused by previously introduced activity-enhancing mutations given the 

proximity of some residues in the two sets of mutations.135 Interestingly, most of the 

stabilizing mutations are located at or near the labile regions identified in this study. 

Packing interactions in PM P450BM3 can be enhanced by introducing substitutions at 

the hydrophobic patches in the (a) lid domain, consisting of I81, A180, L181, F173, 

F205, I209, V211, M212, and I263, and (b) heme region, including W367, F379, and 

F390. This cluster of aromatic residues presumably stabilizes the Cys ligand loop, as is 

the case in the thermophilic CYP119.151  

Salt bridges contribute to the stability of thermophilic P450s at elevated 

temperatures through hydration effects.189 For instance, CYP175A1 (Tm = 88°C), 

whose closest homologue is P450BM3 (26% sequence identity), has eight salt bridge 

networks (i.e., one that involves more than two charged residues).190 MD simulations 

of P450BM3 variants showed that there are only three networks in substrate-free WT 

(R323/E320/R378/D370, K3/E344/R56/E38, and K94/E247/K98) and four in PM 

(R375/D370/R378, K3/E344/R56/E38, K94/E247/K98/D250, and E292/R296/E293). 

At the N-terminal end of P450BM3, T339 (β-sheet 2) can be mutated to Asp to form an 

extended network with R66 (β-sheet 1) and E60 (helix B). New salt bridges in the other 

labile regions can also be introduced, for example, the D388 (mutated from His)-

K391salt bridge in the loop region near the heme, and the K445 (mutated from Val)-

E140 salt bridge in β-sheet 3.  

Pulse proteolysis, CD spectroscopy, x-ray crystallography, and MD simulations 

elucidated how mutations that destabilize P450BM3 impart affinity for nonnative 

substrates such as metyrapone. The method-dependent variation in stability 

measurements indicates that use of global, secondary structure, and active site 



58 

characterizing methods is necessary to effectively evaluate the effects of mutation on 

P450BM3 stability. Utilizing multiple techniques, when using a chemical denaturant, to 

probe various aspects of protein stability is important as denaturants effect various 

structures differently. In general, more urea was necessary for secondary structure 

unfolding than for global and active site unfolding. This may be due to the fact that 

hydrophobic contacts that keep the global structure together are easier to disrupt than 

the hydrogen bonding of the secondary structure.  

Our models suggest that destabilization generally arose from disruption of 

important salt bridges and hydrophobic contacts and unfolding of the Cys ligand loop 

connected to the heme. The identification of the conserved Cys ligand loop as a key 

contributor to instability suggests that some findings may be generalizable to other 

CYP102A subfamily fatty acid hydroxylases.191 A commonly held view among the 

protein design community is that increasing the promiscuity of an enzyme comes with 

a requisite expense of protein stability. However, Arnold, et al. demonstrated that this 

is not necessarily the case, as more thermostable variants have been produced through 

further directed evolution of an existing mutant without compromising enzyme 

activity.129, 135, 136  

2.5 Conclusions 

Biochemical techniques that used chemical denaturation as well as structural and 

computational methods were used to probe the thermodynamic stability of P450BM3, a 

model system for human CYPs and a candidate for biotechnical applications. From the 

biochemical results it was evident that mutations that increase promiscuity, destabilize 

enzyme stability, but in some cases this stability can be recovered when substrates are 

bound. Though, the crystal structures of WT and PM were globally similar, mutations 
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at position 188 and 267 were most detrimental to enzyme stability. MD simulations 

further parsed the differences that lead to a decrease in stability. Primarily, these 

differences are a loss of contacts in PM, and early unfolding of β-sheet 1 and the Cys-

ligand loop.  

Studies of the role of the Cys ligand loop for protein stability were undertaken; 

particularly the role of residue I401 was investigated. I401 is directly next to the 

cysteine ligated to the heme and was mutated to a proline, which is the naturally 

occurring residue in some CYPs.192, 193 Disruption of the Cys ligand loop by P401 in 

P450BM3 leads to the enzyme being in a naturally high spin state, but also has further 

reaching consequences in that it changes the residue contacts in the I-helix of the 

enzyme, causing it to be more open. This openness leads to a more promiscuous but 

less stable enzyme, similar to PM. More discussion of this mutation will be included in 

chapter four. Additionally, this study and subsequent work demonstrated the possibility 

of biphasic unfolding of WT P450BM3 which will also be discussed in chapter four.  

The characterization of the unfolding process of the P450BM3 variants presented 

herein provides fundamental knowledge that could be used to rationally design stability 

upon an enhanced specificity platform as well as understand the role in stability in 

promiscuous CYPs. Regions involved in the early stages of unfolding are potential 

targets for mutation to develop thermostable variants of the promiscuous PM P450BM3. 
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 MOLECULAR DETERMINANTS OF SMALL MOLECULE 
AFFINITY AND ENZYME ACTIVITY OF A CYTOCHROME P450BM3 

VARIANT. 

Chapter adapted from: Geronimo, I., Denning, C. A., Heidary, D. K., 

Glazer, E. C., Payne, C. M. (2018). "Molecular Determinants of Substrate Affinity 

and Enzyme Activity of a Cytochrome P450BM3 Variant." Biophysical Journal 115(7): 

1251-1263. 

Author Contributions: IG, CAD, ECG, and CMP designed the study, analyzed the 

data, and wrote the manuscript. IG performed the molecular dynamics simulations. 

CAD and DKH conducted the experiments and analyzed the data. 

3.1 Introduction 

 

Characterization of the metabolite profile of a drug candidate is a crucial part of 

the drug discovery and development process. Drug metabolites, largely produced by 

hepatic cytochrome P450 enzymes (P450s), are needed as reference compounds and 

 

Figure 3.1 Peroxide and oxidase uncoupling pathways. The substrate is 
represented by R–H. 
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reactive intermediates for assessing toxicity, drug-drug interactions, and biological 

activity.194, 195 For the preparative-scale synthesis of human drug metabolites, 

CYP102A1 (P450BM3), a fatty acid hydroxylase from Bacillus megaterium, is 

considered an ideal biocatalyst because it has the highest known monooxygenase 

activity among P450s, is relatively stable compared to human P450s, and can be 

expressed at high levels in Escherichia coli.97, 134, 196.Wild-type (WT) P450BM3 has been 

shown to catalyze the oxidation of nifedipine, propranolol, and chlorzoxazone, which 

are substrates of the human P450s CYP3A4, CYP2D6, and CYP2E1, respectively.197 

To take full advantage of P450BM3 in an industrial setting, much research has been 

devoted to further expanding its substrate promiscuity and chemical reactivity through 

protein engineering.122, 125, 127, 166, 196, 198, 199 However, the molecular factors responsible 

for the stability of substrate binding and potential consequences of introducing 

nonnative substrates on the activity and coupling efficiency (i.e., ratio of substrate 

reacted to NAD(P)H cofactor consumed34) of P450BM3 have yet to be determined. 

Peroxide or oxidase uncoupling (Figure 3.1) is of particular concern because it prevents 

product formation, thereby wasting reducing equivalents from the expensive NAD(P)H 

cofactor.33, 200 Furthermore, the production of these oxygen species can do further 

damage to the enzyme itself, causing it to unfold. 
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Interestingly, the P450BM3 variants developed to metabolize additional drug 

classes (e.g., nonsteroidal anti-inflammatory drugs (NSAIDs) like diclofenac, 

ibuprofen, and naproxen), including D251G/Q307H120, 201, RP/FV/EV/FW166, 

RT2/AP/FW166, M11127, 198, 199, and W7D8122 (Table 3.1), do not all share common 

substitutions. However, the mutations, generally located far from the heme active site, 

appear to have a similar functional effect of increasing the flexibility of the lid domain 

(helices B', F, and G, Figure 3.2), as revealed by the unresolved (or very high B factors 

of) lid domain residues in the crystal structures of the substrate-free variants.122, 164, 166, 

199, 201, 202 Molecular dynamics simulations of R47L/F87V/L188Q/E267V/F81I 

pentuple mutant (PM) showed that the lid domain is, indeed, highly labile, and 

consequently, one of the regions that first unfolds at high temperature1. In the case of 

D251G/Q307H (PDB ID: 5DYP201), M11 (PDB ID: 5E9Z199), and RP/FV/EV (PDB 

ID: 4RSN166), the cause of increased flexibility is evident; D251 and E267 are part of 

the region that moves during the opening and closing of the substrate channel and form 

 

Figure 3.2 P450BM3 structure. Regions involved in substrate binding, including 
the lid domain (helices B', F, and G), are labeled in the figure. The heme is shown 
as sticks. 

 

 



63 

salt bridges with K224 and K440, respectively, in WT.191, 203 The higher flexibility of 

the lid domain would account for the ability of P450BM3 variants to accept a broader 

range of substrates.122, 164 Additionally, many of these mutations are made in, or close 

to, substrate recognition sites (SRS) which are regions of high variability in bacterial 

and eukaryotic CYPs thought to be responsible for substrate binding.204 Mutations in 

these regions can easily impact enzyme promiscuity. At least three of the six possible 

SRS are associated with the main ingress/egress pathway way (pw2a) of P450BM3 as 

demonstrated by replica-exchange molecular dynamics (REMD) simulations and 

thermal motion pathway (TMP) analysis of published P450BM3 crystal structures.205, 206 

The crystal structures further showed that substrate-free variants adopt the closed 

conformation characteristic of substrate-bound WT instead of the open conformation. 

This shift to the catalytically ‘ready’ conformation caused by mutation results in a more 

positive heme reduction potential. Consequently, the rate of the first electron transfer 

(believed to be the rate-limiting step207) increases, improving the oxidative activity of 

P450BM3 toward nonnative substrates. 120, 166, 201, 202, 208 
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Table 3.1. List of mutations in functional BM3 variants. 

 

The only crystal structures of drug-bound P450BM3 variants that have been 

reported thus far are A82F and A82F/F87V with omeprazole (PDB IDs: 4KEW and 

4KEY164), A82F/F87V with esomeprazole (PDB ID: 4O4P121), antifungals tioconazole, 

voriconazole, fluconazole and clotrimazole (PDB IDs: 6H1L, 6H1O, 6H1S, and 

6H1T209), as well as PM with metyrapone (PDB ID: 4ZF81). In all structures, the 

Variant Mutations 

RP/FV/EV 166 R47L/Y51F/F87V/E267V/I401P 

RP/FV/EV/FW 166 RP/FV/EV/F81W 

RT2/AP/FW 166 R47L/Y51F/A191T/N239H/I259V/A276T/L353I/A330P/ 

F81W 

M01 125 R47L/F87V/L188Q/E267V/G415S 

M02 125 R47L/L86I/F87V/L188Q/N319T/A964V 

M05 125 M01/F81I/G1049E 

M11 127, 198, 199 M01/E64G/F81I/E143G/Y198C/H285Y 

MT35 127 M11/L437S 

W7D8 122 L52I/I58V/L75R/L86L/F87A/H100R/S106R/F107L/Q109L/
A135S/E140G/F162I/A184V/N239H/S274T/L324I/V340M/ 

I366V/K434E/E442K/V446I 

9-10A 196 V78A/H138Y/T175I/V178I/A184V/H236Q/E252G/R255S/A
290V/A295T/L353V/Y138H/I178V/F205C/S226R/A290V/ 

R47C/K94I/ P142S 
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conformation is notably similar to that of the WT-fatty acid complex (PDB ID: 

1FAG165), raising two important questions: (1) What interactions stabilize a structurally 

different and highly polar drug molecule in the largely hydrophobic active site? (2) 

How would the lack of structural and electrostatic complementarity between substrate 

and enzyme affect activity and coupling efficiency? This study aims to address these 

key mechanistic questions by investigating the binding of a set of drugs of varying size, 

charge, polar surface area, and human P450 affinity. PM P450BM3 was chosen as the 

model system because it serves as a good platform to develop biocatalysts for the 

synthesis of drug metabolites, as well as for diversification of lead compounds; this was 

demonstrated by a study in which a library of mutants containing the PM mutations 

was able to metabolize 77% of the 43 commercial drugs tested by more than 20% .127  

The binding free energies of CYP2C9 (diclofenac, naproxen, S-warfarin), 

CYP2D6 (astemizole, dextromethorphan, 3,4-methylenedioxymethamphetamine or 

MDMA), and CYP2A6 (nicotine, cotinine) substrates, CYP2C9 inhibitors (lovastatin, 

R-warfarin), and metyrapone (Table 3.3, Table B1) were determined using 

spectroscopic binding titrations and supported by calculations using free energy 

perturbation with Hamiltonian replica-exchange molecular dynamics (FEP/λ-REMD). 

To gain insight on the nature of the interaction that enables the binding of nonnative 

small molecules in the P450BM3 mutant, the calculated free energy was further 

decomposed into repulsive, dispersive, and electrostatic contributions. Residues that 

play a role in substrate binding were identified by analyzing hydrogen bond, ionic, and 

van der Waals interactions from the molecular dynamics (MD) trajectories. The 

possibility of reduced heme oxidizing ability and uncoupling, caused by the binding of 

nonnative substrates, was assessed by examining electrostatic interactions and water 

density in the active site. 
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Table 3.2 Drug molecules used in this study with function and CYP chemistry. 

Compound Name Chemical Structurea Drug Class CYP Chemistry  

Astemizole 

 

Antifungal  O-demethylaion, 

N-demethylation, 
Hydroxylation210 

Cotinine 

 

Nicotine metabolite N-demethylation, 
Hydroxylation, 
Oxidation211 

 

Dextromethorphan 

 

Cough suppressant O-demethylation, 

N-demethylation212 

Diclofenac  

 

NSAID Hydroxylation213 

Lovastatin 

 

Statin  Hydroxylation, 
Desaturation214 

MDMA  Stimulant, 

Hallucinogen 

N-demethylation, 

O-demethylenation215 

Metyrapone 

 

Inhibitor of 11β-
hydroxylase 

Inhibitor 

Naproxen 

 

NSAID O-demethylation216 

Nicotine 

 

Stimulant N-demethylation, 
Hydroxylation, 
Desaturation, 
Oxidation211 



67 

 

Table 3.2 (continued) 

a.  Color of each structure represents polarity at physiological pH, where green is 
neutral, blue is positively charged, and red is negatively charged.  

3.2 Experimental procedures 

3.2.1 Biochemical procedures 

3.2.1.1 Chemicals for spectroscopic binding titrations 

Dextromethorphan hydrobromide monohydrate, metyrapone, and sodium 

palmitate (palmitic acid) were purchased from Sigma Aldrich. (-)-Cotinine, lovastatin, 

and naproxen sodium were purchased from Alfa Aesar. Nicotine and warfarin sodium 

were purchased from TCI America.  

3.2.1.2 Cloning and site-directed mutagenesis of P450BM3 

The heme domain of P450BM3 (Thr 1-Thr 463) with a C-terminal 6xHis tag was 

cloned into the pCWori plasmid. Mutations for generating PM P450BM3 were 

incorporated using QuikChange site-directed mutagenesis (Stratagene). The 

polymerase chain reaction product was DpnI treated, transformed into XL-Gold 

ultracompetent cells, and selected on carbenicillin Luria Broth-Agar plates. Colonies 

were grown in 5 mL of LB with 100 µg/mL ampicillin, followed by plasmid isolation 

R-Warfarin 

 

Anticoagulant  Hydroxylation217 

S-Warfarin 

 

Anticoagulant Hydroxylation217 
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using the E.Z.N.A.® Plasmid Mini Kit (Omega Bio-tek®). All mutations were 

confirmed by sequence analysis.  

3.2.1.3 Expression and purification of PM P450BM3 

The pCWori vector containing the PM P450BM3 heme domain was transformed 

in E. coli BL21(DE3) cells. Colonies were grown overnight in 5 mL LB with 100 

µg/mL ampicillin in a shaking incubator set to 190 rpm and 37 °C before being 

transferred to 1 L Terrific Broth supplemented with 8 mL of 80% glycerol and 100 

µg/mL ampicillin. The cells were grown until an OD600 of 0.7–0.8 was reached. 

Expression of PM P450BM3 was induced upon addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG) at a final concentration of 0.5 mM. Cells were harvested 

after approximately 16 h by centrifugation at 4 °C and 3000 xg for 15 min. The cell 

pellets were stored at -80 °C until purification.  

Cell pellets were resuspended in 30 mL lysis buffer (50 mM NaH2PO4, 300 mM 

NaCl, 10 mM imidazole, 0.1 mM EDTA, pH 8.0) with 0.1 mM phenylmethylsulfonyl 

fluoride. Cells were lysed on ice for 15 min by a microtip sonifier with output control 

of 3 and duty cycle of 50% (Branson Sonifier 250). The lysate was centrifuged at 4 °C 

and 17000 xg for 1 h, the supernatant decanted, and filtered through a 0.45 µM 

polytetrafluoroethylene syringe filter.  

The clarified lysate was loaded onto a His-Trap column (GE Healthcare) 

equilibrated with Buffer A (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole), and 

the protein was eluted with a linear gradient using Buffer B (50 mM NaH2PO4, 300 

mM NaCl, 200 mM imidazole), where the concentration increased from 10 to 200 mM 

imidazole. Fractions containing PM P450BM3 were collected and concentrated to 

approximately 2 mL at 4500 xg and 4 °C with Ultracel-30K Millipore centrifugal units. 
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The concentrated protein was loaded onto a Hi-Prep 26/60 Sephacryl S200 HR size 

exclusion column equilibrated with 20 mM Tris and 150 mM NaCl buffer at pH 8.0. 

Fractions containing PM P450BM3 were analyzed by absorbance spectroscopy, and all 

fractions with a spectrophotometric index (A420/A280) above 1.2 were combined and 

concentrated. The protein concentration was determined by CO binding (ε = 91,000 M-

1cm-1)138. Glycerol was added to approximately 50%, with the final protein 

concentration between 15 and 20 mg/mL. The protein was aliquoted, snap-frozen in a 

dry ice ethanol bath, and stored at -80 °C until use.  

3.2.1.4 Binding constant determination by spectroscopic 
titration 

Dextromethorphan hydrobromide monohydrate, naproxen sodium, nicotine, 

and warfarin sodium stock solutions were prepared in 18.2 MΩ water. (-)-Cotinine, 

lovastatin, metyrapone, and palmitic acid were prepared in dimethyl sulfoxide. 

UV/Visible absorption spectra were recorded using an Agilent 8453 

spectrophotometer. Titrations were carried out in 2 mL of 100 mM KH2PO4 (pH 7.4) 

in a 1-cm optical path length cuvette, with protein concentrations between 0.15 and 

0.25 mg/mL. All titrations were carried out with the organic solvent concentration kept 

below 1%. 
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Difference spectra were generated by subtracting the absorption spectrum at 

each concentration point in the titration from the original compound-free P450BM3 

absorption spectrum. The wavelength where the maximum change occurred was 

identified and used to determine the binding dissociation constant (Kd), which was 

calculated in GraphPad Prism version 6 by fitting the data for the ligand-induced 

absorbance changes in the difference spectra (Amax - Amin) vs. ligand concentration to a 

one-site total binding equation. The ΔGb value was determined using the equation ΔGb 

= RT ln Kd, where R = 1.99 x 10-3 kcal K-1 mol-1 and T = 298.15 K. A full spin shift 

was obtained using omeprazole as the substrate. For all other ligands, the percentage of 

protein in the high-spin state was calculated based on the assumption that water-bound 

PM P450BM3 is 100% low spin, and PM P450BM3 fully bound to omeprazole is 100% 

high spin (Figure 3.3).  

 

 

Figure 3.3 Comparison of a full type I spectral shift to the water bound resting 
state. Omeprazole bound (red dashed line) is 100% high spin, compared to the 
water bound state (black line). Saturation of PM P450BM3 (0.15 mg/ml) with 
omeprazole in 2 mL of 100 mM KPi pH 7.4 at room temperature in a 1 cm quartz 
cuvette. 
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3.2.1.5 5-Ethoxyresorufin-O-deethylase activity assay 

Inhibition of PM P450BM3 was detected via a turnover assay for nicotine, 

cotinine, and metyrapone. Each compound was added to 2.5 µM PM P450BM3 in 1x 

phosphate buffered saline (PBS, pH 7.5). The concentration of compound used was 10 

x Kd. The compound and enzyme were incubated for 5 min at RT before 5-

ethoxyresorufin was added to a final concentration of 5 mM. The solution was allowed 

to incubate for another 5 min before 0.1 M H2O2 was added. The Greiner clear bottom 

96 well plate was immediately placed in a Tecan Spectrafluor plus microplate reader 

for 5 min. Fluorescence was monitored as a function of time with excitation 525 nm 

and emission 595 nm.  

3.2.2 Computational procedures 

3.2.2.1 Molecular dynamics (MD) simulations  

Initial coordinates for the PM-metyrapone complex were obtained from the 

crystal structure PDB ID: 4ZF8.1 The other enzyme-substrate complexes were prepared 

by ligand docking using AutoDock 4.2.218 The structure of the solvent-free target 

protein (including the heme) was taken from the last point of the 100-ns, fully atomistic 

simulation of the PM-metyrapone complex performed in a previous study.1 The charges 

used for the protein atoms were the same as the ones used in the MD simulation, while 

ligand charges were calculated using the Restrained Electrostatic Potential (RESP) 

method (vide infra).219 The size of the grid box, centered on the Fe atom, was 60 Å × 

60 Å × 60 Å, with a spacing of 0.250 Å. During the docking simulations, the protein 

was kept rigid while all rotatable dihedrals in the ligands were allowed to move freely. 

The Lamarckian genetic algorithm was used to search for low-energy ligand poses that 
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will yield the metabolites known to be produced by human P450s and/or P450BM3 

mutants containing the PM mutations. 

