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Where do the poor live in cities? Revisiting the role of public transportation on 
income sorting in US urban areas 
 
Erik Nelson1 
 
Abstract: Glaeser et al. (2008) argue that the relative distribution of poor and rich households 
(HHs) in American cities is “strongly” explained by the spatial location of the cities’ public 
transportation (PT) networks. Among their claims: 1) The broad distribution of poor and rich 
HHs in the typical American city is consistent with a basic monocentric city model that includes 
commute technology speeds; 2) Poor commuters will overwhelmingly transition from 
commuting by PT to car if they experience a substantial increase in their HH’s income; 3) areas 
in American cities that receive new PT infrastructure become poorer over time. Using 2017 data 
I find empirical evidence that partially or wholly contradicts these three claims. First, as of 2017, 
the observed concentration of poor HHs in the inner city and rich HHs in the suburbs of the US’ 
smaller cities cannot be explained by monocentric model that includes commute speeds. 
Second, as of 2017, significant increases in poor HHs’ incomes were not expected to lead to a 
“massive shift” towards car commuting in these HHs; most of these poor workers commute by 
car already. Third, using data from four cities that expanded their light-rail and rapid-bus 
network in the early 2000s, I find that neighborhoods surrounding new light-rail or rapid-bus 
stations either saw little change in their income patterns or became slightly richer after station 
opening. In conclusion, as of 2017, the spatial distribution of HH incomes within American 
urban areas is not as intricately linked to the location of PT networks as Glaeser et al. (2008) 
would have us believe. As an addendum to the analysis I add some thoughts on how the COVID-
19 pandemic might affect commuting behavior and income distributions within urban areas 
over the next decade. 
 
Keywords: Monocentric city model; public transportation; commuting; household income 
distribution; mode choice; random utility model; event-study; light rail  
 
JEL codes: O18; R2; R41 
 
 
1 Department of Economics, Bowdoin College, Brunswick, ME  



2 
 

1. Introduction 

The relationship between household (HH) income and distance from the central 

business district (CBD) in a US urban area can generally be described by one of two patterns. In 

the first, HH income generally increases in distance from the CBD. The Los Angeles (LA) core 

based statistical area (CBSA) typifies this type of urban HH income gradient (Fig. 1). In the other 

general pattern, a ring of poor HHs lie between two rings of richer HHs where one ring of more 

well-to-do HHs is centered on the CBD and another lies in the urban area’s farther-out suburbs. 

Chicago typifies this type of urban household income gradient (Fig. 1). 

 

1a. A monocentric city model without and with commuting technology 

Leroy and Sonstelie (1983) and Glaser et al. (2008) have described a monocentric city 

model that can produce HH income sorting consistent with LA’s or Chicago’s general patterns 

(or at least the first two rings in a Chicago-like city). Whether the model produces a LA or 

Chicago-like city largely depends on 1) what commute technologies poorer commuters tend to 

use versus richer commuters and 2) the speeds of the different commute technologies. 

Assume a HH with one worker is deciding how far to live from an urban area’s CBD. The 

HH has two major concerns in its location choice: the cost of their lot and their worker’s cost of 

commuting to their job in the CBD (Leroy and Sonstelie 1983) (I assume amenities, another 

potential factor in location choice, are spread evenly across the urban area and therefore not a 

factor in location choice.) Let P(D) indicate the daily price of a square foot of a lot that is located 

D miles from the CBD and let A indicate the square footage of each lot in the urban area. 
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Further, let W be the worker’s opportunity cost of a minute of commuting time and T indicate 

the minutes needed by the worker to commute a mile. 

The utility-maximizing HH will to choose to live at the D that minimizes the sum of its 

daily costs (Glaeser et al. 2008), 

min𝐷𝐷 𝐶𝐶 = 𝐴𝐴𝐴𝐴(𝐷𝐷) + 2(𝑊𝑊𝑊𝑊𝐷𝐷)      (1.1) 

where AP(D) is the HH’s daily expenditure on a lot of size A at D and 2(WTD) is the HH’s daily 

cost of the commuting to and from work given their choice of D. The HH will minimize its daily 

cost by choosing to live at the D that satisfies,  

𝐴𝐴′(𝐷𝐷) = −2𝑊𝑊𝑊𝑊/𝐴𝐴         (1.2) 

The HH’s location choice indifference contour or bid-rent curve in P-D space has a slope of 

negative 2WT/A and indicates every P and D combination that generates the HH’s minimized C. 

Assuming this urban area contains identical HHs and only has one commute technology (i.e., 

each household has the same T), this area will reach location equilibrium when each HH selects 

a lot at arbitrary D and pays P(D) per square foot according to the city’s one bid-rent curve.      

Now assume an urban area with both low-income (or poor) HHs and high-income (or 

rich) HHs where all HHs within an income class are identical. Let YPoor and YRich indicate the 

incomes at poor and rich HHs, respectively. Assume the rich worker’s opportunity cost of 

commuting is greater due to their higher hourly incomes (i.e., WRich > WPoor) and landlords 

design lots for the rich HHs that are different than those designed for the poor HHs (i.e., ARich ≠ 

APoor; Glaeser et al 2008). However, I still assume T is identical for both types of HHs. If I assume 

the rich HH bid-rent curve is steeper than the poor HH curve (Fig. 2) then, in equilibrium, rich 
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HHs will out-bid poor HHs for a lot closer to the CBD, landlords will place lots of size ARich near 

the CBD and lots of size APoor farther from the CBD, and the following will hold, 

∆𝑊𝑊
∆𝐼𝐼

× 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������

𝜀𝜀𝑌𝑌
𝑊𝑊

> ∆𝐴𝐴
∆𝐼𝐼

× 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������

𝜀𝜀𝑌𝑌
𝐴𝐴

        (1.3) 

where ΔW = WRich – WPoor, ΔA = ARich – APoor, and ΔI = YRich – YPoor (see SI Text 1 for an explanation 

of why (1.3) must hold if the rich HHs concentrate in inner ring of the urban area). The left-hand 

side of (1.3) is the urban area’s elasticity of the time cost of commuting with respect to income 

(i.e., for every 1% increase in income, the cost of commuting increases by 𝜀𝜀𝑌𝑌𝑊𝑊 percent) and the 

right-hand side of (1.3) is the urban area’s income elasticity of demand for lot size (i.e., for 

every 1% increase in income, the demand for larger lots increases by 𝜀𝜀𝑌𝑌𝐴𝐴 percent). 

Empirical research suggests that inequality (1.3), as well as my assumptions WRich > WPoor 

and ARich ≠ APoor, held in the representative US urban area: as of the early 2000s, 𝜀𝜀𝑌𝑌𝑊𝑊 was 

estimated to be approximately 0.75 and 𝜀𝜀𝑌𝑌𝐴𝐴 was estimated to be in the range from 0.25 to 0.50 

(Glaeser et al. 2008). Therefore, as presented so far, a basic monocentric city model with 

commute technology parametrized with representative urban elasticities cannot explain a city 

like LA where the poor concentrate around the core (the first band or ring around the CBD is 

relatively poor) and the rich in the suburbs (the second band or ring around the CBD is relatively 

richer).  

   However, if the poor commuters in the modeled urban area use a sufficiently slower 

transportation technology than the area’s rich commuters then the modeled urban can mimic 

LA’s broad pattern of HH income sorting. In other words, unlike the monocentric city model 

where all commuters travel the same speed, the version of the model where rich and poor 
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commuters can travel at different speeds supports two sorting equilibria (Fig. 3). Assuming 

𝜀𝜀𝑌𝑌𝑊𝑊 ≈ 0.75 and 𝜀𝜀𝑌𝑌𝐴𝐴 =[0.25 to 0.50], if the income gap between the rich and poor HHs in this 

urban area (i.e., YRich – YPoor) is not too large and the poor HH’s commute technology is 

sufficiently slower than rich HH’s commute technology (i.e., 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≫ 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ) then 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

<

𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 or,  

𝜀𝜀𝑌𝑌𝐴𝐴 + 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

� 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝜀𝜀𝑌𝑌𝑊𝑊� > 𝜀𝜀𝑌𝑌𝑊𝑊       (1.4) 

holds and the poor HHs concentrate in the first ring (see SI Text 1). Otherwise, if YRich – YPoor is 

large, 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≈ 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ, or there is only commute technology in the urban then (1.4) does not hold 

and the rich concentrate in the first ring. 

 A common criticism of this model is its lack of other spatial phenomenon that affect the 

spatial pattern of HH incomes in an urban area such as crime, pollution, and schooling quality 

and discriminatory tastes. However, Glaeser et al. (2008) argue that these factors largely 

explain the separation of the poor and the rich in an urban area but not the spatial order of 

poor and rich enclaves within an urban area. “A satisfying theory of urban centralization should 

explain not only why the poor and the non-poor live apart, but also why, conditional upon the 

poor and non-poor living apart, the poor choose to live closer to the city center.” (p. 7). Here I 

assume the poor and rich generally live apart. I am trying to explain why in some cities poor 

HHs tend to cluster in the first ring of the city and in others they cluster in a second ring. 

 

1b. Assigning commuting technologies to income classes 



6 
 

Assume there are two transportation technologies in our modeled urban area, the car 

and public transportation (PT). I can assume parameter 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ is equal to 𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃 if rich HHs find 

commuting with a car their least costly option given their lot location choice D, 

𝐶𝐶 + 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃𝐷𝐷�����������
Cost of a rich HH
commute in a car

< 𝑄𝑄 + 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑊𝑊𝑃𝑃𝑇𝑇𝐷𝐷 + 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝐹𝐹�����������������
Cost of a rich HH
commute on PT

     (1.5) 

where C is the fixed cost of a car per commute, Q is the fare for a commute by PT, and F is the 

PT wait and egress time (in minutes) per commute (relative to car commuting). According to 

(1.5), if C < P + WRichF then a rich commuter with a lot at D = 0 will use a car. If, in addition, TPT > 

TCar then (1.5) will hold at all D > 0 because WRichTPTD > WRichTCarD at all D. 

 Further, I can convert TPoor to TPT if the poor commuter finds PT their least costly option 

given their lot location choice D. Assume D = D*, the furthest extent of the city. A poor HH 

commuter living at this point will use PT if, 

 𝐶𝐶 + 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃𝐷𝐷∗�����������
Cost of a poor HH
commute in a car

> 𝐴𝐴 + 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑃𝑃𝑇𝑇𝐷𝐷∗ + 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹�������������������
Cost of a poor HH
commute on PT

     (1.6) 

or 

𝐶𝐶 > 𝐴𝐴 + 𝐷𝐷∗(𝑊𝑊𝑃𝑃𝑇𝑇 − 𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃)𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹      (1.7) 

(assuming PT is available at D*). Further, note that if (1.7) holds at 𝐷𝐷∗then then it will hold at 

𝐷𝐷 < 𝐷𝐷∗, including D = 0. 

 

1c. Glaeser et al. (2008)’s analysis of income spatial patterns in US cities   

Using data from the early 2000s, Glaeser et al. (2008) find the following model 

parameter values for the average American urban area: 𝑊𝑊𝑃𝑃𝑇𝑇 = 3 minutes mile-1, 𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃 = 1.6 

minutes mile-1, 𝜀𝜀𝑌𝑌𝐴𝐴 = [0.25,0.50], and 𝜀𝜀𝑌𝑌𝑊𝑊 ≈ 0.75. Further, by analyzing plots of average census 
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tract (CT)-level incomes by distance from the CBD for New York, Philadelphia, Chicago, Atlanta, 

Phoenix, and Los Angeles they find that 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 was never less than 0.7 in the early 2000s. 

Finally, the authors also use a back-of-the-envelope analysis to find that the representative 

poor commuter has incentive to use PT and the representative rich commuter has incentive to 

use a car in the typical US urban area (SI Text 2). (Their analysis suggests a poor worker that 

transitions from making $10 or less per hour (2001 USD) to $15 to $20 per hour (2001 USD) will 

transition from PT to car commuting.)  

Glaeser et al. (2008) then show that these estimated parameters support the inequality, 

𝜀𝜀𝑌𝑌𝐴𝐴 + 𝑇𝑇𝑃𝑃𝑃𝑃−𝑇𝑇𝐶𝐶𝐶𝐶𝑃𝑃
𝑇𝑇𝑃𝑃𝑃𝑃

� 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝜀𝜀𝑌𝑌𝑊𝑊� > 𝜀𝜀𝑌𝑌𝑊𝑊       (1.8) 

where TPoor = TPT and TRich = TCar. In other words, according to the basic monocentric city model 

with different commuting technologies, the typical urban US area should have an inner ring of 

generally poorer commuters using PT and a second ring of generally richer commuters using 

cars (e.g., Los Angeles). Their data and analysis also suggest that the tendency of the poor to 

concentrate in the inner ring will be amplified if the urban area’s PT network is not dense in the 

second ring.1 

Glaeser et al. (2008) then proceed to show that observed patterns of HH income sorting 

in US urban areas are consistent with their theoretical findings. First, using regression analysis, 

they find that US census tracts (CTs) closer to CBDs are richer on average than those farther 

away as of 2000 across 16 US cities. This finding contradicts their theoretical results. However, 

                                                            
1 In a first ring poor – second ring rich urban area a third ring of poor that use cars can emerge if the inner city does 
not have enough room for all the city’s poor. In a rich first ring – poor second ring urban area a third ring of rich 
and a fourth ring of poor with car drivers could emerge. 



8 
 

this initial regression does not include CT proximity to rail transit. Once this dynamic is 

accounted for, being closer to the CBD is not as strongly correlated with income (see SI Fig. 1). 

The authors claim this is evidence of that PT infrastructure, generally concentrated in and near 

the CBD, helps explain pockets of poverty in the cores of American cities.   

Second, using data from some of the US largest cities, they estimate the change in CT-

level poverty rates in areas “treated” with new rail transit networks versus areas not treated 

with new rail transit networks. They find that treated CTs experienced greater increases in 

poverty rates after transit establishment than in CTs not impacted by new rail networks. Again, 

because these treatments tend to take place in denser urban areas near CBDs, the authors 

contend that these findings are consistent with modeled predictions of poorer HHs 

concentrating in an urban area’s first ring in order to access their preferred commute 

technology.  

Third, they show that in urban areas with little to no PT (TCar ≈ TRich ≈ TPoor) average HH 

income is higher near the CBD. Further, average HH income decreases with distance from the 

CBD. Conversely, in older cities with robust subway systems they find a U – shape relationship 

between HH income and distance from the CBD with the inflection point at 3 miles from the 

CBD. After this first ring of relatively rich HHs, poor HHs cluster to be near their preferred 

commute technology (approximately 3 miles from the CBD). In these cities, TCar ≈ TPT within a 

mile or two CBD. Both results are consistent with the basic monocentric city model with 

commute technology: when an urban area has only one commute technology or the urban area 

has two technologies but they are of equal speed (at least near the CBD) then a ring of rich HHs 

will emerge immediately around the CBD (inequality (1.4) does not hold). 
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1c. Shortcomings in Glaeser et al. (2008)’s analysis  

While their analysis is impressive and thought-provoking, the Glaeser et al. (2008) 

analysis can be improved in several ways. I identify three major shortcomings. First, as 

mentioned above, Glaeser find values of 𝑊𝑊𝑃𝑃𝑇𝑇, 𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃, and F that generate a modeled urban area 

consistent with observed HH income distribution pattern in the typical US city. However, they 

do not investigate whether different types of US urban areas have estimated values of 𝑊𝑊𝑃𝑃𝑇𝑇, 

𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃, and F that aligns modeled and observed patterns of HH income distribution (Fig. 3). For 

example, do cities like Boston and Chicago have 𝑊𝑊𝑃𝑃𝑇𝑇 and 𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃 values that produce a rich inner 

ring in the monocentric city with commute technologies (MCCT) model? Further, do smaller 

urban areas have 𝑊𝑊𝑃𝑃𝑇𝑇 and 𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃 values that align their observed income patterns with their 

modeled results? 

Second, Glaeser et al. (2008) claim that “[p]ublic transportation usage appears to 

strongly predict poverty and to explain a substantial amount of the connection between 

proximity and poverty” (p. 15, emphasis mine). However, this claim is based on a regression 

that does not include any PT usage data. According to the authors, the tendency of the poor to 

co-locate with PT is enough to suggest that the poor rely more on PT than their rich 

counterparts. Later when they do conduct a regression analysis with PT usage data, correlations 

between CT-level income and CT-level usage of PT is enough for them to conclude that poor 

commuters are greater users of PT than rich commuters. Glaeser et al. (2018) never provide 

direct evidence of their claim that poor commuters use PT much more than the rich in most US 

cities or how commute mode use changes as commuters become poorer or richer. Nor do they 



10 
 

attempt to clarify whether correlations between CT-level income and CT-level PT usage vary 

across different categories of US urban areas.   

Third, Glaeser et al.’s event study of the impact of new rail networks on poverty in 

nearby CTs is flawed for several reasons. First, Glaeser et al. present no evidence that their 

event study was consistent with the common trend assumption needed for diff-in-diff 

identification. Second, their choice of control CTs – all CTs in select urban areas not treated 

with new rail networks – most likely does not allow for the causal inference they claim. 

 

1.d. Re-evaluating the claims made in in Glaeser et al. (2008)  

I re-evaluate the claims made in in Glaeser et al. (2008). I find the claim “[p]ublic 

transportation usage appears to strongly predict poverty and to explain a substantial amount of 

the connection between proximity and poverty” is not supported by data as of 2017. I argue 

that the word “strongly” in the above quote must be tempered to “somewhat” or a similar 

adjective. 

My reasoning for a correction in tone is based on four analyses. First, I show that the 

MCCT model is not consistent with 2017 HH income spatial patterns in certain types of US 

urban areas when the model is parametrized with these areas’ estimated 2017 TCar and TPT. In 

other words, something other than commute technology is affecting ring order in some US 

urban areas as of 2017.  

Second, I show that Glaeser et al. (2008)’s claim 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≡ 𝑊𝑊𝑃𝑃𝑇𝑇 and 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ ≡ 𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃 is not 

supported by 2017 data. In other words, Glaeser et al. (2008)’s back-of-the-envelope incentive 

compatibility constraint analysis that assigns poor commuters to PT use and rich commuters to 
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car use is unreasonable in all American urban types. I show that 1) commuters from poor HHs 

overwhelming rely on cars for commuting across all US urban areas and 2) in the densest parts 

of the US’s largest urban areas, rich commuters are just as reliant, if not more so, on PT than 

poor commuters. 

Third, using a random utility model (RUM) of commute mode choice, I find that 

significant increases in a poor HH’s income (approximately 50%) does not lead to a large 

increase in the probability that a poor commuter will switch from PT use to car use across all US 

urban types and rings within the urban types. This finding is inconsistent with Glaeser et al.’s 

claim that such income increase at a poor HH will lead to significant changes in commute mode 

choice (SI Text 2). Instead, I find that changes in distance to work and vehicle availability at the 

HH have a greater impact on probabilistic changes in mode choice than changes in HH income. 

In other words, almost all Americans, regardless of income, commute by car and changes in HH 

income, even significant ones, do little to change commute mode choice.  

Finally, my event study analysis finding that new PT stations have little to no impact on 

neighboring HH incomes further corroborates my suggestion that PT location within an urban 

area has a more limited role on the spatial distribution of HH incomes than the one claimed by 

Glaeser et al. (2008). Using data from newly constructed light rail and express bus lines in 

Denver, Minneapolis / St. Paul, Los Angeles, and Phoenix I find very little evidence that areas 

immediately surrounding new stations experienced changes in income different than those of 

control group areas. I find my diff-in-diff inference more plausible than Glaeser et al (2008)’s 

event study analysis inference given my attention to the common trends assumption and 
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deliberate construction of a control area set, two analytical steps that Glaeser et al (2008) do 

not take. 

  

2. First analysis: Observed 2017 HH income spatial ordering in US urban areas generally 
cannot be explained by differences in commuting technology speeds and technology 
choices  

 

 Before I proceed to showing that estimated 2017 PT and car travel speeds are 

theoretically inconsistent with many observed spatial patterns of 2017 incomes within US 

urban areas, I first confirm that using the monocentric city model to analyze urban area 

structure as of 2017 is not grossly inappropriate. I do this by 1) showing the most urban area 

jobs are concentrated in or near the CBD and 2) that population density declines in distance 

from urban cores. Both spatial trends are assumed in the MCCT model.  

