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Abstract

Although amphibians typically exhibit high site fidelity and low dispersal, they do
undertake rare, long-distance movements. The factors influencing these events remain poorly
understood, partly because amphibian spring movements tend to radiate from breeding sites and
the animals are often difficult to locate at other times of the year. In this study, we investigate
whether these movement patterns can be reproduced by a parsimonious model where foraging
steps follow a heavy-tailed, Lévy alpha-stable distribution and individuals may either return to a
previous refuge site or establish a new one. We consider three versions of the return behaviour:
(1) a distance-independent probability of return to any previous refuge; (2) constant probability
of return to the nearest refuge; or (3) a distance-dependent probability of return to each refuge.
Using approximate Bayesian computation, we fit each version of the model to radiotracking data
from a population of Fowler’s Toads, which inhabits a linear sand dune habitat on the north shore
of Lake Erie in Ontario, Canada. Only the model with distance-independent, random returns
provides a good fit of the inter-refuge distance distribution and the number of refuges visited per
toad. Our results suggest that while toads occasionally forage over long distances, the

establishment of new refuges is not driven by the minimization of energy expenditure.

Keywords: amphibian; animal movement; approximate Bayesian computation; foraging; Lévy

walk; radiotracking
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1. Introduction

The movements that individual animals undertake to go from place to place are
fundamental to virtually every aspect of animal ecology and behaviour. How small movements
of animals at daily or hourly scales result in such larger phenomena as home-ranges, dispersal
and migrations at seasonal, annual or life-time scales, however, remains a difficult problem to
understand. It has commonly been observed that a high-frequency of short-distance movements
combined with rare, long-distance movement events results in a movement step size distribution
that is strongly leptokurtic, with a sharper peak and longer tails than expected of a normal
distribution, and possibly heavy-tailed, i.e. with the long-distance probability tail extending past
that of an exponential distribution (e.g., Cecala et al., 2009; Gomez and Zamora, 1999; Morales,
2002; Paradis et al., 1998; Skalski and Gilliam, 2000). Such heavy-tailed distributions in animal
movement may be consistent with the Lévy flight foraging hypothesis (Viswanathan et al.,
1999), according to which optimal search patterns follow a power-law distribution of step sizes,
with the frequency of steps proportional to some inverse power of their length. However, tests of
this hypothesis have been the subject of numerous statistical challenges (Edwards, 2011).

In actuality, animal movement is not scale-free and must be constrained by biological
limits, so that the power-law distribution can only hold within a certain range of step sizes
(Benhamou, 2007). Over the longer time scales that encompass multiple individual movements,
such as may occur during foraging or dispersal behaviours, movement distances may also depend
on the animal’s memory and “cognitive map” of the environment, features that are poorly
represented in movement models based on independent steps (Gautestad and Mysterud, 2013).

More complex models that can accommodate both specific movement rules and memory effects
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may be required, but their outcomes may not be expressible in terms of analytical likelihood
functions.

Although the absence of a likelihood function previously precluded formal statistical
analysis, computational and statistical advances in the last 20 years have made it possible to
derive inferences from simulation-based models (Hartig et al., 2011). Approximate Bayesian
computation (ABC) is a simulation-based inference method originally developed in the field of
population genetics, wherein the large number of possible genetic histories and intermediate
states leading to a given outcome make explicit likelihood calculations intractable (Beaumont et
al., 2002). Since analogous challenges, i.e. path dependence and a large number of unobserved
intermediate states, are also encountered in the study of animal movement, ABC provides a
flexible mean to test foraging and dispersal behaviour models with empirical data (Marchand et
al., 2015).