Preparation of the enzyme-substrate complexes for MD simulations, including 

assignment of the protonation state of titratable residues, has been described in detail 

in reference.1 The solvated ligand system was prepared by neutralizing the ligand with 

Na+ or Cl– and solvating it in a truncated octahedron box of TIP3P water147 with a buffer 

distance of 25 Å between each wall and the closest atom in each direction. The AMBER 

ff14SB force field146 was used to describe the protein. Force field parameters and partial 

charges for the high-spin, pentacoordinate ferric form of the heme active site 

(characteristic of substrate-bound P450BM3
191) were taken from literature.72 These 

parameters have been tested for stability and consistency with the expected heme 

geometry in implicit and explicitly solvated MD simulations of the heme active site 

alone and CYP3A4. Moreover, the use of the partial charges in docking calculations 

reproduced the experimentally observed metabolism of raloxifene by CYP3A4.72 

Ligands parameters were calculated using antechamber148 at the HF/6-31G* level to be 

consistent with the GAFF force field.149 Periodic boundary conditions were applied 

using the Particle Mesh Ewald method159 with a non-bonded cutoff of 10 Å. Energy 

minimization was performed in four stages: (1) protein and ligand were restrained with 

a harmonic force constant of 5.0 kcal/mol/Å2 to allow water and ions to relax, (2) 

residues within 5 Å of the docked ligand were released from the restraint, (3) the whole 

protein was again restrained while the ligand was allowed to relax, and (4) the restraint 

was removed. At each stage, 1000 steps of steepest descent minimization was 

performed, followed by 1000 steps of conjugate gradient minimization. 

The system was then heated from 0 to 300 K for 50 ps using NMR weight 

restraints to linearly increase the temperature (≈6 K/ps) in order to avoid instabilities in 
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the simulation. Cα atoms were restrained with a harmonic force constant of 5.0 

kcal/mol/Å2 during heating. Bonds involving hydrogen were constrained using the 

SHAKE algorithm160, and a 2-fs time step was used for time integration. The 

temperature was controlled using Langevin dynamics161 with a collision frequency of 

1.0 ps-1. The system was equilibrated at constant pressure over a 200-ps period, during 

which the force constant was incrementally reduced (5.0, 2.0, 1.0, and 0.5 kcal/mol/Å2). 

Isotropic position scaling was used to maintain the pressure at 1 atm, with a relaxation 

time of 2 ps. Equilibration of the unrestrained system was then continued for 2 ns. 

Production MD simulations in the NVT ensemble were performed at 300 K for 100 ns 

using the same parameters as equilibration. During production, a harmonic restraint of 

10 kcal/mol/Å was applied to the distance between the heme Fe and protonated nitrogen 

of dextromethorphan and MDMA to prevent large displacement of the substrate due to 

strong ionic interaction with heme propionate A.  

Minimization, heating, and equilibration were run using Amber 14220 and 

production using nanoscale molecular dynamics (NAMD).221 Residue-ligand 

interaction energies were calculated using NAMD (Table B1,B2, and B3) . Hydrogen 

bond occupancy (i.e., fraction of time that the bond is present in each trajectory) and 

water density around the ligand and heme were calculated using the cpptraj module of 

Amber 2015.155, 222 The distance and angle cutoffs for the hydrogen bond are 3.0 Å and 

135° (Table B4 and B5). The grid dimensions of the ligand + heme region used in the 

water density calculation were determined using the bounds command (grid spacing = 

0.5 Å). The water density was visualized with PyMOL133 using a contour level of 3.0 

and mesh width of 0.5. 

3.2.2.2 Free energy perturbation with Hamiltonian replica-
exchange molecular dynamics (FEP/λ-REMD) 
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In the FEP/λ-REMD method223, the binding process is divided according to the 

thermodynamic cycle, wherein the bound ligand is decoupled from the enzyme (Eq. 1) 

and the solvated ligand is decoupled from bulk solution (Eq. 2). The free energy for the 

overall process (Eq. 3) is ΔGb° = ΔG2 – ΔG1.  

  
(1) 

     (2)

 
 (3)

 

The ligand is decoupled from the binding pocket or bulk solution in three stages 

using the thermodynamic coupling parameters λrep, λdisp, and λelec ∈ [0,1] (Eqs. 4–6), 

giving the repulsive (ΔGrep), dispersive (ΔGdisp), and electrostatic (ΔGelec) 

contributions, respectively.
 

 (4)

  

  (5) 

  (6) 

For the decoupling of the bound ligand from the enzyme, an additional 

parameter, λrstr, is used to control the translational and orientational restraints (Eq. 7) 

and gives ΔGrstr.  

  (7) 
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The initial structure for the enzyme-substrate complex was taken from the 25-

ns snapshot of the production MD simulation, while that for the solvated ligand was 

taken from the last point of the equilibration. The same simulation parameters outlined 

above were used except for the time step, which was reduced to 1 fs. Nonbonded forces 

were evaluated every step and full electrostatic forces every other step. A harmonic 

restraint was applied with a force constant of 10.0 kcal/mol/Å2 to maintain the center-

of-mass distance between the ligand and enzyme. 128 replicas (72 repulsive, 24 

dispersive, and 32 electrostatic) were used with an exchange frequency of 1/100 steps. 

Sequential 0.1-ns simulations were performed until the calculation has converged (at 

least 2 ns), as evaluated from the fluctuation in the absolute free energy of the system 

over time (Figure B2). Repulsive, dispersive, and electrostatic contributions were 

determined using the Multistate Bennett Acceptance Ratio method.224 The average and 

standard deviation of the binding free energy were calculated using the last 1 ns of data. 

3.3 Results and discussion 

3.3.1 Experimental and calculated binding free energies 

Substrate binding displaces the water molecule coordinated to the sixth position 

of the heme iron, resulting in a type I shift in the absorption spectrum, with the peak at 

approximately 390 nm in the difference spectra.225 The native substrate, palmitic acid, 

as well as diclofenac, naproxen, warfarin (the racemic mixture), lovastatin, and 

dextromethorphan exhibited a type I spectral shift upon binding (Figures 3.4 and 3.5). 

In the case of warfarin, the type I binding observed is presumably that of S-warfarin, as 

the R enantiomer is known to be inhibitory and would bind in a nonproductive manner 

that does not lead to metabolism.226  
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Displacement of the water ligand changes the iron spin state from low to high 

spin and, consequently, alters the redox potential of the heme.227 The population of the 

high spin state for PM P450BM3 upon drug binding was lower than that observed with 

palmitic acid (Table 3.3), suggesting that the drug molecules possibly bind in the active 

site without displacing the water ligand in a fraction of the protein.228 A type II spectral 

shift occurred with metyrapone, nicotine, and cotinine, as evidenced by the absorption 

shift to about 430–455 nm (Figures 3.4 and 3.5).225 The type II shift indicates that these 

compounds directly coordinated the heme iron through the pyridine nitrogen. 

Generally, the type II shift is associated with enzyme inhibition; nevertheless, with 

nicotine or cotinine bound, the enzyme was active, as metabolism was observed using 

 

Figure 3.5  Spectral titration of PM BM3 with the native substrate palmitic acid (A–
C) and inhibitor metyrapone (D–F). The red curve corresponds to the ligand-
saturated enzyme, and the blue curve indicates the ligand-free enzyme. Palmitic acid 
exhibited a type I spectral shift, characterized by λmax at 394 nm and trough 
around 420 nm (B), while metyrapone exhibited a type II spectral shift, 
characterized by λmax at 427 nm and trough around 390 nm (E). The dissociation 
constant (Kd) was calculated by plotting the absorbance at λmax as a function of 
ligand concentration (C, F). Plots were fit with a one-site total equation in GraphPad 
Prism. All titations were done in a 1 cm quartz cuvetter with 2 mL of 100 mM KPi, 
pH 7.4 buffer with protein at a concentration between 0.15 – 0.25 mg/ml. 
Concentrated compound was titrated in 1 – 5 µL increments, with DMSO 
concentration kept below 1%. 
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the fluorescence-based 7-ethoxyresorufin-O-deethylase (EROD) activity assay (Figure 

3.6).123     

 

The binding affinity of various drug molecules for PM P450BM3 was determined 

upon titrating small molecules and quantifying the change in absorption to obtain their 

Kd values. Based on predicted titration curves, diclofenac, naproxen, and warfarin are 

acidic; dextromethorphan and nicotine are basic; and cotinine, lovastatin, and 

metyrapone are neutral at physiological pH (Table B1). All substrates have negative 

ΔGb°, indicating that binding to PM P450BM3 is stable, regardless of the type of drug 

 

Figure 3.6 Difference spectra of all compounds bound to PM P450BM3 studied 
experimentally.The blue line is PM P450BM3 in which no compound is present, and 
the red line is fully saturated. (A) Dextromethorphan, (B) diclofenac, (C) 
lovastatin, (D) naproxen, and (E) racemic warfarin exhibit a type I spectral shift. 
(F) Cotinine and (G) nicotine exhibit a type II spectral shift. All titrations were 
done in a 1 cm quartz cuvette in 2 mL of 100 mM KPi pH 7.4 buffer at RT. Protein 
was kept at a concentration between 0.15 – 0.25 mg/mL. Concentrated compound 
was titrated in 1 – 5 µL increments, with DMSO concentration kept below 1%.  
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(acidic, basic, or neutral) (Table 3.3). Moreover, the binding affinities of naproxen, 

warfarin, dextromethorphan, and lovastatin are comparable to that of palmitic acid. 

Cotinine was the weakest binder, as indicated by the largest Kd value (415 ± 11 µM), 

about 20x higher than that of nicotine (23.5 ± 6.3 µM). The two molecules have the 

same ring systems but, unlike nicotine, cotinine has an additional carbonyl group and 

is neutral. The binding free energies calculated using FEP/λ-REMD agree with 

experimental data for diclofenac, lovastatin, and dextromethorphan (Table 3.3). S-

warfarin has a six-fold higher affinity than its enantiomer, and the calculated ΔGb° is 

closer to the experimental value for the racemic mixture. On the other hand, the 

calculated ΔGb° of naproxen is much more negative than the experimental value, 

possibly due to overestimation of the electrostatic contribution. As nicotine and cotinine 

are subject to metabolism by P450BM3, the productive binding modes leading to 

metabolism were modeled instead of the inhibitory type II binding mode indicated by 

the absorbance spectra. Cotinine was predicted to bind with higher affinity than its 

parent compound with this orientation, unlike the case observed via spectroscopic 

titration determined for the type II binding mode. The ΔGb° of the basic substrates, 

MDMA and astemizole, were also calculated to compare the free energies of different 

binding poses. The binding poses leading to N- and O-dealkylation have comparable 

ΔGb°. A much more positive ΔGb° was obtained when astemizole is positioned for C–

H hydroxylation at C6. 
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The repulsive, electrostatic, and dispersive energy contributions are illustrated 

in Figure B3. The repulsive contribution is unfavorable (positive net energy) for the 

large ligands, astemizole, S-warfarin, and lovastatin, which could be attributed to 

expulsion of water and displacement of residues in the active site upon insertion of the 

ligand.229 On the other hand, smaller ligands, such as metyrapone, nicotine, and 

cotinine, have slightly favorable repulsive contribution since their small size allows 

binding without causing steric clashes. As expected, the electrostatic contribution 

generally become unfavorable as the ligand moves from bulk solution to the 

hydrophobic active site because of the loss of ligand-solvent hydrogen bonding 

interactions.229 Only the two acidic substrates, naproxen and S-warfarin, have negative 

 

Figure 3.7 A 7-ethoxyresorufin-O-deethylase (EROD) activity assay was 
performed to determine if compounds that induced a type II spectral shift 
efficiently inhibited metabolism of the fluorescent substrate. PM P450BM3  (2.5 
µM in 1x PBS pH 7.5 buffer); fluorescence was monitored by excitation at 535 
nm and emission at 595 nm. Saturating concentrations of compounds were 
incubated with protein for 5 min before 5 mM of 7-ethoxyresorufin was added, 
followed by 5 min incubation before H2O2 was added. The gray box indicates the 
dead time of the instrument, and the dashed lines are projected emissions during 
that time (approximately 50 seconds). The black crosses indicate metabolism of 
7-ethoxyresorufin when PM P450BM3 was not inhibited. In contrast, the red 
triangles indicate the response when 7-ethoxyresorufin is not metabolized. 
Metyrapone-bound PM P450BM3 (purple squares) was fully inhibited, whereas 
when cotinine was bound (green diamonds), activity was barely impacted. 
Interestingly, nicotine (blue circles) had an inhibitory effect on 7-ethoxyresorufin 
metabolism, but activity was still observed. 
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net electrostatic energies. Thus, the binding of nonnative substrates in PM is mainly 

facilitated by dispersion interactions. This contribution correlates with molecular size 

and compensates for the unfavorable repulsive contribution, particularly in the binding 

of astemizole and lovastatin.  

Table 3.3 High spin fractions, dissociation constants (Kd), and binding free energies 
(∆Gb) of palmitic acid and various drug molecules in PM BM3. Theoretical values 
calculated by I. Geronimo.  

a Positioned for N-dealkylation. b Positioned for O-dealkylation. c Positioned for C–H 
hydroxylation. d Type II binding mode. e Calculated using productive binding mode. 

 

3.3.2 Protein-ligand interactions in the PM BM3 active site 

 Residues that facilitate the binding of nonnative substrates were 

identified from analysis of the MD trajectories. The calculated average structures of the 

Substrate %High 
spin 

Kd (μM) ΔGb (kcal/mol) 

Experimental Theoretical 

palmitic acid 94 ± 10 1.3 ± 0.9 -8.1 ± 0.4 - 

diclofenac 83 ± 4 64.9 ± 3.9 -5.7 ± 0.1 -4.95 ± 0.62 

naproxen 80 ± 2 4.6 ± 2.9 -7.4 ± 0.4 -15.20 ± 0.77 

S-warfarin 75 ± 3 0.7 ± 0.4 -8.4 ± 0.3 -11.44 ± 0.68 

R-warfarin -1.84 ± 0.68 

lovastatin 77 ± 3 3.3 ± 1.5 -7.5 ± 0.3 -6.15 ± 0.78 

dextromethorphan 74 ± 5 3.7 ± 1.2 -7.4 ± 0.2 -6.89 ± 0.64 

MDMA - - - -6.76 ± 0.57a 

-6.21 ± 0.42b 

astemizole - - - -10.68 ± 0.91a 

-8.57 ± 0.88b 

-3.17 ± 0.53c 

nicotined - 23.5 ± 6.3 -6.3 ± 0.2 -4.60 ± 0.66e 

cotinined - 415 ± 11 -4.6 ± 0.1 -7.07 ± 0.60 e 

metyraponed - 3.6 ± 0.6 -7.4 ± 0.1 -9.09 ± 0.41 
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different enzyme-substrate complexes are shown in Figures 3.7, 3.8, and 3.9. The 

discussion of the different drug molecules is divided below by the human P450s 

primarily responsible for their metabolism. 

3.3.2.1 CYP2C9 substrates and inhibitors 

CYP2C9 metabolizes ~15% of clinical drugs and exhibits selectivity toward 

lipophilic anions, including the NSAIDs diclofenac and naproxen and anticoagulant S-

warfarin.230 Diclofenac yields 4'-hydroxydiclofenac upon oxidation by CYP2C9231; this 

metabolite was also obtained using P450BM3 variants containing some or all of the 

mutations found in PM (e.g., RP/FV/EV166, M11198, and MT35127, Table 3.1). When 

bound to the PM P450BM3 binding site, diclofenac has hydrophobic interactions with 

L75, V87, L437, and T438 (Figure 3.7, Table B2). Docking calculations predicted that 

the carboxylate group is hydrogen bonded to T438; however, the substrate changed 

position after ~12 ns of the simulation to form a hydrogen bond with S72 (Table B5). 

Both orientations place the C4' atom above the heme iron, though the orientation with 

the S72 hydrogen bond is presumably more stable. Naproxen undergoes O-

demethylation by CYP2C9 to form desmethylnaproxen.232 The RP/FV/EV variant also 

metabolized naproxen but at a lower conversion rate (58%) compared to diclofenac 

(91%).166 The naproxen hydrophobic contacts in PM are L75, V87, and A330 (Figure 

3.7, Table B2.). As in the diclofenac complex, the carboxylate group faces the substrate 

channel entrance and forms not only hydrogen bonds with the hydroxyl group and 

backbone nitrogen of S72 and backbone nitrogen of S332, but also a salt bridge with 

K69 (Table B5). This facilitates a binding orientation that positions the methoxy group 

over the heme for O-demethylation.  



82 

 

S-warfarin is an acidic molecule under physiological conditions (pKa = 4.94) 

due to the resonance stabilization of the anion and ketone-enol tautomerization that 

results in delocalization of charge between O2 and O4 of the benzopyran ring. It is 

hydroxylated at C7 by CYP2C9.233 In PM, it is positioned for reaction at C7 due to 

hydrophobic interaction primarily with L75, V87, and L437 (Figure 3.7, Table B2), 

while the oxo substituent in the benzopyran ring also forms a hydrogen bond with K69 

(Table B5). There was no interaction with S72. The less potent R-warfarin is known to 

competitively inhibit the metabolism of its enantiomer.226 It is positioned for C4’ attack 

in PM, which will yield the observed CYP2C9 product.217 Unlike its enantiomer, R-

warfarin does not form hydrogen bonds with substrate channel residues; its interactions 

 

Figure 3.8 MD-averaged structures (green) superimposed on the PM-palmitic acid 
crystal structure (PDB ID: 4ZFB1, gray). Naproxen is positioned for O-
dealkylation, while diclofenac, S-warfarin, R-warfarin, and lovastatin are 
positioned for C–H hydroxylation at C4', C7, C4', and C6, respectively. MD 
simulations done by I. Geronimo.  
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are primarily hydrophobic, specifically with L75, V78, L437, and T438 (Figure 3.7, 

Table B2).  

Statins (or 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors) such as 

lovastatin are substrates of CYP3A4 but are competitive inhibitors themselves of 

CYP2C9.234 Oxidation of lovastatin can occur at C6 or C3'235, but only the hydroxylated 

product, 6β-hydroxy lovastatin, and oxidized product, 6-exomethylene lovastatin, were 

obtained using PM/E143G and PM/E143G/E64G variants.163 Unlike the other drugs 

discussed in this section, lovastatin is neutral at physiological pH. Its hydrophobic 

contacts in PM include L75, A330, L437, and T438 (Figure 3.7, Table B2). Hydrogen 

bonding of the hydroxyl substituent in the lactone ring with S72 was short lived (~22 

ns), as it eventually formed interactions with solvent molecules. These interactions 

were also observed in the shorter (5 ns) MD simulations of lovastatin complexes of 

PM/E143G and PM/E143G/E64G.163 This suggest that this hydrogen bonding 

interaction may not play a significant role in defining ligand binding orientation or 

affinity. 

The MD simulations suggest that, for acidic drug molecules, residues S72 in 

helix B' and K69 in β-sheet 1 in P450BM3 generally play a role in substrate recognition 

and product regiospecificity, analogous to R108 in CYP2C9.236 The crystal structure of 

CYP2C9 in complex with a similar substrate, flurbiprofen (PDB ID: 1R9O236), has the 

carboxylate group buried within the active site cavity and held by a salt bridge with 

R108, which is located in the B–C loop (equivalent to helix B' in P450BM3). 

Unfortunately, the crystal structure of S-warfarin in complex with CYP2C9 (PDB ID: 

1OG5233) provides no information on the active site residues critical to the binding of 

this drug class, because the substrate is bound in a nonproductive position (C7 is more 

than 10 Å from the oxygen binding site). The interactions with either S72 or K69 
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identified by this current simulation would account for the favorable net electrostatic 

energy that contributes to the negative ΔGb° for naproxen and S-warfarin binding in 

PM (Figure B3).   

3.3.2.2 CYP2D6 substrates 

 

CYP2D6 is responsible for the metabolism of ~25% of clinical drugs despite 

constituting <2% of hepatic CYPs.237 Typical substrates, such as antihistamines and 

amphetamines, contain a protonated basic nitrogen at physiological pH, and planar 

aromatic ring.237, 238 The major pathway for metabolism for these classes of molecules 

is O-dealkylation.239-241 Two negatively charged residues in the active site, E216 and 

D301, are responsible for substrate specificity and product regioselectivity.242, 243 

 

Figure 3.9 MD-averaged structures (green) superimposed on the PM-palmitic acid 
crystal structure (PDB ID: 4ZFB 1, gray). The substrates are positioned for N-
dealkylation in A, B, and D, O-dealkylation in C and E, and C–H hydroxylation (C6) 
in F. MD simulations done by I. Geronimo.  
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In the absence of such residues in the P450BM3 active site, the protonated 

nitrogen of dextromethorphan, MDMA, and astemizole forms an ionic interaction with 

heme propionate A. This positions the substrates for N-dealkylation, a reaction mainly 

catalyzed by a different human P450, CYP3A4244; N-demethylation is the second main 

metabolic pathway for these three molecules. Experiments confirm that 3-

methoxymorphinan and 3,4-methylenedioxyamphetamine are the major metabolites for 

dextromethorphan and MDMA, respectively, from oxidation by P450BM3 variants 

containing some or all of the PM substitutions such as M01, M02, and M05 (Table 

3.1).125 The N-dealkylation product of astemizole, norastemizole, is a minor product of 

CYP3A4 metabolism241, 245 and has only been obtained so far using chimeras of 

P450BM3 with other enzymes from the CYP102A subfamily.196 Hydrophobic contacts 

in the active site are V87, T260, I263, and L437 for dextromethorphan; L75, A330, and 

L437 for MDMA; and V87, L181, I263, A264, L437, and T438 for astemizole (Figure 

3.8, Table B3). A pronounced structural rearrangement was observed in the case of 

astemizole; helix F (M177, L181, A184) moved away from the protein core to 

accommodate the fluorophenyl ring. This would also account for the large repulsive 

contribution to the binding free energy (Figure B3). A suitable orientation for N-

demethylation was not observed in the simulation. 

The substrate-binding pose leading to O-dealkylation was found for MDMA 

and astemizole (Figure 3.8). The protonated nitrogen of MDMA forms a hydrogen bond 

with the backbone oxygen of L437 (Table B5), bringing it closer to E435 for ionic 

interaction. On the other hand, the benzimidazole ring of astemizole extends toward the 

loop connecting β-sheet 1-5 and helix B', causing a slight distortion in this region 

(residues 69–74) and breaking the heme propionate A-K69 salt bridge at different 

points during the simulation. MDMA forms favorable hydrophobic contacts with L75, 
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V87, L437, and T438, and astemizole mainly with L75, V87, and L437 (Table B3). In 

modeling the formation of another metabolite obtained with CYP2D6, 6-

hydroxyastemizole241, astemizole is forced into a folded conformation within the PM 

active site. The methoxyphenyl ring displaced the entire β-sheet 1, causing the heme 

propionate A-K69 salt bridge to break as well (Figure 3.8). Hydrophobic contacts of 

astemizole in this binding pose include V78, V87, I263, A328, L437, and T438 (Table 

B3). CYP2D6 metabolites of astemizole (desmethylastemizole and 6-

hydroxyastemizole; note that these reactions occur at aromatic rings at opposite ends 

of the large drug molecule) have been obtained with the 9-10A/A78F and 9-

10A/A78F/A82G/A328F variants of P450BM3 (Table 3.1).5 The A78F and A82G 

substitutions, presumably conferred greater flexibility to helix B’, allowing the enzyme 

to easily accept this large drug molecule in different binding orientations without 

causing the disruption of structure observed in simulations of PM. 

