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Summary

� Association studies are widely utilized to analyze complex traits but their ability to disclose

genetic architectures is often limited by statistical constraints, and functional insights are usu-

ally minimal in nonmodel organisms like forest trees.
� We developed an approach to integrate association mapping results with co-expression

networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for sta-

tistical associations with wood density, stiffness, microfibril angle and ring width in a popula-

tion of 1694 white spruce trees (Picea glauca).
� Associations mapping identified 229–292 genes per wood trait using a statistical signifi-

cance level of P < 0.05 to maximize discovery. Over-representation of genes associated for

nearly all traits was found in a xylem preferential co-expression group developed in indepen-

dent experiments. A xylem co-expression network was reconstructed with 180 wood associ-

ated genes and several known MYB and NAC regulators were identified as network hubs. The

network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as

well as considerable within-season variation for both genetic control of wood traits and gene

expression. Trait associations were distributed throughout the network suggesting complex

interactions and pleiotropic effects.
� Our findings indicate that integration of association mapping and co-expression networks

enhances our understanding of complex wood traits.

Introduction

The usefulness of genome-wide association studies (GWAS) for
discovering the genetic basis of complex traits has been shown in
many different systems, including, for example, the susceptibility
to complex diseases in humans (Altshuler et al., 2008) and
defense metabolism against herbivory in Arabidopsis thaliana
(Chan et al., 2011). The aim of GWAS is to gain insight into the
genetic architecture of such traits through the identification of
common genetic variants against the background of random vari-
ation in a population (Baranzini et al., 2009). One of the chal-
lenges of GWAS is that the exceedingly large number of tests and
the required stringent statistical criteria typically result in very
few associations that exceed a genome threshold of significance
after correction for multiple testing (Greenawalt et al., 2012).
Furthermore, most of the single nucleotide polymorphisms
(SNP) variants identified in GWAS provide little or no direct
causation into the molecular, cellular or physiological processes
underlying the phenotype of interest. Recent studies have shown
that innovative approaches may be developed to complement
and overcome some of the limitations of association studies and
thus optimize the discovery of causative genetic variants

(Baranzini et al., 2009; Chan et al., 2011; Greenawalt et al.,
2012).

GWAS approaches such as those used in humans (Hirschhorn
& Daly, 2005) and some plants (Huang et al., 2010; Chia et al.,
2012) have not been directly amenable for most tree species
because of the lack of genomic resources and methods to sample
a large enough fraction of existing genome-wide allelic variation.
Therefore, candidate gene approaches were developed as an alter-
native to GWAS, and consist of selecting genes based on prior
knowledge and analyzing them to identify genetic variants for
traits of interest. The advantage of this approach was suggested to
be related to the rapid decay of linkage disequilibrium (LD) in
forest trees which was found to be within 800 bp in loblolly pine
(Gonz�alez-Mart�ınez et al., 2006), within 750 bp in Scots pine
(Garcia-Gil et al., 2003) and as little as 65 bp in white spruce
(Pavy et al., 2012). The low levels of LD also suggest that vali-
dated marker-trait associations are likely to be located close to the
functional polymorphisms (Gonz�alez-Mart�ınez et al., 2011).
In forest trees, the candidate gene association study (AS)

approach has identified SNPs and genes linked to wood and
growth traits in many tree species such as Eucalyptus nitens
(Thumma et al., 2009), Populus spp, (Ingvarsson et al., 2008;
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Wegrzyn et al., 2010; Guerra et al., 2013), pines (Dillon et al.,
2010; Cumbie et al., 2011; Jaramillo-Correa et al., 2015) and
spruces (Beaulieu et al., 2011; Prunier et al., 2013). However, the
variation in quantitative traits explained by individual SNP
markers is generally low and rarely exceeds 5% (Dillon et al.,
2010; Guerra et al., 2013), consistent with multigenic control
(Evans et al., 2014) and the relatively shallow genomic sampling
in most studies to date (< 1% and 10% of estimated gene coding
loci per genome) (Nystedt et al., 2013; Neale et al., 2014).

Controlling for «false positives» and assuming «false
negatives» in GWAS has led to the development of approaches
integrating multiple types and sources of data. Protein interac-
tion network-based pathway analysis was proposed as a strategy
to further reduce the large lists of these genes and refine the
results of GWAS (Baranzini et al., 2009). In A. thaliana, net-
work co-expression approaches were used for the identification
of novel genes that affect defense metabolism (Chan et al.,
2011). Even when the phenotypic effect of each SNP is very
small, grouping significant genes according to their function
shows that many of these genes contribute together to the same
physiological process or a regulatory network (Baranzini et al.,
2009).

A growing number of studies show that combining association
studies, molecular function and expression data could ultimately
help increase our understanding of the genomic architecture of
complex traits and the genetic basis of variations in trait expres-
sion (Baranzini et al., 2009; Chan et al., 2011; Greenawalt et al.,
2012). Developing insights into the genomic architecture of
complex traits in forest trees will therefore require the testing of
more SNPs and genes than reported in most studies to date
(Thavamanikumar et al., 2013). This will enable the develop-
ment of global and less biased understanding and the evaluation
of pathways and gene networks.

Our aim was to delineate the genetic architecture of wood
traits in white spruce (Picea glauca (Moench) Voss) by testing a
large panel of genes with diverse functions and expression profiles
(see Pavy et al., 2013) and integrate these findings with genome-
wide expression data to shed light onto the underlying gene net-
works (Fig. 1). The specific objectives of this study were: to iden-
tify and compare the genes identified by AS of different wood
traits, and determine if they can be attributed to particular bio-
logical functions; to study the relationship between the genetic

architecture (genes identified by AS) and quantitative genetic
parameters; to evaluate whether genes associated with wood traits
display preferential expression patterns; and to conduct co-
expression network analysis among genes from the AS as a means
of linking genotype-phenotype associations with cellular pro-
cesses associated with wood traits.

Materials and Methods

Plant material and tissue sampling used for association
analysis

The AS population was fully described in Beaulieu et al. (2014).
Briefly, 1694 trees representing 214 open-pollinated families
(eight trees for most of the families) from 43 provenances were
selected in a 30 yr-old provenance-progeny test and a 12-mm
increment core was taken at breast height (130 cm aboveground)
for wood property determinations. Needle tissue was sampled
from the crown for DNA extractions and genotyping.

Phenotypic data

A wood core from each of the 1694 trees was analyzed at high
resolution with the SilviScan technology (Evans, 1999, 2006)
at the FPInnovations facilities in Vancouver (Canada). Four
wood traits were considered in this study: air-dry wood density
(WD), measured in 25-lm steps using X-ray densitometry;
microfibril angle (MFA), measured in 1-mm steps using X-ray
diffractometry; wood modulus of elasticity (MOE) calculated
from the densitometry and diffractometry data following Evans
(2006); and ring width (RW) determined through information
of densitometry profiles. Traits were determined on a ring-by-
ring basis and data separated into earlywood (EW) and late-
wood (LW) on the basis of changes in wood density (Beaulieu
et al., 2011). Averages were calculated for each trait and each
tree by weighting individual ring data by its area in an ideal
circular disk.