In Fig. 4 I plot 2016 job density (at the zip code-level) against distance from the CBD 

across all metropolitan statistical areas (MSAs) with more than 1 million people and heavy rail 

PT (category 1) (Fig. 4A; see SI Table 1 for the MSAs that belong to category 1) and again across 

all MSAs with more than 1 million people and may or may not have light rail PT (category 2) 

(Fig. 4B; see SI Table 1 for the MSAs that belong to category 2).2  According to the fitted splines, 

jobs in MSA categories 1 and 2 urban areas are most heavily concentrated in or near the CBD. I 

also confirm the MCCT model assumption of a monotonically decreasing population density 

gradient is evident in the MSA category 1 and 2 collections of urban areas as of 2017 (Fig. 5). I 

cannot create these plots for MSAs with less than 1 million people and no rail PT (category 3) 

                                                            
2 Job density data for 2017 was not available at the time of manuscript preparation. 
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because the 2017 National Household Travel Survey (NHTS) (FHA 2017), the data source I use to 

categorize urban areas, does not identify which urban areas are in category 3. However, I have 

no reason to suspect that job and population density trends in category 3 urban areas are 

markedly different than those in categories 1 and 2. All in all, using the MCCT model to study 

the spatial pattern of HH incomes in America’s urban areas does not appear to be grossly 

inappropriate. 

To show estimated 2017 PT and car travel speeds are theoretically inconsistent with 

some observed spatial patterns of 2017 incomes within US urban areas, I first need to estimate 

inequality (1.4) parameters for the collection of urban areas in MSA categories 1, 2, and 3. Not 

only do I estimate TPT and TCar for each category of US urban area, unlike Glaeser et al. (2008), I 

also estimate a first and second-ring TPT and TCar for each urban area category. Fig. 5A suggests 

a first ring of 0 to 5 miles from the CBD and a second ring of 5 to 15 miles from the CBD in MSA 

category 1 urban areas. These choices are reasonable for two reasons. First, the average 

income gradient spline in MSA category 1 urban areas inflects around mile 5 (Fig. 5A). Second, 

the 2017 population density gradient spline intersects a density of 25,000 people per sq. mile at 

the 5-mile mark in MSA category 1 urban areas. Importantly, the 2017 NHTS indicates whether 

a respondent’s home neighborhood has a population density of at least 25,000 per square mile 

or not. Therefore, it is not unreasonable to assign MSA category 1 survey respondents from the 

neighborhoods of 25,000 people per sq. mile or more to the inner ring of MSA category 1. I end 

the MSA category 1 second ring at 14 miles from the CBD because that is when the population 

density spline crosses the 10,000 people per square mile threshold, the next density threshold 

in the 2017 NHTS. Accordingly, I assign a MSA category 1 survey respondent from a home 
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neighborhood with a population density in the 10,000 to 25,000 to MSA category 1’s second 

ring. The appropriateness of this spatial splicing of MSA category 1 is corroborated by the 

finding that the average 2017 HH income among NHTS respondents assigned to ring 1 was 

$102,441 (2017 USD) and income among NHTS respondents assigned to ring 2 was $92,553 

(2017 USD). In other words, the rings reflect a spatial hierarchy of average HH income, a feature 

of the MCCT model. In the case, MSA category 1 urban areas are consistent with a “rich” bid-

rent curve that is steeper than “the less rich” bid-rent curve.     

Further, Fig. 5B suggests a first ring of 0 to 10 miles from the CBD and a second ring of 

10 to 23 miles from the CBD in MSA category 2 urban areas. Again, these choices are largely 

based on the data available from the 2017 NHTS. The MSA category 2 population density 

gradient spline never exceeds 10,000 people per square mile. After 10,000 people per square 

mile, the next density thresholds used in the 2017 NHTS are 4,000 and 2,000 people per square 

mile. Therefore, the NHTS respondent that lives in a MSA category 2 urban area CT with a 

population density of 4,000 or more is most likely to live in this urban type’s first ring. 

Accordingly, I assign survey respondents from neighborhoods of 2000 to 4,000 people sq. mi.-1 

to a second ring of MSA category 2 urban areas.  I assume similarly sized 1st and 2nd rings are 

found in MSA category 3 urban areas. In both of these cases, smaller average HH incomes in the 

first rings versus the second rings among NHTS respondents ($79,943 versus $91,448 in MSA 

category 2 urban areas and $60,335 versus $70,885 in MSA category 3 urban areas) is 

suggestive of a “less rich” bid-rent curve being steeper than “the richer” bid-rent curve.    

 I use 2017 NHTS survey data and the following model to estimate 𝑊𝑊𝑃𝑃𝑇𝑇 𝑊𝑊𝐶𝐶𝐶𝐶𝑃𝑃, and F,  

𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅 = 𝛼𝛼 + 𝛽𝛽1𝟏𝟏[𝐶𝐶𝐶𝐶𝐶𝐶]𝑅𝑅 + 𝛽𝛽2𝟏𝟏[𝐵𝐵𝐵𝐵𝐵𝐵]𝑅𝑅 + 𝛽𝛽3𝟏𝟏[𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅]𝑅𝑅 + 𝛽𝛽4𝟏𝟏[𝑊𝑊𝐶𝐶𝑅𝑅𝑊𝑊]𝑅𝑅 + 𝛽𝛽5𝟏𝟏[𝐵𝐵𝑇𝑇𝑊𝑊𝑇𝑇]𝑅𝑅  
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+𝛾𝛾1𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 + (𝛾𝛾2𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 × 𝟏𝟏[𝐶𝐶𝐶𝐶𝐶𝐶]𝑅𝑅) + (𝛾𝛾3𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 × 𝟏𝟏[𝐵𝐵𝐵𝐵𝐵𝐵]𝑅𝑅) 

+(𝛾𝛾4𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 × 𝟏𝟏[𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅]𝑅𝑅) + (𝛾𝛾5𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 × 𝟏𝟏[𝑊𝑊𝐶𝐶𝑅𝑅𝑊𝑊]𝑅𝑅)  

+(𝛾𝛾6𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 × 𝟏𝟏[𝐵𝐵𝑇𝑇𝑊𝑊𝑇𝑇]𝑅𝑅) + 𝐅𝐅𝐄𝐄𝑅𝑅 + 𝜖𝜖𝑅𝑅     𝑇𝑇 ∈ 𝑗𝑗     (2.1) 

Unlike Glaeser et al. (2008), who estimated (2.1) across all US commuter survey data, I use data 

on commuters’ neighborhood population density and urban area of residence to estimate (2.1) 

over nine sets of commuters (indexed by j): 1) commuters assigned to the first ring in MSA 

category 1 urban areas (MSA = 1, First) and in a similar fashion, commuters from 2) MSA = 1, 

Second; 3) MSA = 1, All respondents; 4) MSA = 2, First; 5) MSA = 2, Second; 6) MSA = 2, All 

respondents; 7) MSA = 3, First; 8) MSA = 3, Second; and 9) MSA = 3, All respondents.3 Estimates 

of (2.1) over the commuter sets MSA = 1, All respondents; MSA = 2, All respondents; and MSA = 

3, All respondents provide alternative estimates of TPT, TCar, and F for those readers who do not 

find my allocation of survey respondents into rings convincing. 

In model (2.1), Timei indicates NHTS survey respondent i’s typical door-to-door 

commute time to work in minutes (i.e., the variable coded TIMETOWK in the survey), 𝟏𝟏[ ]𝑅𝑅 

indicates i’s typical commute mode choice (‘Other’ is the omitted category), Disti measures 

road network distance, in miles, between respondent i's home and work (i.e., the variable 

coded DISTTOWK17 in the survey), and FEi fixes respondent i’s urban location (e.g., Chicago 

CBSA versus LA CBSA).4 

                                                            
3 Technically, Glaeser et al. estimate model (2.1) for each mode one at a time. Further, Glaeser et al. do not fix i’s 
urban location.  
4 When i is found in MSA category equals 1 or 2 𝐅𝐅𝐄𝐄𝑅𝑅indicates i’s home core-based statistical area (CBSA). When 
MSA category equals 3 𝐅𝐅𝐄𝐄𝑅𝑅fixes i’s home combination of US census division, MSA status, and presence of a subway 
system when population greater than 1 million (variable CDIVMSAR in the 2017 NHTS).  
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The sum of estimated 𝛾𝛾�1𝑗𝑗 + 𝛾𝛾�2𝑗𝑗 is the estimate of TCar,j (minutes per mile commuting by 

car for group j) and the sum of estimated (𝛾𝛾�1 + 𝛾𝛾�3)𝐵𝐵𝐵𝐵𝐵𝐵𝑊𝑊𝑗𝑗 + (𝛾𝛾�1 + 𝛾𝛾�4)𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅𝑊𝑊𝑗𝑗  is the estimate of 

TPT,j (minutes per mile commuting by PT for group j). BusWj and RailWj are the person-weighted 

share of PT users that rely on bus and rail, respectively, for commuting in the jth version of (2.1). 

Further, the estimated terms 𝛼𝛼�1𝑗𝑗 + �̂�𝛽1𝑗𝑗 and �𝛼𝛼�1𝑗𝑗 + �̂�𝛽2𝑗𝑗�𝐵𝐵𝐵𝐵𝐵𝐵𝑊𝑊𝑗𝑗 + �𝛼𝛼�1𝑗𝑗 + �̂�𝛽3𝑗𝑗�𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅𝑊𝑊𝑗𝑗  give the 

expected wait and egress time (in minutes) associated with car and PT use, respectively, for 

group j. For car users, wait and egress time includes the time needed to go from the parked car 

to work, and for PT users, it includes the time used to access the PT system and then access 

work once the PT system is left.5 The wait and egress time for PT commuting relative to wait 

and egress time for car commuting for each group j – the parameter F in the inequalities (1.5)-

(1.7) – is given by �𝛼𝛼�1𝑗𝑗 + �̂�𝛽2𝑗𝑗�𝐵𝐵𝐵𝐵𝐵𝐵𝑊𝑊𝑗𝑗 + �𝛼𝛼�1𝑗𝑗 + �̂�𝛽3𝑗𝑗�𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅𝑊𝑊𝑗𝑗  less  𝛼𝛼�1𝑗𝑗 + �̂�𝛽1𝑗𝑗. 

 As explained above, Glaeser et al. (2008)’s theoretical and empirical conclusions 

regarding the connections between the spatial allocation of PT and income within an urban 

area are also contingent on assigning TPT,j to poor commuters and TCar,j to rich commuters. They 

justify these assignments with the back of the envelope incentive compatibility analysis. 

However, because the 2017 NHTS includes each commuter’s household income I can also 

directly estimate the differences in commute speeds and wait and egress time between poor 

and rich commuters. Therefore, unlike Glaeser et al. (2008), I also estimate the following model 

for each j, 

                                                            
5 The wait and egress time for PT does NOT include the time spent transferring between PT vehicles. In the 2017 
NHTS commuters who use PT are asked how much time they spend transferring among PT modes: “How many 
minutes each day do you usually spend transferring during your commute TO work (e.g. bus to bus, train to train, 
bus to train)?” 
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     𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅 = 𝛼𝛼 + 𝛽𝛽1𝟏𝟏[𝐴𝐴𝑃𝑃𝑃𝑃𝐶𝐶]𝑅𝑅 + 𝛽𝛽2𝟏𝟏[𝑅𝑅𝑇𝑇𝑅𝑅ℎ]𝑅𝑅 + 𝛾𝛾1𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 + (𝛾𝛾2𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 × 𝟏𝟏[𝐴𝐴𝑃𝑃𝑃𝑃𝐶𝐶]𝑅𝑅)  

+(𝛾𝛾3𝐷𝐷𝑇𝑇𝐵𝐵𝑡𝑡𝑅𝑅 × 𝟏𝟏[𝑅𝑅𝑇𝑇𝑅𝑅ℎ]𝑅𝑅) + 𝐅𝐅𝐄𝐄𝑅𝑅 + 𝜖𝜖𝑅𝑅     𝑇𝑇 ∈ 𝑗𝑗     (2.2) 

where 𝟏𝟏[ ]𝑅𝑅 indicates i’s household income status. I assign a commuter from group j to the 

poor HH category if their household income is 138% or less of the 2017 federal poverty line 

(FPL) (I use this poverty threshold because members of households at 138% of the federal 

poverty line or lower are eligible for Medicaid). On the other hand, I assign a commuter from 

group j to the rich HH category if their household income is 400% or more of the 2017 FPL. 

Accordingly, the sum of 𝛾𝛾�1𝑗𝑗 + 𝛾𝛾�2𝑗𝑗 is the estimate of TPoor,j, the sum of 𝛾𝛾�1𝑗𝑗 + 𝛾𝛾�3𝑗𝑗 is the estimate 

of TRich,j, and the estimate 𝛾𝛾�1𝑗𝑗 is the estimate of TMiddle Class,j. Further, 𝛼𝛼�𝑗𝑗 + �̂�𝛽1𝑗𝑗, 𝛼𝛼�𝑗𝑗 + �̂�𝛽2𝑗𝑗 , and 𝛼𝛼�𝑗𝑗 

are the estimated wait and egress of the typical poor, rich, and middle-class commuter from set 

j. If the poor of j overwhelmingly rely on PT for commuting and the rich of j overwhelmingly rely 

on car commuting then I should find that TPoor,j ≈ TPT,j and TRich,j ≈ TCar,j. 

 Finally, an empirical investigation of the MCCT model also requires estimates of 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

and 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ for each collection of urban areas. I set 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ for the collection of urban 

areas in MSA categories 1 and 2 equal to the lowest and highest points, respectively, on that 

category’s median HH income spline (within the first two urban rings) (Fig. 6). I assume 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

and 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ numbers for MSA category 3 urban areas are equal to MSA category 2’s numbers.  

 

2a. Estimated commute technology speeds and commute technology choices generally do not 
generate monocentric city model bid-rent curves that are consistent with observed household 
income sorting across US urban areas 

 
Estimates of model (2.1)’s parameters TCar, TPT, and F for the three US urban types and 

first and second rings in each urban area category are given in Table 1 (SI Text 3). Compared to 
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the 3 minutes per mile national average Glaeser et al. (2008) found as of 2001, PT commute 

speeds in 2017 were faster on average in MSA categories 1 and 2 and slower on average in MSA 

category 3 urban areas. Further, compared to the 1.6 minutes per mile national average 

Glaeser et al. (2008) found as of 2001, car commuting speeds in 2017 were slower on average 

in MSA category 1 urban areas but much faster than average in the other two US urban area 

categories. Finally, compared to the 2001 national level estimate of 15 minutes, 2017 PT wait 

and egress time relative to car-based wait and egress were always lower no matter the urban 

type, ring category combination considered. 

When I use MSA-wide estimates or ring-specific estimates of TCar and TPT and assume 

the typical poor commuter uses PT and the typical rich commuter uses a car (a la Glaeser et al. 

(2008)) the modeled MSA category 1 bid-rent curves are not consistent with the observation of 

a richer inner ring and a poorer second ring in these urban areas (Table 2). Only when poor 

second ring commuters are assumed to use cars and rich inner ring commuters are assumed to 

use PT do I find estimated MSA category 1 bid-rent curves consistent with the observed ring 

pattern. Conversely, estimated MSA category 2 and 3 urban area commute technology speeds 

and the assumption that the typical poor commuter uses PT and the typical rich commuter uses 

a car produces MCCT model bid-rent curves consistent with observed 2017 the ring patterns. 

Notice my preliminary finding that estimated MCCT model bid-rent curves are 

consistent with the ring patterns observed across the various US urban area types as of 2017 

relies on me assigning PT use to the rich and car use to the poor in MSA category 1 urban areas 

and vice-versa in MSA category 2 and 3 urban areas. However, based on two analyses, I find 

that such commute technology assignments are generally not supported by empirical data, with 
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MSA category 1 assignments being the exception. First, after I used model (2.2) to estimate 

TPoor,j and TRich,j for each j (Table 3), I compared 𝑊𝑊�𝑃𝑃𝑇𝑇,𝑗𝑗 and 𝑊𝑊�𝐶𝐶𝐶𝐶𝑃𝑃,𝑗𝑗 to  𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗 and 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅ℎ,𝑗𝑗. In MSA 

category 2 and 3 urban areas I find that commute technology assignments that generate MCCT 

model bid-rent curves consistent with observed HH income patterns are not supported by 

comparisons of 𝑊𝑊�𝑃𝑃𝑇𝑇,𝑗𝑗 and 𝑊𝑊�𝐶𝐶𝐶𝐶𝑃𝑃,𝑗𝑗 to  𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗 and 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅ℎ,𝑗𝑗. To see this look at panels B and C of Fig. 

7. As these panels make plain, there is little congruence between 𝑊𝑊�𝑃𝑃𝑇𝑇,𝑗𝑗 and 𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗 in MSA 

category 2 and 3 urban areas when using ring-specific or entire urban area estimates of T. 

However, 𝑊𝑊�𝑃𝑃𝑇𝑇,𝑗𝑗 and 𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗 need to be equivalent in these MSA categories if estimated MCCT 

model bid-rent curves are to be consistent with observed patterns. On the other hand, the 

congruence between 𝑊𝑊�𝐶𝐶𝐶𝐶𝑃𝑃,𝑗𝑗 and 𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗 and 𝑊𝑊�𝐶𝐶𝐶𝐶𝑃𝑃,𝑗𝑗 and 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅ℎ,𝑗𝑗 in MSA category 2 and 3 urban 

areas is striking. In other words, poor and rich commuters both overwhelmingly commute by 

car in these US urban areas. 

 In contrast, the estimates of 𝑊𝑊�𝑃𝑃𝑇𝑇,𝑗𝑗 and 𝑊𝑊�𝐶𝐶𝐶𝐶𝑃𝑃,𝑗𝑗 and  𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗 and 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅ℎ,𝑗𝑗 in the first two rings 

of MSA category 1 urban areas support the commute technology assignments that generate 

MCCT model bid-rent curve consistent with observed HH income patterns (Panel A of Fig. 7): 

𝑊𝑊�𝐶𝐶𝐶𝐶𝑃𝑃,𝑗𝑗 falls within 𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗 and 𝑊𝑊�𝑃𝑃𝑇𝑇,𝑗𝑗 falls within 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅ℎ,𝑗𝑗 (only the urban-wide estimates of 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅ℎ 

and 𝑊𝑊�𝑃𝑃𝑇𝑇 do not line up). In other words, only in the first two rings of MSA category 1 urban 

areas do I find all of the empirical conditions consistent with MCCT model equilibrium, albeit in 

a manner inconsistent with Glaeser et al. (2008)’s overall thesis where the poor rely on PT and 

the rich on cars.    

The irrelevance of PT to almost all commuters, poor and rich alike, in MSA 2 and 3 urban 

areas is corroborated by the observed distribution of commute mode choices in the 2017 NHTS 
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(Table 4). Overall, approximately 10 percent of commuters from poor HHs in these urban areas 

use PT to commute to work. Even inner ring poor commuters in these urban areas, the group in 

these areas most likely to use PT according to Glaeser et al. (2008)’s thesis, only use PT at a rate 

slightly greater than 10%. Commuters from middle-income and rich HHs are even less likely to 

use PT to commute to work in these urban areas. 

Conversely, in MSA category 1 urban areas a rich commuter from ring 1 is more likely to 

use PT than a poor commuter from ring 2 (Table 4). Further, in the first ring of MSA category 1 

urban areas PT share is greater than 50% for both poor and rich commuters. Further, consistent 

with estimated model results that support a MCCT model equilibrium in MSA category 1 urban 

areas, most poor commuters from the second ring in MSA category 1 urban areas use a car 

rather than PT (interestingly, the ring 2 poor use PT less than the ring 2 rich). Therefore, the 

2017 NHTS data suggests that PT is a highly relevant commute mode in America’s largest urban 

areas with rail and that HH location decisions in these urban areas are likely affected by PT 

access or at least that commute mode choice is a function of residential location. However, 

there is little evidence to suggest that poor HHs are overwhelmingly attracted to and rich HHs 

are largely repelled by PT-dense areas. If anything, it appears that rich commuters are just as 

attracted to PT, if not more, than poor commuters in the US’ largest urban communities 

serviced by rail (see SI Text 4 and SI Table 2 for an analysis of 2017 commuting patterns using 

American Community Survey (ACS) data).  

 

2b. Summary of the first analysis 
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 To summarize my first re-analysis of Glaeser et al.’s (2008) work, I find that estimated 

commutes technology speeds in the US’ largest cities with heavy rail PT (category 1) as of 2017 

produce theoretical poor and rich HH bid-rent curves that are generally consistent with the 

observed income patterns and commute mode choices in these cities as of 2017. However, for 

this result to hold richer commuters that live near the CBD must be strong users of PT and 

poorer commuters that live further from the CBD need to be willing and able to use cars for 

commuting. My analysis of NHTS data suggests these commute choice patterns existed in the 

US’ largest cities with rail heavy PT as of 2017.  However, the empirical evidence that poor 

commuters in the first rings of 1) large US cities without heavy rail (category 2) and 2) smaller 

US cities (category 3) overwhelmingly chose car commute technology means that the “typical” 

US city cannot be explained by a MCCT model equilibrium where the poor commuters near the 

CBD take the slower PT and richer commuters further out rely on cars. 