Anuran amphibians, although they have generally been considered poor dispersers
relative to larger, more vagile terrestrial vertebrates, can be valuable subjects for testing models
of animal movement. Individuals may show a high level of site fidelity yet mark-recapture
studies have also shown that anurans will undertake relatively rare long-distance movements of
up to a few km in a matter of days, or as far as 35km over the course of a season (Smith and
Green, 2005, 2006). Whether site fidelity is advantageous should depend on the tradeoff
between the benefit of a known location relative to the cost of returning to that location (Wells,
2007). As many amphibian species make use of refuge sites as part of their daily activity cycles,
this makes discretizing movement simpler as time periods between movement steps are more or

less standardized and biologically meaningful. Nevertheless, locating individual anurans outside
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of the breeding season can be difficult with many species as they tend to be mostly nocturnal
foragers that hide during the daytime. Moreover, the small size of most species precludes the use
of GPS satellite telemetry methods that can provide long-term, high-resolution movement time-
series for larger terrestrial animals (Wikelski et al., 2007). Both of these difficulties can be
overcome, however, with the appropriate model species.

In this study, we develop a parsimonious model that describes both site fidelity and long-
distance movements, and apply this model to the movements of Fowler’s Toads (Anaxyrus
fowleri) in a population inhabiting a linear sand dune habitat on the north shore of Lake Erie in
Ontario, Canada. In this environment, adult Fowler’s Toads are readily locatable as they forage
on the beaches at night (Greenberg and Green, 2013). Previous capture-mark-recapture data
(Smith and Green 2005, 2006) have established and quantified the heavy-tailed movement
distribution curve of these toads. The toads can also be fitted with small radio-transmitters
(Boenke, 2011), which allow them to be tracked to their daytime hiding places in the sand dunes
fronting the beaches. Based on this radiotracking data, we use ABC to estimate the parameters of
the movement model, including the scale and shape of a Lévy-stable distribution of movement
steps and the probability of returning to a known refuge rather than establishing a new one.

To assess the importance of energy constraints on movement, we compare the relative fit
of three versions of the return step: (1) toads return to a randomly selected previous refuge,
independent of distance; (2) they return to the nearest refuge from their current location; or (3)
the probability of return to any previous refuge is a decreasing function of the distance to that
refuge. We hypothesize that either of the last two models would provide a better fit if minimizing

energy expenditure were the primary factor determining refuge choice.
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2. Methods
2.1. Study site and population

We studied the movement ecology of Fowler’s Toads at Long Point in Ontario, Canada,
along the beaches of Long Point Provincial Park and the Long Point National Wildlife Area
Thoroughfare Point Unit (UTM zone 17 N: 550700 — 553000 Easting, 4713615 — 4714200
Northing; NAD 83 Datum). Although the dune ecosystems along the north shore of Lake Erie are
highly dynamic (Gelinas and Quigley, 1973; Stenson, 1993), human disturbance at this site is
minimal and movement by toads not constrained either by lack of suitable habitat or by lack of
connectivity between habitat patches (Smith and Green, 2005, 2006). The toads generally take
refuge in the sand dunes fronting the beach during the day and emerge to forage for invertebrate

prey along the lakeshore at night.

2.2. Stochastic movement model

To reflect both the high rate of apparent site fidelity and the heavy-tailed distribution of
dispersal steps present in the previous mark-recapture data (Smith and Green, 2006), we used a
variant of the multiscaled random walk (MRW) model proposed by Gautestad and Mysterud
(2005). The MRW is based on a power-law step length distribution, but differs from a classic
Lévy flight by allowing a certain frequency of return steps, wherein the individual revisits a
location chosen at random from previous points in the walk. As each successive visit to a
location increases its effective weight for future return steps, the MRW model allows home range

patterns to emerge without the need to specify an ad hoc homing process.
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In our model, we assumed that return steps only occurred at the end of the nighttime
foraging path, when the toad is at a position Ax, away from the previous day’s refuge site. At this
point, the toad either takes refuge at its current position or returns to a known refuge site.

2.2.1. Return steps

Our three model versions differ in how they describe the return behaviour:

Model 1 (random return): The probability of return is constant (p.« = po), and the toad selects a
refuge at random from all the previous days’ refuges. As in Gautestad and Mysterud’s model,
multiple visits to a refuge increase its “weight” for future return steps.