SNP genotyping

Discovery of the SNPs, genotyping methods and quality control
criteria were described previously (Pavy et al., 2013; Beaulieu
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Fig. 1 Flowchart of the different analyses
and data sources. Shaded boxes represent
gene expression data and analyses reported
in Raherison et al. (2015) which utilized
independent trees analyzed under controlled
conditions. Focal species: 1, white spruce; 2,
white spruce and Norway spruce (Picea abies
(L.) H. Karst).
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et al., 2014). Briefly, for each of the 1694 trees, DNA was
extracted from foliage and individuals were then genotyped with
the Illumina Infinium HD iSelect bead chip PgAS1 at a rate of
50 ng ll�1 previously described by Pavy et al. (2013). The SNPs
were from candidate genes belonging to 1868 gene families as
described by Pavy et al. (2013) The candidate genes were selected
based on multiple criteria and represented highly diverse func-
tional categories and expression profiles as relevant for growth,
phenology, resistance to biotic and abiotic stress, and wood for-
mation (see Supporting Information Methods S1 for more
details). Genotypes were obtained for 7434 SNPs in 2813 genes
and after quality screening (GenTrain quality score ≥ 0.25, a fixa-
tion coefficient |Fe| < 0.50, a minor allele frequency (MAF)
≥ 0.003, a call rate at each SNP locus of ≥ 50%), 6385 SNPs in
2652 genes were retained for subsequent analyses (Beaulieu et al.,
2014).

Estimation of quantitative genetic parameters

Genetic parameters of wood traits were estimated using a mixed
model approach. Beside the effect for half-sib families, statistical
models were constrained for block and block-by-family interac-
tions within the test site. Variance components and co-variance
were estimated with the MIXED procedure in SAS (Littell et al.,
2006) using restricted maximum-likelihood (REML). Individual
narrow-sense heritability (hi

2) ,as well as genotypic (rA) and phe-
notypic (rP) correlations, were determined by a multivariate
approach (Lenz et al., 2013). The delta method was used for esti-
mation of associated errors (Lynch & Walsh, 1998). More infor-
mation and formulas are given in Methods S2.

Association analysis

Missing SNP information was imputed using the RAN-

DOMFOREST package v.4.6-6 in R (Breiman, 2001; R Develop-
ment Core Team, 2012). Principal component analysis (PCA)
was conducted to assess for the presence of population sub-
structure in the population of 1694 trees (Price et al., 2006)
and a pairwise kinship matrix was calculated to estimate famil-
ial relatedness between trees, using all the 6385 SNPs. The
association analysis between SNPs and traits were performed
with TASSEL (Bradbury et al., 2007) v.4.0 standalone. To
remove spurious association, the kinship matrix and population
structure were used as covariates in the Mixed Linear Model
(MLM) (Yu et al., 2006). The false discovery rate (FDR)
method (Storey & Tibshirani, 2003) was used to correct for
multiple testing, whenever it was necessary to compare with
results obtained without FDR.

In this study, we focused our expanded analysis at the func-
tional level by considering genes harboring nominally significant
SNP associations with wood traits at P < 0.05. By omitting the
correction for multiple testing, we aimed to maximize discovery
and to gain insight into the genomic architecture and biological
processes underlying quantitative traits, rather than identifying a
reduced number of statistically stringent associations for pheno-
type correlation.

Microarray experiments and gene expression network

Co-expression group data from two independent gene expression
profiling experiments described in Raherison et al. (2015) were
used to characterize the expression patterns of genes found to be
significantly related to wood traits after association testing at
P < 0.05 (Fig. 1). For details on the two profiling experiments,
datasets and analyses, see Raherison et al. (2015). In the present
study, two levels of hypergeometric testing were performed to
assess the representation in co-expression groups: (1) over- or
under-representation of the entire panel of candidate genes rela-
tive to the number of genes in each co-expression group and (2)
separate tests were conducted for over- or under-representation
of genes associated with wood traits in gene co-expression groups
(P < 0.05) taking into account the non random distribution of
genes tested in the expression groups (for details, see Methods
S3).

A gene co-expression network of 180 significantly associated
genes in the two co-expression groups with xylem preferential
expression (M2a and M7b in Raherison et al., 2015) was devel-
oped based on pairwise gene expression correlations determined
between these genes by the Pearson correlation coefficient (r) that
were calculated using R software (R Development Core Team,
2012). The network was constructed by connecting genes that
had an r-value ≥ 0.90 to reduce false connections of weak correla-
tions between genes. The resulting co-expression networks were
visualized using CYTOSCAPE (Shannon et al., 2003).

Functional annotations and enrichment analyses

A BLASTX search for the 2652 candidate genes sequences was per-
formed with the BLAST2GO, software designed to annotate
sequences based on similarity, with an e-value threshold of e�10
against the nonredundant protein sequence database. In order to
functionally classify these genes, two approaches were used. First,
sequences were annotated by assignment of gene ontology (GO)
terms and GO terms grouped into GO categories using the plant
GO-SLIM terms (Conesa et al., 2005). Second, protein families
were assigned by using similarities with Pfam families, as
described previously (Rigault et al., 2011; e-value < e�10).
In order to determine whether the different gene lists were

enriched for specific GO terms or Pfam domains compared with
the overall set of candidate genes tested for associations, enrich-
ment analyses were carried out. Fisher’s exact test as implemented
in Blast2GO was used to compute the enrichment P-value for
each GO term. Enrichment analyses were also performed on
identified Pfam domains using FATISCAN at P-value < 0.05 (Al-
Shahrour et al., 2007; Medina et al., 2010).

Results

Quantitative genetic analysis

Individual trait heritabilities, as well as phenotypic and genetic
correlations between traits, were estimated for EW and LW traits
separately (Table 1a). The narrow-sense heritability of traits
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varied between the EW and LW stages and between the different
wood traits. In EW, a relatively high level of heritability was
observed for WD (hi

2 = 0.65), suggesting that this trait is under
strong genetic control. Moderate heritability was observed for
MFA (hi

2 = 0.36) and MOE (hi
2 = 0.29). Ring diameter growth,

represented by RW, was less heritable (hi
2 = 0.18) than physical

wood traits, in accordance with expectations that growth is more
highly influenced by the environment (Lenz et al., 2010). Highly
negative genetic and phenotypic correlations were observed
between MFA and MOE (rA =�0.80; rP =�0.88), as expected
given their inverse relationship (Alteyrac et al., 2006; Lenz et al.,
2010). The genetic correlation between WD and mechanical
properties (MFA and MOE) was low to moderate. Similarly, low
to moderate negative phenotypic correlations were observed
between RW and the other wood traits (WD, MOE and MFA).