 All in all, while PT networks may explain the pattern of HH income rings in some of the 

US’ most iconic cities (New York, Chicago, etc.), I believe it is a stretch to suggest that income 

patterns within America’s more typical cities can be explained by PT networks. Empirical 

evidence suggests that the use of PT commuting technology in these cities is too insignificant to 

make much of a difference in the broader income distribution patterns. 

 
3. Second analysis: A commute mode choice model does not suggest that poorer commuters 
significantly increase their car commuting rates after a significant increase in HH income, at 
least in the short run 
 

Glaeser et al. (2008)’s thesis is that mode choice is a predominately a function of 

income. In most US cities, they argue, poor commuters have financial incentive to choose PT 

and that once a poor HH becomes significantly wealthier it will find it rational to switch to car 
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commuting.6 I assess this assertion by parametrizing a random utility model (RUM) of modal 

choice with the 2017 NHTS respondents. (RUMs have often been used to estimate commute 

mode choice e.g., McFadden (1977), Bhatta and Larsen (2011); Cartenì et al. (2016).) I find that 

poor commuters do not flock to car commuting given a significant increase in income. Instead, 

other changes in HH characteristics do a better job of explaining mode choice changes among 

poorer commuters. 

I assume that a commuter chooses transportation mode l over all other modes, indexed 

by j = 1,…,J, if that choice maximizes their utility from commuting, 

𝑉𝑉𝑙𝑙 + 𝜀𝜀𝑙𝑙 > 𝑉𝑉𝑗𝑗 + 𝜀𝜀𝑗𝑗  ∀𝑗𝑗 ≠ 𝑅𝑅        (3.1) 

where 𝑈𝑈𝑙𝑙 = 𝑉𝑉𝑙𝑙 + 𝜀𝜀𝑙𝑙  is the commuter’s utility from choosing l, 𝑉𝑉𝑙𝑙  is a function of observable 

covariates, and 𝜀𝜀𝑙𝑙  is a function of unobservable covariates, only known to the commuter. 

Therefore, the probability that the commuter will choose mode l over all other modes is, 

Pr�𝜀𝜀1 < 𝑉𝑉𝑙𝑙 − 𝑉𝑉1 + 𝜀𝜀𝑙𝑙 , 𝜀𝜀2 < 𝑉𝑉𝑙𝑙 − 𝑉𝑉2 + 𝜀𝜀𝑙𝑙 , … , 𝜀𝜀𝐽𝐽 < 𝑉𝑉𝑙𝑙 − 𝑉𝑉𝐽𝐽 + 𝜀𝜀𝑙𝑙�   (3.2) 

The known part of (3.1) for commuter i is given by, 

 𝑉𝑉𝑅𝑅𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝐱𝐱𝑅𝑅𝑗𝑗 + 𝛿𝛿𝑗𝑗𝛚𝛚𝑅𝑅𝑗𝑗 + 𝛾𝛾𝐳𝐳𝑅𝑅 + 𝜃𝜃𝐭𝐭𝑗𝑗      (3.3) 

The first term of (3.3) is the model intercept for mode choice j. The vectors xij and ωij both 

contain mode-commuter specific covariates such as commuter i’s time to work using mode j 

(Tij) and commuter i’s cost of using j (Cij). If a mode-commuter variable’s effect on V differs 

across j then it is part of vector ωij; otherwise it is part of vector xij. For example, if a minute 

spent commuting on a bus effects i’s utility differently than a minute spent commuting in a 

                                                            
6 “These [estimates for F, C, WRich, and WPoor] also suggest that a[n]…increase in income from $10 to $20 per hour 
should be associated with a massive shift from public transportation to driving.” (p. 13). 
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private car then Tij is part of 𝛚𝛚𝑅𝑅𝑗𝑗. The vector 𝐳𝐳𝑅𝑅 contains commuter-level variables such as 

income, gender, age, etc. Finally, the vector 𝐭𝐭𝑗𝑗 contains mode-level variables. 

 The only mode-commuter covariate in the 2017 NHTS is Tij. However, Tij is only observed 

for the mode that commuter i chooses. Further, there are no mode-level variables in the 2017 

NHTS. Therefore, my default specification of equation (4.3) only uses commuter-level variables. 

𝑉𝑉𝑅𝑅𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝛾𝛾1𝐼𝐼𝑅𝑅 + 𝛾𝛾2𝐷𝐷𝑅𝑅 + 𝛾𝛾3𝐴𝐴𝑅𝑅 + 𝛾𝛾4𝑀𝑀𝑅𝑅 + 𝛾𝛾5𝑊𝑊𝑅𝑅 + 𝛾𝛾6𝑉𝑉𝑅𝑅    (3.4) 

The variable I am most interested in, commuter i’s annual HH income, is given by Ii. The 

impact that HH income has on mode choice is not consistent across the mode choice literature. 

For example, Shen et al. (2016) found that income was positively associated with commuting by 

car in four Shanghai suburban neighborhoods (also see Bhat and Sardesai 2006). On other 

hand, a 1998 travel survey in the Netherlands found that household income had little effect on 

commute mode choice (Limtanakool et al. 2006). 

The variable Di measures i’s distance to their place of work. Di is positively correlated 

with Tij (see Table 6), one of the mode-commuter variables I would prefer to use in lieu of Di in 

model (4.4). Presumably Di is also positively correlated with Cij, another mode-commuter 

variable I would prefer to use in model (4.4). Given that past research has found that a small 

increase in PT’s C and T decreases a commuter’s utility more than a small increase in car’s C and 

T (Frank et al. 2008, Limtanakool et al. 2006), I expect increases in Di will reduce and increase 

the probability of PT use and car use, respectively, all else equal. 

I include the gender of the commuter (Mi = 1 if i is a man and equals 0 otherwise) in 

model (3.4) because past researchers have found men are more likely to use a car for 

commuting than women, all else equal (Limtanakool et al. 2006). Speculated reasons for this 
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divergence include inequality in monetary rewards from working, the spatial distribution of jobs 

and household task allocation, and women’s weaker bargaining power in household scarce 

allocation decisions (Limtanakool et al. 2006, Scheiner and Holz-Rau 2012).    

The number of vehicles per driver in the household (Vi) controls for i’s ability to access a 

car for commuting. Of course, car commuting is impossible if the household does not own one. 

Further, Bhat and Sardesai (2006) and Limtanakool et al. (2006) found individuals in households 

with a high number of vehicles per licensed adult are more likely to choose car commuting 

given there is less competition for cars. Other variables in model (3.4) include i’s age (Ai) and 

race (Wi = 1 if i is a white person and equals 0 otherwise). I include age because I assume a 

commuter’s age may affect their willingness or ability to choose each mode j (Eluru et al. 2012).  

Alternatively, I can use multiple imputation (MI) methods to impute the missing Tij 

values when j ≠ l. In the modified RUM that used imputed Tij I would drop Di given the high level 

of correlation between the two variables. 

𝑉𝑉𝑅𝑅𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝛿𝛿𝑗𝑗𝑊𝑊𝑅𝑅𝑗𝑗 + 𝛾𝛾2𝐼𝐼𝑅𝑅 + 𝛾𝛾3𝐴𝐴𝑅𝑅 + 𝛾𝛾4𝑀𝑀𝑅𝑅 + 𝛾𝛾5𝑊𝑊𝑅𝑅 + 𝛾𝛾6𝑉𝑉𝑅𝑅     (3.5) 

where Tij is mode-commuter variable that effects V differently depending on j (i.e., the variable 

is part of vector ωij not xij). 

 

3a. Imputing commute time 

Multiple imputation (MI) can generate estimates of missing travel times that are valid 

for population-level inference if travel times are missing at random (MAR). These data are MAR 

if the probability of their “missing”-ness does not depend on unobserved data but rather can be 

explained by data recorded in the 2017 NHTS. Note that the pattern of missing times is 
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completely explained by commuters’ mode choices. Therefore, given my RUM analysis assumes 

that 2017 NHTS covariates can largely explain mode choice, I am assuming, by definition, that 

the pattern of missing commutes times can also be largely explained by 2017 NHTS covariates. 

Given there is no test for MAR, an assumption of MAR will have to do.      

For a continuous variable with a restricted range, such as travel time, nearest matching 

(Raghunathan et al. 2001) or ‘predictive mean matching’ (PMM) is a recommended MI method. 

To implement PMM I first divided the 2017 NHTS into separate MSA category – mode choice 

datasets. For example, the “MSA category 1 – car” dataset includes every MSA category 1 

commuter, their responses to survey questions, and if they commuted by car to work in 2017, 

their travel time. For those that did not commute by car their travel time in the “MSA category 

1 – car” dataset is unobserved. Second, I than ran the PMM method over each dataset ten 

times to obtain ten complete sets of T for each i where Til is always equal to i’s observed travel 

time and Tij for all j ≠ l is imputed in each set. PMM imputes Tij when it is unobserved (j ≠ l for i) 

by setting it equal to the travel time for one of its nearest 5 commuter “neighbors” that has an 

observed travel time for mode j (SI Text 5). In each MI iteration the neighbor that ‘donates’ 

their Tij is randomly chosen (SI Text 3). 

 

3b. Estimating the RUM models  

I assume the multinomial logit functional form where the dependent variable is equal to 

1 if i typically used mode j = l and equal to 0 for all other j when estimating (3.4) and (3.5).7 I 

                                                            
7 Alternatively, a nested logit can be used to estimate these models when the assumption of the independence of 
irrelevant alternatives (IIA) is presumed not to hold between all mode choices. The IIA property may not hold in 
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generate estimates of (3.4) and (3.5) for each income class (poor or rich) – ring (1, 2, or entire 

urban area) – MSA category (1, 2, or 3) combination (see SI Text 3 for instructions on using R to 

replicate all multinomial logit estimates of models (3.4) and (3.5)). Further, I use the person 

weights assigned to each commuter when estimating (3.4) and (3.5). Because each commuter 

has 10 sets of Tij there are 10 estimates of (3.5) for each income class – ring – MSA category. 

To make interpretation of model estimates easier to understand I use standardized 

continuous variables when estimating (3.4) and (3.5). The variables are standardized according 

to the range of observations in each geographic subset of the data. For example, data in the 

poor commuter – ring 1 – MSA category 1 estimates of (3.4) and (3.5) are standardized 

according to the means and standard deviations in the poor commuter – ring 1 – MSA category 

1 dataset (see Table 5 for the mean and standard deviation of each independent variable in 

models (3.4) and (3.5) for poor and rich commuters across each geographic subset).  

An estimated function (3.4) can be used to calculate the probability that the mean poor 

or rich commuter from a certain type of urban area, living in its first or second ring or the area 

generally, chose mode j in 2017, 

𝐴𝐴�𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 = 𝐺𝐺𝛼𝛼𝑗𝑗+𝛾𝛾�1𝐷𝐷
�+𝛾𝛾�2𝐼𝐼�+𝛾𝛾�3𝐴𝐴�+𝛾𝛾�4𝑀𝑀���+𝛾𝛾�5𝑊𝑊���+𝛾𝛾�6𝑉𝑉�+𝛾𝛾�7𝑆𝑆𝑃𝑃���� +𝛾𝛾�8𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀���������+𝛾𝛾9𝐹𝐹𝑃𝑃����

∑ 𝐺𝐺𝛼𝛼𝑗𝑗+𝛾𝛾�1𝐷𝐷
�+𝛾𝛾�2𝐼𝐼�+𝛾𝛾�3𝐴𝐴�+𝛾𝛾�4𝑀𝑀���+𝛾𝛾�5𝑊𝑊���+𝛾𝛾�6𝑉𝑉�+𝛾𝛾�7𝑆𝑆𝑃𝑃���� +𝛾𝛾�8𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀���������+𝛾𝛾9𝐹𝐹𝑃𝑃���� 𝐽𝐽

𝑗𝑗=1

    (3.6) 

where the bar above each variable indicates the mean of the standardized variable and the 

subscript j,Inc,Geog,MSA indicates the mode choice j, income category, geography (a ring or the 

                                                            
commute mode choice models because several modes, including the bus and rail choices and the walk and bike 
choices, may be treated as substitutes by many commuters (Shen et al. 2016). In a nested logit estimate of (3.4) 
and (3.5) I would use “nests” of mode choices such that IIA holds within each nest of alternatives but not across 
nests (Train 2003, Shen et al. 2016). For example, I could treat ‘‘bus and rail transit” and ‘‘bike and walk” as two 
nests of alternatives. 
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urban area in general), and urban area type combination. Further, the estimated function (3.5) 

can be used to calculate the probability that the mean poor or rich commuter from a certain 

type of urban area, living in its first or second ring or the area generally, chose mode j in 2017 

when the independent variable Tij is used in lieu of Di, 

�̂�𝑝𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 = 𝐺𝐺𝛼𝛼𝑗𝑗+𝛿𝛿
�𝑗𝑗𝑃𝑃�𝑗𝑗+𝛾𝛾�2𝐼𝐼�+𝛾𝛾�3𝐴𝐴�+𝛾𝛾�4𝑀𝑀���+𝛾𝛾�5𝑊𝑊���+𝛾𝛾�6𝑉𝑉�+𝛾𝛾�7𝑆𝑆𝑃𝑃���� +𝛾𝛾�8𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀���������+𝛾𝛾9𝐹𝐹𝑃𝑃���� 

∑ 𝐺𝐺𝛼𝛼𝑗𝑗+𝛿𝛿
�𝑗𝑗𝑃𝑃�𝑗𝑗+𝛾𝛾�2𝐼𝐼�+𝛾𝛾�3𝐴𝐴�+𝛾𝛾�4𝑀𝑀���+𝛾𝛾�5𝑊𝑊���+𝛾𝛾�6𝑉𝑉�+𝛾𝛾�7𝑆𝑆𝑃𝑃���� +𝛾𝛾�8𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀���������+𝛾𝛾9𝐹𝐹𝑃𝑃���� 𝐽𝐽

𝑗𝑗=1

   (3.7) 

Given there are 10 estimates of model (3.5), due to 10 unique set of Tij across all i,j, 

�̂�𝑝𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 is calculated 10 times for each instance of j,Inc,Geog,MSA. 

  

3c. Simulating the impact of a small change in each covariate on mode choice probability   

Consistent with overall patterns I found in section 1 of this paper, the first rings of MSA 

category 1 urban areas were the only places in urban America where the car was not the 

dominate commute mode in 2017 (see Table 6 for 𝐴𝐴�𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 across all j,Inc,Geog,MSA 

combinations except j = other). Further, within these densest US urban areas the mean rich 

commuter was more likely to use rail PT than the average poor commuter, while the average 

poor commuter was more likely to use bus PT than the average rich commuter. Otherwise, 

throughout the rest of urban America, the mean rich commuter is 8 to 16 probability points 

more likely to use a car than the average poor commuter (see SI Text 3 for instructions on using 

R to find 𝐴𝐴�𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴) 

  Next, I simulated the ceteris paribus effects of 1 standard deviation (SD) changes in a 

mean commuter’s explanatory variables on their mode choice probabilities (or in the case of a 

dummy variable, a change in the variable’s binary status). Across all commuter types, an 
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increase in distance to work (D) and vehicle availability (V) is most likely to lead to a change in 

commute mode technology (Fig. 8 and SI Table 3). In general, representative commuters that 

suddenly had further to travel or gained greater access to a car and had bused, trained, walked, 

or biked to work became more inclined to use a car. The one exception to this rule could be 

found in MSA category 1 urban areas where an increase in distance to work encouraged greater 

rail PT use as well (see SI Text 3 for instructions for running the R script that generates 

simulated numbers).  

 Another striking result from the simulated changes in 𝐴𝐴�𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 are the differences 

in mode-switching elasticities across income classes and urban classification categories. First, 

the mean poor commuter’s mode choice probabilities, rather than the mean rich commuter’s 

probabilities, changed the most in response to exogenous changes in independent variables. 

Second, the mean first ring commuter’s mode choice probabilities, rather than the mean 

second ring commuter’s probabilities, changed the most in response to exogenous changes in 

independent variables. Third, the mean MSA category 1 commuter’s mode choice probabilities, 

rather than the mean MSA category 2 or 3 commuter’s probabilities, changed the most in 

response to exogenous changes in independent variables. I suspect the latter two patterns can 

be explained by 1) the greater density of PT, sidewalks, and bike lanes in the US’s most densely 

populated areas (Newman and Kenworthy 1989 and Kenworthy and Laube 1999, Frank and 

Pivo 1994, Glazier et al. 2014, Whalen et al. 2013, El-Assi et al. 2017, Schoner and Levinson 

2014) and 2) the greater costs of owning a car in the inner city relative to the suburbs (parking 

may be difficult or, if available, expensive and auto theft and vandalism are much more 

prevalent in the inner-city). Both of these dynamics make it easier for inner-city commuters to 
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avoid or abandon car commuting if circumstances change relative to commuters that live in less 

dense areas with lower levels of PT and infrastructure that encourages biking and walking.    

 Finally, contradicting Glaeser et al. (2008)’s claim that a substantial increase in a poor 

commuter’s income would lead to a sharp intake of car commuting, I find that a 1 SD change in 

the mean poor commuter’s HH income (approximately a 55% increase in annual HH income) 

has little effect on their expected mode choice probabilities. The greatest change in the 

probability of using a car after a 1 SD increase in HH income was 5 percentage points across all 

the various poor commuter – urban geography – urban type combinations. Of course, the 

relatively weak relationships between increases in HH income and switching to car use among 

poor commuters could be explained by the vehicle per driver variable (V) in (2.4). If relatively 

car-scarce poor HHs tend to use significant increases in income to buy cars then increases in 

income at a poor HH would make car commuting by the HH’s workers substantially more likely 

(recall that a 1 SD increase in V is associated with a 10 to 20 percent probability point increase 

in the mean poor commuter using a car to commute to work). 

To empirically test if a 1 SD in V is masking the effect of an increase in HH income on 

commute mode choice among the poor I re-estimate (2.4) and then re-simulate the impact of a 

1 SD change in each of the average commuter’s independent variables on their mode choice 

probabilities after dropping V from (2.4). Generally, the probability of a mean poor commuter 

switching to car commuting increases by an additional 5 percentage points after a 1 SD increase 

in their HH’s income compared to simulations when V is included (SI Text 6). In other words, 

even when a ~50% increase in HH income is the only channel to increasing car availability at a 

poor HH, the mean poor commuter’s shift car use only increases approximately 10 percentage 
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points; nowhere near as dramatic an increase as predicted by Glaeser et al. (2008). (Further, 

see SI Text 6 and SI Table 5 for a discussion on why the additional 5 percentage point increase 

in car use among poor commuters per 1 SD increase in HH income after V is dropped from 

model (2.4) is likely an overestimate due to omitted variable bias.)   

Replacing less informative distance to work with the more information-rich time to work 

by mode in the mode choice model made little difference in modeling results (Table 7, Fig. 9, SI 

Text 3, and SI Table 4). Commuters in the largest urban areas, commuters in the first ring of a 

city, and poorer commuters much more readily changed modes given an exogenous change in 

their conditions than commuters in smaller cities, commuters in the second ring of a city, and 

richer commuters. Further, I still find that a 1 SD increase in vehicle ownership at a poor HH is 

much consequential than a 1 SD increase in income at a poor HH when it comes to increasing 

car commuting among these HHs. Specifically, the mode choice model that includes travel time 

to work in lieu of distance to work indicates that a 1 SD increase in V has at least 3-times the 

effect on car choice probabilities than a 1 SD increase in HH income across all HH income – 

location – urban type combinations. 

Further, when I dropped V from (2.5) and then re-simulated changes in 

�̂�𝑝𝐶𝐶𝐶𝐶𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑅𝑅𝑅𝑅𝐼𝐼𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴, I once again find the probability of a mean poor commuter using a car for 

commuting increases by an additional 5 percentage points after a 1 SD increase in their HH’s 

income compared to model estimates and simulations where V is included in (2.5) (SI Table 4). 