Model 2 (nearest return): The probability of return is constant (pw: = po), but the toad always
returns to the nearest refuge.
Model 3 (distance-based return probability): The probability of returning to a given site decays

exponentially with the distance d; to that refuge:

,d‘

Pruci= Do e (D
where d, is a characteristic distance to be estimated along with py. The probability of not
returning to any previous site is the product of the complements of the p :
1-pe=11{1-pui) . @
where R is the number of distinct previous refuges.

In the case of a return event, the probability of each refuge being chosen is given by:

P(return ati\return)ZﬁMH . (3)
ret|i

With an additional parameter, the third model allowed us to consider intermediate cases

of distance-dependence. As the characteristic distance d, decreases, it becomes increasingly
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likely that the toad will choose the nearest refuge; yet the outcome differs from that of model 2,
since the probability of return is not constant but decreases with distance. In the limit where d, is
very large, p,«i = po and all previous sites have the same probability of return. Contrary to model
1, however, the probability of returning to any site is not constant but increases with R (as a
consequence of Eq. 2). Moreover, since model 3 considers distinct refuge sites, multiple visits to

the same refuge do not increase its probability weight.

2.2.2. Overnight displacement

The net overnight displacement, Ax,, in the model followed a symmetric, zero-centered
stable (a.k.a. Lévy alpha-stable) distribution, S(a, v), with stability parameter o, (0 < a < 2) and
scale parameter y > 0. With o = 2, the stable distribution reduces to a normal law, whereas
decreasing values of a produced increasingly leptokurtic (i.e. heavy-tailed) distributions,
including the Cauchy distribution (o = 1) as a special case (Uchaikin and Zolotarev, 1999). For a
< 2, the tails of the probability density followed a power law decay with exponent —(1 + a).

Although there is no closed form of the stable probability density for arbitrary a, random

draws from S(a, y) can be generated by the CMS algorithm (Chambers et al. 1976):

A | T (4)

sin aU [cos((l —a)U) ]%
(cosU ) ,
where U is a uniformly distributed angle in (—n, ) and  has a standard exponential
distribution.

A key property of the stable distribution is that the sum of stable random variables is also

stable; in particular, the sum of N independent variables distributed as S(a, y) is stable with the
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same stability parameter o and a scale yx = N"*y. Furthermore, the generalized central limit
theorem of Gnedenko and Kolmogorov (1954) shows that the sum of independent variables
following a common distribution with asymptotic power-law tail converges to a stable
distribution.

Given these properties, our assumption that Ax, has a stable distribution was robust to
differences in the small-scale foraging behaviour. For example, while foraging steps are probably
correlated on a short-term scale, as long as there is some intermediate time scale where
successive displacements can be modelled as independent and following a heavy-tailed (power-

law) distribution, the stable distribution will be a reasonable approximation of net displacement.

2.3. Model fitting with approximate Bayesian computation
We fitted our model by approximate Bayesian computation (ABC) using the ABC-

rejection algorithm, as implemented in the ‘abc’ package (Csilléry et al., 2012) in R (R Core
Team, 2016). Consider a simulation model that takes an input parameter vector 6 and outputs a

vector of summary statistics (S) calculated from the simulation outcome. Given a set of 6

vectors, drawn from the parameters’ prior distributions, and a corresponding set of simulation
outputs S(8), ABC-rejection simply selects a subset of 6 for which the output statistics are close
to those of the observed data D, i.e. where d[S(6), S(D)] < € for a chosen distance function d and
tolerance level €. The selected subset approximates the joint posterior distribution of 6. The
approximation accuracy can be further improved by fitting a local-linear regression model of 6

vs. S(0) and using that empirical model to correct each @ towards the value it would have at S(D)

(Beaumont et al., 2002).
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The ABC-rejection algorithm can be naturally extended to the problem of model selection
by treating the choice of model as a discrete parameter (Toni et al., 2009). If the number of
simulations run under each model is proportional to its prior probability, then the representation
of a model among the simulations retained following the rejection step is an estimate of its
posterior probability. As in the parameter estimation case, the approximation can be improved by
fitting a regression of the discrete model probabilities, i.e. a multinomial logistic regression, as a
function of the summary statistics in the vicinity of the observed statistics (Beaumont, 2008).