Compared to the EW, LW heritability estimates were higher
for MOE (hi

2 = 0.35), lower for MFA (hi
2 = 0.29), lower for WD

(hi
2 = 0.19) and negligible for RW. Overall, similar patterns were

observed in EW and LW for both genetic and phenotypic corre-
lations, with similar strong but negative correlations between
MFA and MOE in LW (rA =�0.85; rP =�0.87), and moderate
to lower correlations with and among other traits, except for
RW, where correlations could not be estimated or were null in
LW because family variance components could not be estimated
reliably.

All of the traits were clearly under genetic control, both in EW
and LW, although the magnitude of heritability estimates varied
from low to high among traits (Table 1a). Genetic and pheno-
typic correlations within traits between EW and LW were high to
very high and similar for all wood traits (Table 1b). It is generally
assumed that each of the quantitative traits are under multigenic
control and the genetic correlations between the different pairs of
traits, both within and between EW and LW, suggest what they
are controlled by overlapping sets of genes and have similar or
distinct genetic architectures. This idea was investigated using an
association study (AS) approach.

Association study

The population structure was explored by principal compo-
nent analysis (PCA) (Fig. S1) and was found to be weak and
only three of the 43 geographic origins were separated, as
previously observed using multidimensional scaling with the
same data (Beaulieu et al., 2014) (Fig. S1). A total of 1543
significant SNP marker-trait associations were found for all
wood traits, with up to 341 SNPs per trait (P < 0.05)
(Tables 2, S1, S2). These significant SNPs were distributed
among 1120 different genes, that is 42.2% of the candidate
genes tested. When using a more stringent criterion (P < 0.01)
or correction for multiple testing with the FDR method

Table 1 (a) Genetic (above diagonal) and phenotypic (below the diagonal) correlations between traits and individual trait narrow-sense heritabilities (on
the diagonal, in bold) in white spruce; (b) genetic (bold) and phenotypic correlations between and within traits and between earlywood and latewood in
white spruce

(a)
Traits1 WD MFA MOE RW

Earlywood
WD 0.65 (0.09)2 �0.03 (0.14) 0.56 (0.10) �0.56 (0.13)
MFA �0.16 (0.02) 0.36 (0.08) �0.80 (0.06) �0.37 (0.24)
MOE 0.54 (0.02) �0.88 (0.01) 0.29 (0.08) �0.04 (0.24)
RW �0.51 (0.02) 0.22 (0.02) �0.46 (0.02) 0.18 (0.07)

Latewood
WD 0.19 (0.07) �0.05 (0.22) 0.54 (0.16) –3

MFA �0.24 (0.02) 0.29 (0.08) �0.85 (0.05) –
MOE 0.42 (0.02) �0.87 (0.01) 0.35 (0.08) –
RW �0.22 (0.02) 0.39 (0.02) �0.22 (0.02) 0

(b)

Traits1

Latewood

WD MFA MOE RW

Earlywood WD 0.83 (0.12)2 0.06 (0.15) 0.37 (0.12) –3

0.50 (0.02) �0.29 (0.02) 0.42 (0.02) �0.19 (0.02)
MFA �0.14 (0.20) 0.98 (0.01) �0.85 (0.05) –

�0.10 (0.03) 0.94 (0.00) �0.82 (0.01) 0.15 (0.02)
MOE 0.64 (0.18) �0.76 (0.07) 0.97 (0.02) –

0.39 (0.02) �0.84 (0.01) 0.89 (0.01) �0.17 (0.02)
RW �0.62 (0.17) �0.43 (0.25) 0.07 (0.22) –

0.01 (0.14) 0.24 (0.02) �0.22 (0.02) 0.21 (0.02)

1Traits: WD, wood density; MFA, microfibril angle; MOE, modulus of elasticity; RW, ring width.
2Error estimates for heritability; genetic and phenotypic correlation estimates are given in parentheses.
3Dashes indicate genetic correlations that could not be estimated.
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(Q < 0.20) the total number of significantly associated SNPs
dropped to 401 and 11, respectively (Table 2).

We investigated the 1120 genes with at least one significant
association (P < 0.05) to explore their potential roles in the
genetic architecture of wood traits. The number of significantly
associated genes for each of the wood traits varied from 229 to
292, with many genes associated with more than one trait. Many
of the significant genes, that is 430 (38.4%), were found associ-
ated with both EW and LW, whereas 362 (32.3%) were associ-
ated only with EW and 328 (29.3%) only with LW. Pairwise
comparisons of EW and LW sets of significant genes showed that
many genes were shared between the two stages of wood forma-
tion for MFA and MOE, that is 205 (54%) and 170 (41%)
respectively, and fewer genes were shared between EW and LW
for WD and RW (Fig. 2). In general, the number of unique genes
was higher in EW than in LW.

Comparisons of significant genes for different traits showed a
large overlap between MFA and MOE (Figs 3, S2), that is 157
(43%) of significant genes were shared between MFA and MOE
in EW. This overlap was consistent with the strong genetic corre-
lation between these same traits (rA =�0.80; rP =�0.88), and it

indicates that many of the genes that control MFA also con-
tribute to wood stiffness (MOE). A moderate number of genes
overlapped between WD and both MOE and MFA, and fewer
with RW. Many more unique genes were observed for WD and
RW, suggesting that the set of genes influencing growth is more
distinct than those influencing physical wood traits.

Although many genes were associated with at least two traits in
EW, only 24 genes were common to the three wood traits (WD,
MFA and MOE) and only nine genes were shared between all
wood traits and RW (Fig. 3b). Similar results were obtained for
LW (Fig. S2). Functional annotations are given in Tables S1 and
S2.

Gene ontology and Pfam enrichment analyses

GO terms and Pfam annotations were analyzed and compared
among the subsets of genes significantly associated with the differ-
ent wood traits. In total, 80% of the 2652 genotyped genes had a
predicted function or protein domain and at least one assigned
GO term, and the remaining 20% were of unknown function or
had no GO term, as reported in Pavy et al. (2013). In the set of
1120 genes associated with the different wood properties, 88%
had an assigned GO term and 80% had an assigned Pfam.

Enrichment analyses identified 17 GO terms (Fig. 4a) and 40
protein families based on Pfam domains (Fig. 5) that were over-
represented among sets of significant genes for one or several
traits (Figs 4, 5). The number of significant genes assigned to
enriched GO terms was variable between the traits, and repre-
sented up to > 50% of the significant genes (for RW in EW)
(Fig. 4a,b). Up to seven enriched GO terms were identified for
six of the eight traits considered (Fig. 4a) and up to 10 Pfam
domains (Fig. 5) were identified for each of the traits. Overall,
both the enriched GO terms and the enriched Pfam domains
were very different between traits. Enrichment results were also
variable between EW and LW; for example, WD in LW had the
most GO terms, whereas WD in EW had none. By contrast, the
enrichment analysis for MOE in EW and LW identified similar
numbers of significant genes and found two major GO terms in
common (transport and hydrolase activity). Together, these data
indicated that the genes significantly associated with the different
traits are functionally diverse and that the different traits may
vary in their levels of functional specialization.