Despite this boost, the ∆�̂�𝑝𝐶𝐶𝐶𝐶𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑅𝑅𝑅𝑅𝐼𝐼𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 associated with a 1 SD increase in V in the version of 

(2.5) that includes HH income is still larger than the ∆�̂�𝑝𝐶𝐶𝐶𝐶𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑅𝑅𝑅𝑅𝐼𝐼𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 associated with a 1 SD 

increase in HH income when an increase in income is the only channel to increasing car 
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availability at a HH. (And again, due to omitted variable bias in (2.5), the estimated 

∆�̂�𝑝𝐶𝐶𝐶𝐶𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 per 1 SD increase in HH income among poor commuters when V is dropped 

from (2.5) is likely an overestimate. See SI Text 6 and SI Table 5.)    

 

3c. Summary of the second analysis 

While poor commuters do increase their rate of car commuting as they get significantly 

richer (I simulate a 50% or so increase in the mean poor HH’s income). The change in 

probability is nowhere near as dramatic as suggested by Glaeser et al. (2008)’s incentive 

compatibility analysis. Other commuting-related variables, including changes in the availability 

of vehicles at the HH, changes in distance or time to work, and changes in age or gender are 

just as likely or even more likely to explain changes in poor commuter mode behavior. Overall, 

in the short run at least, commuter mode choice reactions to exogenous shocks appear to be 

small no matter their HH income. Given the evidence in section 2 that most commuters already 

rely on cars for commuting no matter their income, finding relatively small changes in commute 

mode choice with respect to any exogenous shock across the HH income spectrum is not 

surprising: there are relatively few American commuters that have not already switched to car 

use.    

The densest neighborhoods of the largest cities in the US (MSA category 1) are the only 

places in the US where my claim of little mode switching due to exogenous shock can be 

challenged. Further, poor commuters in these areas more readily switch commute modes in 

response to exogenous shocks than their richer neighbors, at least in the short run. However, 

poor commuters’ willingness to switch to PT use in these areas appears to largely be a function 
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of incidental access to PT, not a strong preference for PT or for locating to areas with dense PT 

networks. I base this last conclusion of two pieces of evidence. First, in the parts of urban 

America not located in the first rings of MSA category 1 urban areas, poor commuters rarely 

switch to PT use no matter the exogenous shock. Second, as I will show in the next section, I 

find little evidence to support the claim that poor HHs tend to cluster in neighborhoods with 

growing PT access.   

One note of caution about the mode choice elasticities I have estimated here. These are 

short-run responses by commuters to income, distance to work, time to work, and other 

shocks. In other words, the modeled and simulation results assume that HHs remain in their 

geographic area after experiencing a commute-affecting exogenous shock. In the long-run, 

commuters that experience permanent changes in income, distance to work, or other 

commuting related factors may relocate to maximize their HH’s utility. For example, after a job 

change causes distance to work to increase, a poor commuter may eventually move their HH 

closer to their job. Or, in the long-run, poorer HHs that become richer and lived in the first ring 

of their city may move to the suburbs, thereby becoming even more reliant on cars for 

commuting than indicated by the model results discussed above. Conversely, HHs that lost 

income could eventually move within a city to improve their access to bus routes. Relocation by 

HHs because of exogenous shock leads to commuting decisions beyond the scope of my 

analysis.   

 

4. Third analysis: There is little evidence that urban neighborhoods treated with new PT 
infrastructure in the mid-2000s disproportionally attracted poor households   
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In my simulations of mode choice responses to exogenous shocks I also found that poor 

workers in MSA category 2 and 3 urban areas were slightly more likely to use a bus rather than 

a car after their HH’s incomes fell, all else equal (see Figs. 8 and 9). Based on these results one 

could surmise that some poor commuters who have experienced a drop in their HH incomes 

drop would eventually move closer to PT networks for better access to a commute mode they 

increasingly find more appealing.  

A trend of poorer HHs concentrating closer to PT networks over time is important to 

Glaeser et al (2008).’s overall hypothesis. And, in fact, Glaeser et al. (2008) claim to have found 

evidence of this dynamic. Using data from 16 US urban areas, Glaeser et al. (2008) argue their 

finding that CTs “treated” with new transit lines between 1980 and 2000 subsequently became 

more impoverished (the poverty rate increased) relative to CTs that did not gain access to new 

transit lines during this same time period (see section 5 of Glaeser et al. (2008)) is evidence that 

PT infrastructure caused nearby areas to become poorer. 

However, there are reasons to doubt their causal claim. Their claim that new transit 

caused surrounding neighborhoods to become poorer would be defensible if they showed that 

1) their choice of control areas allowed for causal identification; 2) the average difference in HH 

incomes between CTs ‘treated’ with new PT infrastructure and ‘control’ CTs was constant over 

time prior to treatment (i.e., the common trend assumption); and 3) the average difference in 

HH incomes between the ‘treated’ and ‘control’ areas were different post-treatment. While 

they find the post-treatment effect (albeit, of very small magnitude), Glaeser et al. (2008) 

present no evidence that their event-study used a control set consistent with causal 

identification and that it satisfied the common trend assumption. 
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While their event-study results may have incidentally satisfied the common trends 

assumption (they do not provide the data and code resources to verify this), their control set 

choices make claims of causal identification unlikely. Their control set includes all CTs within 

their 16 study urban areas not within one mile of rail transit established between 1980 and 

2000. Therefore, their control set includes areas of the cityscape that could have plausibly 

experienced PT expansion between 1980 and 2000 and areas that could not have plausibly 

experienced PT expansion in the event-study time window (e.g., geological features or zoning 

restrictions made such expansion impossible). However, the use of a control group that 

includes both types of areas violates the basis of identification in event-study designs. An event-

study’s causal identification relies on important unobserved variables – omitted factors that can 

help explain the expansion of PT in my case – as either being time-invariant group attributes 

(e.g., both treated and control areas are in major transportation corridors and could have 

plausibly been the site of expanded PT) or time-varying factors that are group invariant (e.g., 

both treated and control areas experience zoning changes over time that made PT expansion in 

both sets of areas increasingly more likely) (Wing et al. 2018). Indiscriminately selecting all 

untreated CTs for the control set surely violates both necessary conditions for claiming causality 

in an event-study. 

Beyond using a control set that makes claims of causality unsupportable, a second 

reason to question Glaeser et al. (2008)’s event-study conclusion is illuminated by recent work 

showing event-study results are likely biased if the analysis includes treated observations that 

subsequently become controls (e.g., Abraham and Sun 2018, Goodman-Bacon 2019). For 

example, suppose 10 areas in an urban area were treated with PT in 2000, 20 in 2005, and 10 in 
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2010. Further, suppose I ran an event-study where each of these areas is assigned the 

treatment indicator variable at the time of treatment and beyond. Under this framework, the 

set of control observations changes over time (e.g., the areas treated in 2005 are compared to 

the union of the original control set and the areas treated in 2000 while the areas treated in 

2000 are only compared to the original control set). According to Abraham and Sun (2018) and 

Goodman-Bacon (2019) this event-study’s results would likely be biased. In the Glaeser et al. 

(2008) event-study (it appears) the roster of the control set changes over time and yet they do 

not attempt to correct for the potentially bias results this approach can create (I say appears 

because they do not provide the data and code resources to verify that the control set changes 

over time in their event-study).  

 

4a. My strategy for determining if new PT stations make the areas near to the station poorer or 
richer relative to other neighborhoods in the same city 
  

In the event-studies I use to measure the impact of new PT infrastructure on average 

incomes in nearby areas I 1) meet the necessary conditions for claiming causality by either 

using a set of control areas entirely comprised of plausible candidates for transit expansion or a 

set of control areas entirely comprised of non-plausible candidates for transit expansion during 

the event study window; 2) consider and evaluate pre-trends; and 3) use a roster of control 

areas that does not change over time. In addition, I use income data defined at a finer spatial 

grain than that used in the Glaeser et al. (2008) study. Finally, I verify that my findings are 

robust to several measures of neighborhood income and not just a pattern found in one 

measure of income a la Glaeser et al. (2008). 
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In my event-studies “treated” areas are the one-half mile radii areas (0.79 square miles) 

encircling light-rail or rapid-bus stations that opened in year 𝑡𝑡 < 𝑡𝑡 < 𝑡𝑡̅ in urban area u be where 

𝑡𝑡 and 𝑡𝑡̅ indicate the beginning and end, respectively, of the event-study window. I use a half-

mile radius treatment area because US transit agencies generally assume PT station influence 

extends in all directions for a half-mile.8 When necessary, I truncated treated areas to avoid 

overlapping.9 

The comparative control areas in each event-study analysis I run are either comprised of 

1) nonoverlapping half-mile radius circles centered on randomly chosen points along street car 

or trolley routes that existed in u prior to 1960 but were not treated by light-rail or rapid-bus 

stations between 𝑡𝑡 and  𝑡𝑡̅, 2) the 0.5 mile-width buffer immediately surrounding treated 

areas10, or 3) nonoverlapping half-mile radius circles centered on light-rail or rapid-bus stations 

that are slated to open in u after 𝑡𝑡̅. I ensure that treated areas and control areas never overlap. 

The first set of controls – areas on a city’s historical streetcar or trolley network that 

subsequently did not host a light-rail or rapid-bus station between 𝑡𝑡 and  𝑡𝑡̅ – are causal 

identification-appropriate treated area matches for two reasons. First, treated areas in my 

event-study cities of LA, Denver, and Minneapolis align with these cities’ historical networks as 

well, suggesting that the control areas along the historic network could have been viable 

                                                            
8 See the Federal Transportation Administration’s Reporting Instructions for the Section 5309 Capital Investment 
Grant Program (https://gisdata.mn.gov/dataset/us-mn-state-metc-trans-station-areas-half-mile). Hurst and West 
(2014) use a half-mile radius impact zone in their analysis of new light rail stations’ effect on land use change in 
Minneapolis.   
9 Treated areas are found by 1) creating a Thiessen polygon map where polygons are centered on the stations in 
the focal PT network, 2) generating half-mile radius circles around each station in the focal network, and 3) clipping 
the Thiessen polygons with the circle polygons.   
10 These buffer areas are clipped such that it includes no areas “treated” by existing or future light-rail or rapid-bus 
transit stations. Unlike the nonoverlapping half-mile radius circles centered on new PT stations, PT stations that 
will open after  𝑡𝑡̅, and points along historical street car or trolley routes, these control buffer areas can overlap, 
however. 

https://gisdata.mn.gov/dataset/us-mn-state-metc-trans-station-areas-half-mile
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candidates for stations established between 𝑡𝑡 and  𝑡𝑡̅ (common time-invariant group attributes). 

Second, Brooks and Lutz (2019) have shown that areas around early 20th-centruy LA streetcar 

stations have experienced similar population and building density and zoning trends over the 

last 100 years despite the heterogeneity in exogenous shocks these areas have experienced 

since then. Assuming these trends hold in other cities, we can surmise that unmeasured 

variable trends in u’s treated areas are very similar to those in control areas along the historical 

network up to treatment year 𝑡𝑡 < 𝜏𝜏 < 𝑡𝑡̅. Therefore, an assumption of common socioeconomic 

trends between treated and historical-transit control areas prior to treatment is not 

unreasonable. 

The second set of controls I use – the 0.5 mile-width buffer immediately surrounding 

treated areas – are areas that could have plausibly been treated between �𝑡𝑡, 𝑡𝑡̅� as well but were 

not and likely experienced the same general density, zoning development, and socioeconomic 

trends as the treated areas prior to treatment year 𝜏𝜏. For example, distance to urban amenities 

and jobs will be similar across a treated area and its control. Further, socioeconomic and 

economic attributes that tend to spatially cluster in cities – such as race, income, and housing 

stock age – will be very similar across both a treated area and its control buffer.    

   Common across the treated and control sets in the final set of controls I use – one-half 

mile radii circles around stations slated to open after 𝑡𝑡̅ – is the regional planner’s judgment that 

both sets of areas are suitable for PT network expansion. Therefore, a common trend 

assumption in the unobserved transit location choice-related variables between treated areas 

and these control areas is reasonable. However, because treatment in control areas before 𝑡𝑡̅ 

was not plausible given a post-𝑡𝑡̅ construction date, I should be able to identify differences in 
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income patterns across the two sets of areas due to treatment. Crucially, I assume that people 

and businesses have not yet incorporated the opening of future stations into their decision 

making as of time 𝑡𝑡̅. This is essentially the assumption of a “no anticipation condition” that I 

discuss below.  

 The model I used to identify the average effect of a PT station’s establishment on its 

surrounding area income trends relative to average income trends in control areas is given by,  

𝑀𝑀𝑢𝑢𝑅𝑅𝑢𝑢 = 𝛼𝛼 + 𝜃𝜃𝑢𝑢𝑅𝑅𝟏𝟏[𝑊𝑊𝐶𝐶𝑇𝑇𝐶𝐶𝑡𝑡]𝑢𝑢𝑅𝑅 + ∑ 𝛽𝛽𝑢𝑢𝑢𝑢𝐷𝐷𝑢𝑢𝑅𝑅𝑢𝑢𝜏𝜏�̅�𝑢
𝑢𝑢=𝑢𝑢   

+∑ 𝛿𝛿𝑢𝑢𝑢𝑢𝐷𝐷𝑢𝑢𝑅𝑅𝑢𝑢𝜏𝜏�̅�𝑢
𝑢𝑢=𝑢𝑢 𝟏𝟏[𝑊𝑊𝐶𝐶𝑇𝑇𝐶𝐶𝑡𝑡]𝑅𝑅 + 𝜇𝜇𝑢𝑢𝑅𝑅 + 𝜖𝜖𝑢𝑢𝑅𝑅𝑢𝑢     (4.1) 

where 𝑀𝑀𝑢𝑢𝑅𝑅𝑢𝑢 is the average median household income, per capita income, or poverty rate in 

area c in urban area u in year t (2017 USD), 𝐷𝐷𝑢𝑢𝑅𝑅𝑢𝑢𝜏𝜏  equals 1 if area c in u is 𝑡𝑡 − 𝜏𝜏 years before (if 

𝑡𝑡 − 𝜏𝜏 is negative) or years after (if 𝑡𝑡 − 𝜏𝜏 is positive) treatment year 𝜏𝜏 and equals 0 otherwise, 

𝟏𝟏[𝑊𝑊𝐶𝐶𝑇𝑇𝐶𝐶𝑡𝑡]𝑢𝑢𝑅𝑅 is equal to 1 if c is a treated area and equal to 0 if not, and 𝜇𝜇𝑢𝑢𝑅𝑅 is area c’s fixed 

effect. In each estimate of (4.1) I only include areas that were treated in the same year (given 

by 𝜏𝜏), thereby avoiding the bias that can be created when treated areas eventually become 

control areas in an event-study. Therefore, 𝐷𝐷𝑢𝑢𝑅𝑅𝑢𝑢𝜏𝜏  is the same for all c in u across all t. 

I estimated each unique event-study analysis twice, once using Muct created with US 

Census’ block-group (BG) data and again with CT-level income data. To calculate a BG and CT-

level Muct for each unique {u,c,t}-tuple I first converted u’s BG or CT-level median HH income, 

per capita income, or poverty rate polygon map from year t (Manson et al. 2019) into a 10 x 10-

meter grid cell map (each cell has an income level equal to its parent polygon). I then found the 

average median HH income, per capita income, or individual poverty rate across the grid cells 

contained in area c’s polygon. 
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BGs are nested within CTs and in dense urban cores a BG can be as small as a few city 

blocks. Therefore, BG-level data likely leads to more accurate measures of income in treated 

and control areas than CT-level data.11 The cost of using BG-level data to generate M instead of 

CT-level data is a loss in temporal breadth in the analyses. When using BT-level income data I 

had to set 𝑡𝑡 = 1990 because nation-wide digital maps of BGs only start with the 1990 US 

Census. Conversely, nation-wide maps of CTs begin with the 1980 US Census, thereby allowing 

me to set 𝑡𝑡 = 1980 when I used CT-level data. This also means my pre-trend analyses largely 

relied on CT-level data given it provides multiple pre-treatment estimates of (4.1) while the BG-

level data does not.          

Until the mid-2000s the US Census Bureau only measured income at the BG and CT 

levels during a decadal census. However, starting in 2005 the Bureau estimated income at these 

spatial levels every year with the ACS. However, because the ACS sample sizes are relatively 

small, the Bureau recommends using several years of ACS data to measure income in a BG or CT 

at any point in time. Therefore, the index t in model (4.1) post-2005 does not include every year 

but rather 2010, based on data collected between 2006-2010, and 2017, based on data 

collected between 2013-2017 (i.e., 𝑡𝑡̅ = 2017). 

I estimated (4.1) for the urban area (u) – treatment year (𝜏𝜏) combinations of LA-2003; 

LA-2005; Phoenix-2008; Denver-1994; Denver-2006, and Minneapolis-2004. All treatments 

involve the opening of new light rail stations save LA-2005, which is centered on the opening of 

                                                            
11 For example, it is not uncommon for a treated or control area to be contained within one CT and for the CT area 
outside the treated or control polygon to be substantial. In this case, the income measure for the treated or 
control polygon could be heavily influenced by income measures from outside the polygon. However, this same 
polygon is likely to better follow the contours of a set of nested BGs, meaning the BG-level income measure for the 
polygon will be less influenced by income data from outside the polygon than the CT-level income measure for the 
polygon. 
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rapid bus line stations. For the LA (MSA category 1), Denver (MSA category 2), and Minneapolis 

(MSA category 2) events I create a control set of nonoverlapping polygons centered on random 

points along historic streetcar and trolley lines (Severen 2018, CCDPWPP 2019, Metropolitan 

Council 2007). Unfortunately, I cannot find a map of historic Phoenix (MSA category 2) streetcar 

lines that ended service in 1948. In addition, I found maps of planned post-2017 light rail 

station expansions in Phoenix, Denver, and Minneapolis. In Phoenix post-2017 stations were 

slated to open in 2019, 2021, 2023, and 2030. In Denver post-2017 stations were slated to open 

in 2019 and 2020. In Minneapolis post-2017 stations were slated to open in 2023 (see SI Text 3 

for instructions on replicating my results). 

 

4b. Interpreting event-study model estimates 

Before estimating (4.1) with ordinary least squares I needed to drop the dummy variable 

𝟏𝟏[𝑊𝑊𝐶𝐶𝑇𝑇𝐶𝐶𝑡𝑡]𝑅𝑅 because it equals the sum of the treated areas’ fixed effects (Clay et al. (2016) also 

drop their version of 𝟏𝟏[𝑊𝑊𝐶𝐶𝑇𝑇𝐶𝐶𝑡𝑡]𝑅𝑅 before estimating their version of model (4.1)). I also dropped 

the 𝐷𝐷𝑅𝑅𝑢𝑢𝜏𝜏  associated with the period immediately prior to treatment, indicated by π, to avoid 

perfect multicollinearity. In all event-study analyses I conduct save one, year 𝜋𝜋 is 2000 (i.e., 

2000 < 𝜏𝜏 < 2010). In these cases, �̂�𝛿1980 and �̂�𝛿1990 measure the relative difference in average 

income or poverty rate between treated and control areas τ – 1980 and τ – 1990 years, 

respectively, before station openings, and �̂�𝛿2010 and �̂�𝛿2017 measure the relative difference in 

average income or poverty rate between treated and control areas 2010 – τ and 2017 – τ years, 

respectively, after station openings (�̂�𝛿1980’s are not produced when I use BG-level income data). 

Equivalent �̂�𝛿1980 and �̂�𝛿1990 would suggest a common pre-trend between treated and control 
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areas. Further, �̂�𝛿2010 and �̂�𝛿2017 that are significantly different from �̂�𝛿1980 and �̂�𝛿1990, both in 

magnitude and statistically, would suggest that the opening of light rail stations caused a 

change in the treated acres’ average income dynamics relative to contemporaneous income 

dynamics in the control areas.  

Denver-1994 is the one aforementioned exception to 2000 < 𝜏𝜏 < 2010. In this case I 

drop the 𝐷𝐷𝑅𝑅𝑢𝑢𝜏𝜏  associated with 2000, the period immediately after treatment. Despite this 

change, �̂�𝛿2000 is still set equal to 0, �̂�𝛿1980 and �̂�𝛿1990 still map out pre-trends, and �̂�𝛿2010 and �̂�𝛿2017 

still indicate average (relative) treatment effects. 