The main drawback of ABC-rejection is the high number of simulations necessary to get
a sufficient number of results in the vicinity of the data. Alternative ABC algorithms use Markov
chain Monte Carlo or sequential Monte Carlo (a.k.a. particle filter) methods to gradually
concentrate the sampling effort in the areas of high-agreement between simulated and observed
statistics (Marjoram et al., 2003; Sisson et al., 2007). Yet, ABC-rejection has the advantage of
decoupling the simulation and estimation steps, which allows the entire set of simulations to be
run ahead of time and, possibly, in parallel on a high-performance computing cluster. Multiple
estimations can then be performed from this set of simulation outputs, which is especially helpful

when performing cross-validation.

2.3.1. Prior distributions and summary statistics

Our results were based on 10,000 simulations of each version of the stochastic model. For
each simulation, we drew parameters from the following uniform prior distributions: a ~ U(1, 2),
v ~ U(10m, 100m), p, ~ U(0, 1) and (for model 3 only) dy ~ U(20m, 2000m). To match the size

and structure of the observed dataset, we simulated the movement of 66 toads over 63 days, then
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subset the results to keep only the (Toad, Day) observation points present in the data. For each of
four different time lags (1, 2, 4 and 8 days), we calculated three statistics over all pairs of points
with the same toad and the corresponding time lag: (1) the frequency of returns (defined as |Ax|<
10m), as well as (2) the mean and (3) standard deviation of log (Ax)* for non-returns, over all
pairs of points with the same toad and corresponding time lag. We chose these 12 summary
statistics as well as the 10m distance threshold to capture the key characteristics of the empirical
distribution of relocation distances at multiple time scales (see section 3.1 and Fig. 1). We used
the Euclidean distance (sum of squared differences) to compare this vector of summary statistics

to the corresponding statistics of the radiotracking data.

2.3.2. Cross-validation

We used the ‘abc’ package’s cross-validation feature to verify the identifiability of our
model, i.e. determining whether the size of the dataset and the chosen summary statistics are
sufficient to estimate the parameters of interest for each model version, and distinguish the
outcome of the alternate model versions. We also used cross-validation to choose an optimal
tolerance rate, which is the fraction of best-fitting simulations to keep for estimating the posterior
distribution.

For the parameter estimation problem, cross-validation was performed separately for
each model version. Taking one of the simulation results as the “data”, we applied ABC to
estimate the true parameters of that simulation based on the remainder of the simulation results.
We repeated this process for 100 sampled simulation results and four different tolerance rates

(0.5%, 1%, 5% and 10%). The cross-validation accuracy was quantified using the relative
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estimation error, defined as the mean square difference between estimated and true parameter
values divided by the variance of the true values over the 100 sampled simulations.

For the model selection problem, cross-validation consisted in taking one simulation
output as the data and applying ABC to the remaining 29,999 simulation results (combined from
all three models) to estimate the posterior probabilities of each model version. We repeated this
process for 100 sampled simulations per model version, using the same tolerance rates as above.
Model selection accuracy is quantified by the misclassification rate: the fraction of cases where

the model version with the highest posterior probability differed from the true model.

2.3.3. Parameter estimates and model selection

We estimated the posterior distribution of each parameter via ABC-rejection, using the
tolerance rate selected by cross-validation and applying the local-linear regression correction of
Beaumont et al. (2002). For the regression correction, we applied a logit transformation to the
stability parameter (o) to keep the inferred values within the (1, 2) bounds, and a log
transformation to d, to constrain its range to positive values. Parameters were estimated
separately for the three versions of the model.