Table 2 Number of significantly associated single nucleotide polymorphisms (SNPs) and genes after association testing with earlywood and latewood traits
in white spruce, and number of significant SNPs after correction for false discovery rate (FDR) (Q< 0.20)

Traits1

Earlywood Latewood

P < 0.05 P < 0.01
Q < 0.20

P < 0.05 P < 0.01
Q < 0.20

No. SNPs No. genes No. SNPs No. genes No. SNPs No. SNPs No. genes No. SNPs No. genes No. SNPs

WD 338 282 78 70 0 295 257 63 57 2
MFA 330 292 63 59 0 332 290 74 72 2
MOE 329 290 72 68 0 333 287 61 56 0
RW 341 292 78 74 2 269 229 61 53 7

1Traits: WD, wood density; MFA, microfibril angle; MOE, modulus of elasticity; RW, ring width.
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Fig. 2 Numbers of significantly associated genes after association tests,
specific to earlywood (EW), latewood (LW) or shared (in common) to EW
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boxes represent the number of significantly associated genes.
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The enriched GO terms and Pfam domains both included
functions that may be expected from previous studies of wood
growth and development as well as functions not previously
reported as linked to these specific traits. Overall, they repre-
sented a wide spectrum of cellular processes (e.g. transport,
catabolic process, DNA binding; Fig. 4a) and proteins (e.g. trans-
porters, kinases, leucine reach repeat proteins; Fig. 5). They also
included processes and enzymes of biochemical pathways related
to wood formation, such as cell wall, biosynthetic process,
cytoskeleton, secondary metabolic process and several carbohy-
drate metabolism enzymes. For example, 17 (7.3%) of the genes
significantly associated with MOE in EW were assigned to the
GO term cell wall and eight (3.4%) of the genes significantly
associated with MFA in EW belonged to the GO term cytoskele-
ton. This overall level of functional diversity is not surprising
considering the different cellular events involved in secondary
xylem growth and formation (Plomion et al., 2001; Carvalho
et al., 2013).

The Pfam analysis provided a more detailed understanding
and enabled the identification of enriched functions for more
traits than the GO terms. For MFA in EW, for example, the
enriched GO term ‘sequence specific DNA binding transcrip-
tion factor activity’ was represented by 18 (7.7%) of the signifi-
cant genes (Fig. 4b), and Pfam domain enrichment analysis
specifically identified six classes of transcription factors (Fig. 5).
For WD in EW, no enriched GO terms were identified, but
nine enriched protein domains were found, including

carbohydrate metabolism enzymes (glycosyl hydrolase, pecti-
nacetylesterase), putative secondary metabolism enzymes
(methyltransferases, dirigent protein) and a putative regulator of
vascular development (START domain) that might be expected
for wood traits.

Gene expression

Co-expression data were obtained from a separate microarray
RNA study on an independent set of young trees which assigned
a total of 22 857 genes to 22 co-expression groups (Raherison
et al., 2015) and were utilized to further investigate the genes sig-
nificantly associated with wood traits (Fig. 1, S3). In the present
study, we investigated the distribution of candidate genes and of
wood associated genes identified by AS among the 22 co-
expression groups by two steps of hypergeometric testing. First,
we found that the 2652 candidate genes were significantly over-
represented in five and under-represented in eight of the co-
expression groups. Second, adjustments were made in the statisti-
cal testing to assess over- and under-representations of the signifi-
cant genes among the co-expression groups taking into account
the nonrandom distribution (Table 3) (for details, see Methods
S3). The genes significantly associated with all of the traits except
for WD in LW were over-represented in co-expression group
M2a (Table 3), which is characterized by preferential expression
only in secondary xylem and moderate expression in other tissues.
The M2a contained 16.0% of the candidate genes tested and up

(a)

(b)

Fig. 3 Overlap among sets of significantly
associated genes after association testing
(P < 0.05) between the different traits as
determined for earlywood in white spruce.
(a) Pairwise comparisons between traits,
showing the numbers shared or unique
genes; (b) Venn diagram showing the full
extent of overlaps of associated genes
between traits. WD, wood density; MFA,
microfibril angle; MOE, modulus of elasticity;
RW, ring width. For latewood, see
Supporting Information Fig. S2.
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to 26.3% genes associated with wood traits, the highest propor-
tion being for EW RW.

Over-representation was also found for genes significantly
associated with MOE and RW in a few other co-expression
groups with preferential expression in different tissues includ-
ing secondary xylem and other tissues (MOE and RW in LW)
or only others (RW in EW) (Table 3). Genes significantly

associated with wood traits were also under-represented in sev-
eral co-expression groups with a variety of profiles, but no clear
trend was observed between profiles and traits (Table 3).
Under-representation was found among profiles that have pref-
erential or strong expression in xylem as well as in one or two
other tissues (e.g. M3b foliage and xylem; M6b roots and
xylem).

(a)

(b)

Fig. 4 Functional annotations and gene
ontology (GO) analysis of significant genes
associated with wood traits (WD, wood
density; MFA, microfibril angle; MOE,
modulus of elasticity; RW, ring width) in
white spruce. (a) Enriched GO terms
identified for all traits in earlywood and
latewood. GO terms include molecular
function, biological process and cellular
localization categories. Enrichment was
determined using Fisher’s exact test,
P < 0.05. (b) Number of genes (inside bars)
and frequencies are according to annotation
and GO term classification.
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Gene network reconstruction

A co-expression network analysis was used to identify signifi-
cantly associated genes with a high level of connectivity, which
could indicate a regulatory role. The network was developed
with xylem preferential genes (M2a and M7b) significantly
associated with wood traits (221 genes in total) (Table 4).
Pearson correlations between these genes were obtained from
tissue profiling data (Raherison et al., 2015) and used at a
threshold of r ≥ 0.9 to construct a network comprised of 180
genes (ranging from 32 to 69 per trait) with correlated expres-
sion. Highly connected genes (with the most correlated genes)
were designated as hub genes (Table 5). The most highly con-
nected gene in this xylem co-expression network was PgNAC-
7, which was connected to 50 other genes and was recently
shown to be strong candidate for the regulation of secondary
cell wall formation spruce (Duval et al., 2014). The other 20
top-ranking hub genes included another NAC transcription
factor (PgNAC-8), three MYB transcription factors and
several biosynthesis enzymes of secondary cell wall polysaccha-
rides (e.g. cellulose) and lignin correlated with PgNAC-7
(Table 5).