  

4c. The no anticipation condition 

Well-identified event-studies also satisfy the ‘no anticipation condition’ (Abraham and 

Liyang 2018). For example, assume u’s political leaders announced in 1998 that a new light rail 

station would open in 2005 at point x in u. Suppose u residents and developers immediately 

began to make housing location and home building decisions based on this intention. In this 

case I could not credibly claim that �̂�𝛿2000 was a pre-treatment measure as it would identify 

some of the anticipated impact of the station opening. However, there are several reasons to 

suspect that the ‘no anticipation condition’ is not violated in my event-studies. First, the gaps 

between the year 𝜋𝜋 and 𝜏𝜏 in my analyses are 3, 4, 5, 6, and 8 years. Therefore, if anticipatory 

behavior begins a year, two, or three before station opening it would not be soon enough to 

affect the last pre-treatment coefficient. For example, Hurst and West (2014) find faster than 

expected land use change in the Twin Cities Blue Light Rail Line corridor (Minneapolis-2004) 

only began to occur in 2001, a year after line construction began in 2000 (i.e., �̂�𝛿2000 in this case 
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is not affected by anticipatory behavior). Further, Cao and Porter-Nelson (2016) find that 

building permits did not increase around a new light rail line, the Twin Cities Green line (not 

studied here), which opened in 2014, until a full funding agreement from the federal 

government was issued in 2011 (a three-year gap). 

Second, there can be a multi-year lag between the decision to build new housing and 

the execution of that the decision in US urban areas, especially in heavily regulated inner-city 

cores that host most light rail stations (Bahadir and Mykhaylova 2014, Gyourko et al. 2008). For 

example, while developers may immediately have begun planning for a 2005 station opening 

when announced in 1998, their choices may not have affected HH relocation decisions until 

new residential units were built in 2001 or later. In other words, if any new station in my 

analysis was announced in the late 1990s, any changes on the landscape that HHs could react to 

were not likely until after 2000. 

Third, the locations of some recently built light rail stations were not finalized by 

regulators until after 2000. For example, the Metropolitan Council, a regional transit authority 

in the Twin Cities area, did not approve Minneapolis-2004 station area plans until 2001 despite 

a 2004 opening date (Newberg 2004). Phoenix voters approved an increase in the city’s sales 

tax to fund its 2008 light rail line in 2000; serious consideration of station locations only began 

after this vote (Arizona Rail Passenger Association 2007). The path of Denver’s E line, which 

opened in 2006 (Denver-2006), was only approved by voters in late 1999 (Schneider 2005). 

Denver-based consumer and business reaction to this news was likely several years in the 

making, well beyond the 2000 census.  
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I also assume the no anticipation condition in the control areas centered on post-2017 

light rail stations for similar reasons. I assume that people’s housing location decisions and 

housing and amenity supply and location across u as of 2017 had not yet incorporated station 

openings that, at the earliest, were not to open for another 2 years. This is not to say that 

planning in city and development firm offices given this information had not yet begun by 2017 

in Denver, Minneapolis, and Phoenix. Rather, I assume this planning have not yet shaped the 

actual decisions of the cities’ residents nor affected the realized supply and location of housing 

and amenities in these cities as of 2017.      

 

4d. Event-study results 

Overall, estimates of (4.1) across the various urban area, treatment year combinations 

suggest that areas immediately surrounding light rail or rapid bus line stations that opened at 

the beginning of the 21st century did not become magnets for poor HHs relative to the control 

areas in the same urban area. 

 

4d.1. Results with historic streetcar and trolley controls   

In LA, areas treated with new PT stations in 2003 (Table 8) and 2005 (Table 9) 

experienced significant increases in average median HH income relative to the randomly 

selected control polygons centered on LA’s historic streetcar network. Further, given there was 

no statistical difference in CT-level average median HH income between the two sets of 

polygons before treatment (i.e., similar pre-trends), there is some evidence to suggest that 

treatment caused this increase in nearby median HH income. Conversely, treatment seems to 
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have had little impact on the relative differences in per capita income and poverty rates across 

the two sets of areas. While treated LA areas experienced an increase in per capita income 

relative to the control areas along the historic PT network, the treatment effect was not 

statistically different from zero. Finally, the poverty rate gap between treated and control areas 

either fell (improved in the treated areas) after treatment (𝜏𝜏 = 2003) or did not change (𝜏𝜏 = 

2005). 

In Minneapolis, areas treated with new PT stations in 2004 (Table 10) experienced no 

statistically significant change in average median HH income or per capita income relative to 

the randomly selected control polygons along its historic trolley network. Generally, average 

differences in CT-level income between these two sets of areas before treatment were not 

statistically different from 0 either. However, these is some evidence to suggest that treatment 

reduced poverty rates relative to rates in the historic trolley network control areas. Before 

treatment, average poverty rates were relatively higher in the treated areas relative to the 

control areas. By 2017, the statistical difference in average poverty rates between the two 

types of areas was 0. However, given that the trends in relative average poverty rates at the CT-

level were not common prior to treatment, poverty was relatively increasing in treated areas 

prior to treatment, I cannot make an argument for causality in the poverty rate case.      

In the Denver-1994 case study income and poverty rates did not differ relative to trends 

in the controls centered on the city’s historic streetcar network (Table 11). However, in 

Denver’s 2006 event-study analysis with the historic PT network controls I find the one instance 

where PT treatment unequivocally led to lower incomes in the affected neighborhoods relative 

to trends in the control neighborhoods (Table 12). Whether measured with median HH income 
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or per capita income, areas around stations that opened in 2006 experienced a large and 

statistically significant decrease in average income post-treatment compared to the control 

areas (before treatment, there was generally no statistical difference in CT-level average 

incomes between the two sets of areas). Poverty rates relatively increased in these treated 

areas as well post-treatment.   

 

4d.2. Results with post-2017 controls   

In Denver’s 1994 event-study analysis with future station area controls (Table 11), 

treatment in 1994 created significant increases in average incomes and reductions in poverty 

rates relative to trends in control areas. The effect of treatment on poverty rates is particularly 

striking. On average, before treatment, the CT-level poverty rates in treated areas was 

approximately 10 percentage points higher than in control areas. Twenty-three years after 

treatment, the average poverty rate in treated areas was approximately 10 percentage points 

lower than in the control areas. 

In Denver’s other event-study analysis with future station area controls (Table 12), 

treatment has no consistent impact on treated area average incomes and poverty rates relative 

to the control averages. Similarly, in Minneapolis’ event-study analysis with post-2017 controls 

(Table 10), treatment has no consistent impact on relative average income levels and poverty 

rates. 

In Phoenix’s event-study analysis with post-2017 station area controls (Table 13), I find 

that treatment in 2008 generated a statistically significant increase in surrounding area average 

median HH and per capita income as of 2017 relative to the areas that will receive treatment in 
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the future. Before treatment the CT-level relative difference in incomes was either statistically 0 

or slightly lower in treated areas (e.g., weak evidence of common pre-trends). Treatment in this 

case either had no effect on relative average poverty rates or slightly decreased poverty in 

affected neighborhoods relative to the control. Before treatment there was no statistical 

difference in average CT-level poverty rates across the two sets of polygons.   

 

5d.3. Results with treatment area buffer controls   

In my analyses with treated area buffer controls I test whether areas right next to a 

station trend differently than areas ever-so-slightly further away. In every one of the event-

study analyses I found the differences in average income and poverty rate across the treated 

and control areas prior to treatment were statistically equivalent to 0. This is not surprising 

given that a treated area and its buffer likely cover the same neighborhoods. Further, other the 

Phoenix-2008 case (Table 13), I find no evidence that treated areas experienced income or 

poverty trends different than their buffer areas post-treatment. In Phoenix there is some 

evidence to suggest the 2008 opening of light rail stations caused areas right next to the 

stations to become richer throughout the 2010s than the areas ever-so-slightly further away.        

 

5.e. Summarizing third analysis results 

Unlike Glaser et al. (2008)’s conclusion that CTs treated with new transit lines 

subsequently became more impoverished, I find little evidence to suggest that areas treated 

with new PT stations in the 2000s subsequently became more impoverished. I have already 
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suggested that Glaeser et al. (2008)’s poor identification strategy may be one reason for these 

contradictory results. 

Of course, I could be wrong and the differences in results could be explained by other 

phenomena. First, the event-study windows do not align. A trend of poor HHs concentrating 

around PT infrastructure could have largely ended by 2000, meaning Glaeser et al. (2008)’s 

analysis would show such a trend and mine would not. Second, Glaser et al. (2008) includes 

areas with new transit lines, not just a new station, in their treated set. It is possible that if I had 

done the same then I would have generated results more in line with theirs. Third, the cities I 

use in my analysis are not the same as the 16 that Glaser et al. (2008) use in their event-study 

analysis. Fourth, my analysis focuses on new light rail and rapid-bus stations. My results might 

be more in line with Glaser et al. (2008) if I had included conventional bus line expansions in my 

analysis. For example, Pathak et al. (2017) find that areas in the Atlanta metropolitan area 

treated with conventional bus PT became slightly poorer relative to untreated control areas.   

 

6. Discussion and conclusions  

 I have found Glaeser et al. (2008)’s claim that “[p]ublic transportation usage appears to 

strongly predict poverty and to explain a substantial amount of the connection between 

proximity and poverty” to be unsubstantiated by 2017 data. 

My estimates of commute speeds by technology and by HH income class suggest that 

observed patterns of HH income ring sorting in most US urban areas cannot be explained by a 

monocentric city model solely animated by commute technology. Instead, the empirical 

evidence as of 2017 suggests that the spatial ordering of similar HH income clumps in US cities 
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is largely explained by phenomenon other than poor commuters relying on PT. Of course, my 

results do not rule out the possibility that poorer HHs tend to cluster near PT networks for 

reasons other than easy access to a preferred commute technology. For example, non-working 

members of a poor HH may find PT their preferred method for accessing urban amenities and 

educational opportunities. Or the poor commuter may prefer to use PT for non-work travel and 

therefore want to locate their HH near PT networks.  

However, my event-study analyses of recently opened light rail and rapid-bus stations 

do not support this alternative hypothesis. Unlike Glaeser et al. (2008), I do not find that recent 

additions to urban PT networks cause their surrounding neighborhoods to become poorer over 

time relative to neighborhoods not treated by additional PT infrastructure. At least in the cities 

that I investigated and the PT technologies I considered, poorer HHs do not move to new PT 

infrastructure more than middle class and rich HHs.    

Finally, Glaeser et al. (2008)’s conclusion that a substantial increase in income at poor 

HHs should be associated with a massive shift from public transportation to driving is not borne 

out when a mode choice model is estimated with 2017 data. In general, American commuters 

are not likely to switch commuting modes, at least in the short run, no matter the exogenous 

shock. Most commute by car and will continue to commute by car. In the densest 

neighborhoods of its largest cities, the one type of place in the US where some mode switching 

among poor commuters does occur, the impetus for mode choice change cannot simply be 

attributed to changes in HH income.  

  I finished this analysis just as the virus that causes COVID-19 swept across the world. 

Many are predicting that HH location decisions and commuting behavior across US urban areas 
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will permanently change due to the pandemic. In other words, some the trends and patterns 

that I discuss in this paper may not apply for the next few years, if ever again. I identify three of 

the COVID-19-related shocks that could change HH location decision-making and commuter 

behavior across US urban areas for years to come. 

White-collar telecommuting is projected to become more widespread from here on out 

(Guyot and Sawhill 2020) for several reasons. First, many US workers and their employers are 

discovering that this mode protects worker health, due to social distancing measures, while 

maintaining and even increasing worker productivity and satisfaction (Dutcher 2012, Bloom et 

al. 2015, Davis and Green 2020). Second, the emergence of several positive externalities 

associated with more telecommuting, including reductions in health-damaging criteria pollutant 

and climate change-causing greenhouse gases emissions (Cadotte 2020, Cicala et al. 2020) and 

less congestion (Tomer and Fishbane 2020), has led to some nascent policy proposals to 

mandate or incentivize higher rates of telecommuting even when the crisis has subsided 

(Nguyen 2020). The rising popularity of the telecommuting mode is likely to reduce commuting 

by car and PT in the US for many years and reduce the role of workplace location in HH location 

decision-making.   

 Second, the pandemic is likely to make PT commuting even less popular in the future 

above and beyond the displacement caused by the rise in telecommuting. First, upcoming 

pandemic-generated fiscal crises are likely to lead national and regional-level governments to 

reduce investments in PT. Second, beliefs that PT systems are strong vectors of disease spread 

will dissuade some commuters from using these system for many years to come (Hawkins 
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2020).12 These severe reductions in PT investment and PT revenue is likely to lead to even more 

service reductions and accelerated infrastructure depreciation (Walker 2020), steadily making 

PT a less preferred commute option for more and more people around the world. 

 Third, the drop in PT during the COVID 19 pandemic has coincided with an increase in 

rates of bicycling and walking (Schwedhelm et al. 2020). Some cities, such as London and 

Seattle, are responding by opening more bike and walking lanes at the expense of road capacity 

(Department for Transport and The Rt Hon Grant Shapps MP 2020, Jackson 2020). It is 

uncertain how much of this short-term trend in greater cycling and more cycling infrastructure 

is fulfilling recreational versus commuting demand during lockdown orders. However, past 

research has shown that as more people experience biking in cities and as cities expand bike 

lanes, commuting by bicycle increases (Hirsch et al. 2017, Nelson and Allen 1997). Therefore, 

lingering trepidation over using PT systems post-crisis and more experience with safe biking 

during the immediate crisis could lead to a permanent increase in commuting by bicycle into 

the future.  

 In conclusion, I have argued that 1) poor commuters are not as reliant on PT and 2) the 

spatial allocation of PT systems in US urban areas does less to explain the spatial pattern of HH 

incomes within these urban areas as Glaser et al. (2008) would have us believe. I suspect that 

the COVID-19 pandemic will make PT even less relevant to American commuters in the future, 

                                                            
12 Whether PT systems are effective spreaders of COVID-19 is debatable. Harris (2020) claims that the New York 
City subway system did much to spread the disease in the city. However, Almagro and Orane-Hutchinson (2020) 
“…show that after controlling for occupations, length of commute and the use of public transport are not 
significant [determinants of the fraction of tests showing a positive result across NYC zip codes]” (p. 2). (Also see 
Furth 2020). Further, cities like Seoul, Taipei, and Singapore have avoided large spread of the disease despite the 
continued operation of their subway systems (Park 2020).   
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thereby further reducing any links between PT and HH income spatial patterns that exist in US 

urban areas.  
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Figures 
 
A 

 

B 

 
Figure 1. Census tract-level median household income splines for the (A) Los Angeles and (B) 
Chicago core based statistical areas. Each plot point indicates a census tract’s median HH 
income circa 2017 (ACS 2017) and its Euclidean distance (in miles) to the CBSA’s central 
business district (CBD) (Holian and Kahn 2015). The splines are natural splines with 8 degrees of 
freedom (the dotted lines give the 95% confidence level bounds). 2017 census tract location 
data comes from the US Census’ 2017 Gazetteer Files. Run the R script Figure1 to replicate 
these figures. 
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A 

 

B 

 
 
Figure 2. Sorting of households in theoretical urban areas. (A) In this urban area the rich HHs’ 
bid-rent curve is steeper (𝜀𝜀𝑌𝑌𝑊𝑊 > 𝜀𝜀𝑌𝑌𝐴𝐴), and if the urban area is to have both poor and rich HHs, 
then the rich settle in the inner ring and the poor in the outer ring. (The pattern in Chicago 
would seem to suggest four rings: richer HHs, then poorer HHs, then more well-to-do HHs, and 
finally poorer HHs again. My application of the theory is limited to the first two rings. However, 
the theory could be extended to include additional bud-rent curves for other classes HHs.) (B) In 
this urban area the poor HHs bid-rent curve is steeper (𝜀𝜀𝑌𝑌𝑊𝑊 < 𝜀𝜀𝑌𝑌𝐴𝐴), and if the urban area has 
both poor and rich HHs, then the poor settle in the inner ring and the rich in the outer ring. 
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Figure 3. For HHs in the monocentric city’s first ring to be poor (i.e., 𝜀𝜀𝑌𝑌𝐴𝐴 +
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
� 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝜀𝜀𝑌𝑌𝑊𝑊� > 𝜀𝜀𝑌𝑌𝑊𝑊), the combination of 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 and 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ/𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has to 

be in space A. For HHs in the monocentric city’s first ring to be rich (i.e., 𝜀𝜀𝑌𝑌𝐴𝐴 +
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
� 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝜀𝜀𝑌𝑌𝑊𝑊� < 𝜀𝜀𝑌𝑌𝑊𝑊), the combination of 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 and 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ/𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has to 

be in space B. In the graph 𝜀𝜀𝑌𝑌𝑊𝑊 = 0.75 and 𝜀𝜀𝑌𝑌𝐴𝐴 = 0.25 (solid line); 𝜀𝜀𝑌𝑌𝑊𝑊 = 0.75 and 𝜀𝜀𝑌𝑌𝐴𝐴 = 0.25 
(dotted line); and  𝜀𝜀𝑌𝑌𝑊𝑊 = 1 and 𝜀𝜀𝑌𝑌𝐴𝐴 = 0.25 (dashed line). See appendix for details. 
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Figure 4: Employment density gradients at the zip code level as a function of zip code distance 
from the CBD for all urban areas in MSA categories 1 (A) and 2 (B). Estimated and 5th and 95th 
percentile splines are “natural” splines with 8 degrees of freedom. Run the R scripts Figure4A 
and Figure4B to replicate these figures. 
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Figure 5: Population density gradients at the CT level as a function of CT distance from the 
CBD for all urban areas in MSA categories 1 (A) and 2 (B). Estimated and 5th and 95th percentile 
splines are “natural” splines with 8 degrees of freedom. The dotted lines indicate where a 
spline intersects a population density threshold used in the 2017 NHTS. Therefore, the first 5 
mile interval and the 5 to 15-mile interval from the CBD form the first and second urban rings, 
respectively, in the collection of MSA category 1 urban areas. Further, the first 10 mile interval 
and the 10 to 23-mile interval from the CBD form the first and second urban rings, respectively, 
in the collection of MSA category 2 urban areas. Run the R scripts Figure5A and Figure5B to 
replicate these figures. 
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Figure 6: HH income gradients at the CT level as a function of CT distance from the CBD for all 
urban areas in MSA categories 1 (A) and 2 (B). Estimated and 5th and 95th percentile splines are 
“natural” splines with 8 degrees of freedom. The dotted lines indicate where a spline intersects 
a population density threshold used in the 2017 NHTS. In addition, I set YPoor and YRich for the 
collection of urban areas in each MSA category equal to the lowest and highest points, 
respectively, of that category’s median HH income spline (within the first two urban rings). YPoor 
= 61,681 (mile 4) and YRich = 78,968 (mile 0) in MSA 1 category urban areas. Further, YPoor = 
39,689 (mile 0) and YRich = 76,339 (mile 20.04) in MSA category 2 urban areas. Run the R scripts 
Figure6A and Figure6B to replicate these figures. 
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Figure 7. Comparison of 𝑻𝑻�𝑷𝑷𝑻𝑻,𝒋𝒋 and 𝑻𝑻�𝑪𝑪𝑪𝑪𝑪𝑪,𝒋𝒋 (estimates of model 2.1) to  𝑻𝑻�𝑷𝑷𝑷𝑷𝑷𝑷𝑪𝑪,𝒋𝒋 and 𝑻𝑻�𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹,𝒋𝒋 
(estimates of model 2.2) across each MSA category of urban areas and their first two rings. In 
Table 2 I indicate the transportation technology assignments that make MCCT model bid-rent 
curves consistent with observed HH income patterns. Here I determine if estimated 𝑊𝑊�𝑃𝑃𝑇𝑇,𝑗𝑗, 
𝑊𝑊�𝐶𝐶𝐶𝐶𝑃𝑃,𝑗𝑗, 𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗, and 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅ℎ,𝑗𝑗 (dots with 5th and 95th confidence interval represented by the line 
through the dots) allow for the matches that align theory with observed data. Matches that 
need to be equal to align theory with observed data are indicated for each MSA category (All) 
and for each set of rings in each MSA (Rings 1 and 2). The ring analysis of MSA category 1 is the 
only case where 𝑊𝑊�𝑃𝑃𝑇𝑇,𝑗𝑗, 𝑊𝑊�𝐶𝐶𝐶𝐶𝑃𝑃,𝑗𝑗, 𝑊𝑊�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑗𝑗, and 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅ℎ,𝑗𝑗 align theory with observed data. An ‘All’ 
comparison in MSA category 1 urban areas and all other ‘All’ and ‘Ring’ comparisons suggest 
that the representative poor and rich commuter are not using the commute technology that 
aligns theory with observed data. 
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Figure 8. Simulated impacts of 1 standard deviation changes explanatory variables on mode 
choice in mode choice model (2.4). Each sub-graph gives a mean commuter’s predicted 
percentage point change in car, bus, or rail probability use (y-axis) given a ceteris paribus 1 SD 
or status change in each of their independent variable values, indicated along the x-axis. All 
simulations are based on regression results that are weighted with 2017 NHTS person-level 
weights. I do not show the change in 𝐴𝐴�𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 for j = ‘other,’ ‘walk,’, and ‘bike.’  
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Figure 9. Simulated impacts of 1 standard deviation changes explanatory variables on mode 
choice in mode choice model (2.5). Each sub-graph gives a mean commuter’s predicted 
percentage point change in car, bus, or rail probability use (y-axis) given a ceteris paribus 1 SD 
or status change in each of their independent variable values, indicated along the x-axis. There 
are 10 predicted percentage point changes for each j,Inc,Geog,MSA because there are 10 sets 
of commute times by mode (Tij) for each commuter. In many cases 10 distinct points for each 
j,Inc,Geog,MSA cannot be see because the points are on top of each other. All simulations are 
based on regression results that are weighted with 2017 NHTS person-level weights. I do not 
show the change in �̂�𝑝𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴 for j = ‘other,’ ‘walk,’, and ‘bike.’  
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Tables  
 