To compare the fit of the different model versions, we first estimated the posterior
probabilities of the three models by ABC-rejection, followed by multinomial logistic regression
of model probabilities in the vicinity of the observed summary statistics (Beaumont 2008). We
then verified that simulation outputs from the fitted version of each model (with parameters

drawn from their posterior distribution) could reproduce the observed summary statistics.
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As an additional posterior predictive check, we compared the number of distinct refuge
sites in the simulated and observed datasets. In practice, we defined this quantity as the number
of clusters obtained at a distance threshold of 10m, when performing hierarchical clustering of
the point locations using the complete-linkage method (‘hclust’ function in R). The complete-
linkage criterion ensures that each pair of points in the cluster is separated by no more than the

specified distance threshold.

2.4. Radiotracking data

We collected radiotracking data on Fowler’s Toads at our study site during mid-June to
late August of 2009 and 2010 (Boenke, 2011). Toads were captured opportunistically while they
were foraging on the beach, and outfitted with either Holohil BD-2 (in 2009) or BD-2N (in 2010)
radiotransmitters, which were attached to the toad via a filament covered in plastic tubing
(following Bartelt and Peterson, 2000). The total weight of the transmitter and harness (ca. 2 g)
constituted ~5% of the typical adult toad weight, and in no case exceeded 10% of the
individual’s weight, as recommended by Rowley and Alford (2007). Toads were tracked with an
HR2600 Osprey Receiver (H.A.B.L.T. Research, Victoria, BC, Canada) and Yagi 3-element
antenna. Upon finding each toad, its position was recorded with a Magellan Mobile Mapper 6
GPS unit (Magellan Navigation, Inc., Santa Clara, CA, USA). The location of each tracked toad
was recorded at least once per night (active foraging) and once per day (resting in refuge) but we
only used the daytime locations in the present study. The number of consecutive days in a
tracking bout varied by toad, as some individuals shed their transmitter, or else it had to be

removed to alleviate skin irritation. Since individuals were identified by toe clipping or



729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

distinctive marks from digital photographs, toads that lost their transmitter could sometimes be
retrieved, allowing multiple tracking bouts per toad (Boenke, 2011). All procedures with animals
were conducted under McGill University Animal Use Protocol No. 4569.

The position of toads’ daytime refuges relative to the shore is governed by tradeoffs between
wave avoidance, predator avoidance, elevation and proximity to water (Boenke, 2011). In
contrast, movement along the shoreline is unconstrained, meaning that dispersal occurs mostly
along a single dimension. For this reason, we projected all refuge locations on a single axis,
obtained by linear regression of the two-dimensional coordinates, and only modeled this one-

dimensional component of toad movement.

2.5. Source code and data access
The dataset used for this study and the R code for all simulation and analyses can be

downloaded from GitHub: http://github.com/pmarchand1/fowlers-toad-move/.

3. Results
3.1. Empirical distribution of relocation distances

The radio-tracking dataset included 66 toads, with between 2 and 30 daytime points
recorded, for a mean of 12 locations per toad per season.

When shown on a logarithmic scale (Fig. 1), the distribution of distances between
daytime refuges of a toad was characterized by a symmetric peak combined with an inflated
number of low-distance events. Given the GPS margin of error of 3 — 5m per point, distances of

less than 10m could not be measured reliably (Boenke, 2011). Therefore, the excess probability
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in that part of the distribution would be consistent with toads returning to previous sites. In
contrast with the expectations of a random walk model, where the whole distribution would shift
to larger distances as the time step increases, the peak of relocation distances varied little
between time lags of 1 to 8 days. Instead, longer time lags increased the total probability on the

high end of the distribution as the fraction of short-distance (or return) events decreased.