3.3.2.3 CYP2A6 substrates. 

 

CYP2A6 has relatively narrow substrate specificity but has gained interest due 

to its involvement in the metabolism of toxic and procarcinogenic compounds.246 The 

 

Figure 3.10 MD-averaged structures (green) of superimposed on the PM-palmitic 
acid crystal structure (PDB ID: 4ZFB 1, gray). Cotinine and nicotine are positioned 
for oxidation at C5' and C3'/C4', respectively. Metyrapone acts as an inhibitor by 
forming a covalent bond with the heme iron. MD simulation done by I. Geronimo. 
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crystal structure of the nicotine complex of CYP2A6 (PDB ID: 4EJJ247) indicates that 

F209 and I300 play a role in substrate orientation within the active site. However, 

nicotine does not form hydrogen bond interactions with any active site residues; its 

pyridine nitrogen is too far from N297, a conserved residue in CYP2A enzymes. In the 

PM P450BM3 active site, the protonated nitrogen of nicotine forms an ionic interaction 

with heme propionate A (Figure 3.9), similar to the CYP2D6 substrates. Significant 

hydrophobic contacts of nicotine include V87, A328, and L437 (Table B4). The major 

metabolite of nicotine, cotinine, is positioned for 3'- or 4'-hydroxylation in the active 

site (Figure 3.9). Cotinine is known to be further metabolized to trans-3'-

hydroxycotinine, the major urinary metabolite of nicotine, by CYP2A6 and 

CYP2A13.248, 249 In the simulation, cotinine is held by hydrophobic interactions with 

L75, A264, and L437 (Table B4), which orient it for reaction. Unlike nicotine and 

cotinine, the P450 inhibitor metyrapone, which also contains a pyridine ring, interacts 

primarily through formation of a coordinative bond to the heme iron. This binding mode 

is consistent with its role as a P450 inhibitor specifically of 11β-hydroxylase250 though 

off-target affects are known.251, 252 Metyrapone is not subject to oxidative metabolism 

by P450s; rather, it undergoes reductive metabolism to form the alcohol, metyrapole, 

before glucuronide conjugation.253  

3.3.3 Factors contributing to uncoupling. 

Low turnover number and coupling efficiency are often observed with oxidation 

of nonnative substrates by P450BM3 variants. This may be attributed to catalytic 

uncoupling.33, 34 The two major pathways for this alternative reaction pathway are (1) 

protonation of the proximal oxygen in the ferric hydroperoxide complex to release H2O2 

(peroxide uncoupling) and (2) two-electron reduction and deprotonation of oxygen in 
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the oxo-ferryl porphyrin radical intermediate (Compound I) to yield a second water 

molecule (oxidase uncoupling; Figure 3.1).200 

An experimental study of the mechanisms of the different uncoupling modes in 

P450cam indicates that excess water in the active site plays an important role in both 

pathways by acting as a proton source. Moreover, for peroxide uncoupling, charge 

separation at Fe during dissociation of HOO– is favored by the increased polarity of the 

environment. Water is also thought to destabilize the ferric hydroperoxide complex by 

disrupting its putative hydrogen bond with a threonine residue in the active site (T268 

in P450BM3).254 Figure 3.10 shows high water density in the substrate channel when 

dextromethorphan, MDMA, astemizole, diclofenac, or warfarin is bound, in contrast to 

when palmitic acid is bound (Figure B4). This may be attributed to the positioning of 

hydrophilic groups of these molecules deep within the cavity. Moreover, high water 

density near T268, where the hydroperoxo ligand would be bound, was observed when 

dextromethorphan, MDMA, and astemizole are oriented for N-dealkylation. This 

would be consistent with the relatively low fraction of high-spin protein found with the 

PM-dextromethorphan complex (Table 3.3), which indicates that there is room for 

excess water around the heme iron even in the presence of this large substrate. 
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In oxidase uncoupling, electron transfer to Compound I competes with substrate 

oxidation. This likely occurs if the substrate is too mobile and/or the reacting atom is 

too distant from the oxidizing species, a consequence associated with lack of 

complementarity within the active site.93 The MD-averaged structures show that the 

 

Figure 3.11 Water density at the PM P450BM3 substrate channel, with the reference 
structure averaged from the MD simulation. MDMA is positioned for N- and O-
dealkylation in B and C. Astemizole is positioned for N- and O-dealkylation in D 
and E, and C–H hydroxylation in F. T268, located at the distal side of the heme 
(helix I) and believed to play a role in proton delivery and oxygen activation, is also 
shown. Water density is relatively lower in the presence of palmitic acid, naproxen, 
lovastatin, nicotine, and cotinine (Figure B4). MD simulation done by I. Geronimo. 
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shape of the PM P450BM3 active site, meant to accommodate long-chain fatty acids, is 

essentially unaltered in the presence of drug molecules (Figures 3.7–3.9). Thus, small 

substrates or those that do not form stable ionic/hydrogen bond interactions with active 

site residues would be highly mobile during the simulations, as was the case with 

astemizole, diclofenac, lovastatin, cotinine, and R-warfarin (Figure B5).  

Reducing substrate mobility and water access to the active site can be achieved 

by substituting smaller active site residues with leucine, isoleucine, methionine, or 

phenylalanine.254 β-sheet 1-4 (residues 329–336) offers a promising mutation site for 

P450BM3 because substitution with large residues would not hinder substrate access to 

the oxidizing heme intermediate. For example, variants containing tryptophan at 

position 330 within β-sheet 1-4 had high conversion rates for chlorzoxazone and 

lidocaine.166 On the other hand, the A330P mutation (PDB ID: 3M4V208) was found to 

reduce the size of the cavity by displacing the side chain of the adjacent P329 into the 

active site. A330P-containing variants exhibited improved coupling efficiencies for the 

oxidation of small alkanes and aromatic compounds208 and high conversion rates for 

naproxen, chlorzoxazone, and amitriptyline.166 The key is combining structural 

flexibility to allow for promiscuity with sufficient water exclusion to increase catalytic 

efficiency. 

3.3.4 Heme interactions affecting oxidizing ability. 

Heme propionate groups not only play the structural role of anchoring the heme, 

but may also be involved in regulating electrostatic interactions that are key to the 

catalytic reaction.255, 256 Propionate A forms a salt bridge with K69, while propionate D 

forms a salt bridge with R398 and a hydrogen bond with W96 in P450BM3. The binding 

of acidic and basic ligands, but not neutral ligands, disrupted these interactions. With 
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dextromethorphan, MDMA, and nicotine oriented for N-dealkylation, propionate A 

bent toward the active site (dihedral angle of ≈60°) during the simulations (Figures 3.8, 

3.9 and B6), while maintaining interaction with K69 (Table B6). Propionate bending 

also occurred in the M01, M02, and M05 variants (substrate-free and in complex with 

dextromethorphan and MDMA) based on Resonance Raman and MD simulations.128 

Hydrogen bonding between propionate A and the protonated nitrogen was observed for 

nicotine and MDMA, which would facilitate electron transfer from the substrate to the 

porphyrin π-cation radical and then to Fe(IV) of Compound I.256 Thus, basic functional 

groups that can interact directly with heme propionates do not seem to jeopardize 

catalytic reactivity.  

In contrast, as discussed earlier, the acidic drugs S-warfarin and naproxen 

interact with K69 (Figure 3.7), thus competing with propionate A (Table B5) for 

interaction with this residue. In the PM-naproxen complex, the interaction with K69 

was broken during the simulation and propionate A, instead, forms a hydrogen bond 

with the backbone nitrogen of N395 (Table B6). This may reduce the oxidizing ability 

of Compound I, which depends on the spin density localized on the porphyrin ring.256 

Density functional theory calculations indicated that the salt bridge formed by heme 

propionates with Arg or Lys stabilizes the cationic porphyrin radical by weakening 

charge donation from the carboxylate group.255, 257 Interaction with K69 could explain 

the low activity of most P450BM3 variants toward acidic substrates.122, 166 Introducing 

another hydrogen-bond-forming residue in the active site to interact with acidic 

substrates would therefore improve activity, as appears to be the case with the MT35 

variant (Table 3.1), which contains the L437S substitution.127  
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3.4 Conclusions 

P450BM3 variants are capable of metabolizing a wide variety of nonnative 

substrates, and have been the subject of extensive protein engineering efforts. The 

resulting enzymes typically contain mutations far from the active site that increase the 

flexibility of the lid domain and SRS without significantly altering the active site 

architecture. In order to better understand the features that regulate binding, key 

molecular interactions that impact substrate positioning, and factors that impact 

catalytic efficiencies, we performed an investigation combining experimental and 

computational analyses of diverse small molecules that bind to P450BM3.  

Structurally different and highly polar human P450 substrates and inhibitors 

were chosen for the analysis. These molecules contain acidic, basic, and polar groups, 

aromatic and aliphatic ring systems, and range in molecular weight from 162.2 to 458.6 

AMU (Table 3.2). Despite the chemical diversity, all molecules nevertheless exhibit 

affinity for PM P450BM3 and bind with negative ∆Gb° primarily due to dispersion 

interactions, specifically with L75 in helix B', I263 in helix I, L437 and T438 in β-sheet 

4, A328, and V87 (Figure 3.2). In addition, acidic drug molecules form electrostatic 

interactions with S72 in helix B' and K69 in β-sheet 1, and basic drug molecules engage 

with heme propionate A. However, the lack of structural and electrostatic 

complementarity between nonnative substrates and the active site would have an impact 

on the turnover number and coupling efficiency of P450BM3 variants. The resulting 

increase in substrate mobility and water access to the active site could lead to 

uncoupling reactions. Substrate interaction with K69, which forms an important salt 

bridge with the heme, could lessen the oxidizing ability of the enzyme. Protein 

engineering efforts to develop more active and efficient P450BM3 variants should 

therefore focus on reducing these effects. 
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 CORRELATIONS BETWEEN THE PROMISCUITY OF 
CYTOCHROME P450BM3 VARIANTS AND OXIDATION STATE DEPENDENT 

STABILITY   

4.1 Introduction 

Cytochrome P450s (CYPs) are cysteine-ligated heme monooxygenases that 

incorporate molecular oxygen into C-H bonds. In humans, CYPs play a fundamental role 

in steroidogenesis and xenobiotic metabolism, and exhibit some variation in selectivity for 

their substrates. CYPs active in xenobiotic metabolism interact with a wide variety of 

diverse substrates. The prime example of this is CYP3A4, which metabolizes 

approximately 50% of known drugs.65, 258 This is facilitated by the fact that CYP3A4 has a 

highly flexible confirmation in which diverse substrates are able to reach the deeply buried 

active site.67 In comparison, aromatase (CYP19A1) plays a key role in estrogen synthesis, 

and is a very selective enzyme that only converts androstenedione and testosterone into 

estrone and estradiol respectively.259 Thus, while CYPs are similar in global structure and 

utilize the same catalytic cycle, they have evolved to range from selective to promiscuous 

based on their function.  

In order to investigate properties related to promiscuity, Cytochrome P450BM3 

(CYP102A1), a bacterial enzyme isolated from Bacillus megaterium, was used as a model 

system. P450BM3 is a good candidate to examine a variety of questions relating to P450 

behavior as it is soluble and can be easily expressed and purified. Most importantly for 

investigating how enzyme promiscuity either arises or the impact it has on a protein is the 

range of selectivity that can be incorporated. Wild type P450BM3 (WT) is relatively 

selective, preferentially binding medium to long chain fatty acids. Five residues 

(R47L/F81I/F87V/L188Q/E267V, the “Pentuple mutant”, PM) can be made to the WT to 
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become more promiscuous, and able to interact with drug-like molecules similar to 

xenobiotic metabolizing CYPs.128 Previous studies have documented that although the PM 

is more promiscuous, this comes at the cost of stability. We have shown that the global 

structure of the PM unfolds with a urea concentration midpoint of 2.7 ± 0.2 M compared 

to WT at 5.4 ± 0.5 M by pulse proteolysis.260 In addition, this change in stability can be 

significantly attenuated by the presence of native and non-native substrates and 

inhibitors.260  

As a follow-up study, we are interested in determining how the iron oxidation state 

impacts enzyme stability, and if correlations can be made to the overall selectivity of the 

enzyme. This is of particular importance as it was shown that both Fe(III) and Fe(II) states 

are present in cells without substrate bound for P450cam, P450cin, and five human 

xenobiotic- metabolizing CYPs.14 This finding contradicts the established model, which 

presupposes that CYPs are in a low-spin (LS) Fe(III) water bound state at rest, and do not 

become reduced until after substrate has bound and the enzyme is converted to the high 

spin state. It would be expected that a population of enzyme in the ferrous state in the 

absence of substrate would lead to an increased rate of uncoupled catalysis, thus increasing 

reactive oxygen species (ROS). While this study did not find a decrease in P450 content as 

a result of ROS production,14 they did not investigate the stability of the enzymes trapped 

in the Fe(III) or Fe(II) states.  

Several studies have investigated the stability of Cytochrome c (cyt c) as a function of 

iron oxidation state.261-265 Cyt c is similar to CYPs as it is a heme enzyme, though it is bis-

ligated to histidine and methionine. Unlike CYPs, whose main function is to catalyze 

insertion of oxygen into a substrate, cyt c’s main role is electron transfer. The stability of 
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cyt c is higher in the ferrous state (Cm of ~ 5 M guanidium hydrochloride, as determined 

by tryptophan fluorescence) than the ferric state (Cm of ~ 2.5 M guanidium 

hydrochloride).264  Interestingly, when the methionine-heme ligation was broken and 

replaced with cysteine, this relationship inverted, so that the ferric state was more stable 

than the ferrous. This change in iron state stability was also accompanied by a dramatic 

decrease in the reduction potential (290 mV vs. -390 mV), indicating the ease of electron 

transfer from NAD(P)H.266 In theory, replacing the methionine-heme ligation to a cysteine 

should make cyt c more adept at catalysis rather than electron transfer.  

We aim to discover the role of promiscuity in regulating the relationship between 

the ferrous and ferric states in CYPs. To do this, UV/Vis spectroscopy, circular dichroism 

(CD), and pulse proteolysis were used to probe active site, secondary structure, and global 

structure of the enzyme to achieve a comprehensive view of oxidation state. As CYPs play 

a vital role in health and exhibit potential biotechnical applications, understanding the 

relationship between promiscuity, oxidation state, and stability is essential. This is 

especially relevant for further understanding of how these enzymes function as well as how 

they differ from other heme-bound proteins.  

4.2 Experimental procedures 

4.2.1 Cloning and site-directed mutagenesis of P450BM3 

The heme domain (Thr 1 to Thr 463) of P450BM3 containing a C-terminal 6xHis tag 

was cloned into the pCWori vector. All point mutations were incorporated into the heme 

domain through site-directed mutagenesis using the Quikchange kit (Stratagene). The 

ligation mixture was transformed into Top10 competent cells and screened for ampicillin 
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resistance. Colonies were selected and grown in Luria Broth, followed by plasmid isolation 

and digestion with AgeI and BseRI.  Plasmids containing the heme portion of the gene 

were sequenced for verification (Eurofins Genomics). 

4.2.2 Expression and purification 

P450BM3 variants were expressed in BL21(DE3) E. coli cells which were grown in 

1 L Terrific Broth at 37oC while shaking at 180 rpm until an OD6oo of 0.7 to 0.8 was 

reached. Protein expression was induced upon addition of IPTG to a final concentration of 

0.5 mM. Cells grew for another 20 h before harvested by centrifugation (Beckman 

Avanti™ J-25 I) at 2,975 xg and 4 °C. Cell pellets were stored at -80 °C for further use.  

For purification, the cells were resuspended in lysis buffer (50 mM NaH2PO4, 300 

mM NaCl, 10 mM imidazole, and 0.1 mM EDTA, pH 8.0) with 0.1 mM 

phenylmethylsulfonyl fluoride (PMSF) added. Afterwards, cells were lysed by sonication 

on ice for 15 min using a microtip (Branson Sonifier 250) with output control of 3 and duty 

cycle of 50%.  This was followed by centrifugation at 20,000 xg for 1 h at 4 °C. The 

supernatant was decanted and passed through a 0.45 µM polytetrafluoroethylene syringe 

filter before being loaded onto a His-Trap column (GE Healthcare) equilibrated in Buffer 

A (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole. Protein was eluted as the imidazole 

gradient gradually increased from 20 mM to 200 mM upon the addition of Buffer B (50 

mM NaH2PO4, 300 mM NaCl, 200 mM imidazole) by an Äkta explorer. The protein 

containing fractions were collected based on absorbance at 420 nm and concentrated to 

approximately 2 ml using Amicon Ultracel-30K Millipore centrifugal units. Protein was 

then loaded onto a Hi-Pre 26/60 Sephacryl S200 HR column equilibrated in gel filtration 

buffer (20 mM Tris, 150 mM NaCl, pH 8.0). Fractions with a 420/280 absorbance ratio 
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>1.4 for WT, and >1.2 for F81I, I401P, and PM were concentrated to below 20 mg/ml. Co-

binding was used to determine concentration.267 Glycerol was added to approximately 

20%; aliquots were made, snap-frozen, and stored at -80 °C until use.  

4.2.3 Pulse proteolysis 

The pulse proteolysis procedure was adapted from work by Park and Marqusee.137 

The enzyme was diluted to 0.75 mg/ml in various concentrations of urea from 0 – 6.8 M 

made in pulse buffer (20 mM Tris, 10 mM CaCl2, and 20 mM NaCl, pH 7.4). After a 2 h 

incubation at room temperature, 10 mg/ml thermolysin was added and vortexed. After 1 

min, the reaction was stopped by addition of EDTA to a final concentration of 37 mM and 

samples were immediately placed on ice. β-laemmli was added to each sample, which were 

subsequently placed in a hot block for 1 min at 95 °C. Denatured protein was then loaded 

and run on a 4-12% tris-glycine gel for 1 h at 120 volts. Gels were stained in Coomassie 

blue for approximately 2 h and left overnight in destain (45% water, 45% methanol, 10% 

acetic acid). The next day gels were imaged using a ChemiDoc™ MP with Image Quant 

software (Biorad). Concentration midpoint (Cm) values were determined using Graphpad 

Prism graphing software. Data was normalized to fraction folded and fit with either a 

sigmoidal or biphasic equation. For Fe(III)-4-cyanopyridine (CNPy) systems, substrate 

was added to enzyme before dilution in urea for approximately 5 min. Excess CNPy was 

also added to each urea concentration. For Fe(II)-CO systems, all buffer and urea was CO-

saturated before use. Fresh dithionite at a concentration of 2 mM was added to enzyme 

before dilution and was also present in each urea sample. For Fe(II)-CNPy systems, 

enzyme was reduced with 2 mM dithionite and CNPy was immediately added. After a 5 

min incubation reduced and bound enzyme was diluted in urea with excess dithionite and 
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CNPy added. All states were checked by UV/VIS to ensure they were in the proper state 

before the experiment was performed.  

4.2.4 Circular dichroism (CD) 

CD spectroscopy was performed to investigate the unfolding of protein secondary 

structure by following the signal at 222 nm. The protein was diluted to a concentration of 

0.1 mg/ml in urea ranging from 0 - 6.8 M made in 100 mM KPi buffer, pH 7.4.  After a 2 

h incubation, spectra were obtained using a Jasco J-815 CD spectrometer. The settings 

were as follows: sensitivity – standard, bandwidth – 1.00 nm, D.I.T – 0.5 sec, measure 

range 260-200 nm, scanning speed – 50 nm/min, and 2 accumulations. Enzyme in various 

iron states was prepared as written in the pulse proteolysis section. Data was plotted using 

Graphpad Prism software. Ellipticity (mdeg) at 222 nm was plotted versus urea 

concentration, and a sigmoidal regression equation was applied to determine the Cm value.  

4.2.5 UV/Vis spectroscopy 

Absorbance spectra were taken to examine the direct consequences of unfolding on 

the heme environment. The protein was diluted to 0.15 mg/ml in varying concentration of 

urea from 0 – 6.8 M made in 100 mM KPi buffer, pH 7.4. After a 2 h incubation, absorbance 

spectra were obtained using an Agilent 8453 UV-visible spectrometer. Results were plotted 

using Graphpad Prism. To determine which wavelength experienced the greatest change 

as a result of unfolding, difference spectra were produced. The Cm value was found by 

plotting the normalized absorbance of λmax versus urea concentration. For the various iron 

states studied, the enzyme was prepared as described for pulse proteolysis.  
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4.2.6 Determination of reduction potential 

Reduction potentials of P450BM3 variants were estimated using a modified 

procedure from Ost et al.268 The enzyme was diluted in 100 mM KPi, pH 7.4 to 0.15 mg/ml 

in a 3 mL quartz cuvette. A few granules of dithionite were added to the cuvette followed 

by CNPy to saturation. An absorbance spectrum was taken once the enzyme was fully 

reduced and CNPy bound. Data was plotted using Graphpad Prism, with an emphasis on 

the metal-to-ligand charge transfer absorption band (MLCT) from 600-700 nm. The λmax 

was determined in the MLCT region, and using the equation, EMLCT = (3.53 x Em) + 17,005 

cm-1 ,268 the reduction potential was estimated. Each experiment was performed in 

triplicate. 