For clarity, we represented the resulting xylem network by
showing the 93 genes that were connected to either one of NAC-
7, NAC-8, MYB1, MYB4 or MYB8 (Fig. 6a). We examined the
trait associations of the genes in the network in more detail by
considering whether the associations were found with EW or LW
traits and the type of traits that were associated with each gene.

First, a large majority of the genes (86.5%) were associated
with one or several EW traits, including 43.8% and 42.7% asso-
ciated uniquely with EW traits or with both EW and LW traits,
respectively. By contrast, only 13.5% of the genes were uniquely
associated with LW traits. We tested whether this pattern could
be linked to expression by using data from a temporal variation
study comparing EW and LW expression from Raherison et al.
(2015) (Fig. 6b). Nearly a third of the network genes (29.6%)
were preferential to EW, none were preferential to LW and
70.4% were nonvariable (Fig. 6a). Three of the transcriptional
regulators, that is PgNAC-7, PgNAC-8 and PgMYB4, were pref-
erentially expressed in EW, whereas PgMYB1 and PgMYB8 did
not vary temporally.

Second, we mapped the trait associations back onto the net-
work. Using the xylem network (Fig. 6) as a template, the EW
trait associations for each gene (Fig. 7) showed that the different
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Fig. 5 Enrichment analysis of Pfam protein
domains in significantly associated genes
after association testing in white spruce for
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traits are distributed throughout the network with no strong pat-
tern or organization. However, NAC7 which is specifically associ-
ated with WD is also linked to a majority of WD associated
genes includingMYB1. The NAC8 andMYB4 genes were associ-
ated with both MFA and MOE but other genes associated with
those two traits were found throughout the network.

Discussion

Genes associated with physical wood traits

Association mapping based on candidate genes has been used to
link single nucleotide polymorphisms (SNP) in candidate genes
with complex traits and develop an understanding of the molecu-
lar genetic basis of growth and wood quality in conifers
(Gonz�alez-Mart�ınez et al., 2007, 2011; Beaulieu et al., 2011).
The SNP-by-SNP association approach has shown that the effect
of each SNP on the total phenotypic variation is generally low,
which is expected for multigenic control and may also suggest
complex gene interaction effects (Gonz�alez-Mart�ınez et al., 2008;
Prunier et al., 2013).

In the present study, we tested for marker-trait associations
based on a total of 6385 polymorphic SNPs in 2652 different
candidate genes. Hundreds of SNPs and candidate genes were
identified at a nominal threshold of P < 0.05 for each of the traits
tested, but very few remained significant after false positive cor-
rection with an false discovery rate (FDR) of 0.20. Most studies
testing for associations between complex traits and SNPs in forest
trees have shown that the vast majority of associations do not
hold up to correction for multiple testing (Beaulieu et al., 2011;

Table 3 Distribution in co-expression groups of white spruce1 of total frequencies of genes tested and frequencies of significantly associated genes after
association testing

Co-expression group2 Genes tested3 (%)

Genes related to earlywood traits4 (%) Genes related to latewood traits4 (%)

WD MFA MOE RW WD MFA MOE RW

M1a 7.2*** 6.3 7.2 5.3 6.8 8.1 9.0 7.7 6.3
M1b 11.4* 14.2 8.8 11.5 7.2* 12.2 11.3 11.0 12.1
M2a 16.0*** 19.6* 22.9** 21.3* 26.3*** 15.4 19.5* 20.3* 20.0*
M2b 5.0 5.0 3.6 5.3 8.0* 4.5 2.7* 4.9 2.4*
M3a 11.6 12.5 6.4** 8.2* 9.6 12.2 6.6** 7.7* 7.7*
M3b 3.0*** 4.2 4.4 3.3 2.4 3.6 4.3 3.3 5.3*
M4a 6.6*** 3.8* 6.4 6.6 3.6* 5.9 6.3 6.5 5.8
M4b 4.1 4.6 4.0 4.5 4.4 2.7 5.1 3.3 4.4
M5a 9.0*** 9.2 10.8 8.6 6.4 8.1 9.0 8.5 8.7
M5b 2.6*** 2.1 1.2 3.3 2.4 3.6 2.3 2 2.4
M6a 5.3 4.6 5.6 5.7 3.2 5.4 6.6 7.3 5.3
M6b 2*** 0.4* 1.6 1.6 1.6 1.8 1.2 1.6 2.3
M7a 3.3 2.1 4 4.5 4 3.2 3.1 3.3 2
M7b 4.2* 5.8 4 2.9 6 4.5 3.9 2.8 3.8
M8a 1 0.4 0.8 0.4 0.8 0.5 0.8 0.8 0.4
M8b 1.3*** 0.4 0.8 0.4 0.8 0.5 0.8 0.8 1.0
M9a 1.5 0.8 2.4 1.2 2.4 1.8 2.3 1.6 2
M9b 2.6** 2.5 2.8 4.1 2.0 2.3 3.1 4.5* 3.4
M10a 1.0 0.4 0.4 0 0.8 0.5 0.4 0.4 1.4
M10b 0.8* 1.3 1.6 1.2 0.4 0.5 1.6 1.6 3.0**
M11a 0.2 0.0 0.0 0.0 0.4 1.4 0.0 0.0 0.0
M11b 0.3 0.0 0.0 0.0 0.8 1.4 0.0 0.0 0.0

1Over-representation of candidate and significant genes in a co-expression group are represented in bold; under-represented genes are shown in italic.
Significance level: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
2Co-expression groups were described in Raherison et al. (2015) based on tissue profiling across major vegetative tissue types and are shown in Supporting
Information Fig. S3. Co-expression group M2a is characterized by high expression in secondary xylem of shoots and roots and low to moderate expression
in other tissues (shoot apex; shoot phelloderm; root phelloderm; young foliage and root tips).
3Over- or under-representation of genes in the given co-expression group relative to all 2652 candidate genes.
4Over- or under-representation of genes associated with the respective trait (wood density (WD); microfibril angle (MFA); modulus of elasticity (MOE) and
ring width (RW)) relative to the total number of candidate genes in the corresponding co-expression group.

Table 4 Numbers of wood associated genes with xylem preferential
expression and subsets selected to reconstruct a co-expression network

Traits1

Xylem
preferential
genes (M2a
and M7b)

Genes used to
construct
network
(r ≥ 0.9 with at
least one other
gene)

Genes
connected to
MYBs and
NACs (r ≥ 0.9)

EW LW EW LW EW LW

WD 61 44 50 32 24 18
MFA 67 60 54 47 32 26
MOE 59 57 49 48 25 25
RW 81 49 69 38 42 23

1Traits: WD, wood density; MFA, microfibril angle; MOE, modulus of
elasticity; RW, ring width.
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Chhatre et al., 2013). This problem may have several different
causes and result in the rejection of associations and genes that
contribute to the trait variation but with very small or variable
effects. As the objective of this study was to uncover the genetic
architecture of quantitative variation in wood traits, we aimed to
discover genes and expression networks and not predict pheno-
typic variances. The proportion of significant gene SNPs at
P < 0.05 reported here for each trait is similar to that obtained in
previous association studies using mixed linear model (MLM)
methods, in white spruce (Beaulieu et al., 2011) and in loblolly
pine (Chhatre et al., 2013).