3.2. Approximate Bayesian computation
3.2.1 Cross-validation

With the exception of dy in model 3 (see below), the cross-validation results (Table S1 in
the supplementary data) showed a good agreement between the true values of the parameters and
their posterior median estimated via ABC. Overall, the relative estimation error was minimized
with a 5% tolerance level; the supplementary Fig. S1 shows how the estimated and true values
compare across all parameters at that tolerance level. For all three model versions, the relative
error was higher for a (10% to 14%) than for y (around 7%) or py (1% to 5%). Since a
determines the power-law tail of the stable distribution, its value is sensitive to rare, long-
distance events, which could explain the higher estimation variance. The characteristic distance
do had the highest estimation error, at over 60% of the prior range. Therefore, this parameter
might only be identifiable with a larger dataset.

The ABC model selection algorithm could discriminate well between Model 2 and either
other version. However, 35% of the Model 1 runs were misidentified as Model 3 and 23% of
Model 3 runs were misidentified as Model 1 (Table 1). This is consistent with the behaviour of

Model 3 approaching random returns in the limit of high dy; while there are still differences
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between the two models in that limit, they might not be detectable with the chosen summary
statistics.
3.2.2. Parameter estimation

The posterior median and 95% Bayesian credible interval for all parameter estimates are
shown in Table 2. The estimates of the stable distribution parameters were similar for Model 1 (a
= 1.7, y=34 m) and Model 3 (a = 1.65, y = 32 m), whereas both values were higher for Model 2
(a=1.83,y=46 m).

The estimated values of a suggest a power-law tail with an exponent between —2.6 and
—2.8. The estimates of a could be biased upwards, however, since long-distance dispersal events
are more likely to take toads outside of the tracking range. That is, the power-law tail could
extend further than inferred from the data.

As expected based on the poor cross-validation results, the estimate of d, in model 3 has a
very wide credible interval (220 to 1697 m). In comparison, the largest distance between any two
observations of the same toad in the dataset was 1198 m, and only 4 out of 66 toads visited
locations more than 350 m apart. Most of the posterior distribution thus lies in the high d, range
where refuge choice is not primarily constrained by distance. Note that the estimates of p, in
Model 3 (0.43) and Model 1 (0.60) are not directly comparable even in the distance-independent
case, since the actual probability of return in Model 3 increases with the number of visited
refuges (see section 2.2).

We verified that our posterior parameter estimates did not significantly change when
performing additional simulations beyond the current 10,000 per model version (Fig. S2 in the

supplementary data).
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3.2.3. Model selection

The ABC model selection process resulted in posterior probabilities of 15% for Model 1
(random return), 0% for Model 2 (nearest return) and 85% for Model 3 (distance-dependent
return probability). Given the high probability of misclassification between Model 1 and 3 (Table
1) and the difference in complexity between the two models (3 versus 4 adjustable parameters),
this result alone does not provide strong evidence of a better fit for Model 3.

The comparison of observed and simulated summary statistics from the three models,
with simulation parameters drawn from their respective posterior distribution, shows that Model
2 is too dispersive. That is, the mean log distance increases — and the probability of return
decreases — too rapidly with greater time lags. In contrast, the range of simulated results from
Models 1 and 3 is consistent with the observed statistics at all time lags (Fig. 2).

Finally, we computed the number of distinct refuge sites, defined in section 2.3 as
clusters of points with diameter less than 10m, for each toad in both the empirical data and the
output of each simulation model (with parameters drawn from their posterior distribution). This
quantity is strongly dependent on the number of observations by individual; our results show that
this relationship can be well approximated by a linear regression on a log-log plot (Fig. 3). Note
that the simulation results show less variance as they represent the average of 500 simulated
paths by toad. This number of refuges statistic, which wasn’t directly used in fitting the
parameters of each model, shows a better fit for Model 1: the 95% confidence intervals of the
regression lines for observed and simulated points overlap. Model 3, in contrast, results in too

few distinct refuges for toads with many observations. This may be due to the functional form of



953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

the probability of return in this model (Eq. 2), which increases with the number of distinct

refuges already visited.