4.3 Results 

4.3.1 Selectivity of P450BM3 can be modulated by strategic mutations. 

 

 

Figure 4.1 Crystal structures of the active site of A)WT (PDB ID: 4ZFA) and B) PM 
P450BM3 (PDB ID: 4ZF6). Residues highlighted by green denote location and 
orientation of mutations. A ribbon diagram of WT (blue) and PM (orange) overlaid is 
depicted in panel C) indicating a similarity in global structure.  
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 For this study, four variants of P450BM3 were chosen that exhibit a range of 

promiscuity. This study includes the wild type (WT), F81I, I401P, and pentuple mutant 

(R47L, F81I, F87V, L188Q, E267V; PM), (Figure 4.1).  The mutation in the first of these 

variants, F81I, is also present in PM. The residue is located in the B’-helix, and though the 

side chain is not directly in the active site, it is oriented to the interior, allowing for 

interactions with amino acids in the F-helix, specifically L181. According to van Vugt-

Lussenburg et al., though the I81 mutation only has a subtle shift in position compared to 

F81, it subsequently changes the location of L181. This leads to a conformational change 

in the active site that impacts how the ligand fits into the hydrophobic interior.269 

Additionally, a further study using MD simulations indicated that the F81I mutation shifts 

the B’-helix slightly further away from other helices in the interior, leading to a widening 

of the access channel to the active site.128 It was also shown that inclusion of I81 to PM 

increases the rate of dextromethorphan and MDMA turnover by 3 to 5 fold.128 Our 

examination of the F81I P450BM3 enzyme indicates that it has behavior similar to WT in 

regards to binding of substrates. Specifically, in that binding of several substrates (ie. 

metyrapone, Figure C1) is not observable by typical type I or II spectral shifts.  

The I401P P450BM3 mutant was first published by Whitehouse et al. in 2009.270 

Isoleucine is a hydrophobic residue located beside the cysteine proximally ligated to the 

Fe-heme. Though prolines are thought to be disruptive residues, for select heme-Cys 

ligated enzymes this position is naturally a proline.192, 193 Distinct changes are seen to the 

overall protein structure based on this single mutation (Figure C2 A). The most obvious 

change is the spin state of the heme in the resting state. Unlike WT P450BM3, the I401P 

P450BM3 mutant was mostly in the high spin state159, which is typically seen upon substrate 
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binding. In addition, a broad metal to ligand transition (MLCT) band appeared from 600 – 

700 nm as shown in Figure C2. The I-helix experiences the impact of this mutation, with 

the positions of G265 and H266 being slightly altered. These changes lead to a loosening 

of contacts as they prevent intrahelical hydrogen bond formation.270 These structural 

changes lead to an enzyme that is in its catalytically active state in the absence of substrate, 

allowing it to avoid the conformational changes other P450BM3 variants must go through 

before catalysis can occur. It is not clear if the structure enjoys added flexibility, but if it 

does, this may be one of the reasons why I401P P450BM3 is able to turnover a more diverse 

substrate class than WT. The I401P  P450BM3 mutant is able to metabolize a large class of 

substrates, such as fluorene, toluene, 3-methylpentane, and (+)-α-piene, but it has the same 

high reactivity as WT P450BM3.270, 271 It was determined by GC/MS that oxidation of lauric 

acid by both the WT and I401P P450BM3 enzymes yielded three major products, where the 

ω-1, ω-2, or ω-3 carbon was hydroxylated at a ratio of approximately 30% each.270 This 

trend was also replicated with palmitic acid.271 

PM P450BM3 is an extremely promiscuous P450BM3 variant that is able to turnover drug-

like molecules such as dextromethorphan,269 MDMA,269 amitriptyline,272, 273 and 

buspirone.272, 273 The decrease in selectivity for this variant is also accompanied by a 

decrease in stability as compared to WT  P450BM3, which can be attributed to the 

cumulative impact of the five mutations made to PM P450BM3.260 As mentioned above, 

changing a larger hydrophobic residue to a smaller residue for the F81I mutation impacts 

hydrophobic contacts of the lid domain. The E267V and R47L mutations both eliminate 

salt bridges that provide important contributions to protein stability. When L188 is mutated 

to the polar glutamine residue, it causes a negative interaction with Q73, decreasing 
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stability. While these mutations decrease stability, their combination causes a closed 

conformation of the enzyme that increases its catalytic activity towards non-native 

substrates.  

Table 4.1 Concentration midpoint (Cm) values of P450BM3 variants determined by UV/Vis 
spectroscopy.a 

a. All values are in molar urea.b. Two values are listed for ferrous states as two separate 
unfolding events occurred. c. Two values separated by a comma indicate biphasic 
unfolding. 

 

4.3.2 Changes in active site stability are observed by UV/Vis spectroscopy. 

UV/Vis spectroscopy is a robust technique to evaluate the protein environment 

around chromophores.274 As P450s have a heme porphyrin ligated to a cysteine thiol, 

absorbance methods can be used to examine how the active site environment is perturbed 

by various factors, including effects on the distal and proximal faces, along with hydrogen 

bonding interactions with the heme propionates. Conformational rearrangements are 

 Fe(III)-
H2O 

Fe(III)-CNPy Fe(II)-CNPy b Fe(II)-CO b 

WT 4.0 ± 0.4, 

5.6 ± 0.3c 

5.5 ± 0.1 4.2 ± 0.2 (426 nm) 

4.9 ± 0.2 (445 nm) 

3.0 ± 0.2, 5.6 ± 0.1 
(420 nm) c 

3.1 ± 0.1, 5.6 ± 0.1 
(450 nm) c 

F81I 5.3 ± 0.1 - - 3.6 ± 0.1 (420 nm)  

3.1 ± 0.1, 5.1 ± 0.2 
(450 nm) 

I401P 3.6 ± 0.1 - - 3.6 ± 0.1 (420 nm) 

3.4 ± 0.1, 5.1 ± 0.2 
(450 nm) 

PM 2.3 ± 0.2, 

3.9 ± 0.2c 

3.1 ± 0.1 3.4 ± 0.1 (426 nm) 

2.9 ± 0.1 (445 nm) 

2.2 ± 0.1 (420 nm) 

2.3 ± 0.1 (450 nm) 
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associated with reduction of the iron heme, so the impact of the oxidation state of the iron 

was evaluated in the different variants. 

Four states were studied for comparison purposes for the two extreme variants, WT 

and PM P450BM3 were examined while F81I and I401P P450BM3 were examined as 

intermediates. While the water-bound and carbon monoxide-bound states are commonly 

used as the resting state and a model for the Fe(II)-O2  state,275 4-Cyanopyridine (CNPy) 

was chosen as it binds to both the Fe(II) and Fe(III) states (Figure C3). This ligand is bound 

to the Fe-heme via the nitrogen pyridine as previously shown for P450BM3 
268 and 

P450cam.276 Binding dissociation constants (Kd) for CNPy were found for WT and PM 

P450BM3 in the Fe(III) and Fe(II) states (Figure C3, Table C1). Consistent with literature268, 

tighter binding was observed for the ferrous states as opposed to the ferric states (Table 

C1). Thus, the states compared were Fe(III)-H2O, Fe(III)-CNPy, Fe(II)-CNPy and Fe(II)-

CO. For the two single point variants, only the resting Fe(III)-H2O and Fe(II)-CO states 

were investigated, as to simplify analysis. All concentration midpoint values are shown in 

Table 4.1. 
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Figure 4.2 Reduction of P450BM3 variants impacts stability as detected by UV/Vis 
spectroscopy. In each case, the left absorbance spectra is the Fe(III)-H2O state, 
monitored over 0 – 6.8 M urea; the middle absorbance spectra is the Fe(II)-CO state 
monitored over 0 – 6.8 M urea. Insets show difference spectra, where the blue line = 
0 urea, and the red line is the last urea addition. The fits to the data on the right are the 
normalized absorbance of Fe(III)-H2O P450BM3 at 418 nm (closed circles) and Fe(II)-
CO P450BM3 at 450 nm (open squares), which were used to determine Cm for both 
states. A-C)  WT P450BM3. D-F) PM P450BM3.  G-I) F81I P450BM3. J-L) I401P 
P450BM3. Studies were performed in 100 mM KPi pH 7.4 buffer with protein at a 
concentration between 0.15 – 0.25 mg/mL. All experiments were done in a 1-cm 
quartz cuvette. Concentrated urea was made in 100 mM KPi pH 7.4 buffer before 
dilution. For CO-bound studies, KPi buffer was first saturated with CO. Sodium 
dithionite was made immediately before use and dissolved in CO-saturated 100 mM 
KPi pH 7.4 buffer. All samples were incubated for 2 hr at RT before absorbance 
spectra were taken. For results with one transition, data was fit on Graphpad prism 
with the sigmodial dose-response (variable slope) equation. For results with two 
unfolding transitions data was fit with a biphasic nonlinear fit equation. 
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Unfolding of the WT Fe(III)-H2O state was demonstrated by a decrease in 

absorbance of the Soret band at 418 nm and the q-bands from 500 - 600 nm (Figure 4.2A) 

as the urea concentration was increased. The WT Fe(III)-H2O state was best fit by a 

biphasic equation as opposed to a monophasic equation as shown by residual plots (Figure 

C5). It was the most stable state, exhibiting a Cm of 4.0 ± 0.4 M for the first unfolding event 

and 5.6 ± 0.1 M for the second. This biphasic fit hinged on one point around 4 M urea, but 

was observed consistently through three separate experiments. Unfolding of the WT Fe(II)-

CO state was observed optically by a disappearance of the P450 state and a rise of the P420 

state as denaturant increased (Figure 4.2B). As two distinct processes occurred, two Cm 

values are reported, 3.0 ± 0.2 M and 5.6 ± 0.1 M for the process at 420 nm and 3.1 ± 0.1 

M and 5.6 ± 0.1 M  for the process at 450 nm (Figure 4.3, Table 4.1). For the P450 state, a 

majority of the protein (60%) was denatured during the first unfolding event (3.1 ± 0.1 M) 

and 40% unfolded over 2 M later, with a Cm  of 5.6 ± 0.1 M shown in Figure 4.2C. The WT 

Fe(III)-CNPy state exhibited a decrease in absorbance of the slight red shifted Soret band 

with very little change to the q-bands (Figure C6). Similarly to the Fe(II)-CO state, the WT 

Fe(II)-CNPy state unfolded by two processes- disappearance of  the properly ligated state 

at 445 nm and appearance of the misligated state277 at 426 nm. There was also a slight blue 

shift of the q-bands as the active site unfolded (Figure C6). Unlike the water and carbon 

monoxide states, the CNPy bound states unfolded monophasically with a Cm of 5.5 ± 0.1 

M for the ferric state and 4.2 ± 0.2 M (426 nm) and 4.9 ± 0.2 M (445 nm) for the ferrous 

state (Figure 4.3, Table 4.1). The stability of the WT ferrous states were, in general, lower 

than the WT ferric states. The most obvious example is of the Fe(II)-CO state compared to  
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the WT Fe(III)-H2O state where there is over a two molar unit difference in stability (Figure 

C7).   

 

The PM P450BM3 species studied were less stable than the same WT P450BM3 

species by UV/Vis. All four states unfolded optically similar to the WT species with the 

exception of the Fe(II)-CNPy state (Figure C6). The extinction coefficient for the 426 nm 

state for the PM P450BM3 species was observably higher than that of the WT, shown by the 

higher absorbance of the 426 state compared to the 445 state. The PM P450BM3 Fe(III)-

H2O state studied by UV/Vis (Figure 4.2D) was the only PM P450BM3 state that displayed 

biphasic unfolding by any technique. The first phase had a Cm  = 2.3 ± 0.2 M and 

contributed approximately 50% to the overall unfolding event. The second higher Cm  was 

 

Figure 4.3 Unfolding of WT and PM P450BM3 as detected by UV/Vis spectroscopy. 
A) and D) the Fe(II)-CO state;  B) and E) the Fe(III)-CNPy state; C) and F) the Fe(II)-
CNPy state. A) through C) WT P450BM3;  D) through F) PM P450BM3. For the ferrous 
states the open circles represent the appearance  of the inactive state (420 nm for the 
Fe(II)-CO state and 426 nm for the Fe(II)-CNPy state) and the closed circles are 
disappearance of the active state (450 nm for the Fe(II)-CO state and 445 nm for the 
Fe(II)-CNPy state). 
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3.9 ± 0.2 M (Table 4.1).  The Cm values of the Fe(II)-CO transitions were similar to the 

first unfolding event for the water bound state, with Cm values of 2.2 ± 0.1 M (420 nm) and 

2.3 ± 0.1 M (450 nm). Similar values were also found between the CNPy bound PM 

P450BM3 states, in fact one of the ferrous transitions exhibited a higher Cm than the ferric 

state, 3.4 ± 0.1 (426 nm) for the Fe(III) state vs 3.1 ± 0.1 M for the Fe(II) state (Figure 4.3, 

Table 4.1).  

Unfolding of the F81I P450BM3 species occurred similarly to the corresponding WT 

and PM P450BM3 states. For the water bound state this meant a decrease in the Soret band 

and for the Fe(II)-CO state a decrease in the P450 state with an increase of the P420 state 

(Figure 4.2G,H). Concentration midpoint values were comparable to WT, though not 

biphasic for the water bound state (Cm = 5.3 ± 0.1 M). Cm values for the Fe(II)-CO 

transitions were 3.6 ± 0.1 M (420 nm) and 3.1 ± 0.1 M, 5.1 ± 0.2 M (450 nm) as seen in 

Table 4.1. As the I401P P450BM3 is naturally high spin in the resting state, it unfolded 

differently than all other variants. Upon denaturation, the Soret band red shifted from the 

HS resting state at 395 nm to an inactive state at 420 nm. As the urea concentration 

continued to increase, the absorbance at 420 nm decreased, indicating a loss of the heme 

from the active site.  This shift in absorbance was accompanied by the appearance of a 

large shoulder at the HS position and a decrease in absorbance of the MLCT band (Figure 

4.2J). The Cm for the water bound state was between that of PM and WT P450BM3 with a 

Cm of 3.6 ± 0.1 M (Table 4.1). When reduced and CO-bound, the I401P P450BM3 variant 

shows the typical red shift expected to approximately 450 nm. Upon denaturation by urea, 

this peak shifts to an inactive species at approximately 425 nm (Figure 4.2K). As compared 

to the Fe(III)-H2O state, unfolding of the Fe(II)-CO state unfolds more rapidly evidenced 
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for the steepness of the slope of the unfolding plot (Figure 4.2L).  The Cm values at both 

425 nm and 450 nm were close to those observed for CO bound ferrous WT P450BM3 with 

a biphasic unfolding pattern apparent at 450 nm. Though close in stability, for WT 

P450BM3, the ∆Cm between the resting state and the Fe(II)-CO bound state is 0.4 – 0.9 M 

for the first transitions. For I401P P450BM3, this difference is only 0.1-0.2 M. The smaller 

difference in ∆Cm is similar to the pattern seen for PM P450BM3 in which the ferrous and 

ferric states are closer in stability as seen in Table 4.1. 

 Besides the presence of biphasic unfolding, other interesting observations were 

made for the various BM3 variants. Of the Fe(II)-CO states, WT and PM P450BM3 

unfolding occurred synergistically meaning both the P420 and P450 Cm values were within 

error. Additionally, for WT P450BM3 this was surprising as both states unfolded via 

biphasic mechanisms. For all the variants in the resting state (Fe(III)-H2O for WT and F81I, 

Fe(III) HS for I401P), except PM P450BM3, an initial compaction event was evident upon 

unfolding. This initial compaction may be due to urea displacing water around the enzyme 

by an indirect mechanism,278-280  placing a force on the enzyme that allows it to constrict. 

As PM P450BM3 is already significantly destabilized it is likely that urea was more readily 

able to reach the hydrophobic core than the other P450BM3 variants. 
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4.3.3 Circular dichroism monitored changes in α-helical content. 

 

The denaturation of the α-helical content of WT, F81I, I401P, and PM P450BM3 

variants was investigated by Circular Dichroism spectroscopy (CD) in the far-UV region, 

as shown in Figure 4.8 and Table 4.2. In general, an increase of the denaturant 

concentration was correlated with a decrease in α-helical content as shown by a decrease 

in ellipticity at 222 nm (Figure C8).  Of the four WT P450BM3 species studied, the most 

stable was the resting state, Fe(III)-H2O, which exhibited a Cm of 5.6 ± 0.2 M; the ferric 

CNPy state was within error of this value at 5.5 ± 0.2 M (Table 4.2). The Fe(II)-CO state 

 

Figure 4.4 Reduction from Fe(III) to Fe(II) states of selective and promiscuous 
variants has an opposing effect on secondary structure stability. Change in ellipticity 
at 222 nm as a function of urea concentration for A) WT P450BM3, B) PM P450BM3, 
C) F81I P450BM3, and D) I401P P450BM3. In all panels, black circles are the water 
bound resting state, blue triangles represent the ferric CNPY state, green triangles the 
ferrous CNPy state, and the red squares represent the ferrous CO-bound state. 
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was approximately 1 M less stable, exhibiting a Cm  of 4.4 ± 0.4 M. Results for the ferrous 

CNPy bound state were not included due to signal interference. 

Table 4.2 Concentration midpoint (Cm) values of P450BM3 variants by circular dichroism 
spectroscopy.a 

 Fe(III)-
H2O 

Fe(III)-CNPy Fe(II)-CNPy Fe(II)-CO 

WT 5.6 ± 0.2 5.5 ± 0.2 - 4.4 ± 0.4 

F81I 5.2 ± 0.1 - - 4.4 ± 0.1 

I401P 3.9 ± 0.1 - - 3.9 ± 0.1 

PM 3.7 ± 0.2 3.6 ± 0.1 3.7 ± 0.2 3.8 ± 0.1 

a. All Cm values are molar urea.  

In marked contrast, the four PM P450BM3 states had similar Cm values within error 

of each other ranging from 3.6 ± 0.1 M to 3.8 ± 0.1 M (Table 4.2). The same trend followed 

for the I401P P450BM3 variant as for PM P450BM3 in which the ∆Cm between the Fe(III) 

and Fe(II) states is negligible or non-existent. The Cm values for both the resting state and 

Fe(II)-CO bound I401P P450BM3 variant are within error of the PM P450BM3 values, with 

stability in the high 3 M range. Interestingly, as seen by UV/Vis spectroscopy for the I401P 

P450BM3 variant, the slope of the unfolding curve for the Fe(II)-CO state is steeper than 

that of the Fe(III)-H2O state (Figure 4.4D). As the I401P P450BM3 variant parodies PM 

P450BM3, so does F81I P450BM3 to WT P450BM3. There is a larger gap in stability for the 

two selective water bound states, than for the two promiscuous variants (∆Cm of 0.4 M for 

the selective variants vs ∆Cm of 0.2 M for the promiscuous variants), but they are still 

overall much more stable than their counterparts. For F81I P450BM3, there is a noticeable 

drop in stability for the Fe(II)-CO bound state when compared to the resting state of almost 

1 M, similar to what is seen with WT P450BM3 ferric and ferrous states. 
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4.3.4 Pulse proteolysis uses a protease to investigate global structure stability. 

 

Pulse proteolysis was first described by Park and Marqusee as a method to 

investigate the stability of global protein structure.137 In this technique, the protein is first 

denatured by urea subsequently, cleaved by the protease thermolysin and then run on a 4-

12% bis-tris protein gel. The more unstable the protein, the more denatured it will become 

by urea and therefore, more exposed to thermolysin. Concentration midpoints (Cm) are 

calculated in which the protein is 50% unfolded (Figure 4.5, Table 4.3). An example of a 

gel is shown in Figure C10. 

 

Figure 4.5 A greater disparty in stability of the global structure occured as a function 
of iron oxidation state for  selective P450BM3 variants. A) WT P450BM3 stability 
monitored by pulse proteolysis in which a decrease in protein content was observed. 
B) PM P450BM3 and D) I401P P450BM3 are promiscuous variants whereas C) F81I 
P450BM3 is more selective. In all panels, black circles represent the ferric H2O state, 
blue triangles the ferric CNPy bound state, green triangles the ferrous CNPy bound 
state, and red squares represent the ferrous CO bound state.   
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Table 4.3 Concentration midpoint (Cm) values of P450BM3 variants by pulse proteolysis. a 

 Fe(III)-H2O Fe(III)-CNPy Fe(II)-CNPy Fe(II)-CO 

WT 3.2 ± 0.2,  

5.3 ± 0.1 b 

4.5 ± 0.1 3.6 ± 0.2 2.2 ± 0.4, 

 5.0 ± 0.2 b 

F81I 4.6 ± 0.1 - - 4.7 ± 0.2 

I401P 3.3 ± 0.1 - - 2.7 ± 0.1 

PM 2.9 ± 0.1 3.0 ± 0.1 2.7 ± 0.1 2.1 ± 0.1 

a. All Cm values are molar urea. b. Two values separated by a comma indicate 
biphasic unfolding. 

 

As measured by pulse proteolysis, WT P450BM3 Fe(III)-H2O exhibited biphasic 

unfolding and was the most stable of the four WT P450BM3 species studied, exhibiting a  

Cm of 5.3 ± 0.1 M for the second transition (Table 4.3). Residual plots indicating the 

suitability of biphasic fits are shown in Figure C11. For the water bound state, the biphasic 

transition split the population in half; approximately 50% of the enzyme was unfolded at 

the first Cm of 4.0 ± 0.4 M and 50% at the higher (Figure 4.5A). If reflecting on the total 

population as a whole, the Fe (III)-CNPy state could be considered more stable than the Fe 

(III)-H2O as the Cm for the Fe(III)-CNPy state was 4.5 ± 0.1 M. The WT P450BM3 Fe(II)-

CO state also displayed biphasic unfolding but with a much lower initial Cm. Unlike the 

water bound state, the ferrous CO bound state exhibited an immediate drop-off in stability 

when exposed to urea with a Cm of 2.2 ± 0.4 M. Approximately 90% of the enzyme 

unfolded in this first phase, and 10% in the last phase with a Cm of 5.0 ± 0.2 M (Figure 

4.5A). This small portion of the enzyme population could represent molecules that reverted 

to the Fe(III)-H2O state as this Cm value is within error of the higher value for that system, 

5.3 ± 0.1 M. Unlike the Fe(III)-H2O and Fe(II)-CO states, both the WT P450BM3 ferric and 



113 

ferrous CNPy bound states exhibited monophasic unfolding, although the ferric state was 

more stable by approximately 1 M with a Cm of 4.5 ± 0.1 M vs 3.6 ± 0.2 M, respectively 

(Table 4.3). 