Table 1. Estimates of model (2.1) 
MSA 
category 

Pop. den. of home 
CT  Ring TCar TPT F Mean miles 

to work 
Mean minutes 
to work 

1 

All  1.659 
(0.082) 

2.569 
(0.169) 

14.04 
(1.484) 7.72 27.24 

> 25,000  1st 2.267 
(0.495) 

2.862 
(0.103) 

7.712 
(2.908) 6.04 35.10 

10,000 – 24,999 2nd 1.683 
(0.140) 

3.112 
(0.348) 

7.081 
(3.241) 7.34 30.07 

2 

All   1.270 
(0.046) 

2.064 
(0.447) 

14.60 
(2.680) 8.20 22.14 

> 4,000 1st 1.297 
(0.059) 

2.373 
(0.677) 

13.87 
(3.363) 7.63 23.31 

2,000 – 4,000 2nd 1.322 
(0.087) 

2.239 
(0.385) 

7.262 
(4.730) 8.42 21.57 

3 

All   1.079 
(0.067) 

3.358 
(0.509) 

8.479 
(2.921) 7.08 18.80 

> 4,000 1st 1.244 
(0.170) 

4.543 
(0.978) 

6.642 
(4.155) 5.49 19.18 

2,000 – 4,000 2nd 1.239 
(0.094) 

5.296 
(1.163) 

-4.176 
(3.918) 6.29 18.21 

Notes: F is PT wait and egress time relative to car wait and egress time or PT wait and egress time less car wait and 
egress time. All regression results are weighted with 2017 NHTS person-level weights. Weights reflect the 
probability of a household or person being selected for survey participation and survey nonresponse. The weights 
can be used to produce population estimates at the national, census-region, or MSA category levels. See 
https://nhts.ornl.gov/assets/2017%20NHTS%20Weighting%20Report.pdf for more details. In this case results are 
given at the MSA category level: 1) MSA of 1 million or more, with heavy rail PT; 2) MSA of 1 million or more, but 
no heavy rail; 3) MSA less than 1 million; and 4) not in a MSA. I only include commuters that live within 20 miles of 
their work. MSA category 1 and 2 standard errors are clustered at CBSA level. MSA category 3 standard errors are 
clustered at CDIVMSAR level.  ‘Car’ includes the technologies Car, SUV, Van, Pickup truck, Golf cart / Segway, and 
Motorcycle / Moped, and RV (motor home, ATV, snowmobile). ‘Bus’ includes the technologies School bus, Public 
or Commuter bus, Paratransit / Dial-a-ride, Private / Charter / Tour / Shuttle bus, and City-to-city bus (Greyhound, 
Megabus). ‘Rail’ includes Amtrak / Commuter rail and Subway / Elevated / Light rail / Street car. ‘Other’ includes 
Taxi / Limo (including Uber / Lyft), Rental car (Including Zipcar / Car2Go), Airplane, Boat / Ferry / Water taxi, and 
Something Else. If a commuter uses more than one mode they were asked to select their primary mode. 
 
 
  

https://nhts.ornl.gov/assets/2017%20NHTS%20Weighting%20Report.pdf
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Table 2. Comparing observed urban areas to theoretical urban areas 
MSA 
category 

Observed 
ring pattern 
order 

LHS of inequality 
(1.4) should be… 

Transportation speeds (see 
Table 1)  

LHS of inequality 
(1.4) is… 

1 Rich, Poor < 0.75 

All, TPT = TPoor, TCar = TRich 1.78 
All, TCar = TPoor, TPT = TRich -2.12* 
Rings, TPT = TPoor, TCar = TRich 1.42 
Rings, TCar = TPoor, TPT = TRich -2.77* 

2 Poor, Rich > 0.75 All, TPT = TPoor, TCar = TRich 0.96* 
Rings, TPT = TPoor, TCar = TRich 1.06* 

3 Poor, Rich > 0.75 All, TPT = TPoor, TCar = TRich 1.49* 
Rings, TPT = TPoor, TCar = TRich 1.58* 

Notes: Like Glaeser et al. (2008) I assume 𝜀𝜀𝑌𝑌𝐴𝐴 = [0.25,0.50] and 𝜀𝜀𝑌𝑌𝑊𝑊 = 0.75. Further, YPoor = 61,681 and YRich = 
78,968 in MSA 1 category urban areas and YPoor = 39,689 and YRich = 76,339 in MSA category 2 and 3 urban areas. 
*MCCT model bid-rent curves are consistent with observed ring pattern of HH incomes in the given MSA category. 
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Table 3. Estimates of model (2.2) 
MSA 
category 

Pop. den. of 
home CT  Ring TRich TPoor F Mean miles 

to work 
Mean minutes to 

work 
      Poor Rich Poor Rich 

1 

All  1.702 
(0.057) 

1.975 
(0.282) 

2.059 
(0.963) 6.77 8.04 28.08 27.07 

> 25,000  1st 2.358 
(0.324) 

3.434 
(0.325) 

-3.285 
(1.509) 5.85 5.93 36.08 33.78 

10,000 – 24,999 2nd 1.944 
(0.080) 

2.042 
(0.379) 

4.193 
(2.580) 6.75 7.71 33.14 29.55 

2 

All  1.395 
(0.073) 

1.080 
(0.147) 

7.254 
(2.200) 6.73 8.75 24.29 21.64 

> 4,000 1st 1.512 
(0.116) 

1.126 
(0.277) 

8.636 
(3.624) 6.66 8.00 26.53 22.37 

2,000 – 4,000 2nd 1.365 
(0.098) 

1.260 
(0.218) 

4.581 
(3.042) 6.24 9.27 21.14 21.59 

3 

All  1.138 
(0.109) 

0.932 
(0.105) 

3.903 
(1.978) 6.10 7.82 20.05 18.98 

> 4,000 1st 1.602 
(0.140) 

0.791 
(0.197) 

6.884 
(3.598) 4.97 6.50 21.14 20.88 

2,000 – 4,000 2nd 1.334 
(0.077) 

1.144 
(0.206) 

5.261 
(1.809) 6.13 6.64 20.36 17.12 

Notes: F in this case is the estimated wait and egress time of poor commuters less the wait and egress time of rich 
commuters. All regression results are weighted with 2017 NHTS person-level weights. Weights reflect the 
probability of a household or person being selected for survey participation and survey nonresponse. The weights 
can be used to produce population estimates at the national, census-region, or MSA category levels. See 
https://nhts.ornl.gov/assets/2017%20NHTS%20Weighting%20Report.pdf for more details. In this case results are 
given at the MSA category level: 1) MSA of 1 million or more, with heavy rail PT; 2) MSA of 1 million or more, but 
no heavy rail; 3) MSA less than 1 million; and 4) not in a MSA. I only include commuters that live within 20 miles of 
their work. MSA category 1 and 2 standard errors are clustered at CBSA level. MSA category 3 standard errors are 
clustered at CDIVMSAR level.    
 
 
  

https://nhts.ornl.gov/assets/2017%20NHTS%20Weighting%20Report.pdf
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Table 4. Percentage breakdown of commute mode choices in 2017 NHTS survey. Commute 
mode choice is broken down by HH income category, MASA category, and population density in 
respondents’ home CTs. 

MSA 
category 

Pop. den. in 
respondents’ 
home CTs 

Ring 
Poor HH Middle HH Rich HH 

Car Bus Rail Total 
commuters Car Bus Rail Total 

commuters Car Bus Rail Total 
commuters 

1 

All  68.3% 12.5% 8.3% 3,225,116 75.9% 7.6% 9.0% 9,765,859 73.9% 3.6% 14.4% 15,832,495 
> 25,000  1st  23.0% 30.8% 32.5% 572,592 27.8% 18.6% 35.5% 1,705,277 22.5% 7.4% 45.6% 2,781,433 
10,000 – 
24,999 

2nd  66.6% 16.3% 6.4% 976,194 73.6% 10.3% 6.8% 2,335,146 63.5% 7.0% 21.0% 3,008,043 

2 

All  80.3% 10.2% 0.9% 4,212,902 91.0% 3.7% 0.8% 12,370,690 92.4% 2.4% 1.2% 13,253,090 
> 4,000 1st  73.6% 11.9% 1.5% 2,294,803 85.6% 6.7% 1.3% 5,755,535 86.8% 4.5% 2.1% 5,543,108 
2,000 – 
4,000 

2nd  86.6% 11.3% 0.2% 1,011,919 94.0% 1.3% 0.6% 3,239,888 95.1% 1.1% 1.3% 3,707,939 

3 

All  83.1% 7.3% 0.0% 5,582,938 93.6% 2.1% 0.0% 15,104,700 95.9% 0.9% 0.0% 11,167,180 
> 4,000 1st  73.0% 13.9% 0.0% 1,813,960 87.4% 3.8% 0.0% 3,299,378 89.2% 3.0% 0.0% 1,781,587 
2,000 – 
4,000 

2nd  87.0% 6.5% 0.0% 1,474,519 93.6% 1.9% 0.0% 3,376,685 95.1% 0.6% 0.0% 2,454,012 

Notes: Mode choice distribution uses 2017 NHTS person-level weights. Weights reflect the probability of a person 
being selected for survey participation and survey nonresponse. The weights can be used to produce population 
estimates at the national, census-region, or MSA category levels. In this case results are given at the MSA category 
level: 1) MSA of 1 million or more, with heavy rail; 2) MSA of 1 million or more, but no heavy rail; 3) MSA less than 
1 million; and 4) not in MSA. 
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Table 5. Mean and standard deviation of independent variables in mode choice models (2.4) 
and (2.5) for poor and rich commuters by location and geographic unit.   

Geographic unit All 1st Ring 2nd Ring 
 Poor Rich Poor Rich Poor Rich 
 MSACAT = 1 
Time to work given chosen 
mode (minutes) 

27.11 
(25.92) 

25.86 
(21.65) 

39.12 
(41.72) 

32.33 
(21.73) 

26.59 
(23.48) 

26.91 
(21.58) 

Distance (miles) 7.11 
(5.40) 

8.28 
(5.55) 

6.53 
(5.17) 

5.69 
(4.83) 

6.88 
(5.37) 

7.83 
(5.36) 

Vehicle per Driver 0.85 
(0.48) 

1.07 (0.5) 0.48 
(0.51) 

0.57 
(0.49) 

0.89 
(0.46) 

0.99 
(0.47) 

HH Income (USD) 18055 
(9964) 

153618 
(62662) 

15647 
(9316) 

155409 
(66354) 

18850 
(10217) 

150243 
(63267) 

Male (percentage) 45.95 49.68 41.07 50.56 48.59 53.82 
White (percentage) 50.18 77.34 32.14 77.69 47.42 70.49 
Age 40.81 

(14.86) 
45.48 
(13.94) 

40.12 
(15.1) 

41.84 
(13.29) 

40.50 
(14.51) 

43.46 
(13.17) 

 MSACAT = 2 
Time to work given chosen 
mode (minutes) 

23.59 
(27.29) 

21.81 
(18.13) 

25.16 
(25.91) 

22.33 
(18.33) 

23.95 
(23.58) 

21.40 
(17.04) 

Distance (miles) 7.20 
(5.30) 

8.96 
(5.43) 

7.09 (5.2) 8.53 
(5.34) 

7.15 
(5.22) 

9.03 
(5.39) 

Vehicle per Driver 0.92 
(0.43) 

1.19 
(0.47) 

0.89 
(0.43) 

1.15 
(0.44) 

0.92 
(0.43) 

1.18 (0.5) 

HH Income (USD) 17121 
(9427) 

141124 
(58583) 

16937 
(9361) 

136637 
(58238) 

17379 
(9404) 

145048 
(59263) 

Male (percentage) 46.17 51.1 47.63 50.94 45.76 52.81 
White (percentage) 58.59 84.24 55.35 82.26 56.26 84.44 
Age 39.90 

(15.17) 
45.89 
(13.77) 

38.67 
(14.66) 

44.89 
(13.58) 

39.82 
(14.98) 

46.6 
(13.87) 

 MSACAT = 3 
Time to work given chosen 
mode (minutes) 

19.39 
(26.19) 

17.88 
(17.35) 

21.19 
(35.85) 

16.80 
(20.36) 

19.06 
(30.13) 

16.72 
(15.81) 

Distance (miles) 6.05 
(4.96) 

7.65 
(5.15) 

4.78 
(4.35) 

5.65 
(4.58) 

5.16 
(4.21) 

6.50 
(4.62) 

Vehicle per Driver 0.95 
(0.51) 

1.27 
(0.57) 

0.84 
(0.48) 

1.19 
(0.52) 

0.93 
(0.50) 

1.22 
(0.52) 

HH Income (USD) 17060 
(9330) 

130182 
(53078) 

15818 
(9207) 

124301 
(51377) 

16684 
(9684) 

128726 
(54341) 

Male (percentage) 44.3 50.32 44.04 49.17 44.18 50.75 
White (percentage) 67.48 89.34 65.65 84.69 60.14 88.35 
Age 40.11 

(15.67) 
47.49 
(13.87) 

37.19 
(14.44) 

46.69 
(14.09) 

40.38 
(15.76) 

46.94 
(14.02) 

Notes: The data above is not weighted using 2017 NHTS person-level weights. Data can be recreated by running R 
scripts MSACAT1PoorwithDistStandardize and MSACAT1RichwithDistStandardize with the dataset MSACAT1.csv; 
MSACAT2PoorwithDistStandardize and MSACAT2RichwithDistStandardize with the dataset MSACAT2.csv; and 
MSACAT3PoorwithDistStandardize and MSACAT3RichwithDistStandardize with the dataset MSACAT3.csv. ‘Time to 
work’ means and standard deviations are a function of the modes that each commuter chose in 2017. 
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Table 6. Estimates of mode choice model (2.4) at the mean commuter’s set of explanatory 
variables 
   Poor HH   Rich HH   

MSA 
category 

Pop. den. in 
respondents’ 
home CTs 

Ring Car Bus Rail Bike Walk Car Bus Rail Bike Walk 

1 

All  71.3 11.6 7.5 0.9 7.3 79.3 2.9 11.3 1.6 3.6 
> 25,000 1st 23.4 26.8 35.2 0.0 13.8 23.7 7.2 43.6 5.6 17.0 
10,000 – 
25,000 

2nd   74.6 10.2 4.1 2.0 7.1 67.4 6.6 18.2 2.6 3.4 

2 

All  85.5 7.0 0.8 1.1 5.2 93.4 2.0 1.0 1.3 1.5 
> 4,000 1st 80.8 8.1 1.4 1.9 6.9 88.3 3.7 2.0 2.5 2.5 
2,000 – 
4,000 

2nd   85.5 7.7 0.8 0.8 4.5 96.6 0.9 0.5 0.9 0.5 

3 

All  84.8 6.6  1.9 5.4 96.0 0.7 
 

1.2 1.5 
> 4,000 1st 72.5 12.0  2.6 10.5 89.1 2.1 

 
3.5 4.8 

2,000 – 
4,000 

2nd   85.4 6.9 
 

2.6 4.3 95.4 0.8 
 

1.7 1.8 

Notes. A mean commuter is defined for each MSA category, income group, and geographic area (all urban area, 
ring 1, or ring 2) combination. Predicted probabilities for the commute mode categories of bike, other, and walk 
are not reported in this table. Data can be recreated by running R scripts MSACAT1PoorwithDistStandardize and 
MSACAT1RichwithDistStandardize with the dataset MSACAT1.csv; MSACAT2PoorwithDistStandardize and 
MSACAT2RichwithDistStandardize with the dataset MSACAT2.csv; and MSACAT3PoorwithDistStandardize and 
MSACAT3RichwithDistStandardize with the dataset MSACAT3.csv. 
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Table 7. Estimates of mode choice mode (2.5) at the mean commuter’s set of explanatory 
variables 
     Poor HH Rich HH 

MSA 
category 

Pop. den. in 
respondents’ 
home CTs 

Ring Car Bus Rail Bike Walk Car Bus Rail Bike Walk 

1 

All 
 70.7 

(70.5, 
71.0) 

11.9 
(11.8, 
12.0) 

7.4 
(7.2, 
7.6) 

0.9 
(0.8, 
1.0) 

7.6 
(7.3, 
7.7) 

79.3 
(79.2, 
79.4) 

2.9 
(2.9, 
2.9) 

11.3 
(11.3, 
11.4) 

1.6 
(1.6, 
1.7) 

3.5 
(3.4, 
3.5) 

> 25,000 
1st 23.6 

(23.4, 
24.0) 

26.7 
(25.9, 
27.0) 

34.3 
(33.7, 
34.7) 

0.0  
(0.0, 
0.0) 

14.5 
(14.0, 
15.0) 

24.1 
(23.9, 
24.2) 

7.1 
(7.1, 
7.3) 

44.3 
(43.9, 
44.5) 

5.5 
(5.4, 
5.7) 

16.2 
(15.8, 
16.4) 

10,000 – 
25,000 

2nd   67.3 
(65.6, 
68.3) 

13.8 
(13.5, 
14.0) 

10.9 
(9.9, 
11.6) 

0.6 
(0.5, 
0.7) 

6.2 
(5.2, 
7.4) 

65.6 
(65.1, 
65.9) 

6.6 
(6.5, 
6.7) 

19.7 
(19.5, 
20) 

2.7 
(2.5, 
3.0) 

3.5 
(2.9, 
3.9) 

2 

All 
 85.5 

(85.4, 
85.6) 

7.1 
(7.0, 
7.2) 

0.7 
(0.7, 
0.8) 

1.1 
(1.0, 
1.1) 

5.1 
(5.0, 
5.1) 

93.3 
(93.3, 
93.4) 

2.0 
(2.0, 
2.0) 

0.9 
(0.9, 
1.0) 

1.3 
(1.3, 
1.4) 

1.6 
(1.6, 
1.6) 

> 4,000 
1st 80.2 

(80.1, 
80.4) 

8.4 
(8.3, 
8.6) 

1.2 
(1.1, 
1.3) 

1.9 
(1.8, 
1.9) 

7.2 
(7.1, 
7.4) 

88.1 
(88, 
88.2) 

3.6 
(3.6, 
3.7) 

1.9 
(1.9, 
1.9) 

2.6 
(2.5, 
2.6) 

2.7 
(2.7, 
2.8) 

2,000 – 4,000 
2nd   84.8 

(84.7, 
85.0) 

8.0 
(7.9, 
8.1) 

0.8 
(0.7, 
0.8) 

0.8 
(0.7, 
0.8) 

4.8 
(4.7, 
5.0) 

96.3 
(96.2, 
96.4) 

0.9 
(0.9, 
1.0) 

0.6 
(0.6, 
0.6) 

0.8 
(0.8, 
0.9) 

0.8 
(0.7, 
0.9) 

3 

All 
 85.2 

(85.0, 
85.3) 

6.5 
(6.4, 
6.6) 

  
1.9 
(1.8, 
1.9) 

5.1 
(5.1, 
5.2) 

96.2 
(96.1, 
96.2) 

0.7 
(0.7, 
0.8)   

1.1 
(1.1, 
1.2) 

1.4 
(1.4, 
1.4) 

> 4,000 
1st 74.5 

(74.3, 
74.7) 

11.6 
(11.5, 
11.7) 

  
2.6 
(2.6, 
2.7) 

8.6 
(8.5, 
8.8) 

89.6 
(89.2, 
89.9) 

2.1 
(2.0, 
2.2) 

  
3.5 
(3.4, 
3.7) 

4.4 
(4.3, 
4.6) 