4. Discussion

In the analysis above, we showed that a parsimonious model of foraging behaviour (our
Model 1) successfully reproduced the main patterns of refuge site fidelity and relocation among a
population of Fowler’s Toads. The model assumed that the net displacements of toads during
nighttime foraging follows a heavy-tailed, Lévy-stable distribution, and that toads may either
take refuge at the end of their foraging path, or return to a random refuge among those previously
visited.

The assumption that toads returning to a previous refuge choose one at random may seem
unrealistic. Yet it fit the data better than two alternative models we tested, where the probability
of return and/or the choice of refuge were distance-dependent. It might be that movement cost is
only one of many factors determining refuge selection, along with slope, elevation and
vegetation cover of potential refuge sites (Boenke, 2011). Without knowing the spatial structure
of these microhabitat variables along the beach length, it is difficult to determine how they could
affect the movement statistics. Even if additional environmental data were available, the size of
the tracking dataset (individuals and locations per individual) would also set a limit to the
complexity of verifiable models: the very diffuse posterior distribution for the characteristic
distance dy in model 3 provides a good example of this problem.

Even for this simple model, this study illustrates the power and flexibility of approximate

Bayesian computation for the calibration and testing of mechanistic movement models from field
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data. In particular, ABC doesn’t require the stochastic process of interest to have a known
analytical likelihood, and it can easily accommodate gaps in observations (by subsetting the
simulated data) as well as sources of error and censoring. In this study, we took into account the
unreliability of GPS measurements at short distances, and if we had an independent measure of
long-distance censoring, that effect could have been included as well.

Our results indicate that long-term movement patterns, such as dispersal, may be
profoundly affected by small-scale micro-habitat choices and day-to-day movement. Sand dunes
and beaches are highly dynamic environments that are strongly affected by both weather
conditions and waves. The large temporal variation in habitat quality, combined with a relatively
lower spatial variability in the direction parallel to the shore, matches conditions that have been
found to favor heavy-tailed movement patterns (Lowe, 2009). Temporal habitat variability can
also contribute to the decrease in the probability of return with larger time steps, as preferable
refuge locations shift during the season.

This stochastic movement model, calibrated through individual-level tracking data,
provides a measure of home range size that is robust to changes in the scale or number of
observations. We note that while the number of refuges sites utilized by a toad increases with the
number of observation days, the median relocation distance (the peak on the log scale of Fig. 1)
varies little with time. This suggests that most toads’ movement remains within that spatial
range. Conversely, the probability of rare, long-distance dispersal events predicted by the model
can serve to estimate the level of connectivity between toad populations separated by a given

distance along the shore.
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Tables
Model 1 predicted| Model 2 predicted Model 3 predicted
Model 1 true 62.2% 3.2% 34.5%
Model 2 true 8.4% 88.4% 3.2%
Model 3 true 22.6% 3.0% 74.4%

Table 1: Confusion matrix for model selection, based on cross-validation results. For each model
version, we selected a random subset of 100 (out of 10,000) simulations, considered each
one in turn as the “data”, and applied the ABC model selection procedure (with a 5%
tolerance level) to determine which of the three model versions had the highest

probability of being the source of the simulated dataset.

Parameter a ¥ (m) Po do (m)
Uniform prior range (1, 2) (10, 100) (0,1) (20, 2000)
Model 1 Median 1.70 34 0.60
95% BCI (1.41,1.94) (26,42) (0.53,0.65)
CV error 10.3% 6.6% 1.0%
Model 2 Median 1.83 46 0.65
95% BCI (1.35,1.99) (34,60) (0.54,0.72)
CV error 13.6% 7.6% 1.3%
Model 3 Median 1.65 32 0.43 758
95% BCI (1.37,1.91) (26,40) (0.31,0.59) (220, 1697)
CV error 10.0% 7.0% 4.8% 63.1%

Table 2: Approximate Bayesian computation estimates of the simulation model parameters.
Posterior parameter distributions are obtained through selection of the 500 (out of

10,000) best-fitting parameter sets for each model version, followed by a local-linear
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regression adjustment. The table shows the median and 95% Bayesian credible interval
(BCI) of the parameter’s posterior distribution, along with the relative error estimated

from cross-validation (CV error).
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Figure captions

Figure 1: Kernel density estimates for the x-axis (parallel to shore) distance — shown here on a
log scale — between daytime refuges for time lags of 1, 2, 4 and 8 days. We calculated distances
between all pairs of fixes separated by the given time lag for each tracked toad. Distances
smaller than 10m (indicated by the finely dotted line) are within the GPS margin of error and

thus considered return events for the purpose of our model.