Unlike the WT P450BM3 species, none of the other P450BM3 variants exhibited 

biphasic unfolding profiles. Of the four PM P450BM3 states studied, the HS Fe(III)-CNPy 

state was the most stable, however, the stability of the Fe(III)-H2O and Fe(II)-CNPy states 

were also comparable. The biggest difference observed was for the Fe(II)-CO state, which 

had the lowest Cm of 2.1 ± 0.1 M (Table 4.3). Compared to the other techniques, pulse 

proteolysis shows the greatest difference in stability for the PM  and I401P P450BM3 ferric 

vs ferrous states. In both cases the ferrous states are less stable than the ferric, the most 

drastic example is the ∆Cm (0.8 M) between the resting state and ferrous CO-bound state 

for PM P450BM3 (Figure C12). This gap is a bit smaller for I401P P450BM3 with a ∆Cm of 

0.6 M. Though, these ∆Cm values are larger than expected, they are still smaller than those 

seen for WT P450BM3.  

4.3.5 Promiscuous P450BM3 variants have a more positive reduction potential than more 
selective variants 

To determine if there was a relationship between stability and ease of reduction, the 

reduction potential of all four P450BM3 variants was calculated. A method first published 

by Ost et al. was used in which MLCT between the iron heme and CNPy ligand was related 

to reduction potential using the equation EMLCT = (3.53 x EM) +17,005 cm-1 where EM is the 

reduction potential and EMLCT is the wavelength of the maximum absorbance of the MLCT 

band in cm-1.268 In short, after the enzyme was reduced with sodium dithionite, CNPy was 

added to saturation and the maximum wavelength of the MLCT band (600-700 nm) was 
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determined by UV/Vis spectroscopy (Figure C13). Using the above equation, reduction 

potential was calculated and corrected based on previously published values for WT and 

I401P P450BM3. As expected, WT P450BM3 exhibited the lowest reduction potential of - 

429 ± 8 mV. Values from literature for reduction potential of WT P450BM3 vary from -449 

to -368 mV,268, 270, 271, 281-284 placing our value within agreement. Also in agreement with 

literature, is our calculated reduction potential for I401P P450BM3 of - 284 ± 28 mV as 

compared to – 303 mV.270 Reduction potentials for F81I and PM P450BM3 were determined 

to be - 429 ± 8 mV  and -341 ± 23 mV,  respectively.  

 

 

Figure 4.6 Redox potential is correlated to iron state stability of selective vs. 
promiscuous P450BM3 variants. A) Concentration midpoints as determined by pulse 
proteolysis for ferric water bound P450BM3 variants are plotted against calculated 
reduction potential. B) Ferrous CO-bound P450BM3 variants in relation to calculated 
reduction potentials. In both panels, blue circles represent WT P450BM3, and two data 
points are shown as both ferrous and ferric states exhibited biphasic unfolding by 
pulse proteolysis. Green circles show F81I P450BM3, orange diamonds show I401P 
P450BM3, and purple circles are PM P450BM3. The reduction potential was calculated 
by determining the λmax of the MLCT band (600 – 700 nm) of the ferric-CNPy bound 
species. All UV/Vis experierments were done in a 1-cm pathlength quartz cuvette 
with 0.15 mg/ml protein diluted in 100 mM Kpi pH 7.4 buffer at RT. The enzyme was 
reduced with freshly made sodium dithionite made in 100 mM Kpi pH 7.4 buffer. 
CNPy was used at saturating concentrations.  
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 Not surprisingly, the more promiscuous the variant, the higher the reduction 

potential, implying an ease of reduction by NADPH (-320 mV)285 as compared to the more 

selective variants. In addition, there seems to be a correlation between stability of the global 

structure as determined by pulse proteolysis and reduction potential. Upon comparing the 

Cm of the resting state (Fe(III)-H2O for WT, F81I, and PM P450BM3 variants and Fe(III)-

HS for I401P P450BM3) to reduction potential, there are two clusters apparent, one 

consisting of the WT and F81I P450BM3 variants and another of the PM and I401P P450BM3 

variants, indicating a similarly in behavior (Figure 4.6A). The same is obvious for the 

correlation between Cm of the Fe(II)-CO state with reduction potential (Figure 4.6B). As 

WT P450BM3 unfolds biphasically by pulse proteolysis, both Cm values are included.  

4.4 Discussion 

Though PM and I401P P450BM3 are more promiscuous, this loss of selectivity 

comes at the cost of stability. By all three methods – pulse proteolysis, CD, and UV/Vis 

spectroscopy, WT and F81I P450BM3 were in general 1-2 M more stable than PM and I401P 

P450BM3 when exposed to increasing concentrations of urea. Generally, as compared to the 

WT and F81I P450BM3 species investigated, the stability of the states studied for PM and 

I401P BM3 were very similar regardless of oxidation state, summarized in Figure 4.7. The 

general trend for WT P450BM3 states studied was that the ferric states were more stable 

than the ferrous states. Comparing just the oxidized and reduced WT-CNPy bound states, 

the smallest ∆Cm was 0.9 M urea by pulse proteolysis and the greatest ∆Cm was 1.3 M urea 

by UV/Vis spectroscopy.  In contrast, for the PM P450BM3 ferric and ferrous forms bound 

to CNPy the greatest ∆Cm was 0.3 M, observed by both pulse proteolysis and UV/Vis 

spectroscopy.   
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The similarity in stability between the oxidized and reduced states of PM and I401P 

P450BM3 variants indicates structural regularity between the two states. For the selective 

P450BM3 variants to undergo turnover there must be a larger rearrangement in overall 

 

Figure 4.7 Change in concentration midpoint (Cm) of all tested variants by pulse 
proteolysis. The Cm is compared to an estimation of promiscuity and the 
reduction potential. Purple squares represent WT, green triangles are I401P, 
pink stars are F81I, and blue circles are PM. Open purple squares and filled 
purple squares indicate a biphasic unfolding, in which the open square is the 
lower Cm value and the closed square is the higher Cm value.  
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structure as there is a greater difference in stability. In essence, the energy barrier between 

the Fe(III) and Fe(II) state is greatly reduced for the promiscuous P450BM3 variants as 

opposed to the more selective P450BM3  variants. In addition, the increase in positivity of 

the reduction potential of the promiscuous variants indicates they can more readily accept 

an electron from their reductase partner. As the rate limiting step of P450 catalysis is the 

first electron transfer to the substrate bound HS Fe(III) state,207 this finding is extremely 

important. Because non-native substrates disrupt natural contacts in the active site, the 

quicker rearrangement in protein structure between the Fe(III) and Fe(II) states may help 

account for why promiscuous P450s are able to successfully turnover a plethora of  diverse 

substrates.  

 

Though all variants exhibited biphasic unfolding for particular states, it was more 

ubiquitous for WT P450BM3. Biphasic unfolding was apparent for both the resting state and 

the Fe(II)-CO state by UV/Vis spectroscopy and pulse proteolysis. This is in contrast to 

 

Figure 4.8 Possible pathways for biphasic unfolding. In both depictions, “N” 
represents the native population and “U” the unfolded population. “NA” and “NB” 
represent the possibility of two native states. 
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biphasic unfolding only occurring for F81I and I401P P450BM3 for the Fe(II)-CO state and 

the Fe(III)-H2O state for PM P450BM3 by UV/Vis spectroscopy. Two-stage unfolding could 

be occurring via two separate pathways expressed in Figure 4.8.  Panel A depicts a scenario 

in which biphasic unfolding occurs via an intermediate which indicates a metastable form 

of the enzyme appears as it unfolds. Panel B in contrast, depicts a situation in which 

biphasic unfolding occurs as the result of two native populations (NA and NB), in 

equilibrium with each other, unfold at different rates. If the true unfolding pathway is 

attributed to the later, it could be rationalized that the presence of two native states could 

be an artifact of protein purification. This line of reasoning is unlikely as biphasic unfolding 

for WT P450BM3 has been observed in previous studies in which protein was purified using 

a different method.132 

If biphasic unfolding occurred due to the presence of an intermediate, for the Fe(II)-

CO state it would be expected that the Cm values for the appearance of the P420 state and 

disappearance of  the P450 state are similar. This is consistent for WT P450 BM3 in which 

the Cm values at 420 nm are 3.0 ± 0.2 and 5.6 ± 0.1 M and are 3.1 ± 0.1 and 5.6 ± 0.1 M at 

450 nm (Table 4.1). Unfortunately, this trend does not follow for F81I and I401P P450BM3 

in which only the P450 state unfolds via a biphasic mechanism.  

A third possibility for biphasic unfolding is especially relevant for the WT P450BM3 

Fe(II)-CO state as detected by pulse proteolysis. It is possible that a small population of 

the enzyme reverted from the ferrous-CO bound state to the ferric water bound state as 

90% unfolded at 2.2 ± 0.4 M and 10% later at 5.0 ± 0.2 M (Table 4.3). The higher Cm of 

5.0 ± 0.2 M is within error of the higher Cm for the water bound state (5.3 ± 0.1 M) which 

lends credence to this hypothesis. It is possible that all three mechanisms discussed are 
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relevant to biphasic unfolding of the various P450BM3 states. Work is currently being done 

utilizing single molecule pulsed interleaved excitation-forster resonance energy transfer 

(PIE-FRET) to parse which hypothesis is more accurate for the systems investigated in this 

study.  
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AND DNA DAMAGE 

Chapter adapted from: Zamora, A.*, Denning, C. A.*, Heidary, D. K., Wachter, 

E., Nease, L. A., Ruiz, J., and Glazer, E. C. (2017). "Ruthenium-containing P450 

inhibitors for dual enzyme inhibition and DNA damage." Dalton Transactions 46(7): 
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Author Contributions: AZ, CAD, JR, DKH, and ECG designed the study, analyzed the 

data, and wrote the manuscript. AZ and EW performed synthesis and characterization of 

molecules. CAD conducted all protein experiments. LAN and DKH conducted IVTT 

assay. 

5.1 Introduction 

Cytochrome P450s are essential enzymes that catalyze challenging organic 

transformations for the biosynthesis and metabolism of various key molecules, including 

steroids, retinoic acid, and vitamin D. In addition, hepatic P450s are responsible for the 

 

Figure 5.1 Design of dual action inhibitors. 
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degradation of xenobiotics, and thus, play a central role in drug metabolism and 

deactivation. One problematic issue is that their substrates include many anticancer agents, 

decreasing the effective drug concentration in the body. Compounding this problem, some 

P450s are found specifically in tumors, where they are over expressed and play a direct 

role in cancer initiation, progression, and drug resistance. For example, CYP1B1 has been 

shown to metabolize procarcinogens to carcinogens to initiate DNA damage, and 

subsequently induce resistance to DNA damaging chemotherapeutics.286-288 Alternatively, 

CYP19A (aromatase) converts androgens to estrogens, and is an important target in the 

treatment of estrogen driven cancers.289-293 CYP17A1 is responsible for androgen 

synthesis, and abiraterone is a first-in-class steroidal inhibitor of this enzyme used in late-

stage prostate cancer.294-297  

Currently, P450 inhibitors have been used as treatments for the inhibition of steroid 

biosynthesis, as for breast and prostate cancer, and for other indications, such as Cushing’s 

disease.298-300 The dangers associated with clinical use of P450 inhibitors is that they are 

generally not isoform selective (<103 difference in Kd), and long-term systemic inhibition 

of P450s can result in adverse drug interactions and altered hormone levels.301, 302 An 

alternative approach to avoid these consequences would be to develop agents that can be 

activated to selectively inhibit desired P450 enzymes in a spatially and temporally 

regulated manner. In the context of anti-cancer agents, inhibition of P450s in cancerous 

tissues is also a rational strategy to sensitize the cells to DNA damaging agents,286 while 

reducing the bioactivation of procarcinogens as a cancer driver. Furthermore, if the 

inhibition of the P450 could occur concurrently with the local administration of a cytotoxic 

agent only within the tumor, deactivation of the drug by hepatic P450s could be avoided. 
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Accordingly, we have synthesized dual action Ru(II) complexes as pro-drugs that can be 

triggered with light to simultaneously release a P450 inhibitor and a DNA damaging metal 

center.  

Photocaging is a well-established means to selectively release biologically active 

agents with temporal and spatial control.303 Metal complexes have been used as 

photocaging groups with great success, with pioneering work by Etchenique,304-306 

Franz,307-309 and Kodanko.310-312 Our approach differed slightly from traditional 

photocaging, however, as the metal complex is intended to act as a caging group that would 

transform into an active biological effector in its own right, in addition to the ligand that it 

protected in the intact complex form. 

 

In order to test this strategy, three P450 inhibitors were chosen that could be 

coordinated to Ru(II) complexes. These compounds all contain nitrogen heterocycles, and 

 

Figure 5.2 Structures of P450 inhibitors and Ru(II) complexes. Complexes synthesized 
by A. Zamora. 
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thus are able to directly ligate both the Ru(II) center and, after photorelease, the iron heme 

in P450s. Metyrapone and etomidate have been primarily used to inhibit P450 11B1, also 

known as steroid 11-beta-monooxygenase.313 Both compounds appear to bind similarly to 

the binding site of CYP11B1, where the N-heterocycle is capable of ligating the catalytic 

heme iron while the other ring interacts with Arg110 and Phe130 via π-stacking.314 A third, 

novel small molecule, compound 1, was synthesized;315 it has the metyrapone molecular 

skeleton with etomidate features: imidazole and benzene rings (Figure 5.2). 

5.2 Experimental Procedures 

5.2.1 Materials and instrumentation 

Chemicals used for synthesis were purchased from VWR or Fisher Scientific and 

used without further purification. cis-Dichlorobis(2,2’-bipyridine)ruthenium(II) dihydrate  

was purchased from Strem chemicals. Human liver microsomes were purchased from 

Sekisui Xenotech.  

A Varian Mercury spectrometer was used to obtain 1H NMR (400 MHz) and 13C 

(100 MHz) spectra. Chemical shifts are reported relative to the solvent peak (CD3CN – δ 

1.94 or CDCl3 – δ 7.24 for 1H NMR; CD3CN – δ 1.39 for 13C NMR). Electrospray 

ionization (ESI) mass spectra were obtained using a Varian 1200L mass spectrometer at 

the University of Kentucky Environmental Research Training Laboratory (ERTL). 

Absorption spectra for the extinction coefficient determination, acetonitrile photoejection 

and binding constant (Kd) determination for ligands were obtained on a Cary 60 UV/Vis 

spectrophotometer. Full spectrum absorbance readings to study the photoejection for 

complexes 1–3 in different aqueous media were obtained using a BMG Labtech FLUOstar 
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Omerga microplate reader. Binding saturation studies for each compound as well as Kd 

determination for irradiated complexes 1–3 were completed using an Agilent 8453 UV/Vis 

spectrometer. Compound purity was determine with an Agilent 1100 Series HPLC using a 

previously reported method.316 Light activation for photoejection experiments was 

achieved using a 470 nm LED array from Elixa. An Indigo LED array from Loctite was 

used for light activation for the enzyme assays. A Tecan SPECTRAFluorPlus Plate Reader 

was used to determine change in fluorescence for the enzyme activity assay and IVTT 

assay. Agarose gels were digitally imaged using a BioRad ChemiDoc System. 

5.2.2 Compound synthesis, characterization, and ion exchange 

2-(1-Imidazolyl)-2-methyl-1-phenyl-2−1-propanone) (1) was synthesized 

following a previously published procedure.52 All metal complexes were synthesized under 

low ambient light and were protected using aluminum foil throughout each step of 

synthesis, isolation, and characterization. Silver salts were used to facilitate ligand 

exchange; the choice of the specific salts in the different reactions was due only to reagent 

availability.  

5.2.2.1 [Ru(bpy)2(Met)2](PF6)2 (2) 

[Ru(bpy)2Cl2]·2 H2O (125 mg, 0.240 mmol) was dissolved in water (7 mL) under 

N2 at 80 °C. To this 2-methyl-1,2-di-3-pyridil-1-propanone (136 mg, 0.6 mmol) was added, 

and the red solution was stirred overnight at 80 °C. The resulting solution was cooled to 

room temperature (RT) and extracted into CH2Cl2 (3x10 mL) to remove the excess free 

ligand. The complex was precipitated out of the aqueous phase with 1–2 mL of a saturated 

aqueous KPF6 solution and extracted with CH2Cl2/MeCN (3x10 mL). The crude complex 
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was purified by column chromatography using H2O:MeCN:KNO3 as eluent (from 0:100:0 

to 12:87.2:0.8). The product was obtained in 38% yield (104 mg) as an orange solid. ESI 

MS C48H44N8O2Ru: m/z calcd [M]2+ 433.13, found 433.2 [M]2+. Purity by HPLC: 99.3 % 

by area; UV/Vis in CH3CN, λmax (ε M-1 cm-1) = 290 (43200), 345 (12100), 445 (8400). 

Note: NMR was not completed due to the compound containing a mixture of isomers. 

5.2.2.2 [Ru(bpy)2(Eto)2](PF6)2 (3) 

Silver triflate (99 mg, 0.384 mmol) was added to a suspension of [Ru(bpy)2Cl2]·2 

H2O (100 mg, 0.192 mmol) in water (15 mL) and the mixture was stirred overnight at RT. 

The solution was filtered under N2. Etomidate (94 mg, 0.384 mmol) and 15 mL of EtOH 

were added to the solution, which was then stirred at 85 °C under N2 for 24 hr. After cooling 

the reaction, the solution was concentrated, 1-2 mL of a saturated aqueous KPF6 solution 

was added, and the precipitate was extracted into CH2Cl2 (3x15 mL). The crude was 

purified by column chromatography using H2O:MeCN:KNO3 as eluent (from 0:100:0 to 

20:80:0.4). The product was obtained in 47% yield (108 mg) as a crystalline red solid. 1H 

NMR (CD3CN, 400 MHz): δ 9.03 (d, J = 5.6 Hz, 1H), 8.97 (d, J = 5.2 Hz, 1H), 8.35 (d, J 

= 8.4 Hz, 2H), 8.27 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 8.12 (q, J = 8.4 Hz, 2H), 

8.00 (d, J = 5.2 Hz, 1H), 7.87 (m, 3H), 7.70 (m, 3H), 7.49 (s, 1H), 7.37-7.19 (m, 10H), 6.88 

(d, J = 6.4 Hz, 2H), 6.72 (d, J = 7.2 Hz, 2H), 6.29 (q, J = 7.0 Hz, 1H), 6.19 (q, J = 7.2 Hz, 

1H), 4.15 (m, 4H), 1.75 (d, J = 7.2 Hz, 3H), 1.71 (d, J = 7.2 Hz, 3H), 1.19 (m, 6H); 13C 

NMR (CD3CN, 100 MHz): δ 159.57, 159.48, 159.01, 158.96, 158.47, 158.37, 154.10, 

154.00, 153.96, 153.83, 142.93, 142.82, 141.88, 141.52, 138.42, 138.35, 138.16, 138.10, 

129.90, 129.23, 129.09, 128.46, 128.10, 128.03, 126.95, 126.63, 126.10, 126.05, 124.70, 

124.48, 62.41, 57.86, 57.62, 22.35, 22.12, 14.46, 14.42 ppm; ESI MS C48H48N8O4Ru: m/z 
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calcd [M]+ PF6
- 1047.25, [M]2+ 451.14, found 1047.1 [M]+ PF6

-, 451.1 [M]2+. Purity by 

HPLC: 98.3 % by area; UV/Vis in CH3CN, λmax (ε M-1 cm-1) = 235 (50900), 290 (53900), 

325 (8900), 475 (8200). 

5.2.2.3 [Ru(bpy)2(1)2(PF6)2 (4) 

Silver nitrate (65.2 mg, 0.384 mmol) was added to a suspension of [Ru(bpy)2Cl2]·2 

H2O (100 mg, 0.192 mmol) in water (15 mL), and the mixture was stirred overnight at RT. 

The solution was filtered under N2. 2-(1-Imidazolyl)-2-methyl-1-phenyl-2−1-propanone; 

compound 1) (102.8 mg, 0.480 mmol) and 15 mL of EtOH were added to the solution, 

which was stirred at 85 °C under N2 for 24 hr. After cooling the reaction, the solution was 

concentrated, 1–2 mL of a saturated aqueous KPF6 solution was added and the precipitate 

was extracted into CH2Cl2 (3x15 mL). The crude was purified by column chromatography 

using H2O:MeCN:KNO3 as eluent (from 0:100:0 to 10:90:0.2). The product was obtained 

in 73% yield (158 mg) as a crystalline red solid. 1H NMR (CD3CN, 400 MHz): δ 8.66 (d, 

J = 5.2, 2H), 8.22 (d, J = 8.0 Hz, 2H), 8.08 (d, J = 8.0 Hz, 2H), 7.99 (t, J = 8.0 Hz, 2H), 

7.75 (m, 4H), 7.53 (m, 4H), 7.29 (s, 2H), 7.25 (s, 2H), 7.17 (m, 6H), 7.06 (d, J = 7.6 Hz, 

4H), 6.53 (s, 2H), 1.78 (s, 12H); 13C NMR (CD3CN, 100 MHz): δ 158.67, 158.16, 153.58, 

153.25, 139.57, 137.97, 137.54, 135.15, 134.23, 130.68, 129.61, 128.80, 128.12, 127.76, 

124.54, 124.26, 120.71, 67.75, 30.99, 27.54, 27.26 ppm; ESI MS C46H44N8O2Ru: m/z calcd 

[M]+ PF6
- 987.23, [M]2+ 421.13, found 987.4 [M]+ PF6

-, 421.1 [M]2+. Purity by HPLC: 97.5 

% by area; UV/Vis in CH3CN, λmax (ε M-1 cm-1) = 245 (41200), 290 (50400), 335 (8200), 

485 (8300).  
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Compounds 2–4 were converted to Cl- salts by dissolving 5–20 mg of product in 

1–2 mL methanol. The dissolved product was loaded onto an Amberlite IRA-410 chloride 

ion exchange column, eluted with methanol, and the solvent was removed in vacuo. 

The purity of each Ru(II) complex was analyzed using the method in Table D1 

(mobile phases of 0.1% formic acid in dH2O and 0.1% formic acid in HPLC grade CH3CN). 

Samples of each Ru(II)  complex were prepared in dH2O and protected from light before 

injection on the HPLC. 