Relationship between genetic architecture and quantitative
genetic parameters

We estimated heritability and genetic parameters to improve
our understanding of the genetic architecture underlying com-
plex phenotypes. Intraspecific genetic variation is well known
to influence wood features such as density and fiber length
in forest trees (Lenz et al., 2010; Stackpole et al., 2010).
Here, we reported heritability and genetic parameter estimates
for wood traits from determinations in 1694 trees belonging
to 214 open-pollinated families and obtained very similar
results to those of Lenz et al. (2010), who studied 25 of the
same families replicated in three distinct ecological regions.
Our results also agree with numerous other studies in forest
trees, indicating that wood properties are generally under
moderate to strong additive genetic control in contrast to

growth, which is under lower genetic control (Stackpole
et al., 2010).

It may be expected that genetic and phenotypic correlations
between wood traits are underpinned by genes and gene networks
that are shared among traits (Mackay et al., 2009) but this has
not been directly tested for wood traits in forest trees. In the pre-
sent study, strong genetic and phenotypic correlations were
observed between microfibril angle (MFA) and wood modulus of
elasticity (MOE), which is consistent with previously described
relationships between MFA and MOE in conifers such as Pinus
taeda (Cramer et al., 2005). We also observed negative correla-
tions between diameter growth rate (i.e. RW) and physical wood
traits, which is congruent with other reports indicating a negative
genetic relationship between growth and wood density (WD)
(Apiolaza et al., 2005; Li & Wu, 2005).

We observed that the number of associated genes which
were shared between traits or between growth stages was
directly proportional to the magnitude of their genetic and
phenotypic correlations. The number of shared genes indicated
higher similarity between physical wood traits such as MOE
and MFA than with WD and RW (Table 1; Fig. 3a). This
observation may indicate that significant SNPs at a level of
P < 0.05 are informative of the underlying genetic architecture,
even though the majority of SNPs would have been discarded
by FDR correction. The genetic correlation results, together
with the strong overlap among sets of associated genes further
suggest that MFA and MOE have similar genetic architectures
in white spruce and that the genes may have pleiotropic effects.

Table 5 The 20 hub genes and their functions in the wood co-expression network in white spruce

GenBank accession number Cluster ID1 Gene name2 Degree3 Rank4 Functional annotation

BT102049 GQ0165_B14 NAC-7* 50 1 NAC-domain transcription factor, NAC 007
BT108136 GQ03117_E18 MYB8* 42 2 MYB domain protein
BT117395 GQ03818_K09 SHM4 42 2 Serine hydroxymethyltransferase 4
BT109520 GQ03209_H09 DUF579 41 3 Protein of unknown function
BT111350 GQ03236_G10 PRR-2* 41 3 Pinoresinol reductase 2
BT116706 GQ03805_C07 DHS-2* 40 4 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase
BT118944 GQ04012_D01 Unknown 39 5 Protein of unknown function
BT102121 GQ0166_N10 LPTHIO-1* 38 6 Lysophospholipase 2
BT106709 GQ03008_L07 GATL7 38 6 Galacturonosyltransferase-like 7
BT106091 GQ02902_M04 PK 37 7 Protein kinase protein with adenine nucleotide alpha

hydrolases-like domain
BT106204 GQ02904_O19 DUF716 37 7 Protein of unknown function
BT106749 GQ03009_M04 RING/U-box 37 7 RING/U-box superfamily protein
BT107152 GQ03103_F19 TPR_Like 37 7 Tetratricopeptide repeat domain-containing protein
BT101192 GQ0072_B14 PR 34 8 Pathogenesis-related thaumatin-like protein
BT106820 GQ03011_G09 MAP65-1 34 8 Microtubule-associated proteins 65-1
BT105950 GQ02830_G18 IQD2 33 9 IQ-domain 2
BT106875 GQ03012_K10 LRR-PK 33 9 Leucine-rich repeat protein kinase family protein
BT117303 GQ03816_N01 SEP 33 9 Subtilisin-like serine endopeptidase family protein
BT116853 GQ03807_P11 LRR 32 10 Leucine-rich repeat protein kinase family protein
BT107883 GQ03113_N22 MYB4* 31 11 MYB domain protein

1From Rigault et al. (2011).
2Gene name in the network.
3Degree, defined as the link numbers one gene has to the other within the network, based on M2a and M7b co-expression groups.
4Rank, based on their degree of connectivity within the network whereby genes with similar degree of connectivity have the same rank; *Pg-gene name in
white spruce (Picea glauca) according to Duval et al. (2014).
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We also observed that, when comparing early and late stages
for a given trait, the number of overlapping genes ranged from
only 8% (for RW) to 55% (MOE, MFA), indicating that the

genetic architectures of physical wood traits are less variable
over the course of a growth season than the amount of wood
formed (Fig. 2).
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Gene functions associated with physical wood traits

A central goal of this study was to assess the biological functions
and roles of genes identified by association analysis of wood traits.
The large number of genes tested and identified enabled a broad
analysis of functional annotations compared to several of the pre-
vious studies in forest trees (Beaulieu et al., 2011), which repre-
sents a significant step toward the goal of understanding the
genetic architecture of these complex traits.

The GO term and Pfam enrichment analyses identified
enriched biological processes and protein families for the differ-
ent traits. A range of different categories and protein families are
represented among the genes associated with wood traits, which
is consistent with the complex nature of wood formation (Car-
valho et al., 2013). Wood properties are determined by the
amount and proportion of secondary cell wall materials deposited
during secondary xylem growth and the ultrastructure of cellulose
polymers assembled into microfibrils in the thickened cell walls.
The major constituents of wood are the complex carbohydrates

cellulose and hemicelluloses, and lignin, a phenolic polymer that
impregnates the carbohydrate matrix (Plomion et al., 2001). Our
results are indicative of the wide variety of molecular functions
and processes that lead to the formation and the genetic variation
of secondary xylem. The lack of overlap in enrichment results
between wood traits and seasonal growth phases (early wood
(EW) and late wood (LW)) may indicate distinct functional sig-
natures associated with the different traits despite the consider-
able overlap between some of the gene lists.