Figure 2: Kernel density estimates of the summary statistics from 500 simulations of each
movement model, with parameters drawn from the posterior distributions obtained by
approximate Bayesian computation. The red lines indicate the summary statistic’s value in the

observed data.

Figure 3: Number of refuge sites (point clusters of diameter < 10m) as a function of the number
of radiotracking observations by toad for the three simulation model versions, compared with the
observed data. In each case, we estimate a linear trend on a log-log scale and show the
corresponding 95% confidence interval (shaded area). The simulated number of refuges shown
for each model version is the mean of 500 model runs with parameters drawn from their

posterior distribution.
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A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a
population of Fowler’s Toads (Anaxyrus fowleri)

Supplementary table

Tolerance  Model 1 estimation Model 2 estimation Model 3 estimation Model selection

a y P, a ¥ P, a ¥ P, d, Model 1 Model 2 Model 3
0.5% 16% 7.1% 1.3% 23% 6.9% 1.4% 17% 12.5% 6.4% 94% 37% 10% 31%
1% 13% 6.2% 1.0% 14% 7.4% 1.1% 12% 8.4% 4.7% 76% 36% 11% 28%
5% 10% 6.6% 1.0% 14% 7.6% 1.3% 10% 7.0% 4.8% 63% 38% 12% 26%
10% 11% 5.6% 1.2% 13% 7.0% 1.6% 10% 7.1% 5.0% 63% 39% 12% 27%

Table S1: Relative estimation and model selection errors calculated by cross-validation, as a function of
the tolerance level (% of accepted simulations). The lowest value for each estimate is highlighted. For
parameter estimation, the relative error is the mean square difference between the true parameter value
and the estimated value, divided by the variance of the true parameter value across the 100 cross-
validation replicates. The model selection error for model i is the fraction of cross-validation replicates
of model i where the selected model was not i.



A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a
population of Fowler’s Toads (Anaxyrus fowleri)

Supplementary figures

Fig. S1. Cross-validation results for the approximate Bayesian computation (ABC) estimation
procedure, for (a) Model 1 (random return), (b) Model 2 (nearest return) and (¢) Model 3 (distance-
based return probability). For each model version, we selected a random sample of 100 (out of 10,000)
simulation results, considered each one in turn as the “data” and ran the ABC-rejection algorithm (with
5% tolerance level) on the remainder of the simulation results to infer the true parameter values of the
left out simulation. The diagonal line on each plot indicates equality between true and estimated values.
The point estimates shown are the median of the posterior distribution, while error bars represent the
95% credible interval.

Fig. S2. Variation in the posterior parameter distribution quantiles (median and bounds of the 95%
Bayesian credible interval) as a function of the number of simulations (Nsin), for (a) Model 1 (random
return), (b) Model 2 (nearest return) and (c) Model 3 (distance-based return probability). The error bars
show the 95% central range for each estimate and were obtained from 100 bootstrap replicates at each
value of Ngin.
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Figure S1(b)
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Figure S1(c)
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Figure S2(a)
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Figure S2(b)
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Figure S2(c)

(¥
1

Estimate

40- '

304

0.6

0.2

3000 -

2000 1

1000 1

D.

4

4000 6000 8000 10000 12000 14000 16000
Number of simulations

4000 6000 8000 10000 12000 14000 16000

Quantile
- 97.5%
- 50%
- 2.5%