5.2.3 Photoejection studies 

5.2.3.1 MeCN photoejection studies 

Photoejection studies were performed on the PF6
- salts of 2–4 (30 μM) in 3 mL of 

acetonitrile in a 1 cm pathlength quartz cuvette placed 12 inches below a 470 nm LED 

array in duplicate. Each sample was prepared from the dissolution of the pure solid in 

acetonitrile and diluting it to the above final concentration. The samples were protected 

from ambient light until irradiated with the LED array. Ligand ejection was monitored by 

taking absorption spectra after specific time points until the spectra ceased to evolve. The 

half-life (t1/2) of photoejection was determined by plotting the difference in absorbance 

between two points around the isosbestic point versus time using Graphpad Prism software.  

5.2.3.2 Aqueous photoejection studies 

Photoejection studies using the Cl- salts of 2–4 in aqueous media (water, 1X PBS 

and Opti-MEM with 1% FBS) were performed in triplicate using a Greiner UV clear half-

area 96-well plate. The kinetics for ligand ejection were determined for 2–4 (40 µM) with 
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a final volume of 200 µL. The well plate was positioned 12 inches below a 470 nm LED 

array, and full spectra were collected after set time points of light exposure for a total of 5 

hrs. The change in absorbance was plotted using the same method as described for 

acetonitrile.  

5.2.4 Expression and purification of P450BM3 

The pCWori vector containing the gene for the heme domain (Thr 1–Thr 463) of 

P450BM3 with five mutations incorporated (R47L, F81I, F87V, L188Q, E267V, “PM 

BM3”) was transformed into BL21(DE3) cells. After transformation, cells were grown 

overnight on 50 μg/ml carbenicillin plates at 37 °C.  

Small 5 mL growths in Luria Broth (LB) with 100 μg/mL ampicillin were grown 

overnight and then added to 1 L of Terrific Broth (TB) with 100 μg/mL ampicillin and 

0.4% glycerol. Cells were grown at 180 rpm and 37 °C until an OD600 of 0.6–0.8 was 

reached. Protein production was induced by addition of 0.5 mM isopropyl β-D-1 

thiogalactopyranoside (IPTG). Temperature and shaking were decreased to 30 °C and 150 

rpm, respectively. After 16-20 hrs, the cells were harvested by centrifugation at 4,000 rpm 

for 15 min at 4 °C. The supernatant was decanted, and the cell pellet was resuspended in 

lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.1 mM EDTA, and 0.1 

μM phenylmethylsulfonyl fluoride (PMSF), pH 8.0). The resuspended pellet was sonicated 

on ice using a Branson Sonifer 250 microtip, for 15 min with output control of 3 and duty 

cycle of 50%. The lysate was then centrifuged for 1 hr at 17,000 x g and 4 °C.  

The supernatant was decanted, and syringe filtered with a 0.45 μm 

polytetraflurorethylene filter prior to addition to a His-Trap column (GE Healthcare) 
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equilibrated in buffer A (50 mM NaH2PO4, 300 mM NaCl, and 20 mM imidazole, pH 8.0). 

PM BM3 was eluted using a linear gradient of 20 mM to 200 mM imidazole with buffer B 

(50 mM NaH2PO4, 300 mM NaCl, and 200 mM imidazole, pH 8.0). Fractions were 

collected based on color and absorbance at 420 nm and 280 nm. PM BM3 containing 

fractions were then concentrated using Ultracel-30K Millipore centrifugal units at 4500 x 

g and 4 °C. Protein was further purified by loading onto a Hi-Prep 26/60 Sephacryl S200 

HR (GE Healthcare) sizing column equilibrated with gel filtration buffer (20 mM Tris, 150 

mM NaCl, pH 8.0).  

All fractions with a 420/280 nm ratio above 1.2 were concentrated using Ultracel-

30K Millipore centrifugal units. For storage, glycerol was added to give a final 

concentration of 50%, the protein was aliquoted, snap frozen, and stored at –80 °C.  

Prior to using PM BM3, glycerol was removed, and the buffer was exchanged to 

assay buffer (20 mM Tris, 20 mM NaCl, 10 mM CaCl2, pH 7.4) using a PD-10 desalting 

column (GE Healthcare). To determine protein concentration, a CO binding assay was used 

as previously described.138 

5.2.5 P450BM3 binding affinity 

To determine if the inhibitors could saturate PM BM3, the protein was added to a 

3 mL 1 cm pathlength quartz cuvette at a final concentration of 2.5 µM. UV/Vis spectra 

were taken before and after the addition of compound. Ligands were tested at 10 µM, 

whereas Ru(II) complexes were tested at 25 µM in the dark and after 1 min irradiation. 

After the addition of compound, the samples were incubated at RT for 30 sec before data 

collection.  
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Absorbance binding titrations of ligands and light activated complexes 2–4 were 

performed in a 1 cm pathlength quartz cuvette with 2.5 µM protein and a total volume of 

3 mL. The absorbance was measured after each ligand or Ru(II) addition from 0–64.0 µM 

(metyrapone), 0–30.3 µM (etomidate and 1), 0–64.7 µM (2), 0–54.2 µM (3) and 0–45.8 

µM (4). The Ru(II) only absorbance was measured and blanked in parallel. Binding 

constants were determined by plotting the change in absorbance at 425 nm vs. 

concentration of ligand or Ru(II). Data was plotted using Graphpad Prism software and fit 

using a one site-total binding equation.  

5.2.6 Enzyme inhibition assay 

5.2.6.1 Inhibition assay with purified PM BM3 

An enzymatic turnover assay was utilized to determine the inhibition of resorufin 

ethyl ether metabolism by PM BM3 in the presence of added compound. Each compound 

was added to 250 nM PM BM3 in 1X PBS (phosphate buffered saline, pH 7.5) at varying 

concentrations between 0–10 μM in Greiner clear 96 well plates and incubated for 10 min.  

Ru(II) complexes were tested in the presence and absence of light, where stock solutions 

were irradiated for 1 min prior to incubation with PM BM3. Following incubation with 

compound, 5 μM resorufin ethyl ether was added and incubated at RT for 5 min. To initiate 

enzymatic turnover, 5 mM hydrogen peroxide was added, and changes in fluorescence of 

resorufin ethyl ether were monitored over 5 min using a Tecan Spectrafluor plus microplate 

reader at excitation 535 nm and emission 595 nm.  

5.2.6.2 Inhibition assay with Human liver microsomes (HLMs) 
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An enzymatic turnover assay was utilized to determine the inhibition of resorufin 

ethyl ether metabolism by enzymes responsible for first-pass metabolism in pooled human 

liver microsomes (HLMs) in the presence of added compound. 125 μM of 1 or 4 was added 

to 20 mg/mL HLM to a final concentration of 100 μM in 100 mM KH2PO4, 10 mM MgCl2 

buffer, pH 7.5. After incubation with compound for 10 min, 5 μM resorufin ethyl ether was 

added followed by 1.3 mM NADPH to initiate enzymatic turnover. Changes in 

fluorescence of resorufin ethyl ether were monitored over 30 min using a Tecan 

spectrafluor plus microplate reader at the same settings as above. Compound 4 was 

incubated with HLMs in the dark and after 1 min irradiation with the Indigo LED.  

5.2.7 In vitro transcription and translation 

A 1-Step Human Coupled IVT Kit–DNA (Thermo Scientific) was used to carry out 

the experiment.317  For each reaction, 0.5 µg of the pCFE-GFP plasmid and 5–20 μM 4 

was used. Complex 4 was either irradiated for 1 min with the Indigo LED or kept in the 

dark. Prior to carrying out the IVT reaction, 4 was incubated with the plasmid overnight in 

the presence or absence of PM BM3 (0.5 μg). All IVT reactions were scaled to 12.5 µL 

total volume. Following the completion of the IVT reaction, the GFP emission was read in 

a Greiner-Bio One 384-well small volume plate on a Tecan SPECTRAFluorPlus Plate 

Reader with 485 nm excitation and 535 nm emission filters. 

5.2.8 DNA gel electrophoresis 

Compounds were mixed with 40 μg/mL pUC19 plasmid in 10 mM potassium 

phosphate buffer, pH 7.4. To determine the effect of light, samples were irradiated with a 

470 nm LED for 1 hr. Samples were then incubated for 12 hr at 37 °C in the dark. Single 
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and double-strand DNA break controls were prepared, and the DNA samples were resolved 

on agarose gels, as described previously.318 

In brief, samples were resolved on a 1% agarose gels prepared in tris-acetate buffer 

with 0.3 μg of plasmid/lane. The gels were stained with 0.5 μg/mL ethidium bromide in 

tris-acetate buffer at RT for 40 min, destained with tris-acetate buffer, and imaged on a 

ChemiDoc MP System (Bio-Rad).  

5.2.9 Singlet oxygen assay 

Compounds were serially diluted in 96 well plates in extracellular solution (10 mM 

HEPES pH 7.5, 145 mM NaCl, 10 mM glucose, 1.2 mM CaCl2, 1.2 mM MgCl2, 3.3 mM 

KH2PO4, 0.8 mM K2HPO4, 50 U mL-1 penicillin and 50 mg mL-1 streptomycin). To this 

was added Singlet Oxygen Sensor Green (SOSG) reagent to give a final concentration of 

5 µM. The plates were read on a SprectraFluor Plus plate reader with an excitation filter of 

485 nm and emission of 535 nm both pre- and post- irradiation with the Loctite Indigo 

LED for 1 min. The relative values of the SOSG emission were plotted as a function of 

compound concentration to give a dose response.  

5.3 Results and Discussion 

5.3.1 Light triggered P450 inhibitors were synthesized from Ru(bpy)2Cl2. 

Ruthenium complexes 2–4 (Figure 5.2) were synthesized by refluxing the 

respective inhibitors with Ru(bpy)2Cl2 (bpy = 2,2’-bipyridine) or the corresponding bis-

aqua Ru(bpy)2(OH2)2 in EtOH/H2O (1:1) while protected from light. Abstraction of the 

chlorides was carried out with a silver salt in order to diminish the percentage of the 
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undesired monocoordinate complexes, [Ru(bpy)2LCl]+, which complicated the 

purification. All complexes were formed in good yields (38–73% yield) and exhibited 

moderately intense metal-to-ligand charge transfer (MLCT) bands centered around 450–

490 nm. Not surprisingly, compound 2 was isolated as a mixture of the possible 

coordination isomers, as either pyridyl ring in the asymmetric ligand (A- or B-ring, as 

shown in Figure 5.2) can coordinate to the Ru(II) center. 

Light-triggered release of the coordinated ligands was monitored under different 

solvent conditions by UV/Vis absorption spectroscopy, HPLC, and mass spectrometry. All 

complexes were able to cleanly release both monodentate ligands in acetonitrile (MeCN) 

after irradiation with blue light (470 nm). A biphasic blue-shift was observed in their 

spectra (Figures D6 - D8), and a common final 425 nm band was found for 2–4, which 

indicated the formation of a unique product, [Ru(bpy)2(MeCN)2]2+, after the release of the 

corresponding inhibitors.  

The photoproducts formed in aqueous solution were identified using HPLC and 

mass spectrometry analysis (Figures D9-D14). The chromatograms showed the appearance 

of new signals in irradiated samples, which corresponded to the free inhibitor and the 

mono-aqua Ru(II) complex. This was confirmed by the mass spectrum of the solution, with 

peaks corresponding to [Ru(bpy)2L(H2O)]2+, [Ru(bpy)2L]2 and [L+H]+ (Figures D10, D12, 

D14). It is to be noted that the UV/Vis profile of the products for 3 and 4 did not differ 

significantly from that of the complex protected from light. The extent of the photoejection 

reaction varied from 40 to 65%. This observation is consistent with other [Ru(bpy)2L2]2+ 

and [Ru(phen)2L2]2+ complexes, where substitution of the second N-monodentate ligand, 
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L, requires much longer irradiation times or does not occur.304 310, 319-322  Finally, in the 

dark, all complexes were stable at room temperature and at 37 °C (Figure D5). 

5.3.2 Complex 2-4 bind and inhibit P450BM3 and human liver microsomes (HLMs) after 
light irradiation. 

In order to directly investigate the interactions of the metal complexes with a P450, 

cytochrome P450BM3 (CYP102A1), a soluble bacterial P450, was chosen as a model 

system. A mutant form of P450BM3 has been shown to recapitulate the activity of 

mammalian drug metabolizing P450s,323 which has made P450BM3 a commonly used 

experimental system.324 Importantly, while mammalian P450s are generally membrane 

associated, which complicates analysis, P450BM3 is soluble and thus amenable to various 

spectroscopic investigations as well as enzyme turnover assays. Furthermore, the in vitro 

system was chosen due to the intrinsic complications of studying P450 inhibition in cells 

or cell lysates, due to the need to create cell lines that overexpress the enzyme and reductase 

partners, and to provide exogenous reductants such as NADPH. 

 

 

Figure 5.3 Absorption spectrum of P450BM3 inhibitor saturated and Ru(II) dark and 
light systems: 2 (A), 3 (B), 4 (C). The ratio used was  2.5 µM P450:  25 µM Complex 
(1:10) and  2.5 µM P450: 10 µM Ligand (1:4) for each of the respective ligands used 
to generate the complexes. Experiments were carried out in a 3 mL 1 cm pathlength 
quartz cuvette at RT.  

 



135 

As all three free P450 inhibitors directly ligate the heme iron, either through a 

pyridyl of imidazole ring, a type II spectra shift was observed upon inhibitor binding 

(Figure 5.3). A 7 nm red-shift in the heme soret was observed for metyrapone, etomidate, 

and compound 1, with the appearance of a second minor peak around 360 nm, where a 

shoulder is observed in the free enzyme. Difference spectra for all compounds show a 

trough maxima around 410 nm (Figure D17). Significant shoulders are observed on the 

troughs at 390 nm, consistent with a mixture of type IIa and type IIb spectra325-327 (type IIa 

spectra are observed when the enzyme is in the high-spin state in the absence of ligand; 

type IIb is seen when the enzyme is in the low-spin state).327 The ∆Amax  between the peak 

and trough and the intensity of the shoulder varied as a function of the nitrogen containing 

coordinating ligand, as previously reported.325 

Upon exposure to an Indigo LED array (28 J/cm2), each complex induced the same 

type IIa and IIb spectral shift observed with the free inhibitors. Conversely, when the Ru(II) 

complexes 3 and 4 were kept in the dark there was little or no observed change in the 

P450BM3 absorption spectra, indicating that the complexes function as pro-drugs and do not 

directly affect the active site of the enzyme. Complex 2, containing the pendant 

metyrapone, did exhibit a slight change in absorption profile, suggesting the intact complex 

containing the pendant pyridyl ligand was capable of interacting with the enzyme enough 

to perturb the absorption spectra. While unexpected, previous structural studies have shown 

that small molecules that are tethered to large fluorophores328-330 or even metal 

complexes331-335 can bind P450s and induce opening of the substrate channel. Interestingly, 

the difference spectrum (Figure D17 A) indicates a different binding mode than either free 

metyrapone or the light-activated 2 complex, and appears to be more a type I spectrum, 
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consistent with displacement of water from the heme, but with no direct ligation of a 

coordinating nitrogen.327 

 

Enzyme inhibition was tested using resorufin ethyl ether as a substrate in a 

fluorescence based assay.336, 337 Each of the free ligands exhibited inhibition of enzyme 

activity (Figure 5.4 and Figure D18). As anticipated, the three Ru(II) complexes all 

demonstrated triggerable enzyme inhibition. Compound 4 gave the largest window for dark 

vs. light activity (Figure 5.4), with IC50 values for enzyme inhibition of 6.8 and 0.05 µM, 

respectively. This compound thus provides a 136-fold difference between activity in the 

dark and the light. The IC50 value for the free ligand 1 was 0.06 µM, in excellent agreement 

with the activity of the complex in the light. Each light activated system displayed very 

 

Figure 5.4 (A) Relative activity of 250 nM P450BM3 in the presence of  0-10 µM 1 (red 
diamonds) and 4 in the dark (black circles) and following irradiation (blue squares) in 
1X PBS pH 7.5 buffer. 5 mM H2O2 was added to intiate turnover. B) IC50 values for all 
three complexes and the respective free ligands. C) Inhibition of CYPs in 20 mg/mL 
HLMs by 125 µM free ligand 1 (red circles) and  125 µM complex 4 (blue squares) after 
irradiation compared to no compound (black circles) and 4 in the dark (green triangles). 
HLM experiments were done in 100 mM KPi, 10 mM MgCl2 pH 7.5 buffer with 1.3 
mM NADPH added to intiate turnover. All experiments were carried out in a Greiner 
clear 96 well plate. Flourescence of 5 µM resorufin ethyl ether was monitored over a 
length of 5 min for P450BM3 and 30 min for HLMs at 37 °C at excitation 535 nm and 
emission of 595 nm by a Tecan spectralfuor plus microplate reader.    
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similar activity to the free inhibitor (Figure 5.4B; compound 2 IC50 = 0.19 µM vs. 0.75 µM 

for metyrapone; compound 3 IC50 = 0.04 µM vs. 0.02 µM for etomidate). 

To extend the investigation to a medically validated, commonly used experimental 

system, pooled human liver microsomes (HLMs) were used to study the light-triggered 

inhibition of enzyme turnover. HLMs contain membrane-bound human CYPs which play 

major roles in first pass metabolism of xenobiotics.338, 339 Incubation of HLMs with 

compound allows study of how these compounds impact activity of multiple CYPs at once, 

and in a membrane environment. This provides a good model for human CYPs. Compound 

4 exhibited the largest window for light-mediated enzyme inhibition for P450BM3, so it was 

tested along with the free ligand 1. In the dark, at 100 µM, compound 4 was found to 

minimally inhibit CYPs in HLMs, but complete inhibition was observed after irradiation 

(Figure 5.4C). A similar trend was seen with free ligand 1, with nearly complete inhibition 

of enzyme turnover. 

5.3.3 DNA damage is induced by complex 2-4 after light irradiation. 

Having confirmed the utility of the light active compounds for inhibition of 

cytochrome P450 activity, DNA damage was investigated using agarose gel 

electrophoresis. Dose responses were performed with compound 2–4  with pUC19 plasmid, 

and the solutions were either protected from light or irradiated for 1 or 3 h (60.4 or 181.4 

J/cm2) before incubation at 37 °C for 12 h (Figure 5.5). No effect was seen for any of the 

intact pro-drug forms of the complexes, but all induced DNA damage upon light activation. 

DNA damage was visualized by reduced mobility of DNA, consistent with direct adduct 
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formation, as demonstrated in classical experiments on cisplatin340-342 and more recently 

with analogous light-activated ruthenium compounds.318, 343  

 

Very little relaxed circular DNA was observed, but what was formed likely resulted 

from single strand breaks induced by singlet oxygen (1O2).  Ligand ejection proceeds from 

an excited state that is populated from the 3MLCT state, which also generates 1O2; thus, 

there is a competition in relaxation pathways, and complexes that have longer t1/2 
 values 

have been found to induce more single strand breaks. We318, 344 and others345 have thus 

observed that the combination of the different relaxation pathways makes these agents 

capable of “dual photoreactivity” independent of the biological activity of the released 

ligands. However, little 1O2 was detected, as shown in Figure D19, consistent with the DNA 

damage study and relaxation primarily through ligand ejection. Finally, all the free ligands 

 

Figure 5.5 Agarose gels showing the dose response of 2 (A), 3 (B), and 4 (C) with 40 
μg/mL pUC19 plasmid with and without irradiation (λ>470 nm). Dark, left; 1 hr 
irradiation, middle; 3 hr irradiation, right. Lane 1 and 12: DNA ladder; Lane 2: EcoRI; 
Lane 3: Cu(OP)2; Lanes 4–11: 0, 7.8, 15.6, 31.3, 62.5, 125, 250, 500 μM (500 μM 
corresponds to a metal center:base ratio of 4:1). EcoRI and Cu(OP)2 are used as controls 
for linear and relaxed circular DNA. EtBr was used to visualize the DNA. DNA damage 
gels performed by A. Zamora. 
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were tested as controls, and as anticipated, they had no impact on the plasmid DNA (Figure 

D20). 

5.3.4 Transcription and translation in the presence of P450BM3 and complex 2-4 after light 
irradiation is inhibited. 

 

The ultimate experiment was to investigate if the light activated metal 

complexes were able to inhibit DNA function in the presence of the P450 enzyme. 

Accordingly,  an in vitro transcription and translation experiment 317 was performed, 

as shown in Figure 5.6A. A plasmid coding for green fluorescent protein (GFP) was 

incubated with compound 4 in the dark or following activation with light. The 

experiment was also performed in the presence of P450BM3. No impact on GFP 

production was observed for 4 in the dark, while a dose dependent inhibition of 

 

Figure 5.6 (A) An in vitro transcription and translation experiment allows for 
detection of DNA damage that results in inhibition of GFP production. Compound 
4 was incubated in the presence of both plasmid and P450BM3 at equal 
concentrations. (B) GFP production was unaffected by the addition of P450BM3 (+ 
P450; lane 2) and the protein had no impact on the ability of compound 4 to 
damage DNA upon light activation (lanes 3–6). IVTT assay carried out by L. 
Nease and D. Heidary. 
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protein production was found following activation with light as shown in Figure 5.6B. 

The addition of P450BM3 had no impact on GFP transcription or translation in the 

absence of the Ru(II) complex, or in its presence. Thus, the P450BM3 enzyme does 

not serve as a “sink” for the activated metal center and does not interfere with the 

DNA damage mechanism. This validates that the Ru(II) center can target DNA while the 

released ligands target the P450 enzyme.  

5.4 Conclusions 

The three complexes described in this report serve as proof-of-concept systems for 

single agent “drug cocktails” and demonstrate that, upon light activation, the metal center 

is able to damage DNA while the liberated ligand acts as a cytochrome P450 inhibitor. The 

best system, compound 4, exhibited a 136-fold difference in protein inhibition when 

irritated with light as compared to in the dark, with an IC50 of 0.05 µM upon activation. In 

the absence of irradiation, the complexes did not damage or interfere with its function, as 

indicated by gel electrophoresis and activity in a transcription and translation assay. Upon 

light activation, protein production was inhibited with an IC50 between 5 and 10 µM in the 

light. Furthermore, the metal center damages the DNA even in the presence of protein, 

indicating that DNA is the preferred target. 