The mechanical properties of wood and fibers are determined
to a significant extent by MFA, which directly explained up to
70% of the variation in wood stiffness as determined by MOE
(Alteyrac et al., 2006). In Eucalyptus, MFA alone has been esti-
mated to account for 86% of the variation in wood stiffness
(Evans & Ilic, 2001). We report a genetic correlation of �0.80
and a phenotypic correlation of �0.88 between MFA and MOE
in white spruce. The negative relationship is expected because a
small MFA leads to higher stiffness (MOE) such that the correla-
tions are negative. Several genes and their allelic variants have

WD MFA MOE RW LW

Fig. 7 Map of the earlywood (EW) trait associations (wood density (WD); microfibril angle (MFA); modulus of elasticity (MOE) and ring width (RW))
across the gene co-expression network. All of the 93 genes in the network are shown, 80 genes have EW traits associations (colored boxes) and 13 genes
only have latewood (LW) associations (gray boxes).
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previously been found to affect MFA and wood stiffness (Li et al.,
2011); however, the molecular mechanisms controlling microfib-
ril orientation and mechanical stiffness are largely uncharacter-
ized. In the present study, we found that genes involved in
cytoskeleton development and several transcription factors were
over-represented among genes significantly associated with EW
MFA. The cytoskeleton plays a key role in the establishment of
cell wall ultrastructure and resulting mechanical properties of the
xylem tissue (Ryden et al., 2003; Fletcher & Mullins, 2010).
These genes are involved in the two main types of cytoskeletal
polymers: actin filaments and microtubules (Fletcher & Mullins,
2010). The complex architecture of the cytoskeleton appears to
involve the effects of several transcription factors, according to
our Pfam enrichment results (Fig. 5) and other authors (Zhong
et al., 2011; Mizrachi et al., 2012).

Expression profiles and reconstruction of a wood formation
gene network

The 2652 candidate genes in the present AS were very diverse,
belonged to 1868 gene families and were selected based on multi-
ple criteria. The candidate genes were categorized according to
findings from a recent large-scale analysis of gene expression pro-
files in white spruce tissues (Raherison et al., 2015). Their distri-
bution across the 22 different co-expression groups defined by
Raherison et al. (2015) was different from that expected by a
chance alone, that is they were over- or under-represented in 16
of the 22 co-expression groups. The subset of 1120 genes signifi-
cantly associated with wood traits showed further over- and
under-representations beyond that observed in the entire set of
candidate genes but only in a few of the co-expression groups.
They were almost exclusively over-represented in the co-
expression group (M2a) with secondary xylem preferential
expression. This finding led us to construct a gene expression net-
work with wood traits associated genes that were preferential
expressed in secondary xylem (M2a and M7a) and had strongly
correlated tissue expression profiles. This unbiased approach to
select genes identified by AS reduced the total number of genes
investigated from 1120 to 180, of which 93 were connected to
one of five NAC and MYB transcriptional regulators (Fig. 6a).

The PgNAC-7 gene associated with WD in EW was the most
highly connected hub gene. This observation is consistent with
the report of Duval et al. (2014), that PgNAC-7 is a master regu-
lator of secondary cell wall biosynthesis in conifer xylem and is
functionally similar to the Arabidopsis gene VND6 based on co-
transfection (promoter activation), expression and sequence simi-
larity results. Raherison et al. (2015) also reported that PgNAC-7
is a major hub gene that is preferentially expressed during the for-
mation of EW.

The MYB genes MYB1, MYB4 and MYB8 are part of the net-
work and have been shown to be functionally linked to secondary
cell wall formation and lignin biosynthesis through over-
expression experiments and electrophoretic mobility shift assay
binding to AC elements in gene promoters Picea glauca (Bomal
et al., 2008, 2014) and in Pinus pinaster (Craven-Bartle et al.,
2013). Similar results were also reported for loblolly pine MYB1

and MYB4 (Patzlaff et al., 2003a,b). PgNAC-7 and these three
MYBs were proposed by Duval et al. (2014) to form a regulatory
network similar to the SND1 network defined in Arabidopsis
(Zhong et al., 2006) that is conserved in poplar (Lin et al., 2013;
Wang et al., 2014). The regulation of lignin biosynthesis by
members of the conserved SND1 transcriptional network has
been well documented in conifer trees (Patzlaff et al., 2003a,b;
Bomal et al., 2008, 2014). The lignin biosynthetic pathway is
well described at the molecular level and at least 10 gene families
are involved in the pathway of monolignol biosynthesis in trees
(Lu et al., 2010). Most of these genes are present in the network
described in the present study and were connected to one of the
PgMYBs and to PgNAC-7. For example, PgHCT, PAL and
Pg4CL were connected to PgMYB1 in agreement with functional
characterizations showing that the MYB1 gene product positively
regulates genes involved in the phenylpropanoid pathway (Bomal
et al., 2008). The other genes that were connected to PgMYB8,
PgMYB4 and PgNAC-7, suggesting that their regulation depends
on several transcription factors. These results support observa-
tions that several different MYBs may act in concert to regulate
different portions of phenylpropanoid metabolism and lignin
biosynthesis at different times in conifer trees (Patzlaff et al.,
2003a; Bomal et al., 2014).

The proteins and cellular processes involved in cellulose and
xylan biosynthesis are also well described in plants (see Mizrachi
et al., 2012 for review) but few reports have documented gene
networks and the transcriptional regulators underlying their syn-
thesis, especially in trees. Our network results indicate that
PgNAC-8 is connected to PgCesA3 and CslA2, suggesting that it
could be involved in the regulation of cellulose biosynthesis
together with PgNAC-7. The PgNAC-8 gene was identified in
Duval et al. (2014) but had not been directly linked to xylem for-
mation. The present study identified PgNAC-8 as associated with
MFA and MOE and as part of a network of several genes associ-
ated with the same and other wood traits. Recent work by Duval
et al. (2014) identified over 20 different NACs in P. glauca which
have not been functionally characterized. Their phylogenetic
analysis point to five potential candidate orthologs (PgNAC-3, 8,
17, 19, 25 ) for the AtSND2, 3 genes which regulate complex car-
bohydrates during secondary cell wall formation (Zhong et al.,
2010). Together the expression profile of PgNAC-8 and its asso-
ciation with several EW and LW properties make it a strong can-
didate ortholog for this function in spruce.

Both PgNAC-7 and PgNAC-8 were preferentially expressed
during the formation of EW, but the PgNAC-8 transcript levels
were maintained later in the growth season until August, com-
pared to PgNAC-7, whose expression decreased before August
(Raherison et al., 2015). In Arabidopsis, SND2 and SND3, the
closest homolog to PgNAC-8, have been shown to regulate sec-
ondary cell wall CesA genes (Zhong et al., 2008). Taken together,
these results point to a network involving NAC and MYB regula-
tors that regulate secondary cell wall properties and influence EW
traits most strongly, which was suggested to change over the
course of a growing season.

Our analysis yielded fewer insights into the formation and
properties of LW. Two genes among the top 20 hub genes
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(Table 5) were of unknown function and were associated only
with LW traits (MOE and RW) and were connected to all of the
other top 20 hub genes. They may be involved in an LW gene
network, but functional studies and further expression analyses
will be necessary to determine their molecular roles.