2,000 – 4,000 
2nd   84.0 

(83.0, 
86.5) 

8.1 
(7.0, 
8.7) 

  
3.4 
(2.5, 
4.2) 

3.4 
(3.1, 
3.7) 

95.3 
(95, 
95.6) 

0.8 
(0.8, 
0.9) 

  
1.6 
(1.4, 
1.9) 

1.9 
(1.8, 
1.9) 
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Table 8. Los Angeles-2003 
 Control Group Historic transit network 

Dep. variable Median HH income Per capita income Poverty rate 
Spatial unit CT BG CT BG CT BG 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 -4,911  
(3,202) 

  -5,950*** 
(2,264) 

  0.041*** 
(0.012)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 -2,065  
(3,202) 

-3,596  
(3,643) 

-3,104 
(2,264) 

-3,514  
(2,257) 

0.024** 
(0.012) 

0.047*** 
(0.015) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎 0 0 0 0 0 0 
       

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 3,922  
(3,202) 

7,916**  
(3,643) 

1,749  
(2,264) 

5,033** 
(2,257) 

0.019 
(0.012) 

0.029* 
(0.015) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 7,027** 
(3,202) 

10,266*** 
(3,643) 

1,029  
(2,264) 

3,553  
(2,257) 

0.014 
(0.012) 

0.031** 
(0.015) 

        
 N 355 284 355 284 355 284 
 R2 0.941 0.948 0.939 0.952 0.921 0.889 
   
 Control Group Treated area buffers 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎  1,714  
(3,690) 

  2,674 (2,971)   0.003 
(0.013)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎  -1,259  
(3,638) 

-2,861  
(4,536) 

252 (2,929) -150  
(3,138) 

0.005 
(0.013) 

0.037 
(0.024) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎  0 0 0 0 0 0 
       

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎  -5,043 
(3,638) 

1,489  
(4,536) 

-62.00 
(2,929) 

4,600  
(3,138) 

0.021* 
(0.013) 

0.027 
(0.024) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐  1,217 
(3,638) 

5,158  
(4,536) 

539 
(2,929) 

4,035  
(3,138) 

-0.005 
(0.013) 

0.008 
(0.024) 

        
 N 119 96 119 96 119 96 
 R2 0.945 0.930 0.947 0.944 0.961 0.867 

Notes. Treated areas are centered on Gold light rail line stations that opened in 2003. Historic transit network control 
group contains 59 half-mile radius circles around 59 randomly selected points on the rapid transit lines that existed or 
were planned as of 1925. The paper map of the existing and planned lines is from Kelker, De Leuw & Co. (1925). Nominal 
dollar amounts are inflated to 2017 USD using the “All items in Los Angeles-Long Beach-Anaheim, CA, all urban consumers, 
not seasonally adjusted” CPI (series ID: CUURS49ASA0, CUUSS49ASA0).     
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Table 9. Los Angeles-2005 
 Control group Historic transit network 
 Dep. variable Median HH income Per capita income Poverty rate 
 Spatial unit CT BG CT BG CT BG 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 6,863** 
(3,088) 

  716.0 
(1,958) 

  -0.011 
(0.014) 

  

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 3,345  
(3,088) 

2,645 
(3,398) 

607  
(1,958) 

561  
(1,918) 

-0.016 
(0.014) 

-0.024  
(0.016) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎 0 0 0 0 0 0 
       

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 11,105*** 
(3,088) 

11,714*** 
(3,398) 

1,536 (1,958) 2,281 
(1,918) 

0.046*** 
(0.014) 

0.042*** 
(0.016) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 7,023** 
(3,088) 

8,717** 
(3,398) 

121  
(1,958) 

-1,266 
(1,918) 

0.014  
(0.014) 

0.007  
(0.016) 

        
 N 365 292 365 292 365 292 
 R2 0.930 0.947 0.937 0.957 0.857 0.843 
   
 Control group Treated area buffers 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎  68.84  
(3,529) 

  -1,562 
(1,440) 

  -0.005 
(0.024) 

  

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎  -310  
(3,529) 

-1,796 
(3,891) 

-1,546 
(1,440) 

-1,604 
(1,708) 

-0.001 
(0.024) 

-0.008  
(0.026) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎  0 0 0 0 0 0 
         

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎  1,051  
(3,529) 

4,474 
(3,891) 

-769  
(1,440) 

1,524 
(1,708) 

0.010  
(0.024) 

0.003  
(0.026) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐  -590  
(3,529) 

399  
(3,891) 

-11.0 
(1,440) 

-41.0 
(1,708) 

0.011  
(0.024) 

0.0003 
(0.026) 

        
 N 140 112 140 112 140 112 
 R2 0.816 0.851 0.838 0.824 0.569 0.563 

Notes. Treated areas are centered on orange rapid bus line stations that opened in 2005-2006. Historic transit network 
control group contains 59 half-mile radius circles around 59 randomly selected points on the rapid transit lines that existed 
or were planned as of 1925. The paper map of the existing and planned lines is from Kelker, De Leuw & Co. (1925). 
Nominal dollar amounts are inflated to 2017 USD using the “All items in Los Angeles-Long Beach-Anaheim, CA, all urban 
consumers, not seasonally adjusted” CPI (series ID: CUURS49ASA0, CUUSS49ASA0).  
  



71 
 

Table 10. Minneapolis-2004 
 Control group Historic transit network 
 Dep. variable Median HH income Per capita income Poverty rate 
 Spatial unit CT BG CT BG CT BG 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 12,556*** 
(4,389)   

1,375 
(2,237)   

0.024  
(0.023)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 -3,823 
(4,389) 

-1,608 
(3,522) 

2,226 
(2,237) 

1,461  
(2,328) 

0.065*** 
(0.023) 

0.109*** 
(0.029) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎 0 0 0 0 0 0 
       

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 -8,382* 
(4,389) 

-1,553 
(3,522) 

2,525 
(2,237) 

3,656  
(2,328) 

0.049** 
(0.023) 

0.107*** 
(0.029) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 4,888  
(4,527) 

9,913*** 
(3,522) 

-2,134 
(2,237) 

-1,619 
(2,328) 

-0.019 
(0.023) 

0.024  
(0.029) 

        
 N 363 290 363 292 363 292 
 R2 0.820 0.922 0.852 0.869 0.860 0.794 
   
 Control group Areas that will be treated in the future 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎  15,374* 
(7,812)   

10,398** 
(4,441)   

0.029  
(0.038)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎  -7,493 
(7,812) 

3,789 
(6,370) 

6,655 
(4,441) 

6,627  
(4,867) 

0.077** 
(0.038) 

0.010** 
(0.049) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎  0 0 0 0 0 0 
        

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎  -7,620 
(7,812) 

-150.5 
(6,370) 

-1,833 
(4,441) 

-1,045 
(4,867) 

0.101*** 
(0.038) 

0.154*** 
(0.049) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐  11,157 
(7,969) 

12,632* 
(6,370) 

-3,101 
(4,441) 

-4,263 
(4,867) 

0.008  
(0.038) 

0.036  
(0.049) 

        
 N 163 130 163 132 163 132 
 R2 0.655 0.869 0.828 0.839 0.796 0.692 
        
 Control group Treated area buffers 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 -3,453 
(9,061)   

546.3 
(3,691)   

-0.046 
(0.042)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 563.8  
(9,061) 

4,593 
(5,393) 

3,291 
(3,691) 

3,682  
(4,409) 

-0.026 
(0.042) 

-0.002 
(0.055) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎 0 0 0 0 0 0 
        

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 -1,712 
(9,061) 

3,437 
(5,393) 

3,145 
(3,691) 

353.5  
(4,409) 

-0.034 
(0.042) 

0.037  
(0.055) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 -1,940 
(9,284) 

10,898** 
(5,393) 

86.0  
(3,691) 

2,028  
(4,409) 

-0.037 
(0.042) 

0.0243 
(0.055) 

        
 N 165 134 168 136 167 136 
 R2 0.386 0.785 0.696 0.738 0.743 0.630 

Notes. Treated areas are centered on Blue light rail line stations that opened in 2004. The historic network control group 
includes 56 half-mile radius circles centered on randomly selected points on its historic street car track network that existed 
as of the early 1950s. Nominal dollar amounts are inflated to 2017 USD using the “All items in Minneapolis-St. Paul-
Bloomington, MN-WI, all urban consumers, not seasonally adjusted” CPI (series ID: CUURS24ASA0, CUUSS24ASA0). 
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Table 11. Denver-1994 
 Control group Historic transit network 
 Dep. variable Med. HH income Per capita income Poverty rate 
 Spatial unit CT BG CT BG CT BG 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 -1,493 
(4,406)   

-2,536 
(3,682)   

0.052** 
(0.024)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 -2,373 
(4,406) 

-4,080 
(4,566) 

-2,534 
(3,682) -6,325 (3,837) 

0.062*** 
(0.024) 

0.092*** 
(0.030) 

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎  0 0 0 0 0 0 
       
𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 7,040 

(4,406) 2,237 (4,566) 
347  
(3,682) 

-2,913  
(3,837) 

-0.039* 
(0.024) 

-0.031  
(0.030) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 3,714 
(4,406) 

-572  
(4,566) 

696  
(3,682) 

-1,204  
(3,837) 

-0.063*** 
(0.024) 

-0.054* 
(0.030) 

        
 N 145 116 145 116 145 116 
 R2 0.925 0.948 0.915 0.933 0.908 0.884 
        
 Control group Areas that will be treated in the future 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎  -5,927 
(5,191)   

-6,932** 
(3,210)   

0.071*** 
(0.023)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎  -8,345 
(5,191) 

-5,088 
(5,512) 

-6,802** 
(3,210) 

-4,622  
(5,665) 

0.096*** 
(0.023) 

0.106*** 
(0.036) 

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎  0 0 0 0 0 0 
       
𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎  18,561*** 

(5,191) 
18,307*** 
(5,512) 

8,622*** 
(3,210) 

13,433** 
(5,665) 

-0.073*** 
(0.023) 

-0.098*** 
(0.036) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐  29,427*** 
(5,191) 

23,136*** 
(5,512) 

12,660*** 
(3,210) 

17,853*** 
(5,665) 

-0.110*** 
(0.023) 

-0.118*** 
(0.036) 

        
 N 130 104 130 104 130 104 
 R2 0.923 0.929 0.888 0.809    
   
 Control group Treated area buffers 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 -405.8 
(3,809)   

-3,169 
(3,239)   

0.012  
(0.027)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 1,523 
(3,809) 

6,579  
(4,829) 

-733.7 
(3,239) 

-1,384  
(4,044) 

0.002  
(0.027) 

0.0004 
(0.039) 

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎  0 0 0 0 0 0 
       
𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 2,593 

(3,809) 
3,628  
(4,829) 

-4,561 
(3,239) 

-5,310 
(4,044) 

-0.011 
(0.027) 

0.004  
(0.039) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 1,714 
(3,809) 

3,285  
(4,829) 

-2,360 
(3,239) 

-1,930  
(4,044) 

0.0047 
(0.027) 

-0.001 
(0.039) 

        
 N 100 80 100 80 100 80 
 R2 0.898 0.837 0.910 0.861 0.893 0.846 
Notes. Treated areas are centered on D light rail line stations that opened in 1994. The historic transit network control 
group includes 19 half-mile radius circles centered on randomly selected points on its historic street car track network that 
existed as of 1936. Nominal dollar amounts are inflated to 2017 USD using the “All items in Denver-Aurora-Lakewood, CO, 
all urban consumers, not seasonally adjusted” CPI (series ID: CUURS49ASA0, CUUSS49ASA0).  
 



73 
 

Table 12. Denver-2006 
 Control group Historic transit network 
 Dep. Variable Med. HH income Per capita income Poverty rate 
 Spatial unit CT BG CT BG CT BG 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 9,217  
(5,825)   

-3,454  
(3,739)   

-0.016  
(0.018)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 10,187*  
(5,825) 

7,773 
(6,327) 2,104 (3,739) -2,299 (3,899) 

-0.062*** 
(0.018) 

-0.058*** 
(0.020) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎 0 0 0 0 0 0 
       

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 -20,057*** 
(5,825) 

-34,718*** 
(6,327) 

-8,331** 
(3,739) 

-14,403*** 
(3,899) 

0.020  
(0.018) 

0.032  
(0.020) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 -26,143*** 
(5,825) 

-31,425*** 
(6,327) 

-10,823*** 
(3,739) 

-13,702*** 
(3,899) 

0.046**  
(0.018) 

0.055*** 
(0.020) 

        
 N 160 128 160 128 160 128 
 R2 0.890 0.899 0.885 0.909 0.875 0.849 
        
 Control group Areas that will be treated in the future 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎  4,783  
(6,587)   

-7,850** 
(3,491)   

0.002  
(0.016)  

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎  4,215  
(6,587) 

6,764 
(7,210) 

-2,165  
(3,491) 

-595.9  
(5,404) 

-0.027*  
(0.016) 

-0.044* 
(0.025) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎  0 0 0 0 0 0 
       

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎  -8,536  
(6,587) 

-18,647** 
(7,210) 

-56.0  
(3,491) 

1,943  
(5,404) 

-0.013  
(0.016) 

-0.035 
(0.025) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐  -430  
(6,587) 

-7,718 
(7,210) 

1,141  
(3,491) 

5,354  
(5,404) 

-0.002  
(0.016) 

-0.010 
(0.025) 

        
 N 145 116 145 116 145 116 
 R2 0.859 0.870 0.885 0.830 0.879 0.831 
   
 Control group Treated area buffers 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 1,025  
(8,023)   

-806  
(3,972)   

0.0007  
(0.010)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 910  
(8,023) 

-2,846 
(8,552) 

-541  
(3,972) 

-1,837  
(4,666) 

-0.0002  
(0.010) 

0.0032 
(0.012) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎 0 0 0 0 0 0 
       

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 -2,913  
(8,023) 

-15,346* 
(8,552) 

-713  
(3,972) 

-6,799  
(4,666) 

-0.0022  
(0.010) 

0.0035 
(0.012) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 19.5  
(8,023) 

-7,481 
(8,552) 

397  
(3,972) 

-1,984  
(4,666) 

0.0036  
(0.010) 

0.0068 
(0.012) 

        
 N 130 104 130 104 130 104 
 R2 0.754 0.781 0.810 0.763 0.827 0.822 
Notes. Treated areas are half-mile radii circles around F line stations that opened in 2006. The historic transit network 
control group includes 19 half-mile radius circles centered on randomly selected points on its historic street car track 
network that existed as of 1936. Nominal dollar amounts are inflated to 2017 USD using the “All items in Denver-Aurora-
Lakewood, CO, all urban consumers, not seasonally adjusted” CPI (series ID: CUURS49ASA0, CUUSS49ASA0).  
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Table 13. Phoenix-2008 
 Control group Areas that will be treated in the future 
 Dep. variable Med. HH income Per capita income Poverty rate 
 Spatial unit CT BG CT BG CT BG 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎 -4,718* 
(2,463)   -1,281 

(1,466)   0.043  
(0.027)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎 -2,909  
(2,463) 

-31.18  
(5,489) 

-249.2 
(1,466) 

-4,757* 
(2,430) 

0.017  
(0.027) 

0.026  
(0.032) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎 0 0 0 0   
       

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎 -276.9  
(2,463) 

-2,524 
(5,489) 

2,095 
(1,466) 1,030 (2,430) -0.005  

(0.027) 
0.015  
(0.032) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐 7,228*** 
(2,463) 

3,224 
(5,489) 

6,786*** 
(1,466) 

5,595** 
(2,430) 

-0.052*  
(0.027) 

-0.016 
(0.032) 

        
 N 285 228 285 228 285 228 
 R2 0.773 0.492 0.861 0.676 0.813 0.754 
        
 Control group Treated area buffers 

Pre-
treatment 

𝜹𝜹�𝟏𝟏𝟏𝟏𝟖𝟖𝟎𝟎  -980.2  
(2,266)   -97.76 

(1,453)   0.026  
(0.025)   

𝜹𝜹�𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎  -1,837  
(2,266) 

4,426 
(4,557) 

177.0 
(1,453) 

-1,841 
(2,828) 

0.016  
(0.025) 

0.019  
(0.028) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎  0 0 0 0 0 0 
        

Post-
treatment 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟎𝟎  1,056  
(2,266) 

1,040 
(4,557) 

358.7 
(1,453) 

3.617  
(2,828) 

-0.007  
(0.025) 

0.003 
(0.028) 

𝜹𝜹�𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐  4,281*  
(2,266) 

3,211 
(4,557) 

3,831*** 
(1,453) 

3,218  
(2,828) 

0.006  
(0.025) 

0.007  
(0.028) 

        
 N 270 216 270 216 270 216 
 R2 0.836 0.620 0.881 0.640 0.816 0.814 

Notes. Treated areas are half-mile radii circles around light rail stations that opened in 2008. Nominal dollar amounts are 
inflated to 2017 USD using the “All items in West - Size Class A, all urban consumers, not seasonally adjusted” CPI (series 
ID: CUURS400SA0, CUUSS400SA0). 
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Supplementary Information 
 
SI Text 1. 
In a city where the rich sort into the inner ring in equilibrium the following must hold, 
  

−2𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑇𝑇
𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ�������

Slope of rich
bid−rent curve

< −2𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������

Slope of poor
bid−rent curve

         (1.3) 

 
𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
> 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
         (1.4) 

 

𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�����

Poor HH
income

𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ���
Rich HH
income

−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
> 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

      (1.5) 

 
�𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

� 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

> �𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

� 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

       (1.6) 

 
∆𝑊𝑊
∆𝐼𝐼

× 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������

𝜀𝜀𝑌𝑌
𝑊𝑊

> ∆𝐴𝐴
∆𝐼𝐼

× 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������

𝜀𝜀𝑌𝑌
𝐴𝐴

         (1.7) 

 
In a city where the poor sort into the inner ring in equilibrium the following must hold, 
 

−2𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ

> −2𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃���������

Poor HH bid−
rent curve is 

steeper

        (1.8) 

 
𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ

𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ
< 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
         (1.9) 

 
𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

< 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

          (1.10) 

 
In the text I claim that if, 

 
 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

< 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

        

then 
 

 𝜀𝜀𝑌𝑌𝐴𝐴 + 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅ℎ
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

� 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ−𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝜀𝜀𝑌𝑌𝑊𝑊� > 𝜀𝜀𝑌𝑌𝑊𝑊 
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assuming the gap between the typical poor and rich area in an urban area, represented by 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅ℎ −
𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, is not too large. The following R script uses computation simulation to show that this if…then 
statement holds. 

 
SI Text 2 
Using data from the early 2000s, Glaeser et al. (2008) find that the typical poor commuter in a typical 
US city has incentive to use PT (if available). First, they find C = $4 and P = $2 per commute trip in a 
typical US urban area (2001 USD). From a regression analysis that uses data from 16 US cities they 
estimate F = 15 minutes.  This means a rich commuter will prefer a car over PT at all D in the urban 
area if WRich > $8 per hour (2001 USD) (i.e., the opportunity cost of time per minute for the rich 
commuter is at least $0.13 or $8 per hour). Conversely, the poor commuter will prefer PT at D close to 
the core (D ≈ 0) if WPoor < $8 per hour (2001 USD). Given the hourly wage for a poor worker in 2001, 
WPoor < $8 per hour (2001 USD) seems reasonable. 
 
SI Text 3 
All data and code mentioned below can be found in the zip file DataandCode under the banner 
“Working Papers, Data, and Code” at 
https://www.bowdoin.edu/profiles/faculty/enelson2/index.html. 
 
To estimate models (2.1) and (2.2) for each commuter group j run the Stata code 
TechnologySpeeds.do with the dataset NHTS.dta. 
 
To replicate the multiple imputation analysis run the Stata code ImputedMSACAT1.do, 
ImputedMSACAT2.do, and ImputedMSACAT3.do with the datasets MSACAT1Stata.dta, 
MSACAT2Stata.dta, and MSACAT3Stata.dta.   
 
To replicate the multinomial logit estimates of model (3.4) for each income class (poor or rich) – 
geography (1, 2, or entire urban area) – MSA category (1, 2, or 3) combination run the R scripts 
MSACAT1PoorwithDistStandardize and MSACAT1RichwithDistStandardize with the dataset 
MSACAT1.csv; MSACAT2PoorwithDistStandardize and MSACAT2RichwithDistStandardize with the 
dataset MSACAT2.csv; and MSACAT3PoorwithDistStandardize and MSACAT3RichwithDistStandardize 
with the dataset MSACAT3.csv. 
 