The choice to inhibit P450 enzymes is a key feature in the design of these pro-

drugs. The targeting of enzymes implicated in drug resistance could result in synergistic 

activity for DNA damaging agents in cancer cells and tissues, though more involved studies 

in cancer cell lines engineered and optimized to detect P450 activity and inhibition will be 

required for full validation of this potential therapeutic approach. However, the clear 
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inhibition of P450 activity and the DNA damage and suppression of transcription and 

translation in vitro, combined with the well-established cytotoxicity of light activated, 

ligand deficient Ru(II) complexes in cells are strongly promising.  This is also, to the best 

of our knowledge, the first report of photocaged P450 inhibitors. These compounds may 

be useful for basic research applications as tools that provide spatial and temporal control 

over P450 inhibition and could answer several open questions in the role that P450s play 

in malignant cell transformation and drug resistance. Single mode of action photocaged 

systems, which do not damage DNA, are also under development to allow for the triggered 

control of P450 activity without complications from the activity of the metal center.  
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 CONCLUSIONS 

The central dogma of biology is a simple yet elegant process that details how life is 

able to exist. DNA, which stores information, is transcribed into mRNA which is then 

translated into proteins. Proteins are the “workhorse” of the cell and perform a majority of 

the actions that need to occur for life to be viable. Investigating protein function is key to 

understanding part of what makes us human, but also what allows for life to flourish. There 

are several variables that can be studied that impact protein function and stability, 

including, but not limited to, cell localization, solubility, substrate preference, impact of 

residues, and if a metalloprotein, the impact of charge and electron transfer systems.  

Cytochrome P450s (CYPs) are a family of heme enzymes present in almost all forms 

of life that use oxygen to make hydrophobic substrates more hydrophilic. In humans this 

means they are crucial for steroidogenesis and xenobiotic metabolism346, 347 while in plants 

they are necessary for defense,348, 349 and they aid in antifungal resistance in some fungi.350-

352 We used CYP102A1 (P450BM3), a bacterial CYP, as a model system to understand 

particular properties of human CYPs. Using a variety of biophysical techniques, we 

investigated the role of specific residues in increasing promiscuity, how native and non-

native substrates can bind favorably, and how iron oxidation state impacts stability.   

By investigating the above three variables, we elucidated some requirements of 

promiscuity, but also some of its costs, which are important for any possible biotechnical 

applications incorporating these enzymes. The main cost is that increased promiscuity 

translates to increased flexibility of the enzyme. Though flexibility is necessary for binding 

of non-native substrates, it leads to a decrease in stability and increase in uncoupled 

catalysis. The consequences are an increase in ROS generation, accelerated degradation of 
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the enzyme, and limited function. In theory, mutating smaller residues external to the active 

site to bulkier residues should help alleviate the stress caused by promiscuity without 

impacting the openness of the interior. Though we have not studied this in-depth, it would 

make a good follow-up study to this work. From studying the role of promiscuity on 

oxidation state it has become clear that there is a relationship between the energy barrier 

needed to move between various iron oxidation states and ligand selectivity. Promiscuous 

CYPs are more likely to have a lower energy barrier between initial steps in their catalytic 

cycles as compared to more selective variants. This was expressed by a similarity in 

stability between the ferrous and ferric states as well as an increase in reduction potential 

of the more promiscuous enzymes.  

George E. P. Box was a famous statistician, (if modern mathematicians can be 

considered famous) who is perhaps most known for saying, “All models are wrong, but 

some are useful.”353  This dissertation is a detailed study of using P450BM3 as a model for 

human CYPs. Of the several variables that impact CYP function and stability that can be 

studied, three were investigated. These variables were: the role of residues in selectivity, 

substrate specificity of native and non-native substrates, and the impact of promiscuity on 

iron oxidation state. Work is currently on-going to elucidate the mechanism of biphasic 

unfolding for P450BM3, as well as research initially started by the Ru(II) dual mechanism 

project. Further studies would use rational mutagenesis to make our promiscuous mutant 

more stable, determine methods or models to study more states of the catalytic cycle, and 

incorporate a larger body of biophysical methods such as electron paramagnetic resonance 

(EPR).  
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APPENDICES 

Appendix A: Chapter 2 Additional Figures and Tables 

 

Figure A1. UV-Vis spectra of purified P450BM3 oxidase domain. (A) WT oxidase spectra 
is in the water-bound form after gel filtration chromatography with a peak at 418 nm (black 
line) and undergoes a spin shift to 394 nm when bound to the substrate, palmitic acid (blue 
line). (B) The behavior of the purified PM oxidase is similar to the WT oxidase domain 
indicating that the purified form is water-bound and undergoes a spin shift with palmitic 
acid. 

 

 

Figure A2. UV-Vis spectra of WT and PM spin shift from 418 nm to 450 nm upon carbon 
monoxide binding. (A) WT oxidase domain absorption spectra in the water-bound form 
(black line) and after CO coordination to the heme (red line). (B) The PM oxidase domain 
undergoes the same absorption change as WT. 
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Figure A3. RMSD of heme heavy atoms in (A) substrate-free WT, (B) WT:metyrapone, 
and (C) WT: palmitic acid during the 300-K simulations. Ring atoms are shown in black 
lines, while propionate and vinyl atoms are shown by gray lines. Planarity of heme in (D) 
substrate-free WT, (E) WT:metyrapone, and (F) WT:palmitic acid during the 300-K 
simulations. The dihedral angle between the carbon atoms connecting the four pyrrole 
subunites is shown in black lines, while that between the pyrrole nitrogen atoms are shown 
in gray lines.  

 

Figure A4. Crystal structures of PM in the presence of polythylene glycol (4ZF6, green) 
and substrate-free R47L/Y51F/F87V/E267V/I401P mutant (4RNS, gray). The heme and 
residues of interest are shown in stick and polyethylene gycol in ball-and-stick. (A) Overall 
structure. (B) Substrate channel. Among the common mutations, only L47 differed 
significantly in side chain position, The Q73 side chain also points outward unlike in PM.  
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Figure A5. Comparison of crystal (gray) and MD-averaged (green) structures. (A) 
Substrate-free L188Q and IBU7 (molecule B). Helix A and β-sheet 1 of L188Q moved 
closer to the protein core during the 300-K simulation, partially closing the channel. This 
was also observed in the MD-averaged structures of substrate-free WT and E267V. (B) 
Substrate-free PM and 4ZF6. Helices F and G moved away from the protein core during 
the 300-K simulation, partially opening the channel. (C) PM:palmitic acid and 4ZFB. 
Palmitic acid moved closer to the heme and formed a hydrogen bond with S72 during the 
300-K simulation. (D) PM:metyrapone and 4ZF8. Metyrapone rotated during the 300-K 
simulation, bringing the unbound pyridine ring in close contact with V87, T260, and I263. 
MD simulations performed by I. Geronimo. 
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Table A1. Backbone RMSD (Å) of average structures with respect to wild-type P450BM3 
(IBU7, molecule B). MD simulations performed by I. Geronimo. 

Region R47L F81I F87V L188Q E267V 

Helix      

A 1.07 0.95 0.92 1.28 
1.16 

B 0.80 0.58 0.44 1.25 
0.98 

B' 0.95 0.77 0.62 1.08 
0.63 

C 0.83 0.58 0.80 0.69 
0.80 

D 0.47 0.33 0.45 0.59 
0.50 

E 0.64 0.61 0.55 0.79 
0.86 

F 0.79 0.80 0.71 0.88 
0.84 

G 1.14 1.01 0.92 1.43 
1.27 

H 1.26 0.88 1.12 1.02 
0.87 

I 0.74 0.70 0.68 0.72 
0.82 

J 0.40 0.36 0.55 0.60 
0.73 

J' 0.54 0.39 0.59 1.00 
0.82 

K 0.52 0.45 0.43 0.75 
0.57 

K' 0.37 0.32 0.39 0.72 
0.49 

K" 0.30 0.43 0.47 0.57 
0.53 

L 1.07 0.83 0.90 2.23 
1.21 

β-sheet      

1 
0.79 0.62 0.44 1.03 

0.86 

2 
0.64 0.66 0.56 0.65 

0.53 

3 
1.06 0.95 1.08 1.47 

1.41 

4 
0.72 0.79 0.86 0.69 

1.32 

5 
0.35 0.44 0.47 0.59 

0.51 

Cys loop 1.97 0.46 0.65 0.92 0.61 
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Figure A6. Plot of native contacts of residues in helices F (171-190) and G (197-226) of 
substrate-free (A) WT and (B) PM as a function of simulation time at 550 K. The number 
of contacts is the average from three independent simulations. MD simulations performed 
by I. Geronimo. 
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Figure A7. Plot of native contacts of residues in the Cys ligand loop of substrate-free (A) 
WT and (B) PM as a function of simulation time at 550 K. The number of contacts is the 
average from three independent simulations. MD simulations performed by I. Geronimo. 
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Figure A8. High-temperature (550 K) simulations of substrate-free P450BM3 variants 
(cartoon representation).The heme, cys ligand, bound water, and water withing 10 Å of the 
heme are shown in stick. Snapshots of WT at (A) 0 ns and (B) 50 ns. Snapshots of PM at 
(C) 0 ns and (D) 50 ns. Helices D and E of PM unfolded concurrently with sections of the 
substrate channel unlike in WT. MD simulations performed by I. Geronimo. 
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Figure A9. RMSD of backbone atoms in substrate-free (A) WT, (B) PM, (C) R47L, (D) 
F81I, (E) F87V, (F) L188Q, and (G) E267V.Three independent simulations at 550 K were 
performed for each system. MD simulations performed by I. Geronimo. 
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Figure A10. High-temperature (550 K) simulations of P450BM3 variants with metyrapone  
(cartoon representation). The heme, Cys ligand, metyrapone, and water within 10 Å of the 
heme are shown in stick. Snapshots of WT at (A) 0 ns and (B) 50 ns. Snapshots of PM at 
(C) 0 ns and (D) 50 ns. The heme region of both enzymes is destroyed at the end of 
simulation. MD simulations performed by I. Geronimo. 
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Figure A11. High-temperature (550 K) simulations of P450BM3 variants with palmitic acid 
(cartoon representation). The heme, Cys ligand, metyrapone, and water within 10 Å of the 
heme are shown in stick. Snapshots of WT at (A) 0 ns and (B) 50 ns. Snapshots of PM at 
(C) 0 ns and (D) 50 ns. MD simulations performed by I. Geronimo. 
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Figure A12. RMSD of backbone atoms in (A) WT:palmitic acid, (B) WT:metyrapone, (C) 
PM: palmitic acid, and (D) PM:metyrapone complexes.  Three independent simulations at 
550 K were performed for each system. MD simulations performed by I. Geronimo. 
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Table A2. Salt bridge occupanices calculated from the 300-K MD simulation.a,b MD 
simulations performed by I. Geronimo. 

Salt bridge WT-SF WT-MYT WT-PLM PM-SF PM-MYT PM-PLM 

E38-R56 0.949 0.907 0.839 0.921 0.914 0.953 

E60-R66 0.828 0.741 – 0.722 0.723 0.806 

D68-H92 – – 0.631 – – – 

D84-R79 – – 0.947 – – 0.805 

E93-R79 1.000 1.000 – 0.861 1.000 – 

D121-R161 0.925 0.880 0.638 0.984 0.946 0.904 

D144-K129 0.985 0.984 0.679 0.908 0.910 0.859 

E183-R190 0.995 0.999 0.657 1.000 1.000 0.999 

E200-R203 0.618 0.566 0.552 – 0.526 0.606 

E207-K210 0.563 – – – – – 

D208-R179 0.933 0.925 0.941 0.917 0.937 0.943 

D214-K210 – 0.572 – – 0.549 – 

D217-R255 0.816 0.894 0.539 0.985 0.702 0.666 

D222-K218 0.572 0.681 – – – 0.781 

D232-R223 1.000 1.000 0.995 0.974 1.000 1.000 

E247-K94 0.717 – 0.567 0.524 – – 

E247-K98 0.801 0.693 0.749 0.765 0.675 – 

D250-K98 – 0.529 0.683 0.694 0.676 – 

D251-K224 0.934 – – – – – 

E267-K440c 0.783 0.969 0.987    

E292-R296 – 0.746 – 0.836 – – 

E293-R296 0.845 0.522 0.577 0.699 – – 

E320-R323 0.955 0.875 0.823 0.964 0.885 0.887 

E320-R378 0.711 0.623 0.689 – 0.667 0.835 

E344-K3 0.720 0.692 0.712 0.656 0.627 0.694 

E344-R56 0.960 0.974 0.931 0.915 0.954 0.962 

D351-R50 0.557 – 0.589 0.571 – – 

E352-R47d 0.812 0.650 –    

D370-R375 – 0.916 0.688 0.877 0.682 – 

D370-R378 0.653 – – 0.946 – 0.969 

E372-R362 – 0.557 0.707 0.761 0.701 0.558 
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Table A2 (continued) 

E377-K289 – – 0.539 – 0.728 0.705 

E380-K312 – – – – 0.573 – 

D425-K282 0.867 0.705 0.535 0.729 – – 

D432-K24 0.744 0.640 0.513 0.538 0.861 – 

E442-K434 – – 0.610 – – – 

a Salt bridge defined as interaction between O atom of Asp/Glu and protonated N atom of 
Arg/Lys/His within a distance cutoff of 4.0 Å. “–” indicates that the occupancy is < 0.5 b SF, 
substrate-free; MYT, metyrapone; PLM, palmitic acid c Residue 267 is Val in PM d Residue 47 is 
Leu in PM 
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Appendix B: Chapter 3 Additional Figures and Tables 

Table B1. Predicted protonation states of subtrates at physiological pH.a  Predictions 
determined by I. Geronimo. 

Substrate Number of 
titratable atoms 

Strongest 
acidic/basic pKa 

Charge at pH 7.4 

diclofenac 2 4.00 -1.00 

naproxen 1 4.19 -1.00 

warfarin 1 5.56 -0.99 

lovastatin 1 14.91 0.00 

dextromethorphan 1 9.85 1.00 

MDMA 1 10.14 1.00 

astemizole 2 8.73 1.02 

nicotine  2 8.58 0.94 

cotinine 2 4.79 0.00 

metyrapone 2 4.87 0.00 

a https://chemicalize.com (accessed April 2018) 
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Table B2. Van der Waals component of pairwise interaction energy (kcal/mol) for 
diclofenac (DIF), naproxen (NPS), S-warfarin (SWF), R-warfarin (RWF), and lovastatin 
(LVA) complexes. Mean and standard deviation were calculated by averaging over 5-ns 
blocks. MD simulations performed by I. Geronimo. 

Residue DIF NPS SWF RWF LVA 

S72 0.14 ± 0.57 1.02 ± 0.20 -0.54 ± 0.12 -0.18 ± 0.15 -0.76 ± 0.25 

A74 -1.23 ± 0.20 -0.44 ± 0.08 -1.17 ± 0.04 -0.77 ± 0.17 -1.18 ± 0.36 

L75 -4.20 ± 0.72 -3.60 ± 0.16 -4.05 ± 0.14 -2.67 ± 0.15 -3.99 ± 0.18 

V78 -0.98 ± 0.10 -0.15 ± 0.01 -1.04 ± 0.05 -3.86 ± 0.20 -1.64 ± 0.12 

V87 -2.50 ± 0.32 -1.71 ± 0.22 -3.01 ± 0.10 -2.19 ± 0.21 -2.11 ± 0.13 

L181 -0.63 ± 0.33 -0.05 ± 0.02 -0.08 ± 0.01 -0.96 ± 0.04 -1.29 ± 0.15 

T260 -0.15 ± 0.01 -0.06 ± 0.01 -0.08 ± 0.01 -1.31 ± 0.27 -0.48 ± 0.13 

I263 -1.21 ± 0.24 -0.27 ± 0.08 -0.19 ± 0.03 -2.07 ± 0.10 -1.31 ± 0.15 

A264 -1.52 ± 0.22 -1.10 ± 0.16 -0.92 ± 0.06 -2.06 ± 0.28 -1.21 ± 0.08 

V267 -0.73 ± 0.08 -0.41 ± 0.21 -0.38 ± 0.07 -0.73 ± 0.08 -1.05 ± 0.30 

T268 -0.93 ± 0.07 -0.79 ± 0.09 -0.82 ± 0.02 -0.58 ± 0.07 -1.25 ± 0.12 

A328 -0.55 ± 0.42 -1.50 ± 0.07 -1.62 ± 0.21 -1.21 ± 0.21 -1.04 ± 0.17 

A330 -0.47 ± 0.25 -1.89 ± 0.04 -1.33 ± 0.03 -0.50 ± 0.11 -2.91 ± 0.19 

M354 -0.09 ± 0.04 -0.93 ± 0.06 -0.33 ± 0.09 -0.05 ± 0.01 -1.24 ± 0.07 

L437 -3.37 ± 0.64 -1.64 ± 0.17 -3.79 ± 0.13 -3.76 ± 0.10 -4.99 ± 0.54 

T438 -2.32 ± 0.42 -1.26 ± 0.11 -0.94 ± 0.04 -2.47 ± 0.30 -3.30 ± 0.36 
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Table B3. Van der Waals component of pairwise interaction energy (kcal/mol) for DEX, 
MDMA, and AST complexes. Mean and standard deviation were calculated by averaging 
over 5-ns blocks. MD simulations performed by I. Geronimo. 

Residue DEX MDMAa MDMAb ASTa ASTb ASTc 

S72 -0.01 ± 
0.01 

-0.64 ± 
0.11 

-0.19 ± 
0.03 

-0.20 ± 
0.11 

-1.71 ± 
0.90 

-0.70 ± 
0.52 

A74 -0.04 ± 
0.01 

-0.15 ± 
0.02 

-0.88 ± 
0.07 

-0.59 ± 
0.12 

-0.97 ± 
0.63 

-1.13 ± 
0.46 

L75 -1.48 ± 
0.19 

-2.24 ± 
0.14 

-2.02 ± 
0.11 

-1.48 ± 
0.42 

-3.86 ± 
1.10 

-2.40 ± 
0.82 

V78 -1.34 ± 
0.27 

-0.06 ± 
0.01 

-0.99 ± 
0.11 

-5.41 ± 
0.38 

-2.15 ± 
0.40 

-2.76 ± 
0.45 

V87 -3.78 ± 
0.08 

-1.22 ± 
0.16 

-2.06 ± 
0.18 

-1.82 ± 
0.12 

-5.37 ± 
0.37 

-3.22 ± 
0.40 

L181 -1.17 ± 
0.34 

-0.02 ± 
0.01 

-0.17 ± 
0.06 

-3.20 ± 
0.41 

-0.58 ± 
0.29 

-1.05 ± 
0.16 

T260 -2.20 ± 
0.15 

-0.04 ± 
0.01 

-0.13 ± 
0.02 

-1.71 ± 
0.09 

-0.27 ± 
0.03 

-1.12 ± 
0.22 

I263 -3.88 ± 
0.45 

-0.10 ± 
0.01 

-0.70 ± 
0.18 

-4.65 ± 
0.32 

-1.45 ± 
0.29 

-2.80 ± 
0.34 

A264 -1.35 ± 
0.17 

-0.83 ± 
0.04 

-1.71 ± 
0.08 

-3.02 ± 
0.14 

-1.73 ± 
0.19 

-2.53 ± 
0.23 

V267 -1.47 ± 
0.55 

-0.02 ± 
0.01 

-0.60 ± 
0.14 

-1.08 ± 
0.09 

-1.48 ± 
0.53 

-1.17 ± 
0.08 

T268 -1.59 ± 
0.10 

-1.10 ± 
0.06 

-1.12 ± 
0.04 

-1.54 ± 
0.05 

-1.37 ± 
0.17 

-1.15 ± 
0.16 

A328 -0.95 ± 
0.21 

-1.36 ± 
0.05 

-1.16 ± 
0.34 

-2.40 ± 
0.09 

-1.17 ± 
0.25 

-2.84 ± 
0.53 

A330 -0.12 ± 
0.03 

-2.39 ± 
0.12 

-0.38 ± 
0.07 

-1.57 ± 
0.20 

-0.57 ± 
0.24 

-1.25 ± 
0.19 

M354 0.00 -0.72 ± 
0.05 

-0.03 ± 
0.01 

-0.14 ± 
0.03 

-0.08 ± 
0.05 

-0.05 ± 
0.01 

L437 -2.33 ± 
0.44 

-2.65 ± 
0.11 

-1.94 ± 
0.14 

-5.22 ± 
0.92 

-2.60 ± 
0.31 

-3.86 ± 
0.57 

T438 -1.40 ± 
0.28 

-1.28 ± 
0.03 

-2.09 ± 
0.08 

-3.14 ± 
0.11 

-1.37 ± 
0.21 

-2.76 ± 
0.61 

a positioned for N-dealkylation b positioned for O-dealkylation c positioned for C–H hydroxylation 
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Table B4. Van der Waals component of pairwise energy (kcal/mol) for nicotine (NCT), 
cotinine (CTN), and metyrapone (MYT) complexes. Mean and standard deviation were 
calculated by averaging over 5-ns blocks. MD simulations performed by I. Geronimo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Residue NCT CTN MYT 

S72 -0.12 ± 0.04 -0.19 ± 0.05 -0.01 ± 0.01 

A74 -0.04 ± 0.01 -0.10 ± 0.02 -0.04 ± 0.01 

L75 -1.35 ± 0.16 -2.23 ± 0.10 -1.34 ± 0.09 

V78 -0.07 ± 0.01 -0.40 ± 0.06 -1.40 ± 0.07 

V87 -1.61 ± 0.12 -1.66 ± 0.05 -3.78 ± 0.08 

L181 -0.04 ± 0.01 -0.08 ± 0.03 -0.91 ± 0.12 

T260 -0.11 ± 0.01 -0.14 ± 0.02 -1.82 ± 0.04 

I263 -0.41 ± 0.08 -1.11 ± 0.19 -2.91 ± 0.05 

A264 -1.54 ± 0.06 -2.17 ± 0.17 -2.89 ± 0.07 

V267 -0.11 ± 0.03 -0.20 ± 0.06 -1.15 ± 0.02 

T268 -1.02 ± 0.03 -0.79 ± 0.19 -1.21 ± 0.03 

A328 -1.77 ± 0.14 -1.78 ± 0.11 -0.68 ± 0.13 

A330 -0.94 ± 0.15 -0.39 ± 0.04 -0.07 ± 0.01 

M354 -0.05 ± 0.01 -0.02 ± 0.01 0.00 

L437 -1.84 ± 0.23 -2.41 ± 0.20 -2.12 ± 0.08 

T438 -1.55 ± 0.09 -1.60 ± 0.08 -1.46 ± 0.06 
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Table B5. Hydrogen bond occupanices of substrates. Occupanices determined by I. 
Geronimo. 