Mapping the trait associations back onto the xylem expres-
sion network provides a clear indication that the genes effects
are distributed across the network, suggesting complex genetic
and functional relationships that merit further dissection. For
example, functional relationships could be assessed using tran-
sient assays of transcription factor – promoter interactions as
reported recently in spruce (Duval et al., 2014). At the genetic
level, candidate gene associations could be explored further by
combining haplotype analyses and expression levels in the
same trees.

Conclusion

We carried out comparative and combined analyses of genes asso-
ciated with wood traits using a significance threshold of P < 0.05.
The outcomes provided new insights into the underlying multi-
loci genomic architectures. Comparative analyses of the different
traits revealed: (1) conservation in the makeup of associated genes
that was proportional to genetic and phenotypic correlations
between traits and stages; (2) much diversity and low conserva-
tion in over-representation GO terms and protein families; and
(3) well conserved expression profiles. Co-expression analysis
identified a wood formation wall network strongly linked to EW
traits and an unexpected NAC gene. Our results reveal links
between genetic architecture and co-expression networks underly-
ing wood properties.
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Deslauriers M, Cl�ement S, Lavigne P et al. 2013. Development of high-

density SNP genotyping arrays for white spruce (Picea glauca) and
transferability to subtropical and nordic congeners.Molecular Ecology Resources
13: 324–336.

Pavy N, Namroud MC, Gagnon F, Isabel N, Bousquet J. 2012. The

heterogeneous levels of linkage disequilibrium in white spruce genes and

comparative analysis with other conifers. Heredity 108: 273–284.
Plomion C, Leprovost G, Stokes A. 2001.Wood formation in trees. Plant
Physiology 127: 1513–1523.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D.

2006. Principal components analysis corrects for stratification in genome-wide

association studies. Nature Genetics 38: 904–909.
Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J,

Bousquet J. 2013. The genomic architecture and association genetics of

adaptive characters using a candidate SNP approach in black spruce. BMC
Genomics 14: 368.

R Development Core Team. 2012. R: a language and environment for statistical
computing. Vienna, Austria: R Foundation for statistical computing. [WWW

document] URL http://www.r-project.org/ [accessed 31 December 2014].

Raherison E, Guigu�ere I, Caron S, Lamara M, MacKay J. 2015.Modular

organization of the white spruce (Picea glauca (Moench) Voss) transcriptome

reveals functional organization and evolutionary signatures. New Phytologist.
207: 172–187.

Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ. 2011. A

white spruce gene catalog for conifer genome analyses. Plant Physiology 157:
14–28.

Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter WD, McCann

MC. 2003. Tensile properties of Arabidopsis cell walls depend on both a

xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-

borate complexes. Plant Physiology 132: 1033–1040.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,

Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for

integrated models of biomolecular interaction networks. Genome Research 13:
2498–2504.

Stackpole DJ, Vaillancourt RE, de Aguigar M, Potts BM. 2010. Age trends in

genetic parameters for growth and wood density in Eucalyptus globulus. Tree
Genetics & Genomes 6: 179–193.

Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies.

Proceedings of the National Academy of Sciences, USA 100: 9440–9445.
Thavamanikumar S, Southerton SG, Bossinger G, Thumma BR. 2013.

Dissection of complex traits in forest trees – opportunities for marker-assisted

selection. Tree Genetics & Genomes 9: 627–639.

New Phytologist (2016) 210: 240–255 � 2015 The Authors

New Phytologist� 2015 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist254

http://www.r-project.org/


Thumma BR, Matheson BA, Zhang D, Meeske C, Meder R, Downes GM,

Southerton SG. 2009. Identification of a cis-acting regulatory polymorphism

in a Eucalypt COBRA-like gene affecting cellulose content. Genetics 183:
1153–1164.

Wang S, Li E, Porth I, Chen J-G, Mansfield SD, Douglas CJ. 2014.

Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB

transcription factor PtrMYB152 in Arabidopsis. Scientific Reports 4:
5054.

Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis

MF, Tsai C-J, Neale DB. 2010. Association genetics of traits

controlling lignin and cellulose biosynthesis in black cottonwood

(Populus trichocarpa, Salicaceae) secondary xylem. New Phytologist 188:
515–532.

Yu J, Pressoir G, Briggs WH, Vroh BI, Yamasaki M, Doebley JF, McMullen

MD, Gaut BS, Nielsen DM, Holland JB et al. 2006. A unified mixed-model

method for association mapping that accounts for multiple levels of relatedness.

Nature Genetics 38: 203–208.
Zhong R, Demura T, Ye Z-H. 2006. SND1, a NAC domain transcription

factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis.
Plant Cell 18: 3158–3170.

Zhong R, Lee C, Ye Z-H. 2010. Evolutionary conservation of the transcriptional

network regulating secondary cell wall biosynthesis. Trends in Plant Science 15:
625–632.

Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. 2008. A battery of

transcription factors involved in the regulation of secondary cell wall

biosynthesis in Arabidopsis. Plant Cell 20: 2763–2782.
Zhong R, McCarthy RL, Lee C, Ye Z-H. 2011. Dissection of the transcriptional

program regulating secondary wall biosynthesis during wood formation in

poplar. Plant Physiology 157: 1452–1468.

Supporting Information

Additional supporting information may be found in the online
version of this article.

Fig. S1 Plots of the 1694 white spruce trees on the plane of the
two-first eigenvectors derived from the principal component
analysis (PCA).

Fig. S2Overlap among sets of significantly associated genes
(P < 0.05) between the different traits as determined for late-
wood.

Fig. S3Gene co-expression groups in white spruce (Picea glauca)
according to Raherison et al. (2015) that were used for network
reconstructions.

Table S1Genes significantly associated with EW traits and their
functions

Table S2Genes significantly associated with LW traits and their
functions

Table S3 The 93 selected genes that were connected to NAC-7,
NAC-8, and to MYB1, MYB4 and MYB8 in the co-expression
network and their functions

Methods S1Candidate genes selection.

Methods S2 Information and formulas used for estimation of
quantitative genetic parameters.

Methods S3 The hypergeometric test used for the evaluation of
the over- and under-representation of candidate and significant
genes in the co-expression groups.

Please note: Wiley Blackwell are not responsible for the content
or functionality of any supporting information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.

New Phytologist is an electronic (online-only) journal owned by the New Phytologist Trust, a not-for-profit organization dedicated
to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews. 

Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. 
We are committed to rapid processing, from online submission through to publication ‘as ready’ via Early View – our average time
to decision is <27 days. There are no page or colour charges and a PDF version will be provided for each article. 

The journal is available online at Wiley Online Library. Visit www.newphytologist.com to search the articles and register for table
of contents email alerts.

If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient,
our USA Office (np-usaoffice@lancaster.ac.uk)

For submission instructions, subscription and all the latest information visit www.newphytologist.com

� 2015 The Authors

New Phytologist� 2015 New Phytologist Trust
New Phytologist (2016) 210: 240–255

www.newphytologist.com

New
Phytologist Research 255