To determine the ceteris paribus impact of a 1 standard deviation (SD) change in a mean commuter’s 
independent variable on their mode choice probabilities (or in the case of a dummy variable, a change 
in the variable’s binary status) according to estimated model (3.4) for each income class (poor or rich) 
– geography (1, 2, or entire urban area) – MSA category (1, 2, or 3) run the R scripts 
MSACAT1PoorwithDistStandardize and MSACAT1RichwithDistStandardize with the dataset 
MSACAT1.csv; MSACAT2PoorwithDistStandardize and MSACAT2RichwithDistStandardize with the 
dataset MSACAT2.csv; and MSACAT3PoorwithDistStandardize and MSACAT3RichwithDistStandardize 
with the dataset MSACAT3.csv. 
 
To replicate the multinomial logit estimates of model (3.5) for each income class (poor or rich) – 
geography (1, 2, or entire urban area) – MSA category (1, 2, or 3) and imputation combination (recall 

https://www.bowdoin.edu/profiles/faculty/enelson2/index.html
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there are 10 sets of T for each commuter) run the R scripts MSACAT1PoorwithTimetoWkStandardize 
and MSACAT1RichwithTimetoWkStandardize with the dataset MSACAT1Imputed.csv; 
MSACAT2PoorwithTimetoWkStandardize and MSACAT2RichwithTimetoWkStandardize with the 
dataset MSACAT2Imputed.csv; and MSACAT3PoorwithTimetoWkStandardize and 
MSACAT3RichwithTimetoWkStandardize with the dataset MSACAT3Imputed.csv. 
 
To determine the ceteris paribus impact of a 1 SD change in a mean commuter’s independent variable 
on their mode choice probabilities (or in the case of a dummy variable, a change in the variable’s 
binary status) according to estimated model (3.5) for each income class (poor or rich) – geography (1, 
2, or entire urban area) – MSA category (1, 2, or 3) and imputation combination (recall there are 10 
sets of T for each commuter) run the R scripts MSACAT1PoorwithTimetoWkStandardize and 
MSACAT1RichwithTimetoWkStandardize with the dataset MSACAT1Imputed.csv; 
MSACAT2PoorwithTimetoWkStandardize and MSACAT2RichwithTimetoWkStandardize with the 
dataset MSACAT2Imputed.csv; and MSACAT3PoorwithTimetoWkStandardize and 
MSACAT3RichwithTimetoWkStandardize with the dataset MSACAT3Imputed.csv. 
 
To replicate Table 8 (LA-2003) run the Stata do flies LA2003Income.do and LA2003Poverty.do with the 
data files LA2003Income.dta and LA2003Poverty.dta  
 
To replicate Table 9 (LA-2005) run the Stata do files LA2005Income.do and LA2005Poverty.do with the 
data files LA2005Income.dta and LA2005Poverty.dta  
 
To replicate Table 10 (Minneapolis-2004) run the Stata do files Minneapolis2004Income.do and 
Minneapolis2004Poverty.do with the data files Minneapolis2004Income.dta and 
Minneapolis2004Poverty.dta  
 
To replicate Table 11 (Denver-1994) and Table 12 (Denver-2006) run the Stata do files 
Denver19942006Income.do and Denver19942006Poverty.do with the data files 
Denver19942006Income.dta and Denver19942006Poverty.dta  
 
To replicate Table 13 (Phoenix-2008) run the Stata do files Phoenix2008Income.do and 
Phoenix2008Poverty.do with the data files Phoenix2008Income.dta and Phoenix2008Poverty.dta  
  
 
SI Text 4 
An analysis of 2017 US Census data (ACS 2017) sheds some more light on commute mode choices 
across the urban and HH income gradient. The 2017 survey includes people that could have 
responded to the questionnaire at any point between 2013 and 2017. Among many questions, a 
respondent is asked how much they earned in the past 12 months and their typical commute mode: 
1) drove alone to work, 2) drove to work in a carpool, and 3) used public transit to commute to work. 
In the publicly available form of the ACS, the number of workers that used each form of commuting 
and the median annual income among each of these commuter groups is reported at the CT-level. 
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Compared to 2017 NHTS results, the 2017 ACS finds PT to be even less relevant to US commuters, 
even in MSA category 1 urban areas (SI Table 2). Whereas the 2017 NHTS estimated that over 50% of 
commuters used PT in the densest (1st ring) neighborhoods of the US largest cities with heavy rail, the 
ACS estimates only 4.31%. The mismatch between the NHTS and ACS results also hold, albeit to a 
lesser degree than in the 1st ring, in the 2nd ring and overall MSA category 1 urban areas.  In MSA 
category 2 urban areas, however, the NHTS and ACS results match. 
 
Like the 2017 NHTS, the 2017 ACS does suggest that richer commuters in MSA category 1 urban areas 
are much more able and/or willing to use PT than their counterparts in MSA category 2 urban areas. 
To get a better handle on the income distribution of PT versus car commuters in the ACS I plotted of 
the ratio of PT user median income to car (alone) commuter median income from every CT in MSA 
category 1 and 2 urban areas (SI Fig. 2). The plot indicates many CTs have ratios above 1. Interestingly, 
the CTs with the greatest ratios are found in the third rings of MSA category 1 and 2 urban areas (less 
than 10,000 people per square mile in category 1 and less than 2,000 people per square mile in 
category 2). In these areas the (unweighted) average and median ratio across all CTs is greater than 1 
as well. I suspect this plot reveals that the few commuters that use PT in the outer ring tend to have 
very high paying jobs downtown (most suburban PT feeds workers to the downtown area). Given their 
high opportunity cost of time the ability to work while commuting is likely to be very appealing to 
such workers. Further, the less affluent from these areas are more likely to drive to work (and have no 
time for work while commuting) either because they are less time sensitive or have jobs outside of 
downtowns. This last dynamic means more car commuting because PT doesn’t tend to connect 
suburbs to non-downtown work site. Further, this last dynamic tends to be concentrated among the 
less affluent because non-downtown jobs pay less, all else equal. 
 
SI Text 5. Multiple imputation with predictive mean matching 
According to the Stata 15.1 manual on Multiple imputation predictive mean matching works in the 
following manner. First, a linear model with the dependent variable of travel time for mode j and a 
covariate vector comprised of 2017 NHTS data is estimated using least squares across all commuters 
with observed travel times for mode j. Second, new model parameters are simulated from their joint 
posterior distribution under the conventional noninformative improper prior Pr(β,σ2) ∝ 1/σ2 where β 
and σ2 are the least square estimates of the mode j travel time model. Using the simulated model, 
mode j travel time is then predicted for all commuters that did not use this mode. Suppose commuter 
i is missing travel time for mode j. Suppose its predicted travel time using mode j is X. The 5 
commuters that have measured travel time for mode j closest to X are matched to commuter i, mode 
j. In imputation iteration 1 one of the nearest 5 travel time measures is randomly assigned to 
commuter i, mode j, in imputation iteration 2 one of the nearest 5 lake’s travel time measures is 
randomly assigned to commuter i, mode j, etc. 
 
 
SI Text 6. Direction of omitted variable bias in estimates of the mode choice models (3.4) and (3.5) 
without the independent variable vehicle per household driver 
In section 3 of the paper I find that a 1 standard deviation (SD) increase in income at the mean poor 
commuter HH’s has little impact on the commuter’s mode choice probabilities. However, one could 
push back on this claim with the reasonable sounding assumption that an increase in a poor 
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commuter’s HH income is likely to lead to the purchase of an additional car. Further, if increases in HH 
income are correlated with increases in cars at a HH then one could reasonably claim that most of the 
positive correlation between cars owned by a HH and the poor commuter’s probability of picking the 
car mode can be traced back to an increase in HH income. To address this possibility, I re-estimated 
(2.4) and (2.5) without the independent variable vehicle per household driver (V). In this case the full 
impact of an increase in HH income on mode choice probabilities is not muted by the intermediate 
step using additional income to purchase a car. 
 
I find that dropping V from mode choice models (3.4) and (3.5) means a 1 SD increase in the mean 
poor commuter’s HH income increases their probability of choosing the car mode by an additional 5 
percentage points or so compared to the probabilistic impact of increases in HH income when V is 
included in the model. However, this augmented impact of increases in HH income on car choice 
probabilities among poor HH commuters still does not match the impact of a 1 SD increase in V on 
poor commuter’s car choice probabilities when HH income and V are both included in the mode 
choice model. Therefore, while poor HHs do tend to increase their car supply as they get richer and 
this increased supply leads to more car commuting, Glaeser et al.’s claim that a significant increase in 
income in a poor HH will lead a “massive shift from public transportation to driving” (p. 13) is 
unfounded.         
 
And even the estimated additional 5 percentage points or so in the probability of using a car to 
commute I found after dropping V from the models may be an overestimate of the true effect. By 
dropping V from the models, I introduce omitted variable bias into the re-estimates of (3.4) and (3.5). 
Further, if the direction of this bias on HH income’s car mode coefficient among poor HHs is positive 
then I am the overestimating the additional impact a increase in HH income has on the probability of a 
poor commuter switching to car use when V is not included in the mode choice models. 
 
In the text we assume the true model has the form, 
 

𝑀𝑀𝑃𝑃𝑀𝑀𝑇𝑇 𝑅𝑅ℎ𝑃𝑃𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅 = 𝛼𝛼 + 𝛽𝛽1𝐼𝐼𝑅𝑅 + 𝛽𝛽2𝑉𝑉𝑅𝑅 + 𝛉𝛉𝐗𝐗𝑅𝑅 + 𝜖𝜖𝑅𝑅      (A) 
 
where i indexes commuters, I indicates annual HH income, and 𝐗𝐗𝑅𝑅 contains the other covariates used 
in (3.4) or (3.5). To make an educated guess on the direction of bias in my model when V is omitted I 
use OLS to estimate the following equation for poor commuters from each location-geography 
combination, 

 
 𝑉𝑉𝑅𝑅 = 𝛼𝛼 + 𝛿𝛿1𝐼𝐼𝑅𝑅 + 𝛍𝛍𝐗𝐗𝑅𝑅 + 𝜀𝜀𝑅𝑅        (B) 

 
where i indexes commuters and as in the models (3.4) and (3.5), all explanatory variables are 
standardized within each unique location-geography combination. Given that �̂�𝛽2 from (A) is positive 
for poor commuters when the mode choice is car, a �̂�𝛿1 > 0 (i.e., V and I are positively correlated) 
would suggest that the estimated coefficient on I in the poor commuter versions of (3.4) and (3.5) 
where V is dropped is overestimated. I say suggest because the final judgement on the direction of the 
bias is also a function of the correlations between V and the variables in X. 
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As can be seen in SI Table 5, �̂�𝛿1 is consistently greater than 0. Therefore, this suggests that my finding 
that increases in HH income are responsible for an additional 5 percentage points in the probability 
that a poor commuter chooses the car mode when their HH gets 1 SD richer if we account for the 
impact of increasing income on car purchases is an upper bound on an increase in income’s true effect 
on car commuting behavior.  
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SI Figure 1. Median HH income of every census tract (CT) found in all American CBSAs against each 
CT’s Euclidean distance to its respective central business district (CBD). A spline fit to this data has a 
positive slope: expected HH income increases with distance from the CBD when you include data from 
every American CBSA. Glaeser et al. (2008) find that US census tracts (CTs) closer to CBDs are richer on 
average than those farther away as of 2000 across 16 US urban areas. These contradictory results 
suggest that the 16 US urban areas Glaeser et al. (2008) use for this analysis not representative of the 
US in general. Run the R script FigureS1 to replicate this figure. 
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SI Figure 2: The ratio of the median public transit (PT) commuter’s 12-month earnings to the median 
solo car commuter’s 12-month earnings in various MSA category – CT population density categories 
according to the 2017 ACS. CTs in each MSA category are further categorized by their population 
density (people per square mile). The red circle is the mean ratio across the set of CTs in each unique 
combination of MSA category - CT population density set. The box indicates the range of CT ratios that 
fall in the 25th through 75th percentile of a MSA category – CT population density combination 
distribution of ratios. The black bar indicates the median ratio in each unique combination of MSA 
category - CT population density set. Each black point is the ratio in an outlier CTs.   
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SI Table 1. CBSA - MSA Crosswalk 
  MSA Category 
CBSA ID CBSA 1 2 3 4 

12060 Atlanta-Sandy Springs-Marietta, GA 1 0 0 0 
12580 Baltimore-Towson, MD               1 0 0 0 
14460 Boston-Cambridge-Quincy, MA-NH     1 0 0 0 
16980 Chicago-Joliet-Naperville, IL-IN-WI     1 0 0 0 
17460 Cleveland-Elyria-Mentor, OH        1 0 0 0 
31080 Los Angeles-Long Beach-Anaheim, CA 1 0 0 0 
33100 Miami-Fort Lauderdale-Pompano Beach, FL 1 0 0 0 
35620 New York-Northern New Jersey-Long Island, NY-NJ-PA 1 0 0 0 
37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1 0 0 0 
39300 Providence-New Bedford-Fall River, RI-MA 1 0 0 0 
40140 Riverside-San Bernardino-Ontario, CA    1 0 0 0 
41860 San Francisco-Oakland-Fremont, CA  1 0 0 0 
41940 San Jose-Sunnyvale-Santa Clara, CA 1 0 0 0 
47900 Washington-Arlington-Alexandria, DC-VA-MD-WV 1 0 0 0 
12420 Austin-Round Rock-San Marcos, TX   0 1 0 0 
13820 Birmingham-Hoover, AL              0 1 0 0 
15380 Buffalo-Niagara Falls, NY          0 1 0 0 
16740 Charlotte-Gastonia-Rock Hill, NC-SC     0 1 0 0 
17140 Cincinnati-Middletown, OH-KY-IN    0 1 0 0 
18140 Columbus, OH                       0 1 0 0 
19100 Dallas-Fort Worth-Arlington, TX    0 1 0 0 
19740 Denver-Aurora-Broomfield, CO       0 1 0 0 
19820 Detroit-Warren-Livonia, MI         0 1 0 0 
24340 Grand Rapids-Wyoming, MI           0 1 0 0 
25540 Hartford-West Hartford-East Hartford, CT 0 1 0 0 
26420 Houston-Sugar Land-Baytown, TX     0 1 0 0 
26900 Indianapolis-Carmel, IN            0 1 0 0 
27260 Jacksonville, FL                   0 1 0 0 
28140 Kansas City, MO-KS                 0 1 0 0 
29820 Las Vegas-Paradise, NV             0 1 0 0 
31140 Louisville/Jefferson County, KY-IN 0 1 0 0 
32820 Memphis, TN-MS-AR                  0 1 0 0 
33340 Milwaukee-Waukesha-West Allis, WI  0 1 0 0 
33460 Minneapolis-St. Paul-Bloomington, MN-WI 0 1 0 0 
34980 Nashville-Davidson-Murfreesboro-Franklin, TN 0 1 0 0 
35380 New Orleans-Metairie-Kenner, LA    0 1 0 0 
36420 Oklahoma City, OK                  0 1 0 0 
36740 Orlando-Kissimmee-Sanford, FL      0 1 0 0 
38060 Phoenix-Mesa-Glendale, AZ          0 1 0 0 
38300 Pittsburgh, PA                     0 1 0 0 
38900 Portland-Vancouver-Hillsboro, OR-WA     0 1 0 0 
39580 Raleigh-Cary, NC                   0 1 0 0 
40060 Richmond, VA                       0 1 0 0 
40380 Rochester, NY                      0 1 0 0 
40900 Sacramento--Arden-Arcade--Roseville, CA 0 1 0 0 
41180 St. Louis, MO-IL                   0 1 0 0 
41620 Salt Lake City, UT                 0 1 0 0 
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  MSA Category 
CBSA ID CBSA 1 2 3 4 

41700 San Antonio-New Braunfels, TX      0 1 0 0 
41740 San Diego-Carlsbad-San Marcos, CA  0 1 0 0 
42660 Seattle-Tacoma-Bellevue, WA        0 1 0 0 
45300 Tampa-St. Petersburg-Clearwater, FL     0 1 0 0 
47260 Virginia Beach-Norfolk-Newport News, VA-NC 0 1 0 0 

None None 0 0 1 1 
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SI Table 2. Percentage breakdown of commute mode choices in 2017 ACS. 

MSA 
category 

Pop. density in 
respondents’ 
home CTs 

% of PT 
commuters 
(ACS) 

% of PT 
commuters 
(NHTS) 

% of CTs where med. inc. of PT 
commuters is greater than 
med. Inc. of drive alone 
commuters 

1 
All 4.80 17.83 29.25 
> 25,000 4.31 54.54 19.47 
10,000 – 25,000 4.53 23.14 20.15 

2 
All 4.85 5.05 9.67 
> 4,000 5.50 8.32 11.05 
2,000 – 4,000 4.59 3.35 10.64 

Notes: “% of PT commuters (ACS)” is the weighted average of CT-level (HC04_EST_VC41 / (HC02_EST_VC41 + 
HC03_EST_VC41 + HC04_EST_VC41)) x 100 where HC02_EST_VC41 = “Car, truck, or van -- drove alone; Estimate; 
EARNINGS IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) FOR WORKERS - Workers 16 years and over 
with earnings”, HC03_EST_VC41 = “Car, truck, or van -- carpooled; Estimate; EARNINGS IN THE PAST 12 MONTHS (IN 2017 
INFLATION-ADJUSTED DOLLARS) FOR WORKERS - Workers 16 years and over with earnings”, and HC04_EST_VC41 = “Public 
transportation (excluding taxicab); Estimate; EARNINGS IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED 
DOLLARS) FOR WORKERS - Workers 16 years and over with earnings.” The weight for each CT is given by (HC02_EST_VC41 
+ HC03_EST_VC41 + HC04_EST_VC41). “Median earnings, drove alone at the CT-level given by “Car, truck, or van - drove 
alone; Estimate; Median earnings (dollars)” (HC02_EST_VC51). Median earnings, public transit at the CT-level given by 
“Public transportation (excluding taxicab); Estimate; Median earnings (dollars)” (HC04_EST_VC51). Identification data that 
would let me map census tracts from the ACS to MSA category 3 areas in the NHTS does not exist. 
 
 
SI Table 3 
See the Excel workbook SITable3.xlsx for simulated changes in 𝐴𝐴�𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴.  
 
SI Table 4 
See the Excel workbook SITable4.xlsx for simulated changes in �̂�𝑝𝑗𝑗,𝐼𝐼𝐼𝐼𝑅𝑅,𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺,𝑀𝑀𝑀𝑀𝐴𝐴.  
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SI Table 5. OLS estimates of model (B) from SI Text 6. Standard errors are in parentheses. 

 MSA Category 1 MSA Category 2 MSA Category 3 
Geography All 

(Intercept) 
-0.23  
(0.052) 

-0.215  
(0.042) 

-0.051  
(0.032) 

HH Income 
0.186  
(0.031) 

0.179  
(0.024) 

0.165  
(0.017) 

Distance to work 
0.051  
(0.032) 

0.054  
(0.025) 

0.138  
(0.017) 

Age 
0.08  
(0.032) 

0.059  
(0.025) 

0.038  
(0.019) 

Male 
0.044  
(0.062) 

-0.147  
(0.048) 

-0.068  
(0.034) 

White 
0.18  
(0.063) 

0.132  
(0.048) 

0.019  
(0.035) 

Geography 1st ring 

(Intercept) 
-0.669  
(0.135) 

0.184  
(0.029) 

0.317  
(0.036) 

HH Income 
0.398  
(0.093) 

0.093  
(0.031) 

0.121  
(0.038) 

Distance to work 
-0.033  
(0.094) 

0.093  
(0.032) 

-0.048  
(0.042) 

Age 
-0.048  
(0.085) 

-0.087  
(0.059) 

-0.201  
(0.067) 

Male 
-0.026  
(0.179) 

0.187  
(0.059) 

0.145  
(0.068) 

White 
-0.16  
(0.192) 

-0.311  
(0.082) 

-0.052  
(0.065) 

Geography 2nd ring 

(Intercept) 
-0.218  
(0.097) 

-0.311  
(0.082) 

-0.052  
(0.065) 

HH Income 
0.149  
(0.065) 

0.224  
(0.055) 

0.067  
(0.032) 

Distance to work 
0.044  
(0.059) 

0.098  
(0.051) 

0.102  
(0.035) 

Age 
0.208  
(0.066) 

-0.11  
(0.048) 

-0.007  
(0.041) 

Male 
0.105  
(0.113) 

-0.051  
(0.095) 

0.109  
(0.07) 

White 
0.238  
(0.117) 

0.306  
(0.098) 

-0.165  
(0.071) 
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