 

 

 

 

 

 

 

 

Table B6. Hydrogen bond occupancies of heme propionate A oxygen atoms. Occupancies 
determined by I. Geronimo. 

Substrate Heme propionate O atom Hydrogen bond donor Occupancy (%) 

dextromethorphan O1A K69:NZ 24 

O2A K69:NZ 27 

MDMA O1A K69:NZ 74 

O2A MDMA:N 61 

astemizole O1A K69:NZ 34 

O2A K69:NZ 27 

nicotine O1A K69:NZ 

nicotine:N 

16 

39 

O2A nicotine:N 46 

naproxen O1A N395:N 19 

O2A N395:N 17 

S-warfarin O1A K69:NZ 53 

O2A K69:NZ 27 

Substrate Residue Occupancy (%) 

diclofenac:O1 S72:OG 28 

diclofenac:O2 S72:OG 12 

naproxen:O1 S72:OG 98 

naproxen:O1 S72:N 40 

naproxen:O2 S332:N 87 

naproxen:O2 K69:NZ 88 

S-warfarin:O2 K69:NZ 73 

MDMA:N L437:O 61 
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Figure B1. Absorption spectra of PM P450BM3 bound to omeprazole (inset). The black solid 
curve indicates the resting, low spin state when water is bound to ferric iron. The red dotted 
curve represents the 100% high spin state in which water is no longer bound and 
omeprazole is in the active site.  

 

 

Figure B2. Gibbs free energy of the enzyme-substrate complexes during the last 2 ns of 
FEP/ λ -REMD. The substrates are dextromethorphan (DEX), metyrapone (MYT), 
lovastatin (LVA), cotinine (CTN), astemizole (AST), MDMA, R-warfarin (RWF), S-
warfarin (SWF), nicotine (NCT), naproxen (NPS), and diclofenac (DIF). Different binding 
poses were modeled for MDMA and astemizole, including N-dealkylation (N), O-
dealkylation (O) and C–H hydroxylation (C6). MD simulations performed by I. Geronimo. 
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Figure B3. Replusive, dispersive, and electrostatic energy contributions to the binding of 
(A) diclofenac (DIF), naproxen (NPS), S-warfarin (SWF), R-warfarin (RWF), lovastatin 
(LVA), (B) dextromethorphan (DEX), MDMA, astemizole (AST), (C) nicotine (NCT), 
cotinine (CTN), and metyrapone (MYT). Different binding poses were modeled for 
MDMA and astemizole including N-dealkylation (N), O-dealkylation (O), and C-H 
hydroxylation (C6). MD simulations performed by I. Geronimo. 
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Figure B4. Water density at the PM P450BM3 substrate channel with the reference structure 
averaged from the MD simulation. T268, located at the distal side of the heme (helix I) and 
believed to play a role in proton delivery and oxygen activation, is also shown. MD 
simulations performed by I. Geronimo. 
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Figure B5. Plot of the distance between heme Fe and reacting atom of (A) diclofenac(C4'), 
(B) naproxen (methoxy C), (C) lovastatin (C6), (D) S-warfarin (C7), (E) R-warfarin (C4'), 
(F) dextromethorphan (protonated N), (G–I) astemizole (protonated N, methoxy C, C6), 
(J, K) MDMA (protonated N, C2), (L) nicotine (C5'), and (M) cotinine (C4'). MD 
simulations performed by I. Geronimo. 
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Figure B6. Plot of the cosine of the heme propionate A dihedral angle in (A) 
dextromethorphan, (B) MDMA, (C) astemizole, and (D) nicotine complexes of PM 
P450BM3. The cosine of the dihedral angle in the PM-palmitic acid crystal structure (PDB 
ID:4ZFB) is approximately -1. MD simulations performed by I. Geronimo. 
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Appendix C: Chapter 4 Additional Figures and Tables 

Figure C1. Binding of metyrapone to A) WT, B) F81I, and C) PM P450BM3 where the black 
line represents the Fe(III)-H2O resting state and the red line indicates saturation with 
metyrapone. Metyrapone binds WT and F81I P450BM3  by a reverse type I mechanism 
while it binds PM P450BM3 via a type II mechanism.  

  

 

Figure C2. A) Overlay of WT (blue, PDB ID:4ZFA) and I401P P450BM3 (green, PDB 
ID:3hf2)  showing differences to the overall global structure. B) Zoomed in view of the 
cys-ligand loop depicting the I401P mutation in WT and the I401P P450BM3 variant.  
C)Absorbance of the I401P P450BM3 variant in the resting state (blue line) as compared to 
WT P450BM3 (black line). Unlike WT P450BM3 in its resting state (Fe(III)-H2O), the I401P 
P450BM3 mutant was naturally high spin as shown by the Soret band at ~394 nm as opposed 
to 418 nm. In addition, for I401P P450BM3 the β-band appeared prominently with less 
definition between the α and β-bands as seen for WT P450BM3. Lastly, the MLCT band 
was quite sharp for the I401P P450BM3 mutant. 
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Figure C3. 4-Cyanopyridine (CNPy) had a higher binding affinity for the ferrous state than 
ferric state. A) Binding titration of CNPy to ferric WT P450BM3. The inset is the 
∆Absorbance plot in which maximum changes to the Soret, Q-, and MLCT bands were 
most apparent. The blue line is no substrate bound and the red line is CNPy saturation. B) 
Binding of CNPy to ferric PM P450BM3, C) binding of CNPy to ferrous WT P450BM3, D) 
CNPy bound to ferrous PM P450BM3. The green dashed line in panels C) and D) represent 
the ferric state before reduction with dithionite. 
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Figure C4. Plots of curves used to determine Kd of CNPY for WT and PM P450BM3. A) 
WT Fe(III)-CNPy, B) WT Fe(II)-CNPY, C) PM Fe(III)-CNPy, and D) PM Fe(II)-CNPy. 
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Figure C5. Residual plots of monophasic and biphasic fits for unfolding by UV/Vis 
spectroscopy. Black circles represent monophasic fit residuals and red squares represent 
biphasic fit residuals. For fits shown, smaller residuals were apparent for biphasic fits as 
compared to monophasic fits to determine Cm values. A) residual plot of WT Fe(III)-H2O 
and B) residual plot of PM Fe(III)-H2O. Residual plots of WT Fe(II)-CO bound are shown 
in C) and D) where C) indicates appearance of the inactive state at 420 nm and D) indicates 
disappearance of the P450 state. Residuals for the disappearance of the P450 for the F81I 
Fe(II)-CO state are shown in E). The P420 state is not included as a biphasic equation does 
not fit the data. Residuals for the disappearance of the P450 for the I401P Fe(II)-CO state 
are shown in F). As with the F81I P450BM3 variant, the P420 state is not included as a 
biphasic equation does not fit the data.  
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Figure C6. Active site stability of WT and PM P450BM3 was evident by changes to the 
Soret band for CNPy bound species. A) Urea titration of ferric WT P450BM3 with CNPy 
bound and B) ferrous WT P450BM3 with CNPy bound by UV/Vis spectroscopy in which 
the blue line is no urea, and the red is the final urea addition (6.8 M).  C) and D) are PM 
P450BM3 species in the ferric and ferrous states CNPy bound, respectively. The insets are 
the ∆Absorbance plots indicating where maximum changes in absorbance occurred.  

 

 

 

 



172 

 Figure C7. ∆Cm of unfolding for A) WT and B) PM P450BM3 as determined by UV/Vis 
spectroscopy. ∆Cm was calculated for WT P450BM3 by subtracting the Cm for the major 
water bound population (5.6 M) from the Cm for each specific state.  ∆Cm for PM P450BM3 
was calculated by subtracting the Cm for the major water bound population (2.3 M) from 
all other states. Blue represents states where the Fe(III)-H2O state was less stable and red 
represents where the Fe(III)-H2O state was more stable than the state the ∆Cm was 
determined for. 

 

Figure C8. Example urea titration as monitored by Circular Dichroism spectroscopy.  Plot 
shows unfolding of 𝛂𝛂-helical content for WT Fe(III)-H2O. The blue line represents the 
properly folded state with no urea while the red line is with the maximum urea 
concentration of 6.8 M.  
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Figure C9. ∆Cm of unfolding for A) WT and B) PM P450BM3 as determined by CD. ∆Cm 
was calculated for WT P450BM3 by subtracting the Cm for the water bound population 
(5.6 M) from the Cm for each specific state.  ∆Cm for PM P450BM3 was calculated by 
subtracting the Cm for the water bound population (3.7 M) from all other states. Blue 
represents states where the Fe(III)-H2O state was less stable and red represents where the 
Fe(III)-H2O state was more stable than the state the ∆Cm was determined for. Values were 
not included for the WT Fe(II)-CNPy because data was not included for this study. For the 
PM P450BM3 Fe(II)-CNPy state, the ∆Cm was zero.  

 

 

Figure C10. Pulse proteolysis gel of WT P450BM3 water bound. As the urea concentration 
increased, degradation of WT P450BM3 increased as shown by a decrease in the protein 
band at 50 kD. The protease used to cleave WT P450BM3, thermolysin, is shown in the 
bands at 37 kD. 
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Figure C11. Residual plots of monophasic and biphasic fits for unfolding detected by pulse 
proteolysis. Black circles represent monophasic fit residuals and red squares represent 
biphasic fit residuals. A) residual plot of WT Fe(III)-H2O and B) residual plot of WT Fe(II)-
CO. 

 

 

Figure C12. ∆Cm of unfolding for A) WT and B) PM P450BM3 as determined by pulse 
proteolysis. ∆Cm was calculated for WT P450BM3 by subtracting the Cm of the higher 
transition for the water bound population (5.3 M) from the Cm for each specific state. For 
the WT P450BM3 Fe(II)-CO state, the lower Cm value was used (2.2 M) as it is the major 
population (90%).  ∆Cm for PM P450BM3 was calculated by subtracting the Cm for the water 
bound population (2.9 M) from all other states. Blue represents states where the Fe(III)-
H2O state was less stable and red represents where the Fe(III)-H2O state was more stable 
than the state the ∆Cm was determined for.  
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Figure C13. The MLCT region (600-700 nm) of the P450BM3 variants in the Fe(II)-CNPy 
state was used to calculate reduction potential. The black line represents WT P450BM3, the 
blue line F81I P450BM3, the green line I401P P450BM3, and the red line PM P450BM3. 

 

 

Table C1. Binding dissociation constants (Kd) for the ferric and ferrous WT and PM 
P450BM3 states. 

 

 

 

a.  Previously published data.268 b. Data from this study. 

 

 

 

 

 

BM3 Variant  Fe(III)-CNPy 
(µM) 

Fe(II)-CNPy 
(µM) 

WTa 1130 ± 45 1.80 ± 0.7 

WTb 2440 ± 570 9.93 ± 2.9 

PMb 240 ± 40 17.6 ± 12.2 
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Appendix D: Chapter 5 Additional Figures and Tables 

 

Table D1. HPLC method 1. 

Time (min) 0.1% formic acid in dH2O 0.1% formic acid in CH3CN 

0 98 2 

2 95 5 

5 70 30 

15 70 30 

20 40 60 

30 5 95 

35 98 2 

40 98 2 

 

Table D2. HPLC method 2. 

Time (min) 0.1% formic acid in dH2O  0.1% formic acid in CH3CN 

0 98 2 

2 95 5 

5 95 5 

10 90 10 

20 90 10 

25 70 30 

30 40 60 

35 5 95 

40 98 2 

45 98 2 
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Figure D1. 1H NMR spectrum of 3 (400 MHz, CD3CN). Synthesis by A. Zamora. 

 

Figure D2. 13C NMR spectrum of 3 (100 MHz, CD3CN). Synthesis by A. Zamora. 
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Figure D3. 1H NMR spectrum of 4 (400 MHz, CD3CN). Synthesis by A. Zamora. 

 

 

Figure D4. 13C NMR spectrum of 4 (100 MHz, CD3CN). Synthesis by A. Zamora. 
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Figure D5. Thermal stability for complexes 2–4. (A) 2, (B) 3, and (C) 4 at RT (−) and 37 
ºC (– –) after 30 min incubation in MeCN. Studies were also performed in H2O over 48 
hours at 37 ºC, and no changes were observed. Studies by A. Zamora. 

 

 

 

 

 

 

 

 

 

 

Figure D6. Photoejection of 2 (30 μM) followed by UV/Vis absorption spectroscopy in 
different media; (A) water, (B) 1X PBS, (C) Opti-MEM with 1% FBS, (D) CH3CN. Studies 
by A. Zamora. 

 

   

A B C 

A B 

C D 
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Figure D7. Photoejection of 3 (30 μM) followed by UV/Vis absorption spectroscopy in 
different media; (A) water, (B) 1X PBS, (C) Opti-MEM with 1% FBS, (D) CH3CN. Studies 
by A. Zamora. 
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Figure D8. Photoejection of 4 (30 μM) followed by UV/Vis absorption spectroscopy in 
different media; (A) water, (B) 1X PBS, (C) Opti-MEM with 1% FBS, (D) CH3CN. The 
blue line is the initial and the red line is the final spectra. Inset: The kinetics curve was 
produced by monitoring the change in absorbance at 450-485 nm (blue) and 430-450 nm 
(black) and fit with a one phase decay equation using GraphPad Prism software. Studies 
by A. Zamora. 

 

Table D3. Half-lives (t1/2) for photoejection for 2.a 

Condition t1/2 (min)b 

Water 0.6 ± 0.1 and 58 ± 12 

1X PBS 0.6 ± 0.1 and 32 ± 3 

Opti-MEM with 1% FBS 0.6 ± 0.1 

Acetonitrile 0.07 ± 0.02 and 2.5 ± 0.5 
aHalf-lives determined by A. Zamora. bKinetics were determined using the change in 
absorbance at 470-440 nm for aqueous conditions and 425-445 nm for acetonitrile and fit 
to a two phase decay except for Opti-MEM, which was fit to a one phase decay equation. 

A B 

C D 
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Table D4. Δabs of photoejection for 3.a 

Condition Δabs @ 470 nm 

Water 0.028 ± 0.001 

1X PBS 0.038 ± 0.002 

Opti-MEM with 1% FBS 0.041 ± 0.006 

Acetonitrileb 0.15 ± 0.02 and 7.8 ± 0.5 
aKinetics determined by A. Zamora. bKinetics were determined using the changes in 
absorbance at 475-440 nm for the initial fast phase and 425-440 nm for the slow phase and 
fit to a one phase decay. 

 

Table D5. Δabs of photoejection for 4. a 

Condition Δabs @ 485 nm 

Water 0.012 ± 0.001 

1X PBS 0.013 ± 0.001 

Opti-MEM with 1% FBS 0.012 ± 0.003 

Acetonitrileb 1.3 ± 0.2 and 55.8 ± 0.3 
aKinetics determined by A. Zamora. bKinetics were determined using the changes in 
absorbance at 450-485 nm for the initial fast phase and 430-450 nm for the slow phase and 
fit to a one phase decay. 
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Figure D9. HPLC chromatograms of 2 in the dark and after 1 min irradiation with 470 nm 
light. For all graphs black (−): 2 in the dark, red (– –): 2 after 1 min irradiation, blue (--): 
metyrapone. (A) Full HPLC chromatograms, where 17.5 min = free metyrapone, 26.5–27.8 
min = 2 after 1 min irradiation, 28.5–29.5 min = 2. Intact complex 2 has three peaks with 
the same absorption profiles due to the presence of the different isomers. (B) Ru(II) 
complex region of the HPLC chromatograms showing decreased signal for intact complex 
(26.5–27.8 min) and onset of shorter retention time products (28.5–29.5 min) following 
irradiation. (C) Metyrapone region of the HPLC chromatograms showing appearance of 
the signal in the irradiated sample. (D) UV/Vis absorption traces of the peaks showing a 
red-shifted MLCT band of 2 when irradiated with light. Extent of the photoejection 
reaction is 53%. HPLC performed by A. Zamora. 
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Figure D10. ESI-MS of 2 after being irradiated with 470 nm light. Ejection of one 
metyrapone ligand was confirmed by appearance of the peaks corresponding to free ligand 
and [Ru(bpy)2(Met)]2+ or [Ru(bpy)2(Met)(H2O)]2+, as well as the reduction in the signal of 
the intact complex. ESI-MS performed by A. Zamora. 

 

 

 

 

 

 

 

 

 

 



185 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D11. HPLC chromatograms of 3 in the dark and after 1 min irradiation with 470 nm 
light. For all figures black (−): 3 in the dark, red (– –): 3 after 1 min irradiation, blue (--): 
etomidate. (A) Full HPLC chromatograms, where 11 min = 3 after 1 min irradiation, 16 
min = free etomidate, 21.5 min = 3 in the dark). (B) Intact 3 region of the HPLC 
chromatograms showing decreased signal following irradiation. (C) Irradiated product 
region of the HPLC chromatograms showing increased signal following irradiation. (D) 
Etomidate region of the HPLC chromatograms showing appearance of free ligand 
following irradiation. (E) Full and (F) zoomed UV/Vis absorption traces of the peaks 
showing a slight red-shifted MLCT band of 3 when irradiated with light. Extent of the 
photoejection reaction is 65%. HPLC performed by A. Zamora. 
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Figure D12. ESI-MS of 3 after being irradiated with 470 nm light. Ejection of one 
etomidate ligand was confirmed by appearance of the peaks corresponding to free ligand 
and [Ru(bpy)2(Eto)]2+ or [Ru(bpy)2(Eto)(H2O)]2+, as well as the reduction in the signal of 
the intact complex. ESI-MS perfomed by A. Zamora. 
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Figure D13. HPLC chromatograms of 4 in the dark and after 1 min irradiation with 470 nm 
light. For each figure black (−): 4 in the dark, red (– –): 3 after 1 min irradiation, blue (--): 
1. (A) Full HPLC chromatograms, where 23 min = 1, 28.8 min = 4 after 1 min irradiation, 
30.6 min = 4 in the dark. (B) Ru(II) complex region of the HPLC chromatograms showing 
decreased signal for intact 4 and appearance of the Ru(II) product following irradiation. 
(C) Compound 1 region of the HPLC chromatograms showing the appearance of the signal 
following irradiation. (D) Full UV/Vis absorption traces of the peaks showing slight 
changes in the MLCT band of 4 when irradiated with light. Extent of the photoejection 
reaction is 40%. HPLC performed by A. Zamora. 
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Figure D14. ESI-MS of 4 after being irradiated with 470 nm light. Ejection of one 1 ligand 
was confirmed by appearance of the peaks corresponding to free ligand and [Ru(bpy)2(1)]2+ 
or [Ru(bpy)2(1)(H2O)]2+, as well as the reduction in the signal of the intact complex. ESI-
MS perfomed by A. Zamora. 

 

 

 

 

 

 

Figure D15. UV/Vis spectral traces of PM BM3 (2.5 µM) at RT in assay buffer with 
increasing ligand concentration: (A) metyrapone, (B) etomidate, (C) and 1. The blue line 
is the initial and the red line is the final spectra. Inset: The binding curves were produced 
by monitoring the change in absorbance at 425 nm and fit with a one site-total non-linear 
equation using GraphPad Prism software.  

A B C 
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Figure D16. UV/Vis spectral traces of PM BM3 (2.5 µM) at RT in assay buffer with 
increasing concentration of complexes: (A) 2, (B) 3, and (C) 4 after irradiation with the 
Indigo LED. The blue line is the initial and the red line is the final spectra. Inset: The 
binding curves were produced by monitoring the change in absorbance at 425 nm and fit 
with a one site-total non-linear equation using GraphPad Prism software. 

 

Table D6. Kd values for ligands and light-activated complexes. 

Ligand Kd (µM) Complex Kd (µM)  

Metyrapone 1.09 ± 0.18 2 6.13 ± 1.46  

Etomidate 0.83 ± 0.22 3 3.20 ± 0.59  

1 0.93 ± 0.18 4 4.63 ± 1.75  

 

 

Figure D17. Difference spectra of P450BM3 inhibitor saturated and Ru(II) dark and light 
systems: 2 (A), 3 (B), 4 (C). The ratio used was P450: Complex (1:10) and P450: Ligand 
(1:4) for each of the respective ligands used to generate the complexes. The absolute 
spectra are shown in Figure 1.  
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Figure D18. P450BM3 activity assay for (A) metyrapone, (B) etomidate, (C) 2 and (D) 3. 
For (C) and (D), complexes 2 and 3 were tested in the absence of light (—) and following 
1 min of irradiation with the Indigo LED (—) 

 

Table D7. P450BM3 activity assay IC50 values. 

Ligand IC50 (μM) Complexes IC50 (μM)a 

Metyrapone 0.75 ± 0.43 2 0.19 ± 0.02  3.47 ± 0.74 

Etodimate 0.02 ± 0.00 3 0.04 ± 0.01  0.61 ± 0.05 

1 0.06 ± 0.03 4 0.05 ± 0.00  6.82 ± 2.06 
a. Values listed first in black are light activated complexes. Values listed in blue are IC50 
values for complexes in the dark. 

A B 

C D 
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Figure D19. Singlet Oxygen Sensor Green detection of 1O2 demonstrated low levels are 
produced by complexes 2-4. Ru(dip)3 (dip = bathophenanthroline) was used as a control.  
Assay performed by L. Nease and D. Heidary.  

 

 

Figure D20. Agarose gels showing the dose response of ligands with 40 μg/mL pUC19 
plasmid with and without irradiation (470 nm). (A) Dark and (B) 3 hr irradiation. Lane 1 
and 14: DNA ladder; Lane 2: EcoRI; Lane 3: Cu(OP)2; Lane 4: 0 mM, Lanes 5–7: 7.8, 
62.5, 500 mM metyrapone; Lanes 8–10: 7.8, 62.5, 500 mM etomidate; Lanes 11–13: 7.8, 
62.5, 500 mM 1. EcoRI and Cu(OP)2 are used as controls for linear and relaxed circular 
DNA, respectively. EtBr was used to visualize the DNA. Gels run by A. Zamora.  
